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ABSTRACT. This work proposes an implementation example of two tuned mass dampers (TDM)on
a reduced scale two storey building. The TMD, in which the damping is magnetically adjusted without
contact, is a laboratory prototype built in CARTIF (Spain). This TMD consists on a one degree of free-
dom system formed by a permanent magnet (mass) fixed to a flexible link (elasticity) and an aluminiun
plate at an adjustable distance to magnet (damping). The tuning of the TMDs is carried out by consid-
ering the passive system as feedback controller. The system identification and the experimental results
show the validity of theoretical approximations and the design criterions.
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1 INTRODUCTION

Structures subjected to excitations like earthquake ground motions, human induced vibrations or
machinery may produce structural damages (or even collapse) and serviceability limit state problems.
Passive, semi-active and active vibration controls have been proposed as possible solutions to reduce
the vibration level at civil structures such as bridges, multi-storey buildings or slender floor structures,
among others [1].

Tuned Mass Dampers (TMD), which can be used for passive and semi-active control strategies, im-
proves the vibration response of a structure by increasing its damping (i.e.energy dissipation) and/or
stiffness (i.e. energy storage) through the application of forces generatedin response to the movement
of the structure [2]. Recently, different TMD implementations have been proposed in order to improve
the tuning of mechanical parameters. For example, magnetic TMDs have beenused due to its linear
behaviour and since its frequency tuning ratio and the damping coefficient can be easily and finely cal-
ibrated [3, 4]. A pendulum with an adjustable length is used to tune the resonance of a Smart TMD in
[5], which is used for a semi-active control strategy. Other example is found at [6], where a TMD based
on shape memory alloys and eddy currents is utilized for implementing two adaptive control strategies.
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In the case of structures with spatially distributed and closely spaced natural frequencies, the TMD de-
sign may not be obvious because Den Hartog’s theory [7] may not be applied due to the existence of a
coupling between the motions of the vibration modes of the structures and the used TMD’s [8]. Multi
storey buildings are good examples of structures with spatially distributed andclosely spaced natural
frequencies. For example, Greco et al. [9] propose a robust optimum design of tuned mass dampers in-
stalled on multi-degree-of-freedom systems subjected to stochastic seismic actions. The robust design is
formulated as a multi-objective optimization problem, in which both the mean and the standard deviation
of the performance index are simultaneously minimized. Other similar examples canbe found at [10]
and [11]; however, simulation results are only presented in aforementioned references.

In this work, a system composed of two magnetic TDM devices based on a cantilever beam are
implemented in a reduced scale two floor building [12]. The tuning of the TMD parameters is carried
out by considering this passive vibration control (PVC) from the activevibration (AVC) control point
of view (see reference [13]). This simplifies the design of this PVC because the coupling between
the two main vibration modes is not a problem (as in Den Hartog’s theory). In addition, this work
designs and implements a magnetic TDM tuning based on minimizing theH∞ norm of the frequency
response function (FRF) between the acceleration of the second floor and the acceleration of the ground.
Simulation and experimental results are obtained to show: i) the advantages ofa magnetic TMD which
can be easy tuned after an experimental identification, ii) the validation of the model approximations for
magnetic TMDs and iii) the design of TMDs can be carried out from and ACV point of view, which
is an advantage compared with Den Hartog’s theory for structures with natural frequencies spatially
distributed and closely spaced.

2 MODELING AND EXPERIMENTAL IDENTIFICATION

The generalize framework to design robust TMD proposed in [13] is considered in this work. This
framework is simplified and particularized to a two multi-story building, which makesthe explanation
easier to follow than [13] for this particular application.

The model of the magnetic TMD’s is considered as [3], i.e. drag forces provided by magnetic
dampers are assumed to be proportional to velocity. This assumption is demonstrated with experimental
identification of the linear and time invariant model.

Fig. 1 right shows the magnetic TMD prototypes used in this work. Note that these TMD’s can be
fixed to the two multi-story building with the structure (4). The magnetic TMD is tunedas follows: i)
the rigidity is changed by the link (1), ii) the mass is varied by adding standard hex nuts to the magnet
(2) and iii) damping is configured by moving the plate (3) with respect to the magnet (2).

2.1 Two story building

The two story building can be modelled as a two degree of freedom system (see Fig. (2) left), where
the mass is concentrated at each floor (m1 andm2), k1 andc1 are, respectively, the first floor stiffness
and damping coefficient (relative to the ground) andk2 andc2 are, respectively, the second floor linear
stiffness and damping coefficient (relative to the first floor).
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Figure 1: Two story building (left) and details for the magnetic TMDs (right).
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Figure 2: Building (left) and TMD (right) models.
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If the forces applied in each floor (f1 and f2) and the acceleration of the base (ab) are considered as
inputs, the differential equation of the building can be represented as follows:

Mü + Cu̇ +Ku = −M
[

ab

ab

]

+ f, (1)

where

M =
[

m1 0
0 m2

]

, C =
[

c1 + c2 −c2

−c2 c2

]

, K =
[

k1 + k2 −k2

−k2 k2

]

,u =
[

u1

u2

]

