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Abstract

We propose two methods to find analytic periodic approximations in-
tended for differential equations of Hill type. Here, we apply these methods
on the simplest case of the Mathieu equation. The former has been inspired
in the harmonic balance method and designed to find, making use on a given
algebraic function, analytic approximations for the critical values and their
corresponding periodic solutions of the Mathieu differential equation. What
is new is that these solutions are valid for all values of the equation parame-
ter q, no matter how large. The second one uses truncations of Fourier series
and has connections with the least squares method.

Keywords:
Mathieu equation, a modified harmonic balance method, leasts squares.

1. Introduction

The harmonic balance method (1; 2; 3; 4) has been designed in order
to obtain analytic approximations to periodic solutions for certain type of
ordinary differential equations, linear or not. In this paper, we introduce an
improved version of it and we test it in the Mathieu equation, in order to
compare its efficiency with respect other methods and more specifically of
the least square method. Henceforth, we shall denote it as the “Modified
Harmonic Balance Method”.
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The Mathieu equation is the simplest non-trivial type of Hill equation.
This is a second order linear differential equation of the following type:

d2y(x)

dx2
+

(
A0 +

∞∑
n=1

An cos(2nx) +
∞∑
m=1

Bm sin(2mx)

)
y(x) = 0 . (1)

This expression comes from a general linear second order equation of the
type

y′′(x) + f(x) y(x) = 0 , (2)

in which we have spanned f(x) into Fourier series. Equation (1), which is
often called the general Hill equation, is intractable in general terms. In order
to study tractable approximations to (1), we must truncate the series involved
in the equation. In general, one chooses B1 = B2 = · · · = 0. Then, we say
that the Hill equation is of order n−th, if An 6= 0 and An+1 = An+2 = · · · = 0.
Hill equations of first and second order are known as Mathieu and Whittaker-
Hill equations, respectively (5; 6; 7; 8). Further order Hill equations may be
of interest in physics (9).

It is customary to write the Mathieu equation on the following form:

y′′(x) + (r − 2q cos(2x))y(x) = 0 , (3)

where A0 = r, which is often called the characteristic value or eigenvalue,
has to be determined through given boundary conditions, and A1 = −2q,
which is a fixed data. The solution y(x) for a given r is usually called the
eigenfunction. Generally speaking, one looks for periodic solutions of (3),
with boundary conditions at two finite fixed points, say 0 and p, given on the
form y(0) = y(p) and y′(0) = y′(p), where p is the period. This is certainly
a particular case of a Sturm-Liouville problem.

The properties of the Mathieu equation (3) has been extensively studied
(10? ). It has been established the existence of four countable sets of values
for the characteristic value r, for which there exists periodic solutions, with
period either π or 2π. These four sets are associated to solutions that admit a
series expansion on either even functions of the type cos(2k)x or cos(2k+1)x,
or odd functions of the form sin(2kx) or sin(2k + 1)x. Obviously, if q = 0,
the characteristic values are r = m2, m = 1, 2, 3, . . . and the solutions are
cos(mx) and sin(mx). For q 6= 0, there is only one periodic solution for each
characteristic value, being the second solution non-periodic. See also (11).
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The Sturm-Liouville problem associated with (1) has been solved by either
methods based in Fourier series techniques (12; 13; 14; 15) or by Taylor
expansions (10; 1). These methods require of numerical computations and
they are usually valid for |q| < 1 only. It seems that it would be desirable to
have a method for solutions for large values of |q|.

Analytic approximate methods are usually one of the best tools to at-
tack this kind of Sturm Liouville problems. In order to approximate periodic
solutions, the harmonic balance method has been widely used (10; 1), ei-
ther for linear or non-linear ordinary differential equations. Here, we do not
consider the non-linear case and for the Mathieu equation, we propose an
analytic approximate method that provides both the critical value r as well
as the approximate periodic solution, which is valid even for large values
of |q|. In few words, we obtain r as solutions of some algebraic equations.
No integrations, Taylor expansions nor complex manipulations with matrices
are needed. Our method is conceptually simple and has been inspired in the
harmonic balance method.

