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Abstract

In this paper, we consider a typical voting situation where a group of agents

show their preferences over a set of alternatives. Under our approach, such

preferences are codified into individual positional values which can be aggregated

in several ways through particular functions, yielding positional voting rules and

providing a social result in each case. We show that scoring rules belong to such

class of positional voting rules. But if we focus our interest on OWA operators

as aggregation functions, other well-known voting systems naturally appear. In

particular, we determine those ones verifying duplication (i.e., clone irrelevance)

and present a proposal of an overall social result provided by them.

Keywords: positional voting rules, scoring rules, aggregation functions, OWA

operators, duplication.

1. Introduction

There exists in Social Choice a long tradition controversy between the po-

sitional and non-positional approaches to voting theory, coming early from
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Borda and Condorcet, respectively. Gärdenfors [26] established a comprehen-

sive framework to understand this opposition, and considered that “positionalist

voting functions are those social choice functions where the positions of the al-

ternatives in the voters’ preference orders crucially influence the social ordering

of the alternatives”. Of course, this assertion can be understood in different

ways1, being Borda, plurality and antiplurality rules the most popular cases of

positional voting rules. All of them are specific cases of scoring rules2, where

the alternatives are socially ordered taking into account the sum of individual

scores according to the agents’ preferences. In fact, from Riker [41] on, many

authors have identified scoring rules with positional voting methods. However,

as we will show, scoring rules are not exclusive in capturing positional features

of voting.

Our proposal is based on aggregation functions, mainly through OWA op-

erators3. This tool has been revealed as a unifying way to face different issues

appearing in several fields, Social Choice Theory among them (on this particular

matter, see Wang et al. [46], Llamazares [35], Garćıa-Lapresta et al. [21] and

Kacprzyk et al. [30], among others). As will be shown along the paper, this

approach sheds light on some aspects avoided in the scoring context4.

One of these interesting properties, not satisfied by the scoring rules, is du-

plication. This property entails irrelevance of clone voters in the final outcome

and might not seem suitable at all in voting scenarios. Nonetheless, its fulfill-

ment should be convenient in several contexts; for example, when multiple votes

are allowed for each voter (what happens if some Internet mechanisms are used)

or whenever that streams of opinion, rather than individual opinions, should be

1See Pattanaik [39], especially Section 3.
2See Chebotarev and Shamis [12] for a referenced survey on scoring rules and their char-

acterizations.
3The initials in OWA stand for ordered weighted averaging (see Yager [47], Yager and

Kacprzyk [49] and Yager et al. [50]). This kind of operators have been characterized by Fodor

et al. [19].
4This argument, supported along the present paper, already preliminarily appeared in

Garćıa-Lapresta and Mart́ınez-Panero [24].
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taken into account. Even more, it will be established that duplication arises in

some specific positional voting rules induced by OWA operators interestingly

related to decision under complete ignorance.

It is worth pointing out that there exist in the literature other possible al-

ternative approaches extending the framework of scoring rules, such as flexible

scoring rules introduced by Baharad and Nitzan [1]. On their hand, Xia and

Conitzer [54, 55] have proposed what they call generalized scoring rules, ex-

tending well known voting rules such as Copeland, maximin, Bucklin and, of

course, scoring rules. And recently Llamazares and Peña [36, 37] have employed

cumulative standing functions representing in an interesting comprehensive way

scoring rules such as plurality, antiplurality, Borda rule, k-approval voting, etc.

Even more, these last authors also include in their proposal other voting rules

based on variable scoring vectors or taking into account the support behind the

candidates.

The rest of the paper is organized as follows. In Section 2 we introduce the

basic notation for the voters’ preferences over the alternatives and their related

positions. Section 3 is devoted to voting rules as aggregation functions; we

show that scoring rules are specific cases of such positional rules, and then we

focus our attention on OWA operators and show their connections with some

well-known voting rules appearing in the literature. The need of taking into

account a variable electorate leads us to use extended OWA operators (EOWA

operators) and, with this background, in Section 4 we define duplication and

then we characterize those OWA-generated positional voting rules satisfying

this property. An illustrative example is also presented, and a proposal of an

overall social order based on the characterized rules is obtained in a unifying

way. Finally, some concluding remarks are included in Section 5.

2. Preliminaries

Consider a set of voters V = {1, . . . ,m}, with m ≥ 2 (occasionally, just for

completion reasons, we will also consider the trivial case m = 1). These voters
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show their preferences on a set of alternatives X = {x1, . . . , xn}, with n ≥ 2.

With L(X) we denote the set of linear orders on X, and with W (X) the set

of weak orders (or complete preorders) on X. Given R, <∈ W (X), with �

and ∼ we denote the asymmetric and the symmetric parts of R, respectively.

