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Consistent collective decisions under majorities based on
difference of votes

Mostapha Diss ·
Patrizia Pérez-Asurmendi

Abstract The main criticism to the aggregation of individual preferences un-
der majority rules refers to the possibility of reaching inconsistent collective
decisions from the election process. In these cases, the collective preference
includes cycles and even could prevent the election of any alternative as the
collective choice. The likelihood of consistent outcomes under a class of ma-
jority rules constitutes the aim of this paper. Specifically, we focus on ma-
jority rules that require certain consensus in individual preferences to declare
an alternative as the winner. Under majorities based on difference of votes,
the requirement asks to the winner alternative to obtain a difference in votes
with respect to the loser alternative taking into account that individuals are
endowed with weak preference orderings. Same requirement is asked to the
restriction of these rules to individual linear preferences.

Keywords Majorities based on difference of votes · Probability · Transitivity ·
Triple-acyclicity.

1 Introduction

Since Condorcet (1785) introduced the Voting Paradox, it is well known that
the aggregation of transitive individual preferences under simple majority rule
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could lead to inconsistent collective preferences. Recalling the classical exam-
ple, consider a three-alternative election with alternatives x1, x2, x3 and three
individuals endowed with the following rankings x1x2x3, x2x3x1 and x3x1x2,
where, for instance, x1x2x3 means that x1 is preferred to x2, x2 is preferred
to x3 and x1 is preferred to x3. For each pair of alternatives, each individual
casts a vote for her/his preferred alternative following just assumed orderings.
Adding up these votes, alternatives x1, x2 and x3 defeat x2, x3 and x1 respec-
tively, by two votes to one. In that voting situation, there is a cycle on the
ordering induced by the strict collective preference. In such a case, that prefer-
ence fails on transitivity and on triple-acyclicity given the requirements of such
conditions. To illustrate, assume that alternative x1 defeats x2 and x2 defeats
x3; x1 defeats x3 whenever the strict collective preference is transitive whereas
x3 does not defeat x1 whenever the strict collective preference is triple-acyclic.

Consider now the following voting process’ outcome: x1 defeats x2 and it is
indifferent to x3, and x2 is also indifferent to x3. In this case, the weak collective
preference fails on consistency. Notice that the strict preference associated with
that weak preference behaves right but the indifference relation associated with
the weak preference fails on transitivity.

The idea that the Voting Paradox ‘should rarely be observed in any real
three-candidate elections with large electorates’ stated by Gehrlein (2009),
promotes the probabilistic study of the occurrence of that paradox and of
their consequences under different aggregation rules. In several studies, it is
assumed an a priori probability model to estimate the likelihood of different
voting situations, derived the conditions under which the paradox or the effects
of that appear and reached probabilities through combinatoric calculus. In
this context, stand out the studies about simple majority rule (Gehrlein and
Fishburn 1976; Fishburn and Gehrlein 1980; Gehrlein 1983), supermajority
rules (Balasko and Crès 1997; Tovey 1997) or scoring rules (Gehrlein and
Fishburn 1980, 1981, 1983; Cervone et al. 2005), among others.

This paper is devoted to analyze and compare the probabilities of consis-
tent collective decisions over three alternatives for a class of majorities rules:
majorities based on difference of votes (Garćıa-Lapresta and Llamazares 2001;
Llamazares 2006; Houy 2007). Given two alternatives, these majorities based
on differences focus on requiring to an alternative, to be declared the winner,
to reach a number of votes that exceeds the number of votes for the other
alternative in a quantity fixed before the voting process. In such majorities,
individual preferences are understood as crisp preferences, i.e. given a pair of
alternatives individuals declare if they prefer an alternative to another one or if
they are indifferent between them. Here, we distinguish between the case where
individuals are endowed with weak preferences and the case where individuals
are endowed with linear orderings.

Coming back to the consistent collective decisions analyzed here, we specif-
ically calculate the probabilities of transitive and triple-acyclic strict collective
preferences and the corresponding ones of transitive weak collective preferences
for the majorities based on difference of votes, as the proportion of collective
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voting situations giving rise to consistent collective decisions over the total
number of possible voting situations.

To calculate the probabilities of consistent outcomes under majorities based
on difference of votes taking into account weak and linear individual prefer-
ences respectively, we consider the Impartial Anonymous Culture (IAC) con-
dition (Gehrlein and Fishburn 1976) to describe the likelihood of the possible
individual orderings. On the one hand, assuming weak or linear individual or-
derings jointly with the IAC condition allow to know the total number of pos-
sible collective preferences (again, Gehrlein and Fishburn 1976). On the other
hand, the number of consistent profiles is calculated by means of Ehrhart poly-
nomials, a method recently introduced in the social choice literature by Wilson
and Pritchard (2007) and Lepelley et al. (2008) in order to estimate the prob-
abilities of some voting paradoxes under the IAC condition.

The methodology proposed here allows us to find the needed thresholds
which guarantee that the probability of consistent outcomes is close to 1. In
addition, we are able to hypothesize about the relationship between the type of
individual preferences assumed and the likelihood of consistent collective de-
cisions. Moreover, we set forth our results for majorities based on difference of
votes with previous ones on simple majority rule (Gehrlein (1997) and Lepelley
and Martin (2001)) and supermajority rules (Ferejohn and Grether (1974)).

The paper is organized as follows. Section 2 describes the theoretical frame-
work followed in this paper and introduces majorities based on difference of
votes. Sections 3 and 4 provide the results about the probability of consistent
collective decisions under majorities based on difference of votes with linear
preferences and with weak preferences, respectively. Section 5 concludes.

2 Preliminaries

Consider a set of three alternatives X = {x1, x2, x3} in an election with m
individuals. Let S be a binary relation on X, i.e. a subset of the cartesian
product X ×X. In what follows, xiSxj stands for (xi, xj) ∈ S, i.e. when xi is
in the relation S with xj . S

−1 is the inverse relation of S defined by xiS
−1xj ⇔

xjSxj and Sc is the complement relation of S defined by xiS
cxj ⇔ ¬(xiSxj).

