1	Integrated Fractionation-Hydrolysis Process using Sub- and		
2	Supercritical Water for Lignocellulosic Biomass Valorization		
3			
4	Cristian M. Piqueras ¹ , Gianluca Gallina ² , Danilo Cantero ² , Juan García-Serna ^{2*} , María		
5	J. Cocero ²		
6			
7	¹ Planta Piloto de Ingeniería Química, PLAPIQUI-Universidad Nacional del Sur-		
8	CONICET, Camino La Carrindanga km 7-CC 717, (8000) Bahía Blanca, Argentina.		
9	Phone: +542914861700 / Fax:+542914871600		
10	² High Pressure Processes Group, Department of Chemical Engineering and		
11	Environmental Tech., University of Valladolid, Escuela de Ingenierías Industriales,		
12	(47011) Valladolid, Spain. Phone: +34 983184934.		
13	*e-mail address: jgserna@iq.uva.es		
14			
15			
16	Keywords: Lignocellulosic biomass, hydrolysis, supercritical water, biomass		
17	valorization		
18			

19 Abstract

20 Lignocellulosic biomass coming from holm oak (holm oak) was fractionated, solubilizing two-21 of their major constituents: hemicellulose, and cellulose. This procedure was performed in two 22 stages of temperature, lower one (180 °C) optimizing the hemicellulose extraction and higher one 23 (260 °C) aiming to extract the major proportion of cellulose and the hard hemicellulose remaining 24 in the insoluble lignin structure. Three different flows of water was-were employed, reaching 25 sugar yields from 71 to 75% mainly in oligomer form and low amount of subproducts (eg. 5.9% 26 retro aldol product, 0.8% acetic acid and 2.5% 5-HMF). This stream was feed together with a 27 near and supercritical water stream in a sudden expansion microreactor in which the time of 28 residence where the residence time could be precisely controlled. Temperature, pressure and 29 residence time time of residence was were modified in order to maximize the yield of the products from retro aldol condensation products pathways. The main products of this further hydrolysis 30 31 were pyruvaldehide and lactic acid, reaching yields of 26% (at 350°C, 160 bar and 8.3 s) and 27% 32 (at 400°C, 245 bar and 0.23 s) respectively. A discussion based on the known reaction pathway is 33 proposed. This combined process, performs the valorization of real lignocellulosic biomasses 34 avoiding the costly process of extreme grinding needed for their fluidization in a continuous 35 process.

36 Introduction

37 Even if it is reasonably assumed that plant biomass from plants will be the main carbon source 38 in the future, the choice about which reaction medium should be used to depolymerize and 39 valorize biomass has not been taken yet. Pressurized fluids, especially sub and supercritical water 40 (Tc=374°C and Pc= 22.1 MPa), can be pointed as a promising alternative to depolymerize and 41 valorize biomass (Akiya & Savage, 2002; Cantero et al., 2014; Peterson et al., 2008; Ragauskas 42 et al., 2006; Savage et al., 1995). Physical and chemical properties of water can be modify by 43 adjusting pressure and temperature around the critical point, Around the critical point of water it 44 is possible to modify the physical and chemical properties of water by adjusting pressure and 45 temperature-making water a reaction medium which is able to favor different kind of reactions 46 (Akiya & Savage, 2002).

For this reason, pressurized water has been used as reaction medium for fractionation (Cantero
et al., 2015; Gullón et al., 2012; Kim & Lee, 2006; Sasaki et al., 2003), hydrolysis (Cantero et
al., 2013b; Fang & Fang, 2008; Sasaki et al., 2004) and valorization of biomass (Chen et al., 2015;
Holgate et al., 1995; Wang et al., 2013; Yan et al., 2010).

51 The average composition of lignocellulosic biomass is: cellulose (≈40% wt.), hemicellulose 52 (≈25% wt.), lignin (≈25% wt.), extractives and ashes (10% wt.) (Bobleter, 1994). Although 53 biomass is composed of by diverse and complex molecules, it can be fractionated 54 principallymainly into C-6 sugars (mainly glucose), C-5 sugars (mainly xylose) and lignin 55 (Cantero et al., 2014). These three fractions can be further modified to produce a wide range of 56 products like: ethanol, hydrogen, glycolaldehyde, pyruvaldehyde, lactic acid and 5-HMF among 57 others (Bicker et al., 2005a; Bicker et al., 2005b; Cantero et al., 2014; Kabyemela et al., 1997a; 58 Kabyemela et al., 1999; Kabyemela et al., 1997b; Lü & Saka, 2012; Román-Leshkov et al., 2010; 59 Sasaki et al., 2002).