A profile is a vector R = (R1, . . . , Rm) of weak orders, where Rv represents the

preferences of the voter v ∈ V . Vectors in Rn are denoted as a = (a1, . . . , an).

Given a, b ∈ Rn, with a ≤ b we mean ai ≤ bi for every i ∈ {1, . . . , n}.

Definition 1. Given R ∈W (X), the position of alternative xi ∈ X is defined

as

p(xi) = n−# {xj ∈ X | xi � xj} −
1

2
# {xj ∈ (X \ {xi}) | xj ∼ xi} . (1)

It is worth mentioning that this proposal of assessing positions to the alter-

natives is equivalent to the way of scoring in extended versions of the Borda

count for weak orders, where the scores of the tied alternatives are obtained as

the average of the corresponding ones after a linearization process (see Smith

[42], Black [8] and Cook and Seiford [14]).

Example 1. Consider R ∈W ({x1, . . . , x7}) given by

R

x7

x3 x4

x2

x1 x5 x6

Then,

p(x1) = p(x5) = p(x6) =
5 + 6 + 7

3
= 6 = 7− 0− 1

2
2,

p(x2) = 4 = 7− 3− 1

2
0,

p(x3) = p(x4) =
2 + 3

2
= 2.5 = 7− 4− 1

2
1,

p(x7) = 1 = 7− 6− 1

2
0.
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Consequently, R is codified by the positions vector

(p(x1), p(x2), p(x3), p(x4), p(x5), p(x6), p(x7)) = (6, 4, 2.5, 2.5, 6, 6, 1).

In the particular case of linear orders, positions for each alternative vary from

1 to n with step 1 and the coordinates of each positions vector are permutations

of Pl = {1, 2, . . . , n}. In the general case of weak orders, it is easy to check that

possible positions range from 1 to n with step 0.5, i.e., in this case the positional

vectors take their coordinates in

P = {1 + λ · 0.5 | λ ∈ {0, 1, . . . , 2(n− 1)}} = {1, 1.5, 2, . . . , n− 0.5, n},

although not all n-dimensional vectors with these values as coordinates do rep-

resent a weak order5.

Taking into account the positions of the alternatives, every profile R ∈

W (X)m has associated a position matrix containing the positions of the alter-

natives for all the voters
p1(x1) p1(x2) · · · p1(xn)

p2(x1) p2(x2) · · · p2(xn)

· · · · · · · · · · · ·

pm(x1) pm(x2) · · · pm(xn)

 ,

where pv(xi) is the position of xi for voter v. Thus, row v contains the positions

of the alternatives according to voter v, and column i contains the positions of

the alternative xi.

3. The aggregation process

Definition 2. Given a domain D ⊆W (X)m, a voting rule on D is a mapping

F : D −→W (X) that satisfies the following conditions:

5The set of of all admisible positions vectors in the previous sense has been characterized

by Garćıa-Lapresta and Pérez-Román [25].
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1. Anonymity: For every permutation π on {1, . . . ,m} and every profile

R ∈ D,

F
(
Rπ(1), . . . , Rπ(m)

)
= F (R1, . . . , Rm) .

2. Neutrality: For every permutation σ on {1, . . . , n} and every profile R ∈

D,

F (Rσ1 , . . . , R
σ
m) = (F (R1, . . . , Rm))

σ
,

where Rσv and (F (R1, . . . , Rm))
σ

are the orders obtained from Rv and

F (R1, . . . , Rm), respectively, by relabeling the alternatives according to σ,

i.e., xσ(i)R
σ
v xσ(j) ⇔ xiRv xj and xσ(i) (F (R1, . . . , Rm))σ xσ(j) ⇔

xi F (R1, . . . , Rm)xj.

3. Unanimity: For every profile R ∈ D and all xi, xj ∈ X,

(∀v ∈ V xiRv xj) ⇒ xi F (R )xj .

Anonymity means a symmetric consideration for the voters; neutrality means

a symmetric consideration for the alternatives; and unanimity means that if all

the individuals consider an alternative as good as another one, then the social

preference coincides with the individual preferences on this issue.

The previous framework considering voting rules, where the outcome is a

social order (as in Smith [42]), is not unique at all in Social Choice Theory.

Other possible approaches can be taken into account, such as social choice cor-

respondences, where the result is the (nonempty) subset of the best alternatives

(as in Young [52, 53]; see also Laslier [31] for further rank-based and pairwise-

based approaches), or even social choice functions, where a single alternative is

assigned to each profile6.

3.1. Aggregation functions

In our proposal, we have adapted the notion of aggregation function from

[0, 1]m to m-tuples of [1,∞)m. In fact, for our purposes, it suffices to deal

6As pointed out by Courtin et al. [15], differences in the axiomatic treatment arise de-

pending on the type of social mechanism considered.
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with more restricted domains, namely, Pm = {1, 1.5, 2, . . . , n − 0.5, n}m or

Pml = {1, 2, . . . , n}m. On aggregation functions in the standard unit interval,

see Calvo et al. [10], Beliakov et al. [7, 6] and Grabisch et al. [27].