Given two binary relations S and T , the intersection of S and T is also a
binary relation defined by xi(S ∩ T )xj ⇔ (xiSxj ∧ xiTxj). A binary relation
S on X is

1. reflexive if ∀x ∈ X, xSx,
2. symmetric if ∀xi, xj ∈ X, xiSxj ⇒ xjSxi,
3. asymmetric if ∀xi, xj ∈ X, xiSxj ⇒ ¬(xjSxi),
4. antisymmetric if ∀xi, xj ∈ X, (xiSxj ∧ xjSxi)⇒ xi = xj ,
5. complete if ∀xi, xj ∈ X, xiSxj ∨ xjSxi,
6. transitive if ∀xi, xj , xl ∈ X, (xiSxj ∧ xjSxl)⇒ xiSxl,
7. triple-acyclic if ∀xi, xj , xl ∈ X, (xiSxj ∧ xjSxl)⇒ ¬(xlSxi).

A weak preference R is a complete binary relation on the set of alternatives
X. The strict preference P associated with R is the asymmetric binary relation
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on X defined by P = (R−1)c and the corresponding indifference relation I is
the reflexive and symmetric binary relation on X defined by I = R ∩ R−1.
P(X) is the set of strict preferences. A weak ordering is a transitive weak
preference whereas a linear ordering is also antisymmetric.

From definitions above it is well know that any weak ordering implies
a transitive strict preference relation and a transitive indifference relation.
Moreover, any transitive strict preference is also a triple-acyclic preference
relation. Notice that the converse is not true.

Given that the social decision between two alternatives is given by either a
strict preference relation or an indifference relation, and that three alternatives
are in contest, we consider the 27 cases in Table 1 as possible social outcomes.

Table 1 Possible social outcomes in a three-alternative election.

1. x1Px2 x2Px3 x1Px3 14. x1Px2 x2Ix3 x1Ix3
2. x1Px3 x3Px2 x1Px2 15. x1Ix2 x2Ix3 x1Px3
3. x2Px1 x1Px3 x2Px3 16. x1Ix2 x2Ix3 x3Px1
4. x2Px3 x3Px1 x2Px1 17. x1Ix3 x3Px2 x1Ix2
5. x3Px1 x1Px2 x3Px2 18. x2Px1 x1Ix3 x2Ix3
6. x3Px2 x2Px1 x3Px1 19. x1Ix2 x2Px3 x1Ix3
7. x1Px2 x2Ix3 x1Px3 20. x1Px2 x2Px3 x1Ix3
8. x2Px1 x1Ix3 x2Px3 21. x3Px1 x1Px2 x2Ix3
9. x3Px1 x1Ix2 x3Px2 22. x2Px3 x3Px1 x1Ix2

10. x1Ix2 x2Px3 x1Px3 23. x3Px2 x1Px3 x1Ix2
11. x2Ix3 x3Px1 x2Px1 24. x2Px1 x1Px3 x2Ix3
12. x1Ix3 x3Px2 x1Px2 25. x3Px2 x2Px1 x1Ix3
13. x1Ix2 x2Ix3 x1Ix3 26. x1Px2 x2Px3 x3Px1

27. x2Px1 x1Px3 x3Px2

Our interest focuses on the frequency of consistent social outcomes given
the 27 possible outcomes above. We distinguish among three cases of consis-
tent outcomes; the case of weak orderings corresponding to the first thirteen
outcomes, the case of transitive strict preferences corresponding to the first
nineteen and the case of triple-acyclic strict preferences corresponding to the
first twenty-five outcomes.

2.1 Individual preferences

We consider that individuals compare the alternatives on X by pairs and de-
clare their preferences by means of values rpij ∈ {0, 0.5, 1}. That is, individuals
show their preferences through crisp preferences. In such a case, if rpij = 1,
individual p prefers alternative xi to alternative xj , whereas if rpij = 0, in-
dividual p prefers xj to xi. If rpij = 0.5, individual p is indifferent between
both alternatives. Condition rpij + rpji = 1 guarantees that the preference of
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individual p is a weak preference. Moreover, the conditions

(rpij = 1 ∧ rpjl = 1) ⇒ rpil = 1,

(rpij = 0.5 ∧ rpjl = 0.5) ⇒ rpil = 0.5,

assure that the preference of individual p is a weak ordering. Individual linear
orderings could also be represented in this framework by including the follow-
ing condition: rpij ∈ {0, 1} ∀i 6= j. Thus, individuals could only be indifferent
between an alternative and itself.

The preferences of each individual over the alternatives in X = {x1, x2, x3}
can be represented using a 3× 3 matrix Rp =

Ä
rpij

ä
as follows:

Rp =

Ö
0.5 rp12 rp13

1− rp12 0.5 rp23
1− rp13 1− rp23 0.5

è
. (1)

Individual preferences are collected in a vector where each vector-element
represents the preferences of an individual. Assuming m individuals1 and tak-
ing into account the above distinction among linear and weak preferences,
a profile of linear orderings is a vector (R1, . . . , Rm) ∈ L(X)m, being L(X)
the set of all linear orderings; and a profile of weak orderings is a vector
(R1, . . . , Rm) ∈ W(X)m, being W(X) the set of all weak orderings.

2.2 Majorities based on difference of votes

The concept and the definition of majorities based on difference of votes was
introduced in Garćıa-Lapresta and Llamazares (2001) and was later axiomat-
ically characterized in Llamazares (2006), and subsequently in Houy (2007).
These rules involve crisp preferences, i.e. given a pair of alternatives, individu-
als could declare their preference for one of them or their indifference between
both alternatives.

Under these majorities, an alternative, say xi, is declared the winner if the
number of individuals who prefer that alternative, to the other one, say xj ,
exceeds the number of individuals who prefer xj to xi in a difference of votes,
fixed before the election process. Assuming m individuals, that difference could
take any integer value in {0, . . . ,m− 1}.

In what follows, the symbol # stands for the cardinality of a set.