The fractionation of biomass can be defined as the obtaining selective separation of C-5 sugars,
C-6 sugars and lignin from the original biomass-in separate streams from biomass. This process
was studied under hydrothermal conditions in different ways of operation: batch, semi batch and

ĺ	63	continuous (Cantero et al., 2014; Elliott et al., 2015). The sSemi batch and continuous processes	
	64	allow to obtain higher yields of sugars and chemical compounds respect to than batch reactors,	
	65	because it is possible to control the temperature (T) and the residence time of residence (tr) more	
	66	accurately e-than it is achieved in the batch processes. The eContinuous processes are the most	
	67	appropriate to control the reaction conditions (T and tr), however, in most cases it is necessary to	
ĺ	68	apply some expensive pretreatments to the raw material prior before the fractionation – hydrolysis	
	69	process, for example: exhaustive size reduction (Yu & Wu, 2011). In addition, the continuous	
1	70	process should can be set performed at different operating conditions if it is desired to in order to	
	71	separate the C-5 sugars from the C-6 sugars.	
	72	In a first step, carried out at temperatures between 180°C and 260°C, and reaction times between	Con format
	73	0.1 min and 1 min, hemicellulose is extracted and hydrolyzed.	
	74	One way to achieve a continuous fractionation of biomass is to hydrolyze hemicallulose first at	
	75	temperatures between 180°C and 260°C with reaction times between 0.1 min and 1 min.	
	15	emperatures between 100 C and 200 C with reaction times between 0.1 min and 1 min.	
	76	After this first hydrolysis process two products are obtained: a liquid and a solid. The a liquid will	
	77	be-composed mainly of-by C-5 sugars while the and a solid will be-composed of-by C-6 sugars	
	78	and lignin. These two products can be <u>further separated splitted</u> by operations of liquid-solid	
	79	separation, like filtration. Then, the solid can be hydrolyzed at supercritical conditions to obtain	
1	80	the <u>a water solution of C-6 sugars</u> in the liquid product and a solid enriched in and lignin as solid.	
	81	This process is can be carried out in two reactors with a filtration operation in between-, but can	
	82	be intensified by using only A similar fractionation can be done in one reactor if it is used a one	
	83	fixed bed reactor. In such a case the plant biomass is fed toloaded in the reactor and the hydrolysis	
	84	temperature is changed in order to hydrolyze the C-5 or C-6 sugars (Kilambi & Kadam, 2013).	
	85	The semi batch process allows high performances on the yields of C-5 sugars hydrolysis.	
	86	However, when the reaction temperature for the hydrolysis should beis increased to hydrolyze	
	87	recalcitrant cellulose and hemicellulose, the yield of sugars recovery recovered decreases because	
ļ	88	of the increment of the sugars degradation reactions (Cantero et al., 2013b; Sasaki et al., 2004).	

89	The continuous reactors have been employed in many applications for the valorization of sugars
90	streams allowing a precise control over the reactions (Kabyemela et al., 1997a; Kabyemela et al.,
91	1999; Kabyemela et al., 1997b). These reactions can be managed using pressurized water by
92	choosing the adequate reaction conditions. For example, at temperatures between 200°C and
93	300°C (25 MPa) the water molecules will beare highly dissociated favoring the ionic reactions,
94	like the production of 5-HMF from fructose and glucose (Akiya & Savage, 2002). On the other
95	hand, at 400°C (25 MPa) the water molecules will beare highly associated favoring the non-ionic
96	reactions, like the retro aldol condensation reactions (Akiya & Savage, 2002).
97	In this article, <u>a novel integrated fractionation-valorization processit</u> was designed and built a-
98	novel integrated fractionation valorization process consuming using plant wooden biomass as raw
99	material and water using (subcritical and supercritical) water as reaction medium. The plant
100	wooden biomass was fractionated in a fixed bed reactor at different temperatures. The solubilized
101	products were directly injected to a continuous near critical water reactor to efficiently convert
102	C-5 and C-6 sugars into valuable products, like glycolaldehyde, pyruvaldehyde and lactic acid
103	avoiding a further hydrolysis to organic acids. The objective of this research paper was to design
104	a novel process capable of converting plant lignocellulosic biomass into valuable products eluding
105	the excessive milling of biomass and decreasing the number of reactors. Optimum conditions for
106	the fractionation of holm oak in a fixed bed reactor were found, followed by a valorization process
107	of C-5 and C-6 sugars in the continuous reactor.
108	It was optimized: (1) the fractionation process for Holm Oak as a model biomass in the fixed bed
109	reactor and; (2) the valorization process of C-5 and C-6 sugars in the continuous reactor.
110	

