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ABSTRACT 

Structures subjected to excitations like human induced vibrations may produce large accelerations and 
serviceability limit state problems. Passive, semi-active and active vibration controls have been 
proposed as possible solutions to reduce the vibration level at civil structures such as bridges, multi-
storey buildings or slender floor structures, among others [1]. It is known that Tuned Mass Dampers 
(TMD) mitigates the vibration response of a structure by increasing its damping through the 
application of inertial forces generated in response to the movement of the structure [2]. Recently, 
different TMD implementations have been proposed in order to improve the tuning of mechanical 
parameters. In the case of structures with spatially distributed and closely spaced natural frequencies, 
the TMD design may not be obvious because Den Hartog’s theory [3] may not be applied due to the 
existence of a coupling between the motions of the vibration modes of the structures and the used 
TMD’s [4]. Alternative design techniques are applied for the case under study consisting on an arched 
bridge with a main span 40m long and several shorter access spans. The first two first modes are at 
2.1Hz and 2.5Hz, both in the range prone to be excited by walking. Also the third one (at 3.18Hz) 
could be excited by runners. 

For the simulation, firstly, a finite element model of the bridge is created in a commercial 
CAE software and static and modal response is numerically estimated. Then, experimental 
measurements using static loading test and ambient vibration tests are performed. Initial finite element 
model is adjusted to match with the static response by fitting some selected parameters. Modal 
parameters (natural frequencies, mode shapes and modal damping) are extracted and after that the 
current finite element model is updated. Once the numerical model is calibrated, TMDs are attached. 
The problem of finding the optimal location and tuning is not a simple one. For understanding the 
coupled response, several simulations are carried out, from the logical one (TMD located just in the 
middle of the main span and tuned at 2.1Hz) to others. The responses of the footbridge for different 
scenarios (depending on the number of TMDs installed and their position) are compared in order to 
extract some interesting conclusions. 
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1 INTRODUCTION 

Although in the past, civil engineering sector made extensive use of approximate models to 
estimate the dynamic response of bridge type structures, nowadays is usual to model the structure 
using current CAE abilities. Simple discrete models have proved insufficient for the accurate 
modelling of slender footbridge structures as they cannot represent some effects as the closely 
spaced modes of vibration which frequently occur in practice. Additionally, modern footbridges 
become increasingly slender and prone to oscillate under pedestrian loading, so there is a much 
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greater need for vibrations to be considered at the design stage. Having the FE methods the 
capability for the accurate modelling of the dynamic behavior, and becoming CAE software more 
affordable, civil engineering practitioners do not hesitate in their use. However, with regard to 
lively structural design, there is a lack of expertise in FE modelling, particularly with regard to their 
vibration serviceability performance, being not rare that the model does not match with the real 
structure. The way forward for developing such expertise is by linking modal testing and FE 
analysis by the updating of the models of representative structures and extract general design 
guidelines. This type of approach is the usual in, for example, the aerospace engineering sectors [5, 
6], but it is only recently that the civil engineering community has begun to adopt this advanced 
technology [7, 9]. 

The aim of the paper is to describe a procedure for the use of updated FE models with TMDs 
attached to estimate the response in terms of accelerations and evaluate the serviceability of the 
assembly.  

2 STRUCTURE DESCRIPTION AND F.E. MODELING 

The footbridge under study is an urban link with several minor access spans and one main 
40m long arched central lively span. Most of the structural members are constructed using tubular 
steel profiles. An aerial photograph of the footbridge and 3D isometric view of its FE model is 
depicted in figure 1. More information about the structure can be found in [10]. Updated mode-
shapes 1 and 2 are shown in figure 2.a The structural damping (Rayleigh type) was set to 0.32%. 

 
Figure 1.Footbridge under study: photograph and numerical FE model. 

 
Figure 2. 3D F.E. model mode-shapes 

Although it would be possible to applied the methodology using the 3D F.E. model, in order 
to make more efficient simulations, a less time consuming F.E. model has been created. In this case, 
just a 2D equivalent structure meshed in 12 elements and modeled using Euler beam elements has 
been used. Both models exhibit similar vertical modes (see figure 2.b), which are the interesting 
ones for the problem under study (pedestrian loading vertical response). Being L the length of the 
footbridge, note that the second mode-shape has a node at 6L/12 and the nodes of the third mode-
shapes are located at 4L/12 and 8L/12. In the next section, the dynamic problem is establish using 
the state space approach.  
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3 SPACE STATE MODELING 
The dynamic equation to be solved is: 

 
Where  is the mass matrix and  is the stiffness matrix.  is the damping matrix, evaluated 
through modal damping values  according to the following equations 

 
 

 
Only bending dof are considered (vertical deflection and angle, named generalized displacements): 

                         
and standard procedures for meshing and assembling must be applied to all the matrices. Also 
boundary conditions (simple supported beam) must be included in the former formulation. 
F is the input force, affecting to the dof considered. u(t) is the harmonic function and ℱ is the vector 
containing the amplitudes of that force in the corresponding dof.  

