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1.1 Introduction

Constraints on parameters arise naturally in many applications. Statistical methods that honor
the underlying constraints tend to be more powerful and result in better interpretation of
the underlying scientific data. In the context of Euclidean space data, there exists over five
decades of statistical literature on constrained statistical inference and at least four books
on the subject (e.g. Robertson et al. (1988), Silvapulle and Sen (2005)). However, it was not
until recently that these methods are being used extensively in applied research. For example,
constrained statistical inference is gaining considerable interest among applied researchers
in a variety of fields, such as toxicology (Peddada et al. (2007)), genomics (Hoenerhoff et
al. (2012), Perdivara et al. (2011), Peddada et al. (2003)), epidemiology (Cao et al. (2011),
Peddada et al. (2005)), clinical trials (Conaway et al. (2004)), cancer trials (Conde et al.
(2012), Conde et al. (2013)) etc.

While Euclidean space data are commonly encountered in applications, there are numerous
instances where the underlying data and the parameters of interest reside on a unit circle.
Statistical theory and methodology for analyzing such angular data has a long history (Fisher
(1993), Mardia and Jupp (2000)) and, as witnessed through his publications and his highly
referenced book Mardia and Jupp (2000), Professor Mardia was one of the chief architects
and pioneers of this important research area. His work has wide range of applications in fields
such as geosciences, spatial data, image analysis, bioinformatics etc.
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In comparison to over fifty years of statistical literature on constrained inference for
Euclidean space data, constrained statistical inference for circular data is almost non-existent
although constraints on unit circle were encountered by applied researchers such as social
psychologists and neuroscientists (cf. Schlosberg (1952), Russell (1980), Forgas (1998),
Mechsner et al. (2001), Oullier et al. (2002), Posner et al. (2005)), molecular biologists
(Whitfield et al. (2002), Peng et al. (2005), Hughes et al. (2009)) etc. Parameters on a unit
circle are often the result of an oscillatory system.

Oscillatory systems arise naturally in many applications, such as sales of seasonal
products, regulation of hormones in humans, circadian clock, periodic expression of genes
participating in cell division cycle, etc. Often there are several components (or variables)
involved in such oscillatory systems that act in a well-coordinated manner like an orchestra
for the system to function. The system can be disrupted if one or more components go out
of order. Researchers are often interested in detecting such components. For example, large
scale genomic studies are routinely conducted to identify genes/proteins that have a periodic
expression in a given biological system. Depending upon the underlying scientific question
of interest, researchers are often interested in correlating the phases of periodic genes across
different experimental conditions or species or tissues etc. Thus the statistical problem of
interest is to draw inferences regarding the relative order among parameters on a unit circle.

Just as one cannot trivially extend standard methods developed for unconstrained statisti-
cal inference in the Euclidean space to circle, constrained statistical inference for Euclidean
space cannot be extended to constraints on a unit circle (cf. Rueda et al. (2009)). Since
constrained statistical inference on a unit circle is a relatively new topic and yet has numer-
ous applications, the purpose of this paper is three-fold. First we describe recent theoretical
and methodological advances in this field, next we shall describe some applications of the
methodology in cell biology and lastly we shall present several open research problems and
potential applications. More specifically, in Section 1.2 we introduce the framework and the
problem of interest. In Section 1.3 we describe the problem of estimating ordered parameters
on a unit circle using circular isotonic regression. Analogous to the isotonic regression esti-
mator in the Euclidean space, circular isotonic regression estimator (CIRE) obtains ordered
estimates of circular parameters under a pre-specified order among them. Using these ordered
point estimators, under suitable distributional assumptions, in Section 1.4 we describe con-
ditional tests for order among circular parameters. In Section 1.5 the problem of estimation
of a global order among a set of circular objects using data from multiple experiments is
described. Statistical methodology described in this paper is illustrated in Section 1.6 using
data obtained from cell biology. We conclude the paper by presenting present several open
research problems and potential applications in Section 1.7.

1.2 Oscillatory data and the problems of interest

Time course data are commonly obtained in many applications. However, in some
applications such as in marketing research, cell biology, endocrinology, psychology etc.,
researchers are interested in studying various characteristics (or parameters) of the time
course pattern. Although the raw data itself may reside in the Euclidean space, the underlying
parameters of interest may be points on a unit circle. To illustrate this, consider data provided
in the toy example described in Figure 1.1. To promote tourism to its summer resort in an
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island in the pacific, suppose a travel agency runs an advertisement campaign several months
before each summer. The advertisement costs in dollars over time are plotted in Figure 1
(dashed curve). The travel agency tracks the sales of airline tickets to the island over the
same period (dotted curve) as well as the income revenues on the island due to tourism (solid
curve). One of the parameters of interest to the travel agency is to determine the time of peak
advertisement to maximize its impact on the overall sales. Thus the parameters of interest are
the times that correspond to the peaks of the curve (location of the vertical lines in Figure
1.1). Since these curves are periodic they can be mapped onto a unit circle and the time
to peak value of any given curve can be thought of as an angular parameter on the circle
(see Figure 1.2). Thus in this example the angular parameters are ordered with the dashed
value followed by the dotted value which is followed by the solid one in the anti-clockwise
direction. Focus of this paper is to draw inferences regarding the relative order among these
angular parameters on the unit circle. As noted in the introduction, similar examples arise in
a wide range of settings and the application of interest in this paper is cell-biology which is
explained in greater detail in the illustration section.