We must stress that the modified harmonic balance method is in principle
applicable to other Hill equations beyond the Mathieu equation and eventu-
ally other type of equations admitting periodic solutions. We have focused
our calculations in the Mathieu equation to test our preliminary results. Our
modification avoids completely certain complications of the standard har-
monic balance, as presented in (1), like the need of solving non-homogeneous
differential equations with increasing complexity when more terms are in-
cluded. In our modified harmonic balance, we just need to solve algebraic
equations.

We should compare the results obtained by this modified harmonic bal-
ance with those got by more traditional methods, like the least square method.
The results are essentially similar with degree of accuracy in both methods.
Nevertheless, ours have the advantages of being simpler and easier to use by a
computer and the least square method is more complicated to be practically
implemented. For instance, the polynomial giving the approximate charac-
teristic values is much simpler in our modified harmonic balance than in the
least square method, as shown in subsection 4.1. This means, in particular,
that the degree of algebraic equations is definitively smaller in our method
as compared with the least squares. Note that the latter also gives spurious
imaginary parts for roots.

The present article is organized as follows: In section 2, we introduce
our modification of the harmonic balance method and give some numerical
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results. In section 3, we apply the method to a Mathieu equation with a
purely imaginary parameter. In section 4, we adapt the least square method
to our situation. The results obtained by least squares are similar, although
one needs both more precision and terms to obtain the same accuracy. In a
limit sense, we show that the modified harmonic balance and the least square
method are equivalent. We have written a section with concluding remarks
plus an appendix on the relation between periodicity and parity of solutions
for the general Hill equation.

2. A modification on the Harmonic balance method

Since our method has been inspired in the usual harmonic balance method,
it could be interesting to recall the latter before a discussion of our ideas.
Then, we first add here an introductory subsection with some comments
on the harmonic balance, which will be also appropriate to justify further
analysis. Then, our method will be introduced in the second subsection.

However, one should be aware of one important difference between the
harmonic balance and our method. While the former relies on Taylor expan-
sions on q, ours does not.

2.1. The usual harmonic balance method

We are looking for periodic solutions for (2) determined by the boundary
conditions y(0) = y(2π) and y′(0) = y′(2π). In this case, the harmonic
balance method, proposes the following type of solutions (1):

rm = m2 +
∞∑
k=1

αkq
k , Ym(x) = cosmx+

∞∑
k=1

qk ck(x) . (4)

Note that if q = 0, then, rm = m2 and Ym(x) = cosmx give an even
periodic solution, so that the Ansatz for Ym(x) is intended to construct even
solutions. A similar Ansatz can be provided to construct odd solutions by
replacing cosmx by sinmx. The coefficients αk and the functions ck(x) are
indeterminate. To obtain them we have to use (4) in (1). The result is a
system of second order non-homogeneous linear differential equations, which
is in principle infinite, since there is an infinite number of ck(x). Nevertheless,
in practice we produce an approximation by truncating the series (4), so
that the number of ck(x) to be determined, and henceforth the number of
equations, is finite albeit large. The inhomogeneous terms produce certain
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type of complications which could be overcome by a proper choice of the
coefficients αk.

For m = 1 one finds the following series for r1:

r1 = 1 + q − q2

8
+ . . . . (5)

If instead, we want odd solutions, Ym(x) in Ansatz (4) should be replaced
by:

Zm(x) = sinmx+
∞∑
k=1

qk sk(x) . (6)

In this case, we have:

r2 = 1− q − q2

8
+ . . . . (7)

In any case, the functions ck(x) and sk(x) are linear combinations of
cosines and sines, respectively.

At this point, we should underline that (5) converges for |q| < 1, so that
the standard harmonic balance is only applicable in this region.

2.2. An algebraic harmonic balance method

In the Introduction, we have mentioned the existence of four discrete sets
of characteristic values. After replacing these characteristic values for r in
(3), we have a periodic solution for equation (3). These characteristic values
depend on q and are labelled by an index. The former of these series, r2s(q),
has even index 2s and the second, r2s+1(q), has an odd index 2s + 1, with
s = 0, 1, 2, . . . . For each of these values of s, we have one even solution of
the form:

Y2s(x) =
∞∑
k=0

A2k cos(2kx) , (8)

Y2s+1(x) =
∞∑
k=0

A2k+1 cos(2k + 1)x . (9)

There are two more series of solutions which are odd. Their characteristic
values are different from those corresponding to even solutions and we denote
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them as r′2s(q) and r′2s+1(q). Again, we have s = 0, 1, 2, . . . . These odd
solutions are

Z2s(x) =
∞∑
k=1

B2k sin(2kx) , (10)

Z2s+1(x) =
∞∑
k=0

B2k+1 sin(2k + 1)x . (11)

It is our goal the determination of approximate expressions for these
solutions with a reasonable accuracy. In order to achieve it, we make use of
our modified harmonic balance method, that we introduce here.