                        
Any TMD means an additional dof to be added in the matrix formulation. For that, when m TMDs 
are considered the displacement vector q changes into q’: 

                       
And for any TMD the corresponding matrices to be assembled are: 

 
Where ,  and  are the moving mass of the TMD, its stiffness and its damping. 

Considering as input the harmonic function ( ) and as output just the acceleration (y) in 
one selected dof, the dynamic equation of motion can be rewritten as:  

 
 

Where x is the state vector defined as  

                     
y is the output vector , u is the input  and the new space state matrices are: 

         
Where  is the square zero matrix  is the identity matrix, C=  is the row of the 
A matrix with the acceleration of the i-th dof, and is the i-th element of the vector B.  
Once all the system is established, the transfer function is defined as 

 
where  is the Laplace operator. After some manipulations the former equations become 

      
where  is the identity matrix. The frequency response function (FRF) to be used in the 
following parts is just the magnitude of the Bode diagram of this transfer function, with is evaluated 
in Matlab using the following standard commands: 

SYS = ss(A,B,C,D);    G = tf(SYS);    MAG = bode(G,W);    semilogy(W,squeeze(MAG)) 

4 FREQUENCY RESPONSE WITH TMDS AND SERVICEABILITY ESTIMATION   
For all the studied cases, a tonne inertial moving mass is added (being the 2% of the total 

mass of the simplified model of the footbridge) in one or two TMDs (500kg each). The TMD may 
be tuned to mode 1 (w1) or mode 2 (w2) and located in some point (q) along the beam. To 
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simplified the continuous problem, only 11 discrete locations are considered (as the structure is 
discretized in 12 beam elements) so point q is at jL/12 from the left end of the structure. The 
notation will be TMDwi_jL/12 which means that the TMD is tuned for the mode i (i=1,2) and 
located in jL/12 (j=1..11).  

All numerical values for the estimation of the response are obtained from the FRFs. In all the 
cases, the excitation point (force) and the response (acceleration) will be the same (p) and the 
notation will be FRF(p, TMDwi_jL/12). Also note that only the selected 11 discretized points p 
are going to be considered. In this way, the notation FRF(3L/12, TMDw1_5L/12) stands for the 
amplification factors in the point 3L/12 when the force is acting in 3L/12 and the TMD is located at 
5L/12 and tuned for mode 1. 

4.1 TMD tuned at mode 1 
To start with, a logical scenario consisting on one TMD tuned in the center of the structure 

and tuned to its first mode (2.044Hz, x=0.134) is considered (TMDw1_6L/12). The figure 3 shows 
the FRF(6L/12, TMDw1_6L/12). It is noteworthy that the first peak has been flattened and the peak 
at w3 is almost not affected. In order to see the response for mode 2, a FRF out of 6L/12 must be 
evaluated as that position is a node of mode 2. Figure 4 shows FRF(3L/12, TMDw1_6L/12), 
revealing, as expected, that the TMDw1_6L/12 does not affect the response in mode 2. 

 
Figure 5. FRF(iL/12, TMDw1_6L/12), i=1, 2, 3, 4, 5 and 6 

 
Figure 3. FRF(6L/12, TMDw1_6L/12) 

 
Figure 4. FRF(3L/12, TMDw1_6L/12) 
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If installing a TMDw1 is under consideration is due to the possibility of large vibrations when 
a pedestrian is crossing at a pace coincident with w1. Although the pedestrian crossing is a transient 
problem, in order to estimate the vibration dose the auto FRFs at iL/12 (i=1..11) are going to be 
used. Note that during the crossing, the pedestrian is the one that excites the structure and perceives 
its vibration. Thus, at the middles (6L/12) the amplification factor is 0.00029 (figure 3) and at 3L 
/12 it decreased to 0.00015 (blue arrow in figure 4). Following this logic, figure 5 shows how the 
amplification factor is increasing as the pedestrian approaches the center. Figure 6 shows a detail 
for frequencies around w1 and in Table 1 are the corresponding values. Table 1 also shows the 
values for the cases in which pedestrian pace is w2 and w3 (red and green arrows in figure 4). Note 
that these first 3 modes are prone to be excited by walking or running. 

 
Figure 6. Detail for the FRF(iL/12, TMDw1_6L/12), i=1, 2, 3, 4, 5 and 6 

In addition Table 1 shows the cumulatively amplification factors for the crossing at w1, w2 
and w3 pace. For a clearer display, information in Table 1 is shown graphically in figure 7. It can be 
seen how, in comparison with figure 8 (response without TMD), the installed TMDw1_6L/12 is 
very effective for crossing at w1 and also affects significantly the response for crossing at w3 pace. 