Definition 1 (Majorities based on difference of votes)
Given k ∈ {0, 1, . . . ,m − 1}, the majority based on difference of votes or Mk

majority is the mapping Mk :W(X)m −→ P(X) defined by
Mk(R1, . . . , Rm) = Pk, where

xi Pk xj ⇔ #{p | rpij = 1} > #{p | rpji = 1}+ k.

1 To calculate the probabilities presented here, m takes the following values: 3, 4, 5, 10,
100, 1,000 and 100,000.
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The indifference relation associated with Pk is as follows:

xi Ik xj ⇔
∣∣∣#{p | rpij = 1} −#{p | rpji = 1}

∣∣∣ ≤ k.
Example 1 Let RI and RII be the following individual weak preference order-
ings over the alternatives on X = {x1, x2, x3}.

RI =

Ñ
0.5 1 0.5
0 0.5 0

0.5 1 0.5

é
, RII =

Ñ
0.5 0.5 1
0.5 0.5 1
0 0 0.5

é
.

Consider the profile (R1, R2, R3, R4, R5) where

Rp =

®
RI if p = 1, 2, 3,

RII if p = 4, 5.

Assuming a required difference of votes k equal to 2 and applying the corre-
sponding M2 majority, we have

#{p | rp12 = 1} = 3 > #{p | rp21 = 1}+ 2 = 0 + 2⇒ x1 P2 x2,∣∣∣#{p | rp23 = 1} −#{p | rp32 = 1}
∣∣∣ = |2− 3| ≤ 2⇒ x2 I2 x3,∣∣∣#{p | rp13 = 1} −#{p | rp31 = 1}
∣∣∣ = |2− 0| ≤ 2⇒ x1 I2 x3.

Majorities based on difference of votes are located between simple majority
rule where the difference of votes is zero and unanimity where the difference
of votes is the total number of individuals m minus one. Moreover, if the
indifference state is ruled out from individual preferences, these majorities are
equivalent to supermajority rules.2 In this regard, notice that if rpij ∈ {0, 1},
then #{p | rpji = 1} = #{p | rpij = 0} = m−#{p | rpij = 1}. Therefore, under
majorities based on difference of votes we have

#{p | rpij = 1} > m−#{p | rpij = 1}+ k ⇔ 2#{p | rpij = 1} > m+ k

⇔ #{p | rpij = 1} > m+ k

2

⇔
#{p | rpij = 1}

m
>
m+ k

2m

⇔
#{p | rpij = 1}

m
> 0.5 +

k

2m

which is analogous to the result under supermajority rules.
In what follows, the restriction of Mk majorities to L(X)m, i.e. Mk

∣∣
L(X)m

,

is referred to as ML
k majorities.

2 Given τ > 0.5, supermajority rules are defined by xiP
τxj ⇔

#{p|rp
ij

=1}
m

≥ τ .
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Example 2 Let RI and RII be the following individual linear preference or-
derings over the alternatives on X = {x1, x2, x3}.

RI =

Ñ
0.5 1 1
0 0.5 1
0 0 0.5

é
, RII =

Ñ
0.5 0 1
1 0.5 1
0 0 0.5

é
.

Consider the profile (R1, R2, R3, R4, R5) where

Rp =

®
RI if p = 1, 2, 3,

RII if p = 4, 5.

Assuming a required difference of votes k equal to 1 and applying the corre-
sponding ML

1 majority, we have∣∣∣#{p | rp12 = 1} −#{p | rp21 = 1}
∣∣∣ = |3− 2| ≤ 1⇒ x1 I

L
1 x2,

#{p | rp23 = 1} = 5 > #{p | rp32 = 1}+ 1 = 0 + 1⇒ x2 P
L
1 x3,

#{p | rp13 = 1} = 5 > #{p | rp31 = 1}+ 1 = 0 + 1⇒ x1 P
L
1 x3.

3 Probability of consistent collective decisions under majorities
based on difference of votes with linear orderings

In this section the results about the probabilities of consistent collective deci-
sions under ML

k majorities are introduced under IAC assumption. Given that
voters are endowed with complete linear preference orderings, there are six
possible preference orders that they might have,

x1x2x3 (m1) x1x3x2 (m2) x2x1x3 (m3)

x2x3x1 (m4) x3x1x2 (m5) x3x2x1 (m6)
(2)

wheremi is the number of voters with the associated linear preference ordering.
In this framework, a voting situation is a vector m = (m1,m2,m3,m4,m5,m6)

such that
6∑

i=1
mi = m. As the IAC condition is assumed, all possible voting

situations m are equally liked to be observed. Gehrlein and Fishburn (1976)
showed that for m agents and 3 alternatives, the total number of voting situ-
ations m is given by the expression:

ψ(m) =
(m+ 1)(m+ 2)(m+ 3)(m+ 4)(m+ 5)

120
. (3)



8 Diss, Pérez-Asurmendi

3.1 Probabilities of triple-acyclic strict preferences under majorities based on
difference of votes with linear orderings

To calculate the probability of triple-acyclic strict preferences under ML
k ma-

jorities, we focus on the cases from 1 to 25 in Table 1. Specifically, we first cal-
culate the probability of cyclic strict preferences, i.e. the probability of having
preferences like the ones described in the cases 26 and 27 (see again Table 1).
Thereafter, we obtain the probability of triple-acyclic cases as 1 minus the
probability of cyclic strict preferences.

Going deeper on the strict preference described in the case 26, we notice
that for such preference to exist, the numbers of voters associated with the
linear orderings described in (2) have to fulfil the following conditions: m1 +
m2 − m3 − m4 + m5 − m6 > k, m1 − m2 + m3 + m4 − m5 − m6 > k and
−m1 −m2 −m3 +m4 +m5 +m6 > k.

In other words, the strict preference in the case 26 requires a voting sit-
uation m = (m1,m2,m3,m4,m5,m6) that fulfils the conditions given by the
system of inequalities below.