Figure 1.1 Advertisement costs in dollars over time

In Liu et al. (2004), a nonlinear model called the Random Period Model (RPM) was
introduced for such time course data. Although their motivation was to describe the time
course expression of cell-cycle genes, their model can be used for any such time course
data. The model is given by Yg(t) = f(t, ηg) + εg(t) where t is the time, and εg(t) is a zero
mean error term with no additional distributional assumptions made. The expected response
f(t, ηg) is modeled as,

f(t, ηg) = ag + bgt+
Kg√
2π

∫ ∞

−∞
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( 2πt

Texp(σz)
+ ϕg

)
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(−z2
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)
dz,

for all t = 1, . . . , ng and g = 1, . . . , k and where ηg = (Kg, T, σ, ϕg, ag, bg) is the parameter
vector. Parameters of the model are interpreted as follows. The parameters T and σ are the
same for all cells and genes in the population. The parameter T governs the duration of
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Figure 1.2 Peak costs plotted on a circle

the cell cycle, while σ measures the rate of attenuation in amplitude with each cycle (the
larger σ the faster the decay in amplitude). The parameter ϕg is the angle of peak expression
of gene g in the cell cycle with ϕ = 0 being the point when cells are released. Parameter
Kg is the amplitude of the first period and parameters ag and bg take into account possible
drifts in the gene background expression level. The parameters T and σ are the same for all
cells and genes in the population. The unconstrained estimators of all parameters of RPM,
including the angular parameter ϕg , are obtained using nonlinear least squares methodology.
Throughout this paper, we shall refer to the angular parameter ϕg as the phase angle due to
its biological relevance.

Suppose we have k oscillatory variables (in the above tourism example we had three) and
suppose for the ith variable the phase angle is denoted by ϕi, i = 1, 2, . . . , k. Then, using
the unconstrained estimators θi, i = 1, 2, . . . , k obtained from the RPM model, our goal is
to conduct inference regarding the relative order of ϕ1, ϕ2, . . . , ϕk around the unit circle.
Suppose we travel around the circle in an anti-clockwise direction and suppose the angle ϕ1

is followed by ϕ2 which is followed by ϕ3 etc. followed by ϕk which is finally followed by
angle ϕ1. Then we shall adopt the following notation (cf. Rueda et al. (2009), Fernández et
al. (2012), 2012) to describe the relative order:

ϕ1 ≼ ϕ2 ≼ . . . ≼ ϕk ≼ ϕ1

It is important to note that the above order is invariant of the location of the pole of the
circle. Alternatively, the above order is rotation invariant. For this reason Rueda et al. (2009)
referred to the above order as an isotropic order. Focus of this paper is to discuss recent
developments in the literature on the following problems: (a) To estimate ϕ1, ϕ2, . . . , ϕk

under the above order constraint using the unconstrained estimators of ϕi, i = 1, 2, . . . , k,
obtained from RPM. (b) For a set of angular parameters, test the hypothesis that the above
relative order is satisfied. (c) Using data from multiple experiments under different conditions
test, whether the relative order among a set of phase angles is conserved across the conditions.
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1.3 Estimation of angular parameters under order constraint
We begin by discussing the problem of estimating the phase angles ϕi, i = 1, 2, . . . , k
under the order constraint ϕ1 ≼ ϕ2 ≼ . . . ≼ ϕk ≼ ϕ1 using the unconstrained estimators
θi, i = 1, 2, . . . , k obtained from the RPM. The general idea of estimation resembles the
analogous problem in the Euclidean space. Let C = {ϕ ∈ [0, 2π)k : ϕ1 ≼ ϕ2 ≼ . . . ≼ ϕk ≼
ϕ1}. Suppose Ci = {ϕ ∈ [0, 2π)k : 0 ≤ ϕi ≤ ϕi+1 ≤ . . . ≤ ϕi−1 ≤ 2π}, thus the pole of the
unit circle is between the parameters ϕi−1 and ϕi. Then we have C =

∪k
i=1 Ci.

For an estimator θ = (θ1, θ2, . . . , θk)
′ of a parameter ϕ = (ϕ1, ϕ2, . . . , ϕk)

′, the distance
between the two is defined as the sum of circular errors (SCE) given by:

SCE(θ, ϕ) = d(θ, ϕ) =
k∑

i=1

ri{1− cos(θi − ϕi)},

where ri represents a measure of concentration of θi about its modal direction (see Mardia
and Jupp (2000) p. 17). Consequently, using the unconstrained estimator θ, the estimator of
ϕ under the constraint ϕ ∈ C is obtained by solving the following minimization problem:

minϕ∈CSCE(θ, ϕ) = minϕ∈C

k∑
i=1

ri{1− cos(θi − ϕi)}. (1.1)

In the case of Euclidean space data where θ has a known diagonal covariance matrix, C is
the simple order cone given by ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕk and SCE is replaced by the Euclidean
distance (i.e. sum of squared errors), the corresponding minimization problem is called
the isotonic regression. Typically the problem is solved using the pool adjacent violator
algorithm (PAVA). The basic underlying idea of PAVA is that components of θ that violate
the underlying relative order, are pooled or averaged so that the overall order is satisfied. To
illustrate this, we consider the following toy example in the Euclidean space.