Definition 3. Let D be a domain being D = Pm or D = Pml . An aggregation

function on D is a mapping A : D −→ R verifying the following conditions:

1. Boundary conditions: A(1, . . . , 1) = 1 and A(n, . . . , n) = n.

2. Monotonicity: a ≤ b ⇒ A(a) ≤ A(b), for all a, b ∈ D.

If, additionally, A satisfies idempotency, i.e., A(a, . . . , a) = a for every a ∈ P

(resp. a ∈ Pl), then A is called averaging aggregation function.

It is easy to see that averaging aggregation functions satisfy compensative-

ness:

min{a1, . . . , am} ≤ A(a1, . . . , am) ≤ max{a1, . . . , am},

for every (a1, . . . , am) ∈ D.

Typical averaging aggregation functions are the arithmetic mean, trimmed

means, the median, the maximum, the minimum, etc. In fact, we can gather all

these aggregation functions as specific cases of OWA operators.

Definition 4. A weighting vector of dimension m is a vector w = (w1, . . . , wm) ∈

[0, 1]m such that

m∑
i=1

wi = 1.

Definition 5. Given D = Pm or D = Pml and a weighting vector w of

dimension m, the OWA operator on D associated with w is the mapping Aw :

D −→ R defined as

Aw(a1, . . . , am) =

m∑
i=1

wi · a[i],

where a[i] is the i-th greatest number of a1, . . . , am.

As noted before, some well-known aggregation functions are specific cases of

OWA operators.

With appropriate weighting vectors w = (w1, . . . , wm) we obtain
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1. The maximum, for w = (1, 0, . . . , 0).

2. The minimum, for w = (0, . . . , 0, 1).

3. The arithmetic mean, for w =
(

1
m , . . . ,

1
m

)
.

4. The k-trimmed means:

• If k = 1, w =
(

0, 1
m−2 , . . . ,

1
m−2 , 0

)
.

• If k = 2, w =
(

0, 0, 1
m−4 , . . . ,

1
m−4 , 0, 0

)
.

• . . . .

5. The median:

(a) If m is odd, wi =

 1, if i = m+1
2 ,

0, otherwise.

(b) If m is even, wi =


1
2 , if i ∈ {m2 ,

m
2 + 1},

0, otherwise.

6. The mid-range, for w = (0.5, 0, . . . , 0, 0.5).

For m = 3, the set of weighting vectors

{(α, β, 1− α− β) | 0 ≤ α ≤ 1 , 0 ≤ β ≤ 1 , α+ β ≤ 1}

can be identified with the triangle {(α, β) ∈ [0, 1]2 | α+ β ≤ 1} (see Figure 1).

(0, 0)

min

(1, 0)

max

(0, 1)
median

(
1
3 ,

1
3

)mean

α

β

Figure 1: The main OWA operators for m = 3.

Note that the vertices of the triangle, (0, 0), (1, 0) and (0, 1), correspond to

the minimum, the maximum and the median, respectively; and the baricenter

of the triangle,
(
1
3 ,

1
3

)
, corresponds to the arithmetic mean.
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3.2. Positional voting rules

Definition 6. Given the aggregation function A : Pm −→ R and a profile

R ∈W (X)m, the aggregated position of the alternative xi ∈ X is defined as

pA(xi) = A(p1(xi), . . . , pm(xi)),

where pv(xi) is the position of xi for voter v ∈ V .

For every aggregation function A : Pm −→ R, we consider the mapping

FA : W (X)m −→W (X) defined as FA(R) = <A, where

xi <A xj ⇔ pA(xi) ≤ pA(xj).

Remark 1. In the previous situation, it is easy to check that FA is a voting

rule.

Definition 7. For every aggregation function A : Pm −→ R, FA is the posi-

tional voting rule associated with A.

3.2.1. Scoring rules as positional voting rules

As pointed out before, scoring rules appear to be the paradigm of the posi-

tional approach to voting theory. In what follows we define this class of rules,

which encloses well-known voting rules such as plurality, antiplurality and Borda

rules, among others. Then, we will show that all of them are positional voting

rules in the aforementioned sense, but it will be shown that the reverse is not

true.

Definition 8. A scoring vector of dimension n ∈ N is a vector s = (s1, . . . , sn) ∈

Rn such that s1 ≥ · · · ≥ sn and s1 > sn.

Now, suppose that voters’ preferences over the alternatives are linear orders

(i.e., weak orders where ties among distinct alternatives are avoided), gathered

in a profile R ∈ L(X)m . Given a scoring vector s = (s1, . . . , sn), for each voter,

s1 points are assigned to the top-ranked alternative, s2 points to the second-

ranked alternative, and so on. Formally, in terms of positions, the individual
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score of voter v ∈ V for the alternative xi is rvs(xi) = spv(xi). The collective

score for the alternative xi is rs(xi) =

m∑
v=1

rvs(xi). The alternative(s) with the

largest total score is (are) the winner(s).