Probably, the best way to explain our method is by an illustration. To
this end, let us choose for instance an odd index, hence we take r2s+1(q).
Any other choice would have been equally good. In this particular case, we
know that the solution in terms of the eigenfunction is even and the period
p = 2π (11). Thus, let us find r2s+1(q) and replace Y2s+1(x) in (9) by:

Y2s+1(x) =
n∑
k=0

Pk(q) cos(2k + 1)x , (12)

where the coefficients Pk(q) are polynomials of degree k on q to be deter-
mined. Thus, we are assuming from the very beginning that the series (12)
are finite and sum from k = 0 up to k = n. This Ansatz is in the core of
our method and, therefore, no convergence conditions should be imposed on
(12). Then, with the use of trigonometric relations, we obtain an expression
of the following type: ∑

j odd

fj cos jx = 0 , (13)

with

f1 = f1(P0, P1) , f3 = f3(P0, P1, P2) , . . . , f2n−1 = f2n−1(Pn−2, Pn−1, Pn) ,

f2n+1 = f2n+1(Pn−1, Pn) .(14)
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These functions are linear in their arguments. Note that fj vanishes identi-
cally for j even.

Let us go back to (13) and note that for different values of j, the functions
cos(jx) are linearly independent. This shows that the coefficients fj for j odd
must be zero. This gives a system of equations providing a recurrence relation
between the polynomials Pk(q), which is:

P1 =
1

q
(rm − 1− q)P0 , (15)

Pk−1 = −Pk+1 −
1

q
((2k + 1)2 − rm)Pk , k = 1, 2, . . . , n− 1 ,

Pn−1 =
1

q
(rm − (2n+ 1)2)Pn . (16)

In order to determine the Pk(q) we can proceed in two ways. Either we fix
P0 and then determine all others through the recurrence relations up to Pn
or proceed inversely, giving a value to Pn and using the recurrence relations,
we obtain the others. Let us use the latter. From Pn, we determine the
coefficients Pk , k = n − 1, n − 2, . . . , 2, 1 by using (16). Note that the Pk
are polynomials in terms of rm and have a linear dependence on Pn, to be
determined later. If we replace P0 and P1 on (15), we finally obtain an
equation of the type:

F (q, rm) = 0 . (17)

This function F (q, rm), which does not depend on Pn, is obviously a
polynomial on q and on rm with degree n + 1 on the second variable. The
solutions of (17) give rm as functions of q, rm = rm(q). Since (17) is an
algebraic equation, their solutions have to be obtained by numerical methods,
this being the only numerical procedure in all the derivation. Among all
solutions of (17), we have to choose one. Although rm may be either positive
or negative, when q = 0 in (3) one arrives to the harmonic oscillator equation,
so that rm(0) = m2.

Thus, for each given value of q, we have obtained the coefficients Pk(q),
k = 0, 1, 2, . . . , n−1 in terms of Pn(q) and the algebraic function rm(q). Once
we have fixed Pn(q), we have obtained an approximate analytical solution for
the Mathieu equation (3).
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Let us insist on an important point: Contrarily to the usual harmonic
balance method, we do not use any span of rm(q) in Taylor series.

We have already mentioned that when q 7−→ 0, then, Ym(x) 7−→ cosmx.
This will be a condition on the choice of Pn(q) once the value of n has been
fixed. Our choice for m odd, m = 2s+ 1 is

Pn(q) := qn−s . (18)

This gives the correct limit as q 7−→ 0.
Note that the precision of this approximation depends on n. There is no

general rule to fix the value of this precision, but we can estimate the error.
To this end, one possibility is the use of the following error parameter:

Er(n) :=

∫ 2π

0
(y′′(x) + ( rm − 2 q cos 2x) y(x))2 dx∫ 2π

0
y2(x) dx

. (19)

This error parameter (19) gives us an estimation on how far are both rm
and y(x) from the exact characteristic value and its corresponding periodic
eigenfunction of the Mathieu equation (3).