Example Suppose ϕ = (ϕ1, ϕ2, ϕ3) ∈ R3 with ϕ1 ≤ ϕ2 ≤ ϕ3. Suppose the unconstrained
sample means are given by θ1 = 0.6, θ2 = 2.5 and θ3 = 1.5. Since θ2 > θ3, therefore the
order ϕ1 ≤ ϕ2 ≤ ϕ3 is violated. The PAVA would average the last two coordinates, yielding
the ϕ̃1 = 0.6, ϕ̃2 = ϕ̃3 = (1.5 + 2.5)/2 = 2 as the constrained estimates.

In the case when ϕ ∈ C, the unit circle, the solution to the minimization problem (1.1) is
more complicated as noted in Rueda et al. (2009). Since (1.1) resembles the usual isotonic
regression estimation of the Euclidean space data, Rueda et al. (2009) refer to the solution of
(1.1) as circular isotonic regression estimator (CIRE). More precisely, the CIRE, denoted as
ϕ̃, is given by:

ϕ̃ = Argminϕ∈CSCE(θ, ϕ). (1.2)

Before we formally describe CIRE, we consider the following toy example to describe
the calculation of CIRE geometrically. We remark that when considering angular data, the
arithmetic means are not always appropriate for describing the average direction between
a pair of angles. Instead one should use the angular mean direction (cf. Mardia and Jupp
(2000), Rueda et al. (2009)).

Example Suppose k = 3 with ϕ1 ≼ ϕ2 ≼ ϕ3 ≼ ϕ1. Suppose the unconstrained estimates
using the RPM are given (in radians) by θ1 = 6, θ2 = 1.5 and θ3 = 2.5 (see Figure 1.3).
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Figure 1.3 Unconstrained Estimates

Pole

SCE = 0.74

Pole

SCE =1.64

Pole

SCE = 0.24

Figure 1.4 Constrained Estimates

Clearly these estimates do not satisfy the desired order. In the Euclidean space example
described above it was easy to identify the violator of the order and one could accordingly
deal with it. However in the present case, since the data wrap around the circle, the violator
may not be unique and one needs to explore all possibilities. If the violation is due to θ1 and
θ3 then one would average these two and leave θ2 as is. This would result in the constrained
estimates given in the top left circle in Figure 1.4 with an SCE of 0.74. However, if the
violation is due to θ1 and θ2 then one would average these two and leave θ3 as is. This would
result in the constrained estimates given in the top right circle in Figure 1.4 with an SCE of
1.64. Or the last possibility could be that θ2 and θ3 are in violation of the order. In which case
we pool the estimates θ2 and θ3 and leave θ1 as is, resulting in an SCE of 0.24. See bottom
circle in Figure 1.4. Since this SCE is the smallest it is the CIRE.
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An important observation to make from the above example is that in the case of circular
data it is not enough to consider the adjacent violators of the order. This makes the problem
computationally challenging. The main reason for this is that, unlike the arithmetic mean
in the Euclidean space, the circular mean does not verify the Cauchy Mean Value property.
Rueda et al. (2009) provide a general algorithm to derive CIRE and demonstrated that their
algorithm is exact and computationally efficient, especially as the number of parameters
increases. CIRE is implemented in the R package isocir (Barragán et al. (2013)). The solution
to their algorithm is characterized in the following theorem.

Theorem 1.3.1. The CIRE exists, is almost sure unique, and can be obtained from circular
means of adjacent angles as,

ϕ̃g = Ave(S(i)) for g = 1, ..., k, i = 1, ...,m,
with 0 < Ave(S(1)) < Ave(S(2)) < ... < Ave(S(m)) < 2π,

where (i)mi=1 is a partition of {1, . . . , k}, Ave(Si) are the circular mean directions for angles
in Si = {θg, g ∈ (i)}, (1), .., (m) are the so called level sets (cf. Robertson et al. (1988)),
n(i) = #(i) and

∑m
i=1 n(i) = n.

In some situations, especially in cell-biology, one may be interested in partial orders of the
following type:

{ϕ1, ϕ2, . . . ϕr1} ≼ {ϕr1+1, . . . ϕr2} ≼ · · · ≼ . . . {ϕrs+1, . . . ϕk} ≼ {ϕ1, ϕ2, . . . ϕr1}.
(1.3)

In the above notation, angles within each set are not ordered but the angles one set precede
the angles in the next set. Thus all angles in {ϕ1, ϕ2, . . . ϕr1} precede all the angles in
{ϕr1+1, ϕr1+2, . . . ϕr2} and so on. This occurs when a biologist may hypothesize that, as
a group, genes in a given set have to function before the genes in the next set function for the
cell division cycle to proceed. He/she may not know the order of expression of genes within
each set. Barragán et al. (2013) extended the CIRE methodology of Rueda et al. (2009) to
estimate parameters under the above order constraint.