Definition 9. Given a scoring vector s of dimension n, the scoring rule asso-

ciated with s is the mapping Fs : L(X)m −→W (X) defined as Fs(R) = <s ,

where xi <s xj ⇔ rs(xi) ≥ rs(xj).

Remark 2. It is straightforward to check that Fs is a voting rule for every

scoring vector s. In what follows, notice that when dealing with positional

voting rules, the smallest value(s) correspond(s) to the best position(s), just the

opposite happening with scoring rules, where the highest score determines the

winner(s).

The following cases give the scoring rules associated with various voting rules

appearing in the literature.

• k–approval voting7, k ∈ {1, 2, . . . , n− 1}: s = (1, . . . , 1, 0, . . . , 0), with k

1’s. As important specific cases of this, we have

– Plurality: for k = 1, s = (1, 0, . . . , 0).

– Antiplurality: for k = n− 1, s = (1, . . . , 1, 0).

• Borda rule: s = (n− 1, n− 2, . . . , 1, 0).

• Best-worst voting rules8: s = (1, s, . . . , s, 0), with s ∈ (0, 1).

Note that the excluded cases s = 0 and s = 1 would correspond again

to plurality and antiplurality, respectively.

7Notice that while k–approval voting is a scoring rule, approval voting (where each voter

can approve of as many alternatives as wished) is not. However, it can be understood as a

flexible scoring rule following the extended framework proposed by Baharad and Nitzan [1].
8Best-worst voting rules were introduced and axiomatically characterized in the scoring

context by Garćıa-Lapresta et al. [22].
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Given the scoring rule associated with the scoring vector (s1, . . . , sn), a, b ∈

R such that a > 0, the new scoring rule associated with the scoring vector

(s′1, . . . , s
′
n), where s′i = asi + b for every i ∈ {1, . . . , n}, is equivalent to the

previous one, in the sense that they provide the same social outcomes. In this

way, every scoring vector (s1, . . . , sn) can be normalized, i.e., it is equivalent to

(s′1, . . . , s
′
n) with s′1 = 1 and s′n = 0, by simply taking s′i = (si− sn)/(s1− sn).

For n = 4, the set of normalized scoring vectors {(1, s, t, 0) | 0 ≤ t ≤ s ≤ 1}

can be identified with the triangle {(s, t) ∈ [0, 1]2 | t ≤ s} (see Garćıa-Lapresta

et al. [20]). As shown in Figure 2, the vertices of the triangle, (0, 0), (1, 0) and

(1, 1), correspond to plurality, 2–approval voting and antiplurality, respectively;

the baricenter of the triangle,
(
2
3 ,

1
3

)
, corresponds to the Borda rule; and the

segment conecting (0, 0) and (1, 1) corresponds to the set of best-worst voting

rules.

(0, 0)

Plurality

(1, 0)

2–approval voting

(1, 1)
Antiplurality

(
2
3 ,

1
3

)Borda

(s, s)

Best-worst

s

t

Figure 2: The best-known scoring rules for n = 4.

The next result shows how to construct an aggregation function from any

scoring vector so that their associated positional voting rule and the correspond-

ing scoring rule are the same.

Proposition 1. All the scoring rules are positional voting rules.

Proof: Let s = (s1, . . . , sn) ∈ [0, 1]n be a normalized scoring vector, i.e.,

1 = s1 ≥ s2 ≥ · · · ≥ sn−1 ≥ sn = 0. Let As : Pml −→ R be the mapping

defined as

As(a1, . . . , am) = 1 +
n− 1

m

m∑
v=1

ϕs(av),
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with ϕs(i) = 1 − si for every i ∈ {1, . . . , n}. It is easy to see that As is an

aggregation function on Pml .

We also have

xi <As xj ⇔ pAs(xi) ≤ pAs(xj) ⇔

As(p1(xi), . . . , pm(xi)) ≤ As(p1(xj), . . . , pm(xj)) ⇔

1 +
n− 1

m

m∑
v=1

ϕs(pv(xi)) ≤ 1 +
n− 1

m

m∑
v=1

ϕs(pv(xj)) ⇔

rs(xi) =

m∑
v=1

rvs(xi) ≥
m∑
v=1

rvs(xj) = rs(xj) ⇔ xi <s xj .

Hence, <As = <s and, consequently, the scoring rule associated with s

coincides with the positional voting rule associated with As.

Now we will show that our positional approach actually does extend the

scoring context. We mean that, although sharing similar patterns, it is not true

that every positional voting rule associated with an aggregation function can

be represented by a scoring rule (in the sense that both provide the same social

order).