This procedure can be illustrated by an example. Let us choose m = 1
and n = 5. Then, F (q, r1) as in (17) takes the following form:

F (q, r1) =
6∑

k=0

αk(q) r
k
1(q) , (20)

where the coefficients αk(q) are polynomials on q, which for our choice of the
parameters give:

TABLE 1

This gives for the eigenfunction the following expression:

y(x) = c
5∑

k=0

Pk (q, r1) cos(2 k + 1)x , (21)

where c is a normalization constant so that y(0) = 1. The coefficients
Pk(q, r1) are given by:

TABLE 2
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Let us go back to (20), choose a value of q and write the final expression
equal to zero. This is an algebraic equation which gives r1. Note that we
need to give the determination of the branch of the root to fix r1. We choose
the branch which gives the value one when q = 0. Then, use this r1 in the
equation (22) right below, to obtain the normalization constant c, which is
given by:

c =

[
5∑

k=0

bk (q) rk1

]−1
, (22)

with

TABLE 3

In order to determine the characteristic value rm for a given value of q,
we have to solve (17) with the choice rm(0) = m2. For instance, if q = 5,
m = 1 and r1(0) = 1, we obtain r1 = 1.8581875415477507. We approximate
this value by the rational number r1 = 13

7
. In fact, the rational value r1

has been chosen to give an error less that 0.05% with respect to the decimal
solution obtained numerically. The approximate eigenfunction for r1 takes
the following form:

y(x) =
104

35
cosx− 32

13
cos 3x+

49

90
cos 5x

− 5

86
cos 7x+

19

5159
cos 9x− 1

6469
cos 11x . (23)

This is an approximation to the Mathieu cosine function for the particu-
lar case q = 5 and m = 1. In the eigenfunction (23), we have used rational
approximations for the coefficients. The procedure is the same as above;
starting from the numerical value for r1, we obtain numerical values for the
coefficients of the trigonometric polynomial (23). Then, we approximate
these numerical values by the rational numbers. These rational approxima-
tions give an error smaller than 0.05% in relation to the decimal expressions
for the coefficients. From (18), we obtain the error Er(5) = 4× 10−8.

We have seen in this example an important fact that shows the interest
of our method: how if we take a short number of terms in the span (12), we
get a surprisingly high level of accuracy, for a value of q which is not small.
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2.3. Some results.

Let us define the error er as Er in (19) multiplied by the integral of y2(x),
i.e.,

er(n) :=

∫ 2π

0

(y′′(x) + (rm − 2q cos 2x) y(x))2 dx . (24)

In the following table, we compare the errors Er and er for several values
of q and their corresponding values of r1 when the highest order polynomial
Pn(q) has degrees n = 3, 5 and 40. These approximations are expected to
provide different values of r1 which we shall denote as r1,n. Note that the
values of r1,n coincide for small values of q. These errors are smaller for
higher values of n. We represent as rational numbers the values for r1,n that
are the same for r1,3, r1,5 and r1,40. The table is the following:

TABLE 4

We have written in italics the numbers for which the coincidence of the
values r1,n with r1,40 fail. After this failure, the value for the error er increases
abruptly. These numbers also show something quite interesting: for these
values for which er increases quickly or even abruptly, the values Er show a
moderate increase. This suggest that Er is not a good error bound. One also
concludes that rn is not very sensitive to the value n. On the other hand,
the eigenfunction is expected to be quite sensitive to n, since the error er is
highly sensitive to n.

The comparison between the values of r1,5 and r1,40 shows that the choice
r1,5 gives a reasonable approximation. In Figure 1, we plot r1(q) for the
values n = 5, 10, 50. Observe that these three curves are indistinguishable
within the chosen precision.