(x1P
L
k x2, x2P

L
k x3 andx3P

L
k x1)⇒



m1 +m2 −m3 −m4 +m5 −m6 > k,

m1 −m2 +m3 +m4 −m5 −m6 > k,

−m1 −m2 −m3 +m4 +m5 +m6 > k,

mi ≥ 0 for i ∈ {1, . . . , 6},
m− 1 ≥ k ≥ 0,

m1 +m2 +m3 +m4 +m5 +m6 = m.

Therefore, to calculate the probability of cyclic strict preferences, we need
to solve the system of linear inequalities derived from conditions that the
numbers of voters associated with the linear orderings in (2) have to hold for
strict preferences like the ones in the cases 26 and 27 to exist.

We compute the number of voting situations that fulfil these conditions by
means of the Parameterized Barvinok’s algorithm (Verdoolaege et al. (2004))3.
Such algorithm allows to quantify the number of integer solutions for sys-
tems of inequalities with parameters. The connection of such algorithm to So-
cial Choice Theory was recently pointed out by Wilson and Pritchard (2007)
and Lepelley et al. (2008).

Given the two parameters m and k, the number of voting situations m
for our system is given by bivariate quasi polynomials in m and k with 2-
periodic coefficients meaning that such coefficients depend on the parity of
the parameters m and k. Following the notation introduced in Lepelley et al.
(2008), we represent these coefficients by a list of 2 rational numbers enclosed
in square brackets. To illustrate, assume the bracketed list [[a, b]m , [b, a]m]

k
.

In the case of even k, the relevant list corresponds to [a, b]m. The coefficient
will be either a when m is even or b when m is odd. Accordingly, in the case

3 The free software to calculate the integer points under the Parameterized Barvinok’s
algorithm can be found in http://freecode.com/projects/barvinok.
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of odd k, the relevant list is [b, a]m and therefore, the coefficient will be either
b when m is even or a when m is odd. Thus, the coefficient will be a when m
and k have the same parity and b otherwise.

Notice that in the case of the cyclical strict preferences depicted in the
cases 26 and 27 (Table 1), the number of solutions in the system of inequalities
derived from the strict preference in the case 26 is the same as in the system
derived from the strict preference in the case 27 given the symmetry of such
cases. The program indicates that the corresponding quasi polynomial for each
of these cases is as follows:

− 81

1280
k5+Q1(m, k)k4 +Q2(m, k)k3 +Q3(m, k)k2 +Q4(m, k)k +Q5(m, k),

where

Q1(m, k) =
27

256
m+

[ ï
0,

81

256

ò
m

,

ï
81

256
, 0

ò
m

]
k

Q2(m, k) = − 9

128
m2 +

[ ï
0,−27

64

ò
m

,

ï
−27

64
, 0

ò
m

]
k

m

+

[ ï
9

64
,− 63

128

ò
m

,

ï
− 63

128
,

9

64

ò
m

]
k

Q3(m, k) =
3

128
m3 +

[ ï
0,

27

128

ò
m

,

ï
27

128
, 0

ò
m

]
k

m2

+

[ ï
− 9

64
,

63

128

ò
m

,

ï
63

128
,− 9

64

ò
m

]
k

m

+

[ ï
0,

27

128

ò
m

,

ï
27

128
, 0

ò
m

]
k

Q4(m, k) = − 1

256
m4 +

[ ï
0,− 3

64

ò
m

,

ï
− 3

64
, 0

ò
m

]
k

m3

+

[ ï
3

64
,− 21

128

ò
m

,

ï
− 21

128
,

3

64

ò
m

]
k

m2

+

[ ï
0,− 9

64

ò
m

,

ï
− 9

64
, 0

ò
m

]
k

m

+

[ ï
− 1

20
,

71

1280

ò
m

,

ï
71

1280
,− 1

20

ò
m

]
k
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Q5(m, k) =
1

3840
m5 +

[ ï
0,

1

256

ò
m

,

ï
1

256
, 0

ò
m

]
k

m4

+

[ ï
− 1

192
,

7

384

ò
m

,

ï
7

384
,− 1

192

ò
m

]
k

m3

+

[ ï
0,

3

128

ò
m

,

ï
3

128
, 0

ò
m

]
k

m2

+

[ ï
1

60
,− 71

3840

ò
m

,

ï
− 71

3840
,

1

60

ò
m

]
k

m

+

[ ï
0,− 7

256

ò
m

,

ï
− 7

256
, 0

ò
m

]
k

In addition, the program points out that this relation holds only if k ≤
(m− 3)/3. Otherwise, the number of voting situations is zero.

We simplify4 the quasi polynomial above by considering different values
of m and k. Thus, it can be deduced that the number of voting situations
corresponding to each of the strict preferences represented by the cases 26 and
27 in Table 1 is given by F1(m, k) if both m and k are odd (or even) and by
F2(m, k) if one of the parameters (m or k) is odd and the other one is even
such that:

F1(m, k) =
1

3840

Å
(m− 3 k − 4) (m− 3 k) (m− 3 k + 4)

(m− 3 k − 2) (m− 3 k + 2)

ã
.

F2(m, k) =
1

3840

Å
(m− 3 k + 3) (m− 3 k + 7) (m− 3 k + 1)

(m− 3 k + 5) (m− 3 k − 1)

ã
.

As a consequence of the above number of voting situations and taking into
account the symmetry of the strict preferences of the cases 26 and 27 in Ta-
ble 1 and the total number of voting situations ψ(m) in (3), we introduce the
probabilities of having triple-acyclic strict preferences under ML

k majorities in
the following result.

Proposition 1 Consider a three-candidate election with m voters under ML
k

majority rules where each individual vote consists of a linear preference or-
dering on the candidates. Assuming that all voting situations are equally likely
(IAC), if k ≤ (m− 3)/3, the probability of triple-acyclic strict preference is as
follows:

4 Such simplification is done with Maple software.
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– If both m and k are odd (or even):

1− 2F1(m, k)

ψ(m)
.

– If one of the parameters (m or k) is odd and the other one is even:

1− 2F2(m, k)

ψ(m)
.