Example 2. Consider the profile given by

R1

x1

x3

x2

R2

x1

x3

x2

R3

x2

x3

x1

where the associated position matrix is
1 3 2

1 3 2

3 1 2

 .

Aggregating through the maximum (A = max), i.e., under the maximin voting

rule, the following social order is obtained: x3 �A x1 ∼A x2. Let now consider
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a generic scoring rule with associated (normalized) scoring vector s = (1, s, 0),

0 ≤ s ≤ 1. Then, the collective scores obtained for the alternatives are

rs(x1) = 2, rs(x2) = 1, rs(x3) = 3s.

According to the results, every scoring rule provides x1 �s x2. In any case,

none of them represents the positional voting rule associated with the maximum,

where x1 ∼A x2, as pointed out before. Consequently, the class of positional

voting rules does not coincide with the class of scoring rules.

Remark 3. Notice an interesting feature of the maximin rule that can be ob-

served in the above situation: A kind of clone irrelevance, i.e., the influence

of voter’s copies is irrelevant in the final outcome. Thus, in Example 2, the

presence or absence of voter 2 (a clone of voter 1) does not affect the result.

This is a determinant fact for excluding the maximin voting rule from scoring

rules, because it is against Young’s [53] continuity9, an axiom appearing in his

characterization of scoring rules.

3.2.2. OWA-generated positional voting rules

Taking into account some of the OWA operators mentioned above, we obtain

positional voting rules which are connected to (or even replicate) well-known

procedures appearing in the literature:

• The arithmetic mean as aggregation function induces the Borda rule.

And it is worth mentioning that the arithmetic mean is also the basis for

the Range Voting method (Smith [43]), in a decisional context where the

alternatives receive numerical assessments one by one.

• The median instead of the arithmetic mean, and linguistic terms instead

of numerical values, are used in the Majority Judgment voting system in-

9This is an archimedean-type property which states that if two disjoint sets of voters U

and V select x and y as winners, respectively, then x should be a winner for the superset

(nU)∪ V for n sufficiently large, where (nU) means n copies of those voters and their votes.

Clearly, as exposed, this is not fulfilled by the maximin voting rule.
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troduced by Balinski and Laraki [3, 4]. Extensions of this procedure using

centered OWA operators (Yager [48]) and distances appear in Garćıa-

Lapresta and Mart́ınez-Panero [23] and in Falcó and Garćıa-Lapresta [17],

respectively. Again, in a different scenario, Bucklin’s method selects the

candidates with highest median ranking as winners (see Tideman [44] and

Felsenthal [18]), and similarly Basset and Persky [5] also proposed to se-

lect the alternative with best median evaluation (see also Laslier [33], who

has coined the term maxmed for this voting scheme).

• The maximum leads to a voting rule in which each alternative is evalu-

ated according to the worst reached position. Those with the best assigned

value are then elected. Such a maximin voting rule, which advocates the

maximin principle of normative economics10, is called fallback bargaining11

by Brams and Kilgour [9]. It has been characterized in the voting context

by Congar and Merlin [13] (see also Llamazares and Peña [36]).

The same underlying idea appears in the leximin voting system proposed

by Laslier [32] (see also Laslier [33]), and in the Simpson-Kramer method

(see Levin and Nalebuff [34]), although in different decisional frameworks.

Furthermore, the procedure obtained through the maximum as aggrega-

tion operator is also related to the Coombs method (where the alternative

with the largest number of last positions is sequentially withdrawn), as

well as to the antiplurality rule (see Baharad and Nitzan [2] and Congar

and Merlin [13]).

• The minimum entails a voting rule called maximax 12 by Congar and

10Rawls [40, p. 328]: “the basic structure is perfectly just when the prospects of the least

fortunate are as great as they can be”.
11Concretely, the maximin rule corresponds to the case of fallback bargaining with unanim-

ity, also called Kant-Rawls social compromise after Hurwicz and Sertel [29].
12The apparent discordance leading the maximum to the maximin voting rule, as well as

the minimum to the maximax, relies on our positional approach where, contrary to the scoring

context, the smallest value is associated with the best position, as pointed out before. It is
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Merlin [13], also characterized by them. Its conception is similar to that

of the Hare rule, also known as alternative vote (where the alternative with

the fewest first positions is sequentially withdrawn). It is also related to

the most used (and criticized) voting system: plurality rule (see Laslier

[32] and Congar and Merlin [13]).

• The mid-range is related to the basic 1-best-1-worst voting rule (see

Garćıa-Lapresta et al. [22]).