, f =
[

f1
f2

]

, (2)

This model considers nodal coordinates or real displacements. This system can be represented in modal
coordinates by obtaining the eigenvectors (mode shapes) and eigenvalues (natural frequencies):

(

−ω2
i M +K

)

φi = 0, (3)

where the eigenvectors can be grouped in the following matrix:

Φ =
[

φ1 φ2

]

=

[

φ11 φ21

φ12 φ22

]

, (4)

whereφi j is the jth component of theith mode shape. The relationship between nodal and modal coordi-
nates isu = Φη. Then, after having pre-multiplied byΦT in order to uncouple the ecuation system, Eq.
(1) in modal coordinates is

Φ
T MΦη̈ +ΦT CΦη̇ +ΦT KΦη = −ΦT M

[

ab

ab

]

+ΦT f, (5)

The state space state model can be deduced from Eq. (5) by taking, as thestate-space variables, the
modal coordinates (η) and their first derivatives (η̇). Thus, the linear differential equation of the state
space vector is

[

η̇

η̈

]

=

[

02,2 I2

−M̃−1K̃ −M̃−1C̃

] [

η

η̇

]

−

[

02,2

M̃−1
Φ

T M

] [

ab

ab

]

+

[

02,2

M−1
Φ

T

]

f, (6)

and the output equation is
[

y1

y2

]

=

[

ü1

ü2

]

+

[

ab

ab

]

=
[

−ΦM̃−1K̃ −ΦM̃−1C̃
]

[

η̇

η̈

]

+ΦM̃−1
Φ

T Mf, (7)

whereΦM̃−1
Φ

T M = I2 and

M̃−1 = I2, K̃ =
[

ω2
1 0

0 ω2
2

]

, C̃ =
[

2ξ1ω1 0
0 2ξ2ω2

]

. (8)

Note thaty1 and y2 are accelerations that can be measured with accelerometers mounted at first and
second floor, respectively.

Once the system model is established, the following step is the experimental identification. A chirp
signal between 0.5 Hz and 15 Hz with a duration of 300 seconds was appliedto the base of the structure
(ab). The FRF of the system, whereH2 mode is considered, and the FRF of the model adjusted by
minimizing the means square error is shown at Figs. (3) and (4).
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Figure 3: Structure identification example (first floor).
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Figure 4: Structure identification example (second floor).
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2.2 Magnetically damped TMD

The TMD can be modelled as a one degree of freedom system (see Fig. (2) right), wheremt j is the
mass,kt j andct j are the TMD linear stiffness and damping coefficient of the jth TMD relative to theith

floor.
If the accelerations of the base (ab) andith floor are considered as inputs, the differential equation of

the TMD can be represented as follows:

mt, jüt j + ct, ju̇t, j + kt, jut, j − ct, jui − kt, jui = −mt, jab. (9)

The force applied by the TMD to theith floor is:

ft, j = kt, j

(

ut, j − ui

)

+ ct, j

(

u̇t, j − u̇i

)

= kt, jur,i j + ct, ju̇r,i j. (10)

If the relative displacement betweenjth TMD and ith floor is defined asur,i j = ut, j − ui, the transfer
function between the acceleration measured by an accelerometer placed atith floor (denoted above asyi)
andur,i j from Eq. (9) is as follows:

Ur,i j(s) = −
mt, j

mt, js2 + ct, js + kt, j
Yi(s). (11)

Therefore, from Eqs. (10) and (11) can be deduced the following transfer function of the TMD

Ft, j(s) = −
mt, j

(

ct, js + kt, j

)

mt, js2 + ct, js + kt, j
Yi(s) = mt, j

2ξt, jωt, js + ω2
t, j

s2 + 2ξt, jωt, js + ω2
t, j

Yi(s), (12)

whereωt, j andξt, j are, respectively, the natural frequency and damping ratio of thejth TMD as an isolated
system.

The linear time invariant (LTI) model defined in Eq. (12) is identified by obtaining the initial con-
ditions and the values ofωt, j andξt, j that minimizing the least square error of an impact response. An
example of the input signal considered in the system identification is shown atFig. 5. Note that only the
interval from 0.5 to 1.2 seconds is used for the system identification. It canbe also observed from Fig. 5
that the model identification is pretty good and the hypothesis of LTI model for the magnetic TMD can
be considered.

A set of system identifications was carried out to know the relationship between the damping ratio
and distance between the magnet and the moving plate. Table 1 shows the identification of the magnetic
TMD shown at Fig. 1, denoted as 1st TMD.

3 GENERAL CONTROL STRATEGY

The state space model of the two story building defined at Eqs. (6) and (7)and the transfer function
of the magnetically damped TMD defined at Eq. (12) can be joint in a closed control loop (see Fig. 6).
Note that the output force of each TMD is one of the inputs of the building. Inaddition, the input of each
TMD is the output measured with one accelerometer placed at each floor.
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Figure 5: TMD identification example. (−−) time response of the TMD when an impact is applied to the
tip mass. (—) Output of the system model when the identified initial conditions areconsidered.