Computed values of this probability are listed in Table 2. The values of
the difference of votes k correspond to the ones that provide a probability
of triple-acyclic strict preferences equal to 1. As it is previously mentioned,
these probabilities indicate that the number of solutions in the systems of
inequalities corresponding to the cyclic strict preferences (cases 26 and 27 in
Table 1) are equal to zero when k > (m− 3)/3.

Table 2 Probability of triple-acyclic PLk .

m→ 3 4 5 10 100 1,000 100,000
k ↓

0 0.9643 1 0.9524 0.9860 0.9462 0.9384 0.9375
1 1 1 0.9860 0.9462 0.9384 0.9375
2 1 0.9605 0.9403 0.9375

32 1 0.9628 0.9378
332 1 0.9406

33,332 1

Attending to the probabilities in Table 2, notice that, in the case of k = 0,
the probability 0.9375 = 15/16, as well as 0.9643 and 0.9524, are in accordance
with the results previously obtained by Gehrlein (1997) when the number of
voters tends to infinity and equals 3 and 5, respectively.

As we noted before, ML
k majorities are equivalent to supermajorities. Fer-

ejohn and Grether (1974) proved that supermajorities are acyclic whenever
1 > τ ≥ (#X − 1)/#X. Therefore, in the three-alternative case, we have that
(#X−1)/#X = 2/3. Bearing in mind that τ = 0, 5+k/2m, the probability of
triple-acyclic PL

k equals 1 when τ = 2/3 for m = 3, m = 100, m = 1, 000, and
m = 100, 000. In the cases of m = 4, m = 5, and m = 10 we have that τ = 0.6.
Hence, our probabilistic results do not contradict the above theoretical one.

Furthermore, some other interesting facts could be emphasized from the
above probabilities.

First, ML
0 majority provide a probability of triple-acyclic strict preferences

equal to 1 for the case of m = 4 whereas a difference of votes equal to 1 is
necessary in the case of m = 3 and m = 5 to achieve such probability. We
conjecture that this odd result attends to the fact that the likelihood of having
ties is greater in the case of an even number of individuals than in the case
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of an odd number of individuals when these voters are endowed with linear
orderings.

Second, the weight of the difference of votes necessary to achieve a prob-
ability of triple-acyclic strict preferences over the total number of votes equal
to 1, understood as the percentage of k over m, increases with the number
of individuals from m = 10 to m = 100,000. In the case of m = 10 required
difference signifies a 20% of the value of m, a 32% in the case of m = 100, a
33.2% in the case of m = 1,000 and a 33.332% in the case of m = 100,000.

Third, the probabilities do not reflect small changes in the magnitude of
the thresholds. See for instance, the probabilities attached to the cases m = 10,
m = 100 and m = 1,000 for the values of the difference k equal to 0 and 1 and
for the case of m = 100,000 in the case of k equal 0, 1 and 2.

Finally, triple-acyclic strict preferences under ML
k majorities can be guar-

anteed with a probability of 1 for not too demanding differences of votes.
Notice that it is possible to represent these probabilities as a function of

the required difference of votes divided by the total number of votes, i.e.,
the relative threshold. Let α = k/m be such threshold. If we assume large
electorates - that is, m tends to infinity - and replace k by αm in the results,
the desired probabilities are obtained as a function of α that only considers
the term of higher degree in m. Then, the following corollary is deduced from
the results in Proposition 1.

Corollary 1 For large electorates (m → ∞), the probability of triple-acyclic
strict preference is as follows:

1. If α < 1/3

1− (1− 3α)3

16
.

2. If α ≥ 1/3

1.

Notice again that we recover the result of Ferejohn and Grether (1974)
about acyclicity since α ≥ 1/3 is equivalent to 1 > τ ≥ 2/3.

Table 3 Probability of triple-acyclic PLk for large electorates.

α 0 0.1 0.2 0.3 1/3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.9375 0.9895 0.9994 1.0000 1 1 1 1 1 1 1 1

In Table 3, we present numerical values of the probability of triple-acyclic
strict preferences for large electorates, as a function of the relative threshold
α. For α = 0, we obviously recover the well-known result that, under IAC, the
probability that a cycle occurs in three-alternative elections is 1/16 (Gehrlein
and Fishburn (1976)). These results illustrate that the probabilities increase
as α rises. Moreover, the probabilities converge quickly to 1 as α tends to 1/3.
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3.2 Probabilities of transitive strict preferences under majorities based on
difference of votes with linear orderings

To study the probability of transitive strict preferences under ML
k majorities,

we follow the same methodology as the one applied in Subsection 3.1 adding
the cases 20, 21, 22, 23, 24 and 25 in Table 1 to the outcomes 26 and 27
analyzed in the case of triple-acyclic strict preferences. Once we calculate the
probability of non-transitive strict preferences collected in the cases from 20
to 27, we determine the probability of transitive strict preferences as 1 minus
the previous probability.

Ordinary preferences collected in cases from 20 to 25 are similar and hence,
the number of integer solutions given by Barvinok’s algorithm is the same in
each of the six systems of inequalities representing these strict preferences.

For these cases, two validity domains can be distinguished. On the one
hand, if k ≤ (m− 3)/3, the number of voting situations is given by G1(m, k)
if both m and k are odd (or even) and by G2(m, k) if one of the parameters
(m or k) is odd and the other one is even such that:

G1(m, k) =
1

1920
(k + 1)

(
121 k4 − 116 k3 − 200mk3 + 180mk2−

164 k2 + 130m2k2 + 144 k − 40m3k − 100m2k + 120mk−
20m2 − 80m+ 5m4 + 20m3

)
.

G2(m, k) =
1

1920
k
(
121 k4 − 200mk3 − 600 k3 + 130m2k2 + 780mk2+

910 k2 − 40m3k − 360m2k − 840mk − 360 k + 5m4+

60m3 + 210m2 + 180m− 71
)
.