111 1. Experimental

112 2.1 Materials

- 113 Type 2 water from-distilled with Elix[®] Advantage purification system, was used as the reaction - - - Con formato: Sangría: Primera línea: 0"
- 114 medium to run the experiments. The standards used in a High Performance Liquid
- 115 Chromatography (HPLC) analysis were: cellobiose (298%), glucose (299%), xylose (299%),

116	galactose (≥99%), mannose (≥99%), arabinose (≥99%), glyceraldehyde (≥95%), glycolaldehyde	
117	dimer (\geq 99%), lactic acid (\geq 85%), formic acid (\geq 98%), acetic acid (\geq 99%), acrylic acid (\geq 99%),	
118	furfural (99%) and 5-hydroxymethylfurfural (\geq 99%) purchased from Sigma. 0.01 N solution of	
119	sulphuric acid (HPLC grade) in Type 1 Milli-Q [®] water and werewas used as the mobile phase in	
120	the HPLC analysis. Sulfuric acid (\geq 96%) and calcium carbonate (\geq 99%) supplied by Panreac,	
121	Spain, were used as reagents for the quantification procedure of structural carbohydrates and	
122	lignin_(Sluiter, 2011). Also, Milli-Q [®] water was used in this determination. Holm oak wood used	
123	as raw material came from Turku and surrounding area, FinlandSpain. The wood was milled to	
124	obtain fibers shape with average wide of of 2 mm and average length of 5 mm, wide and length	
125	average sizes, respectively, as it is shown in Figure S1 of Supplementary Material.	
126		
127		
128		
129	2.2 Analytical methods	
130	The composition of the holm oak wood raw material, exhausted solid and the liquefied+	C
131	biomassextracted liquor were determined by means of troughthrough two Laboratory Analytical	
132	Procedures (LAP) from NREL (Sluiter, 2011; Sluiter, 2006). The procedure for solid sample	
133	consists in quantifying the structural carbohydrates and lignin in the biomass. A brief description	
134	is as follow as follow: a) biomass was weighted before and after beingis dried in an air driven	
135	oven at 105 °C for 24 hours in order to obtain calculate the moisture content, b) exhaustive	
136	extraction is performed <u>dried biomass was treated</u> in a Soxhlet equipment with using n-hexane,	
137	leaving a solid free of oils and other substancesextractives, c) a first acid hydrolysis is performed	
138	to-300 mg of free- extractives solid from step (b) were hydrolyzed in a-with 3 ml of 72% wt	
139	sulphuric acid solution at 30 $^{\circ}$ C for 30 min, in order to break the bonds between biopolymers with	
140	and the main solid structure, d) the mixture of oligomers obtained in-of step (c) is diluted using	
141	84 ml of deionized water for a second acid hydrolysisand warm at 120 °C for 60 min with the aim	
142	to break internal bonds in hemicellulose and cellulose oligomers to obtain their correspondent	
143	monomers-in solution, e) the solid is separated from the solution by vacuum filtration, f) the total	
1		