FIGURE 1

If the index m is even, all the above discussion remains valid although
equation (12) should be replaced by

Y2s(x) =
n∑
k=0

Pk(q) cos(2k)x . (25)
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Analogously, in order to have Ym(x) 7−→ cos(mx) as q 7−→ 0, the choice
of the highest order polynomial should be Pn(q) = qn−s, s = 1, 2, . . . , n.

Finally, a similar treatment can be applied when we are looking for odd
approximate solutions to (3). These solutions have the following form:

Z2s+1(x) :=
n∑
k=0

Pk(q) sin(2k + 1)x , s = 0, 1, 2, . . . , (26)

Z2s(x) :=
n∑
k=0

Pk(q) sin(2kx) , s = 1, 2, . . . . (27)

The procedure is here exactly the same as in the previous case. Again,
in order that Zm(x) 7−→ sinmx, as q 7−→ 0, we must take Pn(q) = qn−s,
s = 1, 2, . . . , n, for the highest order polynomial.

3. Mathieu equation with complex potential

In the usual harmonic balance method, characteristic values are deter-
mined as power series in terms of q, as in the first equation in (4). As was
established in earlier publications (see (11) and references quoted therein),
the radii of convergence of these series depends on the existence of double
points, i.e., the existence of a repeated characteristic value, different from
zero, in one of the series.

The multiplicity of the characteristic values can be determined by the
multiplicity of the solutions of equation (17). We conjecture that, when q is
real, the roots of (17) are all simple, so that double points should not exists.
This is not the case when q is purely imaginary, i.e., q = is, as shown in
(11; 12). The relevance of the Mathieu equation with complex potential has
been studied in (16; 17).

Let us analyze the case q = is. It is now convenient to use the notation
rm(s) instead of rm(q) in order not to bring the imaginary unit everywhere.

In the present literature, it is established that double points appear for
m even only. Thus, let us start with the most simple even values of m, which
obviously are m = 0 and m = 2. In any case, we always have that if s = 0,
rm(0) = m2.

Next, we determine r0(s) and r2(s) using (17). These functions are in-
creasing and decreasing on s, respectively, for positive values of s under the
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condition r0(0) < r2(0). Therefore, it must exist a value of s that we denote
as sb with sb > 0 such that

r0(sb) = r2(sb) = r∗ . (28)

The number sb is often called the branching value and defines the radius
of convergence of the Taylor series for m = 0 and m = 2. The number r∗ is
the critical value. From (28), we see that for s = sb we have a double point,
which is r∗. For s > sb the roots of (17) are complex conjugate, r0(s) = r∗2(s),
where the superscript ∗ denotes complex conjugation.

This procedure can be extended to all even values of m for which a branch-
ing value satisfying rm(sb) = rm+2(sb) must exist. In order to determine the
double points, we replace q by is in (17) and then we obtain the double roots.
These double roots must obey the following pair of equations:

F (is, r) = 0 ,
∂

∂r
F (is, r) = 0 . (29)

Let us give a example of our results for n = 30 (see also Figure 2). With
the aid of equations (29), we can determine numerically the values of double
points as well as their respective branching values. In this case, we have 9
double points that we shall label as r∗,k, k = 1, 2, . . . , 9 being their respective
branching values denoted as sb,k.

FIGURE 2

The obtained values of r∗,k and sb,k are given in the following table. It is
interesting to remark that these results are similar to those obtained by C.H.
Ziener et al. in (12):

TABLE 5

The use of least squares allows the approximation of r∗,k, sb,k by the
following formulas:

r∗,k =
35

8
− 65

4
k +

419

30
k2 , |sb,k| =

14

5
− 19

2
k +

49

6
k2 . (30)

As a final remark, we should stress that although our method does not
consider power series on q, starting from the equation F (q, r) = 0, it allows
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to estimate the radius of convergence of the power series on q used in other
approaches.

4. Second method: Least squares

Let us go back to equation (2), with the assumption that f(x) is a periodic
function with period T , which without loss of generality we can fix T = 2π.
We also assume that f(x) has a fixed parity either even or odd and, in
addition, that f(x) will depend on one or more real parameters α, β, etc,
as well as the characteristic value r. The characteristic value has to be
determined through the periodicity conditions y(0) = y(2π) and y′(0) =
y′(2π).