Remark 4. There can exist a unique “translation” between weighting vectors

and normalizated scoring vectors. This is what happens with the Borda rule:

as a scoring rule, it is associated with
(

1, n−2n−1 , . . . ,
1

n−11, 0
)

, while as OWA-

generated positional voting rule corresponds to
(

1
m , . . . ,

1
m

)
. However, in some

cases such translation does not exist (see Remark 3, where it is shown that

maximin rule can not be captured through any scoring rule; and it is also

true for the maximax rule). Even more, depending on the situation, there can

be several possibilities of translation from the same scoring rule into OWA-

generated positional voting rules, being not compatible among them. This fact

is shown in what follows.

Consider the profile given by

R1

x1

x3

x2

R2

x2

x3

x1

R3

x3

x2

x1

The result under plurality rule is x1 ∼ x2 ∼ x3, and it is easy to check that

this social order is also the same under the OWA-generated positional voting

rule associated with the weighting vector (0, 0, 1), i.e., the maximax rule.

On the other hand, consider the new profile

also worth to note in what follows that in the scoring context there are as many scores as

alternatives, whereas in the positional scenario, when dealing with OWA operators, there are

as many weights as voters.
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R1

x1

x2

x3

R2

x1

x3

x2

R3

x2

x3

x1

Now plurality rule gives x1 � x2 � x3 and, after some computation, the

same social order can be obtained through every OWA-generated positional

voting rule associated with any weighting vector (α, β, 1 − α − β) such that

β > 0.

Thus, these two profiles show that, even when existing weights associated

with scores, they could have not common values. Concretely, in words referred to

our example, being the first weighting vector incompatible with those obtained

to capture plurality in the second profile, it can be argued that there not exists

“the” OWA-generated positional voting rule associated with plurality (similar

reasons for the antiplurality rule also stand).

Remark 5. One can ask if OWA-generated positional voting rules which are

not scoring rules are those considering in the aggregation process only the in-

formation about the best and/or worst positioned alternatives, as happening

with maximin and maximax rules. The answer is no. In both of the profiles

appearing in Remark 4, the maxmed rule (whose weighting vector is (0, 1, 0))

cannot be represented under any scoring rule. For example, in the first pro-

file, under a normalized scoring vector (1, s, 0) with s ∈ [0, 1], the obtained

social order is x1 ∼ x2 ∼ x3 when s = 0 (plurality, as aforementioned) and

x3 � x2 � x1 when s > 0. However, if maxmed were applied, then the result

would be x3 ∼ x2 � x1, incompatible with any of these scoring rules.

3.3. Extended notions

Sometimes it is necessary to take into account a variable electorate (for

instance, as mentioned, to deal with the clonation or appearance of new voters,

as happening in Example 2). This is the reason why we introduce some extended

notions of those already defined throughout the paper.
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Definition 10. An extended voting rule is a mapping

F̃ :
⋃
m∈N

W (X)m −→W (X)

such that Fm = F̃ |W (X)m is a voting rule for each dimension m = 2, 3, . . . ,

and F1(R) = R.

Definition 11. An extended OWA operator (EOWA) is a sequence of OWA

operators Ã = (Awm)m∈N with associated weighting vectors wm = (wm1 , . . . , w
m
m),

one for each dimension m ∈ N.

Following Calvo and Mayor [11] and Mayor and Calvo [38] (see also Beliakov

et al. [7, pp. 54-56]) and Beliakov et al. [6, pp. 73-76]), we can show graphically

an EOWA operator as a weighting triangle where the entries in each row add

up to one.

w1
1

w2
1 w2

2

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3 w4

4

w5
1 w5

2 w5
3 w5

4 w5
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Duplication

Here we formally introduce the aforementioned clone irrelevance property

which, broadly speaking, requires that new voters replicating the same prefer-

ences of already existing voters will not affect the social outcome. At first sight

such statement might seem a vulneration of the very essence of democracy, but

it can make sense in some contexts. For example, in bargaining, when the above

mentioned fallback method is used to find a compromise among the bargainers

17



because they “fall back in lockstep to less and less preferred positions until they

agree on outcome” (see Brams and Kilgour [9]). But it also make sense in voting

scenarios such as the Internet, where agents can cast their votes more than one

time13; or wherever that, rather than merely the total amount of votes, different

currents of opinion or electoral bodies (such as minorities) should be taken into

account.

This property appears as duplication in Congar and Merlin [13], where they

consider this axiom in order to capture situations of complete ignorance in some

voting contexts (see references therein) and characterize the maximin procedure.

Definition 12. An extended voting rule F̃ satisfies duplication if

Fm+1(R, Ri) = Fm(R),

for every profile R = (R1, . . . , Ri, . . . , Rm) ∈W (X)m and every i ∈ {1, . . . ,m}.

4.1. A characterization result

It is interesting to find those procedures satisfying duplication, and the fol-

lowing result shows the answer for positional voting rules associated with EOWA

operators.