144 mass of solubilized sugars content are was quantified by weight as the difference in weight with 145 between the original solid and the exhausted solid after oven drying at 105 °C in oven for 24 146 hours, g) exhausted solid is placed in a muffle at 550 °C for 24 h and the remaining residue was 147 weighted to calculate the insoluble lignin and the ash content of the sample, insoluble lignin and 148ash content is determined when the sample is placed in a muffle at 550 °C for 24 h and the 149 remaining residue is weighted obtaining both values by weight difference, h) a liquid aliquot was 150 analyzed with UV-Vis spectrophotometer at 320 nm with extinction coefficient of 34 Lg⁻¹cm⁻¹ 151 (S.-N. Sun, 2014) to calculate the amount of soluble lignin-is obtained by UV Vis 152 spectrophotometer at 320 nm with extinction coefficient of 34 Lg⁻¹cm⁻¹ (S.-N. Sun, 2014) from 153 a liquid aliquot; i) another liquid aliquot is neutralized to pH range 6 to 7, then it is filtered using 154 a 0.2 µm membrane and analyzed by HPLC determining the carbohydrates composition. This 155 procedure is performed using a column SUGAR SH-1011 (Shodex) with a 0.01 N of sulfuric acid solution as a mobile phase. To identify the hemicelluloses, celluloses and reduced sugarssoluble 156 157 products, two detectors were used: Waters IR detector 2414 (210 nm) and Waters dual λ 158 absorbance detector 2487 (254 nm). In order to calculate the amount of carbohydrates, each 159 chromatogram was decomposed into a sum of 9 to 13 Gaussian peaks by means of a commercial 160 software, minimizing chi squared function of a Levenberg-Marquardt-Flecher algorithm 161 (Fletcher, 1971). Pyruvaldehyde and Glycolaldehyde could not be resolved by this 162 configurationsresulted to be overlapped, since the retention time of their standards are extremely 163 close (11.99 vs 12.24 minutes, respectively). From the analysis (Sluiter, 2011), tThe raw material 164 contained 1.6 % wt. extractives, 1.8% wt. moisture, 0.2% wt. ashes, 24.2% wt. Klason lignin 165 (from which 4.0% corresponds to soluble lignin), 45.7% wt. of hexoses, 23.9% wt. pentoses, the 166 summation of all the components represents the 97.4% of total weight, the discrepancy of 2.6% 167 is due to experimental errors like the loss of solid material after the recovery at the end of the 168 experiments, or the inhomogeneity of the material which can have slightly different compositions 169 depending on the analyzed aliquot. 170 The amount of C6 was calculated as the sum of glucose, cellobiose and fructose concentrations;

171 the only C5 detected was xylose, acetic acid was considered to come from the acetyl groups

172	bonded todeacetylation of xylanes forming hemicellulose, during -in-the fractionation process;
173	however_or,_asis-explained in the next sections, it could be produced from an exhaustive the
174	hydrolisishydrolysis of piruvaldehyde. Hydrolysis products from hexoses and pentoses were
175	mainly glyceraldehyde, glycolaldehyde, piruvaldehyde, lactic acid 5-hydroxymethylfurfural and
176	in some cases aerilieacrylic acid were detected in very low concentration.
177	The procedure followed for-to analyze liquid samples consist in the steps (c), (d) and (i) above
178	described <u>above</u> . Furthermore, the carbon content of this fractionliquid solutions is determined
179	by total organic carbon (TOC) analysis using a Shimadzu TOC-VCSH equipment. Each sample
180	is-was previously filtered using a 0.2 µm syringe filter and is-diluted 1:10 times with Type 2
181	Millipore water.
182	
183	
184	
185	2.3 Experimental setup and procedure
186	The setup used in this work is shown in Figure 1. The coupled-system consisted in two reactors
187	integrated: a) the fractionation process, from which the liquefied biomass liquid stream solution
188	is produced, b) the supercritical reactor hydrolysis, which converts all the biomass streamsoluble
189	compounds into added value products. The fractionation line is composed by a water deposit
190	(D.1), downstreams an American Lewa EK6 2KN high pressure pump (P.1, maximum flow rate
191	1.5 kg/h) propels water through a pre-heater (H.1, 200 cm of 1/8" SS 316 pipe, electrically heated
192	by means of two resistors of 300 W) which ensures an uniform temperature at the reactor inlet.
193	The reactor (R.1), a tube of SS 316, 40 cm length, 1.27 cm O.D., is heated by three flat resistors
194	of 500-300 W each, placed axially along a machined aluminum bar with 5.08 cm O.D. Both,
195	preheater and the reactor are located inside_an oven of a former_chromatographic oven HP5680
196	for security reasons. The out-out-flow stream of-from the fractionation line is mixed with the
197	supercritical water stream, entering in a sudden expansion directly at the inlet of the sudden
198	expansion micro-reactor (SEMR)_(R.2). The supercritical water line,is composed by a heater
199	(H.2), a tube of 20 m, 1/8 in O.D. SS316 wrapped around a brass cylinder and heated by two