1.4 Inferences under Circular Restrictions in Von Mises Models
When dealing angular data, analogous to normal distribution on the real line, one typically
uses the Von Mises distribution for performing inferences regarding the angular parameter (cf
Mardia and Jupp). Accordingly, in this section we shall make a simplifying assumption that
the unconstrained estimators θi, i = 1, 2, . . . , k are mutually independently distributed with
θi ∼ VM(ϕi, κ), where VM stands for Von Mises distribution, ϕi denotes the angular mean
direction and κ is the concentration parameter of the distribution. The probability density
function (pdf) is given by:

g(x, ϕi, κ) =
1

2πI0(κ)
eκ cos(x−ϕi) x ∈ [0, 2π),

where I0 is the modified Bessel function of first class and order zero. As noted earlier, there
exists a large body of literature on statistical tests for angular data, especially under the
Von Mises distribution (cf. Mardia and Jupp). However, until Fernandez et al. (2012) and
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Barragan et al. (2013) there did not exist any formal literature on testing for order among
angular parameters. Motivated by various applications, e.g. in social psychology, neurology,
cell-biology etc., one may be interested in test the following hypotheses:

H0 ϕi, i = 1, ..., k follow a known order O
H1 : H0 is not true. (1.4)

For example, O may be the circular order described earlier, i.e. ϕ1 ≼ ϕ2 ≼ . . . ≼ ϕk ≼ ϕ1.
Under the above distributional assumptions, the CIRE of (ϕ1, ϕ2, . . . , ϕk)

′ is the restricted
maximum likelihood estimator (RMLE) of (ϕ1, ϕ2, . . . , ϕk)

′ (Rueda et al. (2009)). From
Theorem 1.3.1, we see that CIRE partitions the estimates into m level sets of consecutive
coordinates on which ϕ̃i is constant.

Assuming κ is known, one may derive the likelihood ratio test (LRT ) statistic T for
hypotheses (1.4) as the angular distance between the unconstrained maximum likelihood
estimator (θ1, θ2, . . . , θk)′ and the RMLE (ϕ̃1, ϕ̃2, . . . , ϕ̃k)

′ which is given by:

T = 2κ

k∑
i=1

(
1− cos

(
θi − ϕ̃i

))
.

Since in practice it is not easy to implement the LRT , Fernández et al. (2012) derived a
conditional test (CT ) by conditioning on the number of level sets m. Conditional tests have
been well-studied in the case of order restricted inference for normal models (Robertson
et al. (1988)) but unknown until Fernández et al. (2012) for Von Mises populations. The
conditional test CT of Fernández et al. (2012) rejects the above null hypothesis whenever
T ≥ c(m), where m is the number of level sets for (ϕ̃1, ϕ̃2, . . . , ϕ̃k)

′ and c(m) is chosen
so that P (χ2

k−m ≥ c(m)) = α
1− 1

(n−1)!

. Fernández et al. (2012) demonstrated that for large

values of (κ, k), CT is an α level test (see theorem below).

Theorem 1.4.1. Let ϕI = (ϕ1, ..., ϕn), with ϕI = π/2, ϕg = 3π/2 for any g ̸= I . Denote
also as (1), ..., (m) the level sets of Φ̃ and Rn

m =
{
θ ∈ [0, 2π)n : ϕ̃ has m level sets

}
.

(i) If ϕ = ϕI , then PϕI (T ≥ c /Rn
m ) −→

κ−→∞
P (χ2

n−m ≥ c).

(ii) For large κ, the level of the conditional test is attained at ϕI :

PϕI (T ≥ c(m)) −→
κ−→∞

α.

(iii) If ϕ verifies the order O:

Pϕ (T ≥ c(m)) −→
κ−→∞

b with b ≤ G(q)α and G(q) −→
q−→∞

1.

In practice, κ is usually unknown. In this case κ can be replaced by a consistent estimator
κ̂, and accordingly T can be modified. By appealing to Mardia and Jupp (2000), pp. 87-89,
(ϕ̃i, i = 1, 2, . . . , k, and κ̂ are approximately independent and furthermore

κ

κ̂

aprox. χ2
q−1.

As a consequence we may approximate the distribution of CT by the central F distribution
instead of the chi-squared distribution. The proof of the theorem and other theoretical details
of CT are given in Fernández et al. (2012).
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Barragán et al. (2013) extended the above methodology to test hypotheses regarding partial
orders. More precisely, they extended the conditional test to test the following hypotheses:

H0 ϕi, i = 1, ..., k follow a known partial order O∗

H1 : H0 is not true. (1.5)

where O∗ may be the partial order appearing in equation (1.3).

1.5 The Estimation of a Common Circular Order from Multiple
Experiments

Often data are available from multiple experiments or multiple sources and researchers are
interested in estimating the common order among circular parameters. For example, using
data obtained from multiple experiments on fission yeast (S. pombe), the yeast used in
brewing alcohol, researchers are not interested in identifying periodically expressed genes
but also interested in estimating their order of peak expression (see Oliva et al. (2005), Rustici
et al. (2004), Peng et al. (2005)).