On the other hand, if (m− 2)/3 ≤ k ≤ m− 2, the number of voting situations
is given by G3(m, k) if both m and k are odd (or even) and by G4(m, k) if one
of the parameters (m or k) is odd and the other one is even such that:

G3(m, k) =
1

3840

Å
(m− k − 2) (m− k + 4) (m− k)

(m− k + 6) (m− k + 2)

ã
.

G4(m, k) =
1

3840

Å
(m− k + 7) (m− k + 3) (m− k − 1)

(m− k + 5) (m− k + 1)

ã
.

Bearing in mind above numbers of voting situations, the results in Propo-
sition 1 and the total number of voting situations ψ(m) in (3), we derive the
probability of transitive strict preferences under ML

k majorities as follows.
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Proposition 2 Consider a three-candidate election with m voters under ML
k

majority rule where each individual vote consists of a linear preference ordering
on the candidates. Assuming that all voting situations are equally likely (IAC),
the probability of transitive strict preferences is as follows:

1. If k ≤ (m− 3)/3
– If both m and k are odd (or even):

1− 2F1(m, k) + 6G1(m, k)

ψ(m)
.

– If one of the parameters (m or k) is odd and the other is even:

1− 2F2(m, k) + 6G2(m, k)

ψ(m)
.

2. If (m− 2)/3 ≤ k ≤ m− 2
– If both m and k are odd (or even):

1− 6G3(m, k)

ψ(m)
.

– If one of the parameters (m or k) is odd and the other is even:

1− 6G4(m, k)

ψ(m)
.

Computed values of this probability are listed in Table 4. Going deeper on
them, the weight of the required difference of votes k to guarantee a probability
of transitive strict preferences equal to 1 with respect to the total number of
individuals increases as the number of individuals does. To illustrate, in the
case of m = 3, the required k = 1 represents around a 33.33% of the value of m
whereas in the case of m = 100,000 the required k represents a 99.998% of the
value of m. In fact, the required differences are very large for all the considered
cases with the exception of m = 3. Even for m = 4, the difference signifies a
50% of the value of m. For not too demanding differences, the probabilities
increase in the cases of m = 4, m = 5 and m = 10; this is not the case for
m = 100, m = 1,000 and m = 100,000 where asking reasonable differences of
votes decreases the probability of transitive strict preferences.

Moreover, as in the case of the probabilities stated in Table 2, small vari-
ations in the magnitude of the differences of votes do not change, at least in
a significant way, the probabilities. To illustrate, look at the probabilities of
m = 100,000 with differences k equal to 0, 1, 2 and 3.

When large electorates are considered, the following corollary holds.

Corollary 2 For large electorates (m→∞), the probability of transitive strict
preference is as follows:

1. If α < 1/3

1−
Å

1

16
+

15

16
α− 75

8
α2 +

255

8
α3 − 795

16
α4 +

483

16
α5

ã
.
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Table 4 Probability of transitive PLk .

m→ 3 4 5 10 100 1,000 100,000
k ↓

0 0.9643 0.9524 0.9524 0.9161 0.9293 0.9366 0.9375
1 1 0.9524 0.9762 0.9161 0.9293 0.9366 0.9375
2 1 0.9762 0.9580 0.9175 0.9348 0.9375
3 1 0.9580 0.9175 0.9348 0.9375
8 1 0.9088 0.9298 0.9374

98 1 0.9101 0.9366
998 1 0.9290

99,998 1

2. If 1/3 ≤ α < 1

1− 3

16
(1− α)

5
.

Table 5 Probability of transitive PLk for large electorates.

α 0 0.1 0.2 0.3 1/3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.9375 0.9103 0.9398 0.9685 0.9753 0.9854 0.9941 0.9981 0.9995 0.9999 1.0000 1.0000

Table 5 sets forth some numerical values of the probability of transitive
strict preferences for large electorates, as a function of the relative threshold
α. These results illustrate that the probabilities increase as α rises with the
exception of the case of α = 0.1 in which the probability decreases with respect
to the one for α = 0. More precisely, the probability function of transitive strict
preferences for large electorates reaches its minimum 0.9080 at α = 0.0737. In
addition, notice that the variations of the probabilities are relatively small as
α increases.

3.3 Probabilities of transitive weak preferences under majorities based on
difference of votes with linear orderings

To derive the probability of transitive weak preferences under ML
k majorities,

we need to consider, in addition with the cases analyzed in Proposition 2, the
cases from 14 to 19 in Table 1. With that, we calculate the probability of non-
transitive weak preferences and therefore, the probability of transitive weak
preferences is determined as 1 minus the probability of non-transitive weak
preferences.

By symmetry arguments, the weak preferences represented in cases from
14 to 19 are similar and therefore the number of integer solutions of the six
systems of inequalities corresponding to such cases is the same. Using again the
Barvinok’s algorithm, two validity domains can be considered. If k ≤ (m−2)/3,
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the number of voting situations inside each system is given by H1(m, k) if both
m and k are odd (or even), and by H2(m, k) if one of the parameters (m or
k) is odd and the other one is even such that:

H1(m, k) = − 1

240

Å
(k + 1)

(
17 k4 − 30mk3 − 22 k3 + 20m2k2−

28 k2 + 30mk2 + 50mk + 48 k − 5m3k − 5m2k−

5m3 − 30m2 − 40m
)ã
.

H2(m, k) = − 1

240
k
(
17 k4 − 30mk3 − 90 k3 + 20m2k2+

120mk2 + 140 k2 − 5m3k − 45m2k − 100mk−
30 k − 37− 5m2 − 30m

)
.

For the second validity domain, if (m− 1)/3 ≤ k ≤ m− 1, this number is
given by H3(m, k) if both m and k are odd (or even) and by H4(m, k) if one
of the parameters (m or k) is odd and the other one is even such that:

H3(m, k) =
1

3840

Å
(m− k + 2) (m− k) (m− k + 4)

(
29 k2 + 12mk + 94 k + 72−m2 + 6m

)ã
.

H4(m, k) =
1

3840

Å
(m− k + 1) (m− k + 5) (m− k + 3)

(
29 k2 + 12mk + 36 k − 6m+ 7−m2

)ã
.