200	cartridges and two flat resistors, which provided adjustable power of up to 10 kW, in order to	
201	control the temperature of this stream. The water flow is generated by a Milton Roy XT membrane	
202	pump (P.2, maximum flow rate 6 kg/h). The main advantages of the SEMR are:allows a fast the	
203	heating of the biomass stream, which is mixed almost instantaneously with the supercritical water	
204	stream, and the <u>a coolingrapid cooling</u> -process of the products, which takes place by through	
205	means a sudden expansion which efficiently stops the hydrolysis. In this way, the reaction time	
206	could be precisely calculated, because as the reactor works isothermally. Pressure is generated by	
207	closing a Micro Metering valve 30VRMM4812 from Autoclave Engineering (V.4). A detailed	
208	description of both sSetups of the two reactors -were presented in detail in previous works	
209	19,24,32, (Cantero DA 2013; Gallina et al., 2016).	Col
210	6.12 ± 0.03 gr of holm oak biomass are-were fed into the fractionation reactor. Two metallic filters	
211	are-were used, located in-on the top and bottom of the reactor, avoiding the removal of the solid	
212	during the experimentsto keep the raw material in place. A pressure test with cold pressurized	
213	water was carried out Cold water is pressurized into the system before each experiment, with the	
214	aim to check the presence of leaks in fractionation linethe system.	
215	Then, the supercritical line is was heated in order to ensure the functioning of the system at	
216	required operating conditions. ensure the temperature, pressure and water flow with cold water	
217	flowing through fractionation line. Once this conditions are-were stable, the flow-pumps were	
218	momently switched off is stopped and both, the preheater and the fractionation reactor, are were	
219	heated up <u>until the</u> . When the control temperatures -reached the the respective set values, then	
220	both pumps are were switch on again started, and the flow and pressure are were adjusted with	
221	V.4 to the desired conditions, Zero time was defined at that moment then, zero time is considered.	
222	Six experiments were performed varying the temperature in the supercritical micro-reactor from	
223	subcritical (350°C) up to supercritical (400°C) conditions, maintaining the pressure at 25.0 ± 1.0	
224	MPaAlso, tThe reactionsidence time of liquefied biomass in this reactor-was varied from 0.25	
225	s up to 12 s., which was obtained modified by modifying varying the water flow-rate and changing	
226	the reactor volume (2.2 or 12.4 cm ³); reaction times between 0.25 s and to 12 s were tested. In	Co
227	this sense, two reactors with 2.2 and 12.4 cm ² were utilized. Three different water flows (11, 17,	
1		

Con formato: Resaltar

Con formato: Sin Superíndice / Subíndice

228	26 cm ³ /min) in the fractionation line were tested in the fractionation line, maintaining constant
229	the ratio with the flow of supercritical water stream, <u>in order</u> to get the desired conditions during
230	the further hydrolysis.
231	The feed composition to the SEMR was analyzed by carrying out Also, three fractionations
232	without the second hydrolysis stage, at the same conditions of temperatures, flow-rates and
233	pressure tested with the coupled reaction-were performed in the same conditions,, with the aim to
234	know the feed composition to the SEMR.
235	Fractionation In fractionation the fixed bed reactor, was performed in two stages marked by two
236	distinct temperatures were run at different temperature, 180°C to extract the hemicellulose and
237	260°C to remove <u>most of</u> the cellulose fraction from the raw biomass. Heating time between both
238	temperatures was between 5-10 min, where when the flow was temporarily stopped during this
239	period-for the experiment at 26 cm ³ /min. In order to follow the reaction evolution, the pH of the
240	product-outlet stream was measured online between periods with intervals of 1 min, using an
241	electronic pH-meter (Nahita model 903). Liquid samples (30-40 cm ³) were taken following the
242	pH variations, between 5-20 min for the experiment at 11 cm ³ /min, and every 2-8 min for the
243	other experiments. The final time varies from 110, 60 and 45 min for the experiments at 11, 16,
244	26 cm ³ /min, respectively (named here as (1), (2) and (3)). After the last sample was withdrawn,
245	the heating was shut off and the fractionation reactor was let to gradually cooled down to room
246	temperature with air flux. Both pumps were set to zero flow and the system was depressurized.
247	The solid <u>was removed from inside of</u> the reactor reactor was collected, filtered and dried 24 hs at
248	105°C-for further analysis. After cleaning, the fractionation-fixed bed reactor reactor was
249	reconnected replaced and the system was washed out with Type 2 water flow. 10 experiments
250	were performed (3 fractionations and 7 coupled reactions), characterizing obtaining a total of 130
251	liquid and 10 solid samples, characterized with by the methods above described above.
252	