As we did in the previous case, described in section 2, we do not intro-
duce our method in its full generality. A simpler version will be much more
illustrative and is given in a form such that its generalization will become
obvious. In this spirit, let us assume that in (1), Bm = 0, m = 1, 2, . . . .
Then, equation (2) expressed in the form (1) has an even solution that can
be written in terms of cosine Fourier series:

y(x) =
∞∑
k=0

ak cos(kx) . (31)

Since we are looking for approximate solutions that could be handled in
a computer, let us truncate the series (32) and consider the following sum:

yn(x) :=
n∑
k=0

ak cos(kx) . (32)

Now, the goal is the determination of the parameter (characteristic values
to be consistent with the terminology of the previous case) r as well as the
Fourier coefficients ak, k = 0, 1, . . . , n. Then, let us replace (32) in the left
hand side of (1) (or (2), where f(x) is even and spanned into cosine Fourier
series). Since (32) is not the solution, but an approximation to the solution
(31), this replacement will not satisfy the equation, i.e., it cannot be equal
to zero. Instead, we obtain an expression of the type (m and n do not have
to be equal):

zm(x) =
m∑
k=0

bk cos(kx) . (33)
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As (2) is a linear equation, the coefficients bk depend linearly of the aj:

bk =
n∑
j=1

bkj aj . (34)

Here, the coefficients bkj depend on the characteristic value r, of the
parameters α, β, etc as well as the Fourier coefficients An(x) of f(x). Since
the sequence {yn(x)} converges to the exact solution y(x) as n 7−→ ∞, the
sequence {zm(x)} must converge to zero as m 7−→ ∞. One may expect
that this would be a point-wise convergence, but dealing with Fourier series
of square integrable functions over a period (in this case 2π), it is more
convenient to use the convergence in the mean. From this point of view,

Em :=

∫ 2π

0

|0− zm(x)|2 dx = ||zm||2 7−→ 0 as m 7−→ ∞. (35)

The value Em could be considered the square error of the approximation
given by (32). We need to minimize this error. Note that Em depends on
the coefficients ak in (32), so that the condition for the minimum should be

∂Em
∂ai

= 0 , i = 0, 1, 2, . . . , n . (36)

In order to solve system (36), we note that the Fourier coefficients bk and
Em have to be related by an identity of the form (Bessel identity):

Em = K
m∑
k=0

b2k , (37)

where K > 0 is a normalization constant. From (36) and (37), one gets

0 =
∂Em
∂ai

= 2K
m∑
k=0

bk
∂bk
∂ai

, i = 0, 1, 2, . . . , n . (38)

Taking into account (34), equation (38) yields:

0 =
m∑
k=0

bk bki =
n∑
j=0

(
m∑
k=0

bkibkj

)
aj =

n∑
j=0

sij aj , (39)

where the meaning of sij is obvious. Now, observe that equations (34,39)
have a quadratic dependence on r. Then, the determinant of the matrix
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with entries sij, ∆(sij), vanish provided that the solutions for the ai in (39)
be different from the trivial one. This determinant is a polynomial function
on r:

F (α, β, . . . , r) =

p∑
k=1

ck(α, β, . . . , Ar, . . . ) r
k , (40)

where Ar are the Fourier coefficients of f(x) in (1). The roots of the polyno-
mial F = 0, where F is as in (40), determine the characteristic values of r.
Then, let us choose an eigenvalue of the matrix with entries {sij} in order to
obtain the Fourier coefficients ak, which determine one approximate solution.
The algebraic system in (39) is homogeneous; therefore, we need fixing one
of the ai in the right side of (39), which has to be chosen depending on the
properties of the solution we are looking for. For instance, in the Mathieu
equation if q 7−→ 0, then, the solution y(x) 7−→ cosmx. This condition give
rise the analogous of equation (20).

We have implemented this second method in the Mathieu equation (1,2),
where the approximate solution is

yn(x) =
n∑
k=s

ak cos kx . (41)

In order to obtain periodic solutions with period 2π, we have to choose
s = 1 and a1 = 1. If we want solutions with period π, then we should choose
s = 0 and a0 = 1. The results that we have obtained matched with those
obtained in Sections 2 and 3.

4.1. On the asymptotic equivalence between both methods.

As the title of this subsection suggests, we are going to show the equiv-
alence between the two methods discussed in the present paper in the limit
when n goes to infinity, at least when applied to the Mathieu equation.