Table 1, Amplification factors for TMDw1_jL/12 
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Figure 7. Amplification factors for TMDw1_jL/12 

 

 
Figure 8. Amplification factors without TMD 

It would be worthy to wonder about the response when TMDw1 were located at jL/12 for j ≠ 
6 (and tuned properly). Figure 9 shows the response for the case of j=3, resulting to be the optimum 
location for crossings at w1, m2 and m3 (averaged values assuming same number of crossings at 
each pace) as shown in figure 10. 

 
Figure 9. Amplification factors for TMDw1_3L/12 
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Figura 10. Cumulative amplification factors for crossing at w1, w2 and w3 

 
4.2 TMD tuned at mode 2 

Now the problem is where to install a TMD tuned to mode 2 (TMDw2). When it is located at 
3L/12 (TMDw2_3L/12) and optimally tuned (2.4818Hz, x=0.10) the response in 3L/12 is shown in 
figure 11 

 
Figure 11. FRF(3L/12, TMDw2_3L/12) 

For comparison reasons, figure 12 shows FRF(TMDw1_6L/12) and FRF(TMDw2_6L/12) 
(figure 12.a) and also FRF(TMDw1_3L/12) and FRF(TMDw2_3L/12) (figure 12.b) 

Similar to the previous case, the amplification factors in point 3L/12 are shown in figure 13. 
In this case, when the location of the TMDw2 is changed the results are shown in figure 14 
revealing that if only crossings at w2 pace are considered, the best position is the logical one 
(3L/12) but for a cumulative response it is better to locate the TMDw2 at 2L/12 
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Figure 12.a. FRF(TMDw1_6L/12) and 

FRF(TMDw2_6L/12) 

 
Figure 12.b. FRF(TMDw1_3L/12) and 

FRF(TMDw2_3L/12) 

 
Figure 13. Amplification factors for TMDw2_3L/12 

 

 
Figure 14 Cumulative amplification factors for crossing at w1, w2 and w3 
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4.3 Two TMDs, tuned at mode 1 and mode 2 
Another scenario, now with 2 TMDs, is considered. In this case, one TMDw1 with a moving 

mass of 500kg is located at 6L/12 and another one (TMDw2), same mass, located at 3L/12. Both 
are optimally tuned (2.073Hz, x=0.10 for TMDw1 and 2.496Hz, x=0.08 for TMDw2). 
Corresponding FRF(3L/12, TMDw1/TMDw2) is shown in figure 15 and the corresponding 
amplification factors in figure 16. Cumulative amplification factors for crossings at w1, w2 and w3 
are 0.00267, 0.00382 y 0.0140, respectivelly, with an average value of 0.00682. 

 
Figure 15. FRF(3L/12, TMDw1_6L/12/TMDw2_3L/12) 

 
 

 
Figure 16. Amplification factors for TMDw1_6L/12/TMDw2_3L/12 

Change the locations of these TMDs will be and interesting problem, as some reduction is 
expected. Nevertheless, for the discrete problem (only 11 possible locations) there are 55 events and 
a great computational effort should be paid in order to find the optimal location for TMDw1 and 
TMDw2 together. 
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5 CONCLUSIONS 
According to former sections, some conclusions can be drawn: 

• If only crosssings at w1 pace are expected, the best TMD is TMDw1_6L/12 (lower point of the 
red line in figure 17.  When it is located at jL/12 (j≠6), the cummulative amplification factor is 
bigger although the TMD is optimally re-tuned. Good reductions are also expected when 
installing the TMD tuned to mode 2 (TMDw2, green line). Blue line is the cummulative 
amplification factor for the case TMDw1_6L/12 and TMDw2_3L/12, which is also a very good 
solution.  

 

 
Figure 17. Walking at w1 pace. 

• When crossing at w2 pace the best response is obtained for TMDw2_3L/12 (green line in figure 
18). It is also effective to instal TMDw1_3L/12 (red line). The solution with 2 TMDs is also a 
good one. 

 
Figure 18. Walking at w2 pace. 

 
• When crossing at w3 pace (figura 19), it is better to use TMDw2_2L/12 (green line) although it 

is also effective TMDw1_2L/12. The proposed solution with 2 TMDs is worst. 
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Figure 19. Walking at w3 pace. 

• For evenly number of crossings at w1, w2 and w3 pace the best solution is to install 
TMDw2_2L/12  (figure 20, green line), with is equivalen to the solution with 2 TMDs (blue 
line) 

 

 
Figure 20. Average values (walking at w1, w2 and w3 pace). 

 
There are a lot of possibilities for a single TMD (other locations or TMDw3) and for two 

TMDs (TMDw1_TMDw2 for other locations than 6L/12 and 3L/12, or TMDw1_TMDw3, or 
TMDw2_TMDw3) or even for three TMDs (figure 21). The large number of alternatives leads to a 
optimization problem [11] to be studied in future coming studies. 
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Figure 21: FRF(3L/12, TMDw1_6L/12&TMDw2_3L/12&TMDw4_2L/12) 
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