Theorem 1. Given an EOWA operator Ã = (Awm)m∈N , the extended voting

rule F̃Ã satisfies duplication if and only if Ã is a rational convex combination of

the maximum and the minimum EOWA operators, i.e., there exists α ∈ [0, 1]∩Q

such that wm = α(1, 0, . . . , 0) + (1− α)(0, . . . , 0, 1) for every m ∈ N.

Proof: It is straightforward that positional voting rules associated with Awm ,

where wm = (1, 0, . . . , 0) (i.e., maximin), wm = (0, 0, . . . , 1) (i.e., maximax),

13See Yokoo and Matsubara [51], where they analyze the effect of false name bids in Internet

auctions as well as Wagman and Conitzer [45], where these authors deal with false-name-proof

voting mechanisms, i.e., those where no agent benefits from participating more than once.
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and convex combinations of them, wm = (α, 0, . . . , 0, 1 − α), with α ∈ [0, 1],

satisfy duplication14.

For the reciprocal, we first prove that if duplication holds for an extended

voting rule F̃Ã, where Ã = (Awm)m∈N , then all intermediate weights in each

dimension m, w2, . . . , wm−1, should be zero. Our reasoning will deal with a

profile consisting in all circular permutations15 of three alternatives, but the

argument is extensible to m > 3. Thus, consider the profile

R1

x1

x2

x3

R2

x2

x3

x1

R3

x3

x1

x2

where the associated position matrix is
1 2 3

3 1 2

2 3 1

 .

As every alternative occupies each position exactly once, a global tie arises

and the aggregated position for each is pA(xi) = 3w3
1 + 2w3

2 + w3
3, i = 1, 2, 3,

so that x1 ∼Aw3 x2 ∼Aw3 x3, where w3 = (w3
1, w

3
2, w

3
3).

Now suppose that voter 1 is replicated, becoming the new situation

R1

x1

x2

x3

R2

x2

x3

x1

R3

x3

x1

x2

R4 = R1

x1

x2

x3

14Notice that, in the previous argument, α does not need to be rational. However, as

pointed out by Fagin and Wimmers [16] “in some situations we have to restrict our attention

to rational weights”. One of these situations naturally arises when “we simply allow multiple

copies of voters”, which is exactly our case.
15These circular permutations yield a Condorcet cycle.

19



where the new associated position matrix is
1 2 3

3 1 2

2 3 1

1 2 3

 .

Then, the aggregated positions for each alternative are

pA(x1) = 3w4
1 + 2w4

2 + w4
3 + w4

4,

pA(x2) = 3w4
1 + 2w4

2 + 2w4
3 + w4

4,

pA(x3) = 3w4
1 + 3w4

2 + 2w4
3 + w4

4.

Taking into account duplication, the tie among all three alternatives holds;

hence

x1 ∼A x2 ⇔ w4
3 = 0,

x1 ∼A x3 ⇔ w4
2 + w4

3 = 0,

x1 ∼A x3 ⇔ w4
2 = 0.

Then, w4
2 = w4

3 = 0. Once proven that central weights are null (this fact

will be taken into account in what follows), what remains is to show that lateral

weights in each side of the triangle should the same at any level, i.e., there exists

α ∈ [0, 1] such that wm1 = α and wmm = 1 − α, for every m ≥ 2. To do this,

consider α = p
q with p, q ∈ N and p < q, expressed as an irreductible fraction,

and any profile with m voters and q+ 1 alternatives where the alternative x1 is

at least the best for one voter and the worst for another one, while x2 occupies

the position p+ 1 for all of them. A sketch of such ad hoc profile would be
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position

1

· · ·

p+ 1

· · ·

q + 1

R1

· · ·

· · ·

x2

· · ·

· · ·

· · ·

· · ·

· · ·

x2

· · ·

· · ·

Ri

x1

· · ·

x2

· · ·

· · ·

· · ·

· · ·

· · ·

x2

· · ·

· · ·

Rj

· · ·

· · ·

x2

· · ·

x1

· · ·

· · ·

· · ·

x2

· · ·

· · ·

Rm

· · ·

· · ·

x2

· · ·

· · ·

The aggregated positions for the selected alternatives would be

pA(x1) =
p

q
(q + 1) +

(
1− p

q

)
= p+ 1,

pA(x2) =
p

q
(p+ 1) +

(
1− p

q

)
(p+ 1) = p+ 1,

so that x1 ∼A x2, being A the voting rule corresponding to any EOWA with

such weights.

But now, if we replicate any subset of voters becoming the new weights

β 6= α and hence 1− β 6= 1− α, then the new aggregated positions would be

pA(x1) = β(q + 1) + (1− β) 6= p+ 1,

pA(x2) = β(p+ 1) + (1− β)(p+ 1) = p+ 1,

so that x1 ∼A x2 does not hold. Hence, if lateral weights change from one

dimension to another, duplication fails.