Thus, let us consider the Mathieu equation (2) with q real and go back to
equation (17). The function F (q, r) has different forms depending on whether
we are using our modified harmonic balance method or the least squares
method. For the former and due to the fact that F (q, r) is a polynomial of
degree n+ 1, one has:

FMHB(q, r) =
n+1∏
k=0

(r − rk(q)) . (42)
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Here, the roots are always real and their values should depend on the nu-
merical precision in which they are computed. In the numerical experiments
we have performed, we have systematically observed that the biggest root
is spurious. This behavior is a consequence of the truncation of the Fourier
series.

In the case of the least squares method, numerical experiments show that

FLS =
n∏
k=0

(r −Rk(q))(r −R∗k(q) + iεk) , (43)

where we now denote the roots as Rk(q). There is, however, an important
difference, which is that our results give a non vanishing imaginary part for
Rk(q), so that Rk(q) = Re [Rk(q)] + i Im [Rk(q)], with Im [Rk(q)] 6= 0. In any
case, Re [Rk(q)] ≈ rk(q).

The values εk are real, very small and go to zero as n 7−→ ∞.
In our numerical experiments, we have observed these features:

i.) The imaginary part of Rk(q) is much smaller than its real part, so
that

|Im [Rk(q)]|
|Re [Rk(q)]|

<< 1 , (44)

ii.) The imaginary part Im [Rk(q)] is small and can only appear as we
increment the numerical precision, or in other words, when the number of
significative digits is large. Nevertheless, Im [Rn(q)] 7−→ 0 when n 7−→ ∞.

iii.) Observe the presence of the term εk in (43). This goes to zero as n
increases.

iv.) From all the above, we conjecture the following result:

lim
n7→∞

[rn(q)−Rn(q)] = 0 . (45)

The final conclusion is that for infinite precision (infinite number of sig-
nificative digits) and in the limit n 7−→ ∞, we have

FLS(q, r) =
∞∏
k=0

(r −Rk(q))
2 , (46)

and
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FLS(q, r) = [FMHB(q, r)]2 . (47)

Therefore, when n 7−→ ∞ both methods are equivalent and should give
the same results with high precision and n large. Nonetheless, we have
already remarked that our modified harmonic balance is simpler to use as
only requires to solve numerically an algebraic equation. Furthermore, this
algebraic equation is much simpler than the equation that we need to solve
with the least squares method.

Finally, we should remark that the above argument is applicable to the
Mathieu equation only. However, our numerical experiments suggest that
these results and particularly (47) are more general.

5. Concluding remarks

We have compared on the Mathieu equation two methods which should
be valid to obtain analytic approximations for periodic solutions of Hill type
equations. In the former, we have developed a modification of the harmonic
balance method, based in the replacement of the coefficients of the Fourier
series of solutions by polynomials, Pn(q), on a parameter, here called q. This
method has been shown to be quite simple and easy to implement, which is
a good advantage with respect to other methods. In the case of the Mathieu
equation, q is a parameter characteristic of the equation (do not confuse
with the characteristic value or eigenvalue, r) and could be either real or
purely imaginary. The polynomials Pn(q) can be determined by a recurrence
formula.

Although the modified harmonic balance method is applicable to linear
differential equations with periodic solutions, including the Hill equations,
the first objective has been the evaluation of the characteristic values and
periodic approximate solutions of the Mathieu equation. Our method pro-
vides these values in terms of a polynomial equation which also depends on
q, so that the characteristic values r depend on q, as expected. One of the
advantages of the method, in relation to others valid only for small values
of q, is that it is applicable to large values of q (for instance, the standard
harmonic balance relies on a Taylor span of r(q) with a finite radius of con-
vergence (|q| < 1 in the studied examples), a procedure that we do not use
here).
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We have obtained some reference numerical results to check the efficiency
of the method and show that it is also applicable to purely imaginary values
of q.

In addition, we have compared our results with those which can be ob-
tained with the least squares method. It is noteworthy that our method is
much simpler and gives better accuracy using a minor degree of precision.
On the other hand, both methods seem to be equivalent in the limit when
the number of terms in the approximation series go to infinity. This has been
tested for the Mathieu equation, but our numerical experiments with other
equations show that this result might be more general.