Taking into consideration the intersections between the different validity do-
mains and using the results in Propositions 1 and 2, the probability of transi-
tive weak preferences is as follows.

Proposition 3 Consider a three-candidate election with m voters under ML
k

majority rule where each individual vote consists of a linear preference ordering
on the candidates. Assuming that all voting situations are equally likely (IAC),
the probability of transitive weak preferences is as follows:

1. If k ≤ (m− 3)/3
– If both m and k are odd (or even):

1− 2F1(m, k) + 6G1(m, k) + 6H1(m, k)

ψ(m)
.

– If one of the parameters (m or k) is odd and the other one is even:

1− 2F2(m, k) + 6G2(m, k) + 6H2(m, k)

ψ(m)
.
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2. If (m− 1)/3 ≤ k ≤ m− 2
– If both m and k are odd (or even):

1− 6G3(m, k) + 6H3(m, k)

ψ(m)
.

– If one of the parameters (m or k) is odd and the other one is even:

1− 6G4(m, k) + 6H4(m, k)

ψ(m)
.

3. If k = (m− 2)/3
– Either both m and k are odd or both are even:

1− 6H1(m, k) + 6G3(m, k)

ψ(m)
.

4. If k = m− 1
– One of the parameters (m or k) is odd and the other one is even:

1− 6H4(m, k)

ψ(m)
.

Analyzing the probabilities of transitive weak preferences displayed in Ta-
ble 6, ML

0 majority provides the highest values for the probability of having
transitive weak preferences for almost all the considered values of m. In fact,
any difference of votes can be asked to guarantee a probability value of 1. Only
in the cases of m = 1,000 and m = 100,000 the probability arrives to the value
of 1.0000, i.e. the probability approximates to the value of 1 without reaching
it. Even so, in both cases the required difference of votes is extremely large.
Specifically, it represents a 99.9% of the value of m in the case of m = 1,000
and a 99.999% in the case of m = 100,000.

Table 6 Probability of transitive RLk .

m→ 3 4 5 10 100 1,000 100,000
k ↓

0 0.9643 0.7619 0.9524 0.8462 0.9280 0.9366 0.9375
2 0.6786 0.7143 0.6667 0.6703 0.9062 0.9346 0.9375
3 0.7143 0.7619 0.6703 0.9062 0.9346 0.9375
4 0.7619 0.6503 0.8818 0.9327 0.9375
9 0.9101 0.8292 0.9287 0.9374

99 0.9997 0.8136 0.9366
999 1.0000 0.9276

99,999 1.0000

Finally, as in the previous cases stated in Tables 2 and 4, the probabilities
do not significantly change with small variations of the magnitude of the dif-
ference in votes. On this, see for instance the cases of k equal 2 and 3 for m
equal 4, 10, 100, 1,000 and 100,000.

When large electorates are considered, the following corollary holds.
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Corollary 3 For large electorates (m→∞), the probability of transitive weak
preference is as follows:

1. If α < 1/3

1−
Å

1

16
+

15

16
α+

45

8
α2 − 225

8
α3 +

645

16
α4 − 333

16
α5

ã
.

2. If 1/3 ≤ α < 1

1− 15

8
α (1− α)

3
(1 + 3α) .5

Table 7 Probability of transitive RLk for large electorates.

α 0 0.1 0.2 0.3 1/3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.9375 0.8118 0.6922 0.6334 0.6296 0.6436 0.7070 0.7984 0.8901 0.9592 0.9938 1.0000

Table 7 presents some numerical values of the probability of transitive
weak preferences for large electorates, as a function of the relative threshold α.
These results illustrate that the probabilities rapidly decrease in α and reach
the minimum 0.6296 at α = 1/3. Instead, from α > 1/3, the probabilities
increase as α rises.

4 Probabilities of consistent collective decisions under majorities
based on difference of votes with weak orderings

Given that voters could be indifferent between the alternatives, we have to
take into account the six linear preference orderings in (2), the six possible
orderings that collect the partial indifference and the one that represents the
complete indifference among three alternatives. Therefore,

x1x2x3 (m1) x1x3x2 (m2) x2x1x3 (m3)

x2x3x1 (m4) x3x1x2 (m5) x3x2x1 (m6)

{x1x2}x3 (m7) {x1x3}x2 (m8) {x2x3}x1 (m9)

x1{x2x3} (m10) x2{x1x3} (m11) x3{x1x2} (m12)

{x1x2x3} (m13)

(4)

where mi represents the number of voters with the associated preference or-
dering and {xixj} stands for the indifference between the alternatives xi and
xj . As the IAC condition is assumed, all possible voting situations m =
(m1,m2, · · · ,m13) are equally liked to be observed. For m individuals and

5 Notice that in this case, the four original validity domains from Proposition 3 reduce
to two, given that, for the three last ones, the probabilities are the same when considering
large electorates.
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3 alternatives, if the indifference between alternatives is allowed, the total
number of voting situations m is given by the expression:

Ψ(m) =
(m+ 1)(m+ 2) · · · (m+ 12)

12!
. (5)

Using the same approach applied in Section 3, the probability of consis-
tent outcomes is calculated by means of the computation of the probability
of inconsistent outcomes. As there, such probabilities are given by Ehrhart
polynomials that provide the number of integer points inside the systems of
inequalities that characterize each of the analyzed inconsistent outcomes.

In the framework of the preferences represented in (4), the complexity
of the conditions makes impossible the derivation of a general mathematical
representation as the one provided in Section 3 even for the case of large elec-
torates. This is because for each considered consistency condition, the number
of validity domains and the length of the polynomials are greater than in the
cases of Section 3.

Fortunately, when the number of individuals m and the threshold k are
fixed, the probabilities can be calculated for the given number of voting situ-
ations m.

4.1 Probabilities of triple-acyclic strict preferences under majorities based on
difference of votes with weak orderings

In Table 8, the probabilities of triple-acyclic strict preferences under Mk ma-
jorities are displayed.