The general control scheme of Fig. (6) also includes the acceleration ofthe base (ab) and the param-
etersα11, α12, α21 andα22. This parameters allow us to place thejth TMD on ith floor (αi j = 1). That
is, if the configuration is TMD1 at second floor and TMD2 at first floor, the values areα11 = 0, α12 = 1,
α21 = 1 andα22 = 0. Note that any TMD cannot be placed in both floors at the same time. Therefore, the
variablesαi j are treated as boolean variables satisfying the constraintsα11+ α21 = 1 andα12+ α22 = 1,
which are defined in the optimal control designs.

4 OPTIMAL CONTROL DESIGN METHODOLOGY

The optimal control designs methodology consists of considering the TMDs as closed loop control
problem (like in [13]). In this work, two design criteria are considered. The first one finds the value
of the vectorV =

[

α11, α12, α21, α22, ωt,1, ωt,2, ξt,1, ξt,2
]

that minimizes the acceleration of one floor (i.e.,
minimize the value ofH∞ norm of the FRF betweenyi andab). The second one finds the optimal value
of V that minimizes the maximum of the mode shapes of one vibration mode (i.e., the maximum value
of φi).

The minimization is carried out by using the functionf minsearch of MATLAB. The file considered
the four possible configurations forα11, α12, α21 andα22 to find the optimal values of

[

ωt,1, ωt,2, ξt,1, ξt,2
]

that minimizes the objective variable or functional (H∞ norm or the maximum value ofφi). In addition,
the values ofmt,1 andmt,2 are defined because the part (2) of each TMD (see Fig. 1 right) are fixed. In
addition, the value of the objective variable is penalized when

[

ωt,1, ωt,2, ξt,1, ξt,2
]

cannot be implemented
in practice (i.e., maximum values forξt,1, ξt,2 and non negative values forωt,1, ωt,2, ξt,1 andξt,2).
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ωt (rad/s) ξt u̇t(0) (m/s) ut(0) (m)
11.2586 0.0406 0.0005 -0.0041
11.2548 0.0457 0.0042 -0.0045
11.2793 0.0566 0.0040 0.0330
11.2670 0.0672 -0.0374 0.0031
11.2727 0.0811 -0.0400 0.0340
11.2697 0.0981 -0.0312 0.0035
11.2937 0.1221 -0.0423 0.0035
11.2953 0.1538 -0.0348 0.0031
11.4047 0.2320 -0.0278 0.0046
11.5069 0.3143 -0.0273 0.0043
11.3660 0.5147 -0.0304 0.0047

Table 1: System identification of the device TMD1 shown at Fig. 1.
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Figure 6: General control scheme.
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5 SIMULATION AND EXPERIMENTAL RESULTS

This section show an example of the design explained in Section 4. The valuesof mt,1 andmt,2 are
0.107 kg and 0.072 kg respectively. In addition, the model defined in Eqs.(6) and (7) are updated for the
four possible configurations ofα11, α12, α21 andα22 to include the weight of part (4) of each TMD. The
algorithm can offer several “good configurations” depending on the success of the fminsearch function.

When minimizing theH∞ norm of the FRF between the acceleration of the second floor (y2) and the
acceleration of the ground (ab), two (local) solutions areα11 = 0, α12 = 1, α21 = 1 andα22 = 0 (i.e.,
TMD1 placed at second floor and TMD2 placed at first floor) andα11 = 0,α12 = 1,α21 = 0 andα22 = 1
(i.e., both TMDS placed at the second floor). The simulation results for both designs are shown in Figs.
7 and 8. The values of TMDs parameters are: i)ωt,1 = 11.38 rad/s,ωt,1 = 32.32 rad/s,ξt,1 = 0.0595 and
ξt,2 = 0.0503 for Design 1 and ii)ωt,1 = 10.71 rad/s,ωt,1 = 23.29 rad/s,ξt,1 = 0.0598 andξt,2 = 0.0525
for Design 2, which can be implemented in practice. Note that the value of the maximum value of
the FRF betweeny2 andab (i.e., H∞) are approximately the same for both designs (about 19.4 dB in
simulation). Note that the reduction achieved with TMDs are approximately 16 dBin simulation (i.e.,
the acceleration of the second floor with TMDs is 6.3 time less than without them). Furthermore, Design
2 is worse than Design 1 for the first floor. Therefore, Design 1 is implemented in practice to compared
simulation and experimental results.

Figs. (9) and (10) show the FRF betweeny1 andab and betweeny2 andab, respectively for Design
1. Note that simulation and experimental results are practically the same, which validate the models and
the experimental identifications of the building and TMDs.

6 CONCLUSIONS

The results shown in this work validate the laboratory prototype of magneticallydamped TMD built
in CARTIF (Spain) as a PVC system. In addition, the design methodology simplifies the tuning of the
parameters and allows us to using it for more complex designs, as the AVC implemented at [14].

Futures works will be the applicaton of these magnetically damped TMDs of other TMD systems to
more complex structures, where the control theory can be used to improve the performance of a set of
TMDs applied to structures with natural frequencies spatially distributed andclosely spaced.
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Figure 7: TMDs design. Simulation results for first floor.
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