In conclusion, under duplication we obtain the class of weighting triangles

1

α 1− α

α 0 1− α

α 0 0 1− α

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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As specific cases we have:

• α = 1: maximum (maximin rule),

• α = 0: minimum (maximax rule),

• α = 0.5: mid-range.

It is worth mentioning that duplication is related to the Hurwicz criterion

[28] used in decision making under complete uncertainty, where the value of

a decision is a convex combination of its lowest possible expected value (pes-

simistic assessment) and of its highest one (optimistic assessment). On the other

hand, although duplication might seem to be antidemocratic, Congar and Mer-

lin [13] show that at least it is compatible with the basic democratic principle

of anonymity and advocate it as a way “to protect the opinion of a minority

against the will of the majority”.

4.2. An illustrative example

Consider three voters that arrange three alternatives according to the fol-

lowing profile

R1

x2

x3

x1

R2

x2 x3

x1

R3

x1 x3

x2

with associated position matrix
3 1 2

3 1.5 1.5

1.5 3 1.5

 .

If we choose the OWA operator Aw(α) associated with the weighting vec-

tor w(α) = (α, 0, 1 − α), with α ∈ [0, 1], then the corresponding aggregated

positions for the alternatives would be
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pAw(α)
(x1) = 3α+ 1.5 (1− α) = 1.5α+ 1.5,

pAw(α)
(x2) = 3α+ 1 (1− α) = 2α+ 1,

pAw(α)
(x3) = 2α+ 1.5 (1− α) = 0.5α+ 1.5.

According to the possible values of α, the corresponding social orders are

the following

α = 0 0 < α < 1
3 α = 1

3
1
3 < α < 1 α = 1

x2 x2 x2 x3 x3 x3

x1 x3 x3 x1 x2 x1 x2

x1 x1

As one could expect, different social orders appear depending on α.

In the following subsection we propose an integrating method to obtain a

unified result for each alternative taking into account the different outcomes

when α ranges from 0 to 1.

4.3. Overall positions and social order

For the general case with n alternatives and using in a first stage the po-

sitional voting rule associated with the OWA operator of weighting vector

w(α) = (α, 0, . . . , 0, 1 − α), it is possible to assign the corresponding social

position pAw(α)
(xi) to the alternative xi. Thus, we can introduce the function

µi : [0, 1] −→ R defined as µi(α) = pAw(α)
(xi). Such function is always a degree

one polynomial (a linear function), and hence Riemann integrable. This fact

allows us to define the overall position of xi as

p(xi) =

∫ 1

0

µi(α) dα.

Easy computations lead to the following results in the previous example:
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p(x1) =

∫ 1

0

µ1(α) dα =

∫ 1

0

(1.5α+ 1.5) dα = 9/4,

p(x2) =

∫ 1

0

µ2(α) dα =

∫ 1

0

(2α+ 1) dα = 2,

p(x3) =

∫ 1

0

µ3(α) dα =

∫ 1

0

(0.5α+ 1.5) dα = 7/4.

Thus, the overall social order is x3 � x2 � x1.

In conclusion, for each α ∈ [0, 1] the corresponding positional voting rule

associated with Aw(α) only takes into account the best and worst positions for

each alternative, yielding different social orders in each case. However, the pos-

sible criticism on the influence of the choice of α in the result can be mitigated

under this overall approach, where a social order is obtained not correspond-

ing with any predetermined α, but amalgamating all allowable values for this

parameter.

5. Concluding remarks

In this paper we have presented a general framework for positional voting

rules which includes all scoring rules as especial cases. To this aim, we need an

aggregation process for obtaining a collective position from individual ones for

each alternative. This is the reason why we have mainly used OWA operators,

as they provide a comprehensive way to deal with this kind of information.

More concretely, we have analyzed how the maximum and the minimum OWA

operators induce the so called maximin and maximax voting rules, respectively,

recently characterized by Congar and Merlin [13]. Of course, these rules are

not scoring rules (they satisfy duplication, a property radically opposed to the

continuity verified by the scoring rules) although all of them share interesting

features due to their positional nature. A comprehensive diagram showing our

knowledge of the logical relationship among these rules appears in Figure 3.

We have focused on the duplication property appearing in the above men-

tioned characterization. On our part, once introduced suitable extended notions
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Figure 3: Relationship among positional voting rules

to take into account a variable electorate, we have characterized all EOWA-

generated positional voting rules satisfying that property.

Some questions remain unanswered. As proven in Prop. 1, all scoring rules

are positional voting rules. Even more, some scoring rules are positional voting

rules generated by OWA operators. This is the case of the Borda rule, associated

with the arithmetic mean. However, a characterization of the family of scoring

rules that are generated by OWA operators (in other words, the relationship

among scores and weights) is to be found. Additionally, families of aggregation

functions other than OWA operators, such as quasiarithmetic means, could be

also taken into account.
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