Thus, we have checked that our method works well and it is simpler and
more efficient than others that look for approximate periodic solutions of
linear ordinary differential equations. The next task will be to apply the
method to higher order Hill equations with interest in Physics.

Finally one more remark. The harmonic balance method has been used
to obtain approximations of periodic solutions of some non-linear ordinary
differential equations (2; 18). The possibility of a similar use for our modified
harmonic balance is, in principle, possible, but very difficult as we have
realized after some preliminary results.
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TABLE 1

α0(q) = 108056025 + 108056025 q − 12612933 q2 − 606708 q3 + 14230 q4 + 179 q5 − q6 ,
α1(q) = −128816766− 20760741 q + 1616980 q2 + 37548 q3 − 604 q4 − 3 q5,

α2(q) = 21967231 + 1206490 q − 64222 q2 − 700 q3 + 6 q4 ,

α3(q) = −1234948− 28458 q + 980 q2 + 4 q3 ,

α4(q) = 28743 + 285 q − 5 q2 ,

α5(q) = −286− q ,
α6(q) = 1 .

20



TABLE 2

P0 =− 108056025 + 606708 q2 − 179 q4 + ( 20760741− 37548 q2 + 3 q4) r1

+ (−1206490 + 700 q2) r21 + (28458− 4 q2) r31 − 285 r41 + r51 ,

P1 =12006225 q − 14051 q3 + q5 + (−972724 q + 422 q3) r1 + (25974 q − 3 q3) r21 − 276 q r31 + q r41 ,

P2 =− 480249 q2 + 170 q4 + (19699 q2 − 2 q4) r1 − 251q2 r21 + +q2 r31 ,

P3 =9801 q3 − q5 − 202 q3 r1 + q3 r21
P4 =− 121 q4 + q4r1 ,

P5 =q5 .

TABLE 3

b0(q) = −108056025 + 12006225 q + 126459 q2 − 4250 q3 − 130 q4 + q5 ,

b1(q) = 20760741− 972724 q − 17849 q2 + 220 q3 + 2 q4,

b2(q) = −1206490 + 25974 q + 449 q2 − 2 q3 ,

b3(q) = 28458− 276 q − 3 q2 ,

b4(q) = −285 + q ,

b5(q) = 1 .
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TABLE 4

q .01 .1 .5 1. 5. 10. 15. 20.

r1,3
102
101

89
81

22
15

93
50

1 .85826 −2.39492 −8.07144 −14.3927

Er 10−17 3. 10−11 6. 10−11 2. 10−8 5. 10−3 0.4 3. 9.

er 9. 10−17 9. 10−11 2. 10−10 7. 10−8 3. 10−1 5. 102 106 105

r1,5
102
101

89
81

22
15

93
50

1.85819 −2.39914 −8.10111 -14.4912

Er 3. 10−17 3. 10−11 6. 10−11 3. 10−12 4. 10−8 4. 10−10 10−3 10−2

er 9. 10−17 9. 10−11 2. 10−10 1. 10−11 2. 10−6 .04 15 2.103

r1,40
102
101

89
81

22
15

93
50

1.85819 −2.39914 −8.10111 −14.4913

Er 10−17 3. 10−11 6. 10−11 3. 10−12 2. 10−14 3. 10−13 3. 10−14 10−13

er 8. 10−17 1. 10−10 2. 10−10 5. 10−8 5. 10−12 3. 10−10 7. 10−10 1. 10−8 .

Some approximations of values of r1,n, er and Er for given q.

TABLE 5

k 1 2 3 4

sb,k ±1.4688 ±16.471 ±47.806 ±95.475

r∗,k 2.0887 27.319 80.658 162.11
. . . . . . . . . . . .

k 5 6 7 8 9

sb,k ±159.48 ±239.82 ±336.49 ±449.50 ±578.84

r∗,k 271.67 409.33 575.11 769.00 991.00
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Figure .1: Dependence on q of r(q) for m = 1 and n = 5, 10, 50. Note that these three
curves look like just one within the precision used.
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Figure .2: Localization of double points for n = 30. The straight line is the interpolation
curve.
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