More precisely, our problem of interest is to determine the true relative order among k
angular parameters ϕ1, ϕ2 . . . , ϕk using the corresponding unconstrained estimators Θj =
(θ1j , theta2j , . . . , θkj)

′, j = 1, 2, . . . , p, from p independent experiments. Stacking these
estimators we obtain the a k × p matrix Θ = (Θ1, ...,Θp).

As in the Euclidean space data, combining data from multiple experiments to estimate
a common parameter requires one to take into account variability between and within
studies. However, since the underlying time-course data are usually based on a large
number of time points, one may assume that the variability within experiments is negligible
compared variability between experiments. Also it is important to recognize that in addition
to estimating ϕ1, ϕ2 . . . , ϕk, we are more importantly interested in estimating their relative
order.

The problem at hand resembles the classical problem of determining the “true” order or
ranks among n objects using the ranks assigned by p independent “judges”. For example,
suppose there are k gymnasts competing in an event and there are p judges assigning ranks
to each of the contestants. The goal is to estimate the true rank among the k contestants
using the ranks assigned by the p judges. This is a well-studied problem in the Euclidean
space (cf. Diaconis and Graham (1977), Borda (1781), Condorcet (1785), Schalekamp and
Zuylen (2009)) and known to be NP-hard, see Bartholdi et al. (1989). Again, due to the
underlying geometry, the Euclidean space based methods cannot be directly applied here.
Barragán (2014) and Barragán et al. (2014) took the first step in addressing this problem for
circular data as follows.

Let O denote the set of all possible orders among k objects on a unit circle. Using data from
the jth experiment, let Φ̃(O)

j = (ϕ̃
(O)
1j , ϕ̃

(O)
2j , . . . , ϕ̃

(O)
kj )′ denote the CIRE under the circular

order O. Then the distance between Θj and Φ̃
(O)
j is given by:

d(Θj , O) = SCE(Θj , Φ̃
(O)
j ) =

k∑
i=1

(1− cos(θij − ϕ̃
(O)
ij )).
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The average distance between Θ and the estimator of ϕ1, ϕ2 . . . , ϕk based on the p
independent experiments, called Mean Sum of Circular Errors (MSCE), is given by

d∗(Θ, O) = MSCE(Θ, Φ̃(O)) =

p∑
j=1

ωjd(Θj , O) (1.6)

where ωj is the weight associated with jth experiment, which is related to the precision of
the experiment j. For instance, assuming θij ∼ VM(ϕij , κj) with κj known, the weights
may be defined as ωj =

κj∑p
j=1 κj

.
With this notation, Barragán (2014) and Barragán et al. (2014) restated the problem of

estimating the optimum circular order O∗ ∈ O as the following minimization problem:

O∗ = arg min
O∈O

d∗(Θ, O) = arg min
O∈O

p∑
j=1

ωjd(Θj , O). (1.7)

As done in the case of Euclidean space data (cf. Dwork et al. (2001a), Dwork et al. (2001b))
the methodology of Barragán (2014) and Barragán et al. (2014) consists of two steps as
briefly outlined below. For more details one may refer to the above references. In the first
step (Step E1) an initial approximate solution to the problem is obtained. This approximate
solution is refined in the second step (Step E2) by smoothing out local “bumps” in the order.

Step E1 (Ô0): In this step we cast the above optimization problem as a Traveling Salesman
Problem (TSP) to obtain an approximate solution to (1.7). The TSP is well-studied in the
graph theory literature (cf. Lawler et al. (1985), Reinelt (1994), Hahsler and Hornik (2011))
and is often used in numerous applications. Starting from a particular city, a salesman is
required to visit each of the remaining k − 1 cities in his tour exactly once and then return
to the city he started. The goal for the salesman is to determine the order in which he tours
the cities so that total distance traveled by the salesman is shortest among all possible paths
he can take. Even though this problem is considered to be computationally difficult, a large
number of heuristics and exact methods are available in the literature. Some of these methods
provide exact solutions when the number of cities is in tens of thousands and provide good
approximations when the number of cities is in millions (Reinelt (1994)).

In our application, each experiment is represented by a graph where the objects are the
cities/nodes (or estimated angles) and the length of the edges among nodes are the angu-
lar distances between the corresponding estimated angles in the experiment. There is a
correspondence between tours in the graph an circular orders within the objects. For each
experiment we have a distance matrix. We then aggregate (using means) the p matrices to
summarize all the information in a single matrix. Finally, the heuristic algorithms imple-
mented in R in the TSP package, Hahsler and Hornik (2011), are used to obtain the minimum
length tour among nodes. The TSP solution results in an approximate circular order Ô0. Not
only does this strategy results in a very good approximate solution but it is also computational
fast and efficient(see Barragán (2014) and Barragán et al. (2014)).