It must be emphasized that, in the case of k = 0, the probability 0.9956 =
1 − 0.0044, as well as 0.9929 = 1 − 0.0071 and 0.9571 = 1 − 0.0426, are in
accordance with the results previously obtained by Lepelley and Martin (2001)
when the number of voters equals 3 and 5 and tends to infinity, respectively.

Table 8 Probability of triple-acyclic Pk.

m→ 3 4 5 10 100 1,000 100,000
k ↓

0 0.9956 0.9989 0.9929 0.9873 0.9627 0.9577 0.9571
1 1 1 1 0.9992 0.9720 0.9589 0.9572
2 1.0000 0.9794 0.9601 0.9572
3 1 0.9851 0.9613 0.9572

33 1 0.9852 0.9576
333 1 0.9611

33,333 1

6 Notice that, in Lepelley and Martin (2001), the probability 0.042 is obtained as an
estimate value through computer simulations.
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Furthermore, the following facts can be pointed out from these results. The
probabilities of having triple-acyclic strict preferences when no difference of
votes is required, i.e. when M0 majority is applied, reach very high values.
Specifically, they are located between 0.9571 and 0.9989. For m = 3, m = 4
and m = 5, the needed difference of votes to achieve a probability value of 1
equals 1. Therefore, it represents a one third of the value of m in the case of
m = 3, a 25% in the case of m = 4 and a 20% in the case of m = 5. For the
remaining considered values, the weight of the required differences represent
around one third of the value of m which means that we can guarantee with a
probability of 1 the triple-acyclicity of strict preferences under Mk majorities
for reasonable values of the difference of votes.

4.2 Probabilities of transitive strict preferences under majorities based on
difference of votes with weak orderings

In Table 9, the probabilities of transitive strict preferences underMk majorities
are presented.

Table 9 Probability of transitive Pk.

m→ 3 4 5 10 100 1,000 100,000
k ↓

0 0.9692 0.9626 0.9531 0.9422 0.9519 0.9565 0.9571
1 1 0.9901 0.9884 0.9632 0.9443 0.9554 0.9571
2 1 0.9971 0.9851 0.9399 0.9542 0.9571
3 1 0.9942 0.9383 0.9531 0.9571
8 1 0.9516 0.9484 0.9570

98 1 0.9597 0.9560
998 1 0.9471

99,998 1

It is remarkable that to reach a probability of transitive strict preferences
equal to 1, the weight of the required difference of votes k with respect to the
total number of individuals increases as the number of individuals does. For
instance, in the case of m = 4, it represents a 50% of the value of m whereas
in the case of m = 1,000 it does a 99.8% of the value of m.

Moreover, the required differences are too demanding for all the cases with
the exception of the case of m = 3 where it represents one third of the value
of m.

4.3 Probabilities of transitive weak preferences under majorities based on
difference of votes with weak orderings

Probabilities of transitive weak preferences under Mk majorities defined for
weak orderings are displayed in Table 10.
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Table 10 Probability of transitive Rk.

m→ 3 4 5 10 100 1,000 100,000
k ↓

0 0.9801 0.8538 0.8920 0.9072 0.9511 0.9565 0.9571
2 0.7890 0.7429 0.7014 0.6980 0.9218 0.9540 0.9571
3 0.8648 0.8167 0.6814 0.9049 0.9527 0.9571
4 0.9176 0.7234 0.8871 0.9514 0.9571
9 0.9919 0.7954 0.9444 0.9570

99 1.0000 0.7782 0.9559
999 1.0000 0.9436

99,999 1.0000

The probability value of 1 is almost achieved for the values of m equal to
100, 1,000 and 100,000. In these cases, the required differences in votes k are
so high that signify a 98% of the value of m in the case of m = 100, a 99.8%
in the case of m = 1,000 and a 99.998% in the case of m = 100,000.

5 Conclusion

In this paper, we have computed the theoretical probabilities of consistent
preferences under majorities based on difference of votes defined for both in-
dividual linear orderings and weak orderings. This paper contains two new
contributions. First, we have found the needed thresholds which guarantee
that the probability of consistent outcomes is close to 1. Second, we have set
forth the impact of weak orderings and linear orderings on the probability of
consistent preferences. In the cases of transitive and triple-acyclic strict pref-
erences, we have shown that probabilities are higher considering weak than
linear orderings (see Tables 2, 4, 8 and 9). In the case of transitive weak pref-
erences, the same is true when k equals 1 and 2 and, with the exception of the
case in which m = 4, also when k = 0.

Since we have studied the particular case of Impartial and Anonymous
Culture (IAC), the extension of these results to other probabilistic hypothe-
sis as Impartial Culture (IC) remains open. Moreover, the extension of this
study to other majorities is of interest. More precisely, a similar analysis can
be achieved for the case of Majorities based on difference of support (Garćıa-
Lapresta and Llamazares (2010)). These majorities allow individuals to show
their intensities of preferences on pairs of alternatives by means of recipro-
cal preferences through values in the unit interval. Under them, an alterna-
tive x1 defeats another one x2 if the sum of the intensities for x1 exceeds
the sum of intensities for x2 by a threshold fixed before the election process.
Theoretical–and quite negative–results about the consistency of the collective
preferences under these majorities have been developed in Llamazares et al.
(2013) and Llamazares and Pérez-Asurmendi (2015). Hence, the study of the
likelihood of consistent outcomes under these majorities seems to be relevant.
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Bonifacio Llamazares, Ana Pérez Espartero and Rachid Seghir for their valuable suggestions
and comments. This work is partially supported by the Spanish Ministry of Economy and
Competitiveness (Projects ECO2012-32178 and ECO2012-34202).

References

Balasko, Y., & Crès, H. (1997). The probability of Condorcet cycles and super majority
rules. J. Econ. Theory, 75, 237–270.

Cervone, D. P., Gehrlein, W. V., & Zwicker, W. S. (2005). Which scoring rule maximizes
Condorcet efficiency under IAC? Theor. Decis., 58, 145–185.

Condorcet, M. d. (1785). Essai sur l’Application de l’Analyse à la Probabilité des Décisions
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