Step E2 (Ô∗): In this second step, Barragán (2014) and Barragán et al. (2014) fine tune the
solution obtained in Step E1 by performing local smoothing to reduce the MSCE (1.6). Their
solution is a modification of the Local Kemenization algorithm that was originally developed
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by Dwork et al. (2001a) for the Euclidean data. This modification is called Circular Local
Minimization. It consists of checking each consecutive triple (i, k, l) of adjacent cities in the
order determined in Ô0. The MSCE between the new order with the permutation and the
data is computed. If the MSCE for the new circular order is smaller the candidate order is
appropriately updated. Each time a triple is permuted, the previous ones are checked back
again to ensure that no further improvement in the order is possible.

1.6 Application: Analysis of cell-cycle gene expression data

A cell division cycle in a normal eukaryotic cell consists of four phases, namely, G1, S,
G2 and M phases. In the G1 phase the cell rests and grows. This is also the first check
point phase where any DNA damage is detected. The G1 phase is followed by the S phase
where DNA replication occurs. Following S phase, cells go through a second check point
called the G2 phase to detect damage. In a normal setting, cells that cannot be repaired
are not allowed to proceed to mitosis (M phase) where the cells divide. Genes involved
in cell division cycle (called cell cycle genes) have a periodic expression consistent with
period consistent with the duration of cell division cycle. Such genes attain peak expression
just before their biological function (Jensen et al. (2006)). For a given organism, biologists
are typically interested in (a) identifying cell cycle genes, (b) identifying the time to peak
expression (i.e. phase angle ϕ) of a cell-cycle gene, (c) comparing the phase angles of
cell cycle genes across different experimental conditions or different organisms(cf. Bähler
(2005), Jensen et al. (2006), Fernández et al. (2012)). A useful database containing results
from various cell cycle microarray experiments is available at www.cyclebase.org, henceforth
referred as cyclebase. Cyclebase provides estimates of the peak expressions using a simple
mathematical model and data from a single experiment.

To answer questions such as the above, researchers conduct long series time course gene
expression studies measuring gene expressions of thousands of genes over several time
points, long enough to include at least one full cell division cycle (if not more). We illustrate
the methodology described in this paper using the 34 cell cycle genes S. pombe genes and
their S. cerevisiae orthologs/paralogs described in Fernández et al. (2012). We used time-
course data available on ten experiments conducted on S. pombe in three labs (five by Rustici
et al. (2004), three Oliva et al. (2005) and two by Peng et al. (2005)) and six experiments
conducted on S. cerevisiae in three labs (one experiment each by Cho et al. (1998) and
de Lichtenberg et al. (2005), and two experiments each by Pramila et al. (2006) and 2
by Spellman et al. (1998)). For each gene i, i = 1, 2, . . . , 34 within the jth experiment,
j = 1, 2, . . . , 16, we fitted the RPM to obtain the unconstrained phase angle estimates θij
for the 34 genes in the 16 experiments. Results of the estimated phase angles for the 34 genes
for S. pombe and their S. cerevisiae orthologs/paralogs for the 16 experiments considered are
not provided here in order to save space but can be obtained from the authors on request.

We assumed that θij ∼independent VM(ϕij , κj), where ϕij is the true unknown phase
angle for the ith gene in the jth experiment. Note that κj is experiment specific and not gene
specific. Thus κj reflects the uncertainty associated with the jth experiment and phase angles
of all genes within that experiment are estimated with same uncertainty. As noted earlier,
since for each gene its phase angle is estimated using RPM with a reasonably large number of
time points, we assume that uncertainty associated within gene is ignorable compared to the
overall uncertainty associated with the experiment. The parameter κj is estimated using the
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random effects model for circular data described in Fernandez et al. Using the methodology
of Barragán (2014) and Barragán et al. (2014) described in Section 1.4 and the phase angle
estimates θij of 34 genes obtained above for Rustici et al. (2004), Oliva et al. (2005) and
Peng et al. (2005) data, we obtained the common global order among the phase angles of the
34 S. pombe genes. Using the estimated order we obtained the constrained estimates of the
phase angles using CIRE for the 34 S. pombe genes. These estimates along with the estimates
according to cyclebase are given in Table 1.1. Similarly, using the phase angle estimates of the
34 S. cerevisiae orthologs/paralogs, based on the data from Cho et al. (1998), de Lichtenberg
et al. (2005), Pramila et al. (2006) and Spellman et al. (1998), we estimated their global order
along with their constrained estimates using CIRE (Table 1.1).

Using the conditional test CT we shall compare the global order of phase angles of
the above 34 genes determined by our methodology with the order described in cyclebase
for the two species of yeast. Within each species, for each experiment we tested the null
hypothesis that the global order holds against the alternative that the null is not true using
the CT . Thus for each experiment we obtain one p-value based on the CT . Within each
species, we then combined p-values from all the experiments (i.e. p = 10 in the case of
S. pombe and p = 6 in the case of S. cerevisiae) using Fisher’s method to obtain L =
−
∑p

j=1 log(p− valuej), where p− valuej is the p-value obtained for experiment j. If
the p− values are independently and uniformly distributed in the interval (0, 1), then 2L
is distributed as a central χ2 random variable with p degrees of freedom. Then, if l is
the observed value for L, Fp− value = pr(χ2

p > 2l) yields a single value to test the null
hypothesis. The resulting p-values for each species and the orders considered for each species
are given in Table 1.2. From the table we see that the orders estimated using the methodology
proposed in Section 1.4 have a much higher p-value than those appearing in cyclebase. This
happened not only for the global Fp− value but for the almost all the p− valuej values,
suggesting that the global order provided by the cyclebase for the two species should be
rejected and that the order derived by the methodology of Barragán (2014) and Barragán et
al. (2014) described in Section 1.4 is plausible for the two species.

The disagreement between the order specified by the cyclebase and the order specified by
the methodology of Barragán (2014) and Barragán et al. (2014) can partly be explained by
noting that there are some major differences in the estimates of the phase angles between
cyclebase and CIRE (identified in bold face) for some genes as seen in Table 1.1. Among
them, the noticeable ones are the S. pombe gene mcp1 and the S. cerevisiae gene SST2.
According to cyclebase, both genes have a very high periodicity rank (i.e. have a poor
periodic expression) and hence are likely to have less precise estimates of phase angles and
hence not surprising that the two methods disagree in their phase angle estimates. (For this
reason these genes are dropped from any further study.) Since our estimator of the global
order uses information from all experiments, while taking into consideration the uncertainties
associated with each experiment, we believe that our estimator of the global order is more
reliable.

Since the CIRE estimators have common values for some genes (those appearing in the
same level set), they also yield a partial order among the genes. The partial orders given by
cyclebase and by the CIRE estimator for S. cerevisiae appear in Table 1.3. In that table we
can see that there is no big discrepancy among the two partial orders. The most noticeable
one is perhaps that of gene MOB1 which also has a high periodicity rank.

Now, we illustrate the methodology to determine a common partial order among the two
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Table 1.1 Cyclebase and CIRE phase angles estimates for the two species

CEREVISIAE CycleB CIRE POMBE CycleB CIRE

HTZ1 0.57 0.03 pht1 6.09 6.09
HHF1 6.16 0.03 htb1 6.22 6.22
HTA2 0.00 0.03 hta2 0.00 0.00
HTB2 0.00 0.03 hhf1 0.00 0.00
HHT2 6.09 0.03 hht3 0.06 0.06
HHT1 6.22 0.03 h3 3 0.06 0.06
KIP3 0.38 0.38 klp5 4.78 4.76
FKH1 0.63 0.63 fkh2 4.59 4.76
SWI5 1.57 1.57 ace2 4.71 4.76
BUD4 1.57 1.57 mid2 5.40 5.07
CDC5 1.57 1.78 plo1 4.27 4.76
CHS2 1.88 1.78 chs2 4.71 4.76
MYO1 1.88 1.78 myo3 4.65 4.76
HOF1 1.95 1.88 cdc15 4.71 4.76
MOB1 1.82 1.88 mob1 5.03 5.07
ASE1 1.88 1.88 mcp1 3.83 4.76

CDC20 2.26 2.26 slp1 4.65 4.76
KIN3 2.58 2.58 fin1 4.96 5.07
DBF2 2.70 2.70 sid2 4.78 4.76
CDC6 3.58 3.83 cdc18 4.90 5.07
PST1 3.77 3.83 SPAC1705 03C 4.65 4.76
DSE4 4.15 3.83 eng1 5.15 5.07
SST2 3.14 5.01 rgs1 4.78 4.76
RFA1 4.96 5.01 ssb1 5.22 4.76
MRC1 5.03 5.01 mrc1 5.09 4.76
SMC3 5.03 5.01 psm3 5.09 4.76
RNR1 5.03 5.01 cdc22 5.22 4.76
MSH6 5.03 5.01 msh6 5.09 5.07
POL1 5.03 5.01 pol1 5.09 5.07

RAD51 5.09 5.01 rhp51 4.96 4.76
MCD1 5.09 5.01 rad21 4.96 5.07
POL2 5.15 5.01 pol2 4.65 4.76
CLN2 5.15 5.01 cig2 5.09 4.76
SWE1 5.47 5.01 mik1 5.03 5.07

Table 1.2 MSCE and Fp-values for the 34 core set genes considered

Species Order MSCE Fp-value

POMBE Estimated order 0.06168913 0.8443571
POMBE Cyclebase 0.09142278 3.616812e-07
CEREVISIAE Estimated order 0.0281629 0.1659825
CEREVISIAE Cyclebase 0.08753569 8.646897e-28
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Table 1.3 Partial orders for S. cerevisiae genes

Cyclebase partial order

Phase Genes
G1/S {HISTONES}≼
S/G2 {KIP3}≼{FKH1}≼{SWI5,BUD4}≼{CDC5}≼{MOB1}≼

{CHS2,MYO1}≼{HOF1}≼
G2/M {CDC20}≼{KIN3}≼{DBF2}≼ {CDC6}≼{PST1}≼
M/G1 {DSE4}≼{RFA1}≼{MRC1,SMC3,RNR1,MSH6,POL1}≼

{RAD51,MCD1} ≼ {POL2,CLN2}≼{SWE1}≼
G1/S {HISTONES}

CIRE partial order

Phase Genes
G1/S {HISTONES}≼
S/G2 {KIP3}≼{FKH1}≼{SWI5,BUD4}≼{CHS2,CDC5,MYO1}≼

{HOF1,MOB1}≼
G2/M {CDC20}≼{KIN3}≼{DBF2}≼
M/G1 {CDC6,PST1,DSE4}≼

{RFA1,MRC1,SMC3,RNR1,RAD51,POL2,CLN2,MSH6,...
...POL1,MCD1,SWE1}≼

G1/S {HISTONES}

species of yeasts using a subset of orthologs/paralogs by dropping genes that have either poor
periodicity in at least one of the two species (cdc18 and eng1) or by dropping genes that were
considered to violate the common order according to Fernández et al. (2012) (mid2, myo3,
mob1, fin1, rhp51) and the corresponding S. cerevisiae ortholog/paralogs appearing in bold in
Table 1.3). The partial orders obtained from cyclebase and the CIRE for the remaining 25 S.
pombe genes are summarized in Table 1.4. According to cyclebase {msh6, pol1, rad21, mik1}
are activated before {ssb1, cdc22}, however, based on our methodology, {ssb1, cdc22} are
activated before {msh6, pol1, rad21, mik1}. It is interesting to note from Tables 1.3 and
1.4 that the partial orders derived by our methodology is satisfied by both species of yeast.
Furthermore, this order is also satisfied by other previously published results (see Fernández
et al. (2012)).

The methodology developed in Barragán (2014) and Barragán et al. (2014) are also
useful to study phases of genes across multiple species. Thus the methodology developed
in Barragán (2014) and Barragán et al. (2014) provides a general methodology to discover
order among cell-cycle genes and subsequently allows biologists to explore new hypotheses
regarding functional relationships and interactions among various cell cycle genes.

In general, the circular order restricted inference methods developed in Rueda et al. (2009),
Fernández et al. (2012), Barragán et al. (2013), Barragán (2014) and Barragán et al. (2014)
provide a general framework and tools for cell biologists to discover new biology.
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Table 1.4 Partial orders for S. pombe genes

Cyclebase partial order

{HISTONES}≼ {plo1}≼{fkh2}≼{slp1,SPAC1705 03C,pol2}≼
{ace2,chs2,cdc15}≼{klp5,sid2}≼{rad21}≼{mik1}≼
{mrc1,psm3,cig2, msh6,pol1}≼{ssb1,cdc22}≼ {HISTONES}

CIRE partial order

{HISTONES}≼ {klp5,kfh2,ace2,plo1,chs2,cdc15,slp1,...
...sid2,SPAC1705 03C,ssb1,mrc1,psm3,cdc22,pol2,cig2}≼
{msh6,pol1,rad21,mik1}≼ {HISTONES}

1.7 Concluding remarks and future research
In this paper we discussed the current and ongoing research on the estimation and
testing hypotheses regarding ordered parameters on a unit circle using data from multiple
experiments. Although we illustrated these methods using a data from cell-biology,
as described in the introduction, these methods are broadly applicable in a variety
contexts including, evolutionary psychology (Russell (1980), De Quadros-Wander and
Stokes (2007)), motor behavior (Baayen et al. (2012)) or circadian biology, etc.

System biologists are often interested in developing gene networks to describe inter-
relationships among various genes. Many commercial software such as QIAGEN’s
IngenuityrPathway Analysis (IPAr, QIAGEN Redwood City, www.qiagen.com/ingenuity)
attempt to provide such networks using curated data. However, most of those networks are
based on static data. They do not take into account the temporal component in the data.
However, cell division cycle is a dynamic process with each time point a collection of cell
cycle genes (and others) interact and they impact on the genes that express at a later time
point. In methodologies summarized in this paper describe temporal order among cell-cycle
genes but it would be useful to develop dynamic networks among a collection of cell cycle
genes based on the order information provided by the methods described here.

Constrained inference methods will have a natural role in other applications involving
circular data, such as regression models for angular data described in Fisher and Lee (1992),
Lund (1999), Downs and Mardia (2002), Kato et al. (2008) or Kato and Jones (2010). In an
ongoing research project with Professor Mardia, we are exploring piecewise circular-circular
regression model under constraints which may have applications in cell-biology. For instance,
such models would be useful to relate phase angles of cell-cycle genes from different species
or experimental groups.

All the methodology presented reviewed here are available in R language. Barragán et al.
(2013) have developed a package called isocir (isotonic inference for circular data) which is
available in the CRAN R Core Team (2014). The last version released contains CIRE and
cond.test as principal functions. CIRE executes the algorithm developed in Rueda et al.
(2009) to find the CIRE (1.2). The R objects called SEXP are used in C++ to improve effi-
ciency and execution time. The function cond.test executes the conditional test described
in Fernández et al. (2012) for the hypotheses (1.5). The methodology proposed to deal with
the minimization problem (1.7) has also been implemented in R language as part of the new
version of the isocir package.
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