- 253 3. Results and Discussion
- 254 3.1. Biomass fractionation

Con formato: Resaltar

Comentado [u1]: Falta 1

255	The total amount of soluble materials compounds of unmodified holm oak biomassin the raw	Con formato: Sangría: Primera línea: 0"
256	material, quantified as sugars and other products obtained from their further hydrolysis, was equal	
257	to 4.65±0. 03g, corresponding to the 72.1% of the raw biomass weight. From this soluble	
258	material, <u>In details</u> , 3.02±0.02g are hexoses (C6), 1.58±0.01g are pentoses (C5)The residence	Con formato: Resaltar
259	time of the liquid (τ_i), <u>depends-is determined</u> mainly <u>on-by</u> the liquid flow rate and <u>on-by</u> the	
260	averaged bed porosity of the bed (ϵ_{avb} =0.71±0.05). This last is calculated based on The last was	
261	calculated as in equation 1, by considering the initial and the final fraction of void volume of the	
262	bed due to the shrinking size of the biomass particles,- <u>and</u> considering constant the density of	
263	the water (Gallina et al., 2016) (since its variation with temperature is less than 2%) and the	
264	density of the holm oak wood (800 kg/m ³ , dry based_average for holm_oak species). (Gallina et	Comentado [u2]: Referencia bibliográfica de la densidad
265	al., 2016). Residence time for the liquid inside the <u>fixed-bed</u> reactor was in the range of <u>1.0 min</u>	
266	$\frac{2.6 \text{ min}}{5} \leq \tau_{\text{i}} \geq \leq 2.6 \text{ min} \frac{1.0 \text{ min}}{5}.$	
267	$\varepsilon_{\rm f} = \varepsilon_0 + (1 - \varepsilon_0) \frac{(m_0 - m_{\rm f})}{m_{\rm f}} $ (1)	Con formato: TA_Main_Text, Izquierda, Sangría: Izquierda: 0.5", Primera línea: 0", Interlineado: sencillo, Ajustar espacio entre texto latino y asiático, Ajustar espacio entre texto existino un vírmenco.
268	Figure 2 shows the <u>cumulated mass quantified by TOC and HPLC techniques of</u> : <u>total</u> soluble	Con formato: Fuente: 12 pto, Cursiva
269	materials-quantified by TOC and HPLC techniques, the amounts of oligomers and monomers of	Con formato: Sangría: Primera línea: 0"
270	C5 and C6-as, well as the mass of the products deriving obtained from the dehydration the	
271	hydrolysis of these-sugars _{sy-} all of them in cummulative values for differentobtained by changing	
272	flows of water <u>flow-rates</u> in the fractionation line.	
273	Break points in the curves, signals indicate the transition between the two temperature stages. The	Con formato: Fuente: 11 pto
		Con formato
274	total mass of soluble compounds detected products from by TOC were was calculated by dividing	Con formato
275	the value of total organic carbon concentration recognized detected by the equipment by a factor	Con formato
07.6		Con formato
276	0.42 <u>(equation 2)</u> .	Con formato
277	This factor is the sum of the mass fractions of every compound in the raw material multiplied by	Con formato
070		Con formato
278	the ratio between the molar weight of carbon and the molar weight of the compound.	Con formato
279	$r = \Sigma r(i) = \Sigma \frac{m(i)(RM)}{Mw(i)} = 0.42$ (2)	Con formato
	$= \frac{1}{m_{\rm kol}tot(RM)Mw\Sigma C(i)}, \qquad (2)$	- Con formato
280	The factor r indicates the ratio between the molecular weight of the soluble compounds extracted	Con formato: Fuente: 11 pto
		Con formato: Sangría: Primera línea: 0"
281	from holm oak and the molecular weight of the atoms of carbon of the same compounds. It allows	Con formato: Fuente: 11 pto

b82	to compare values directly obtained by TOC analysis (total amount of C) with values obtained by	
282	HPLC (total amount of soluble compounds)	
283	This number results from the sum of the mass fractions of every compound in the raw material	
204	multiplied by the actic between the moler weight of each on and the moler weight of the commound	
205	multiplied by the fatto between the motal weight of carbon and the motal weight of the compound,	
286	in each of the components detected by HPLC. The mass balance <u>calculated by summing</u> of the	
287	smass of the solid recovered from the reactor at the end of the experiment added to the mass of	
288	the soluble material quantified from by TOC analysis and to the mass of insoluble ligninglignin	
289	flushed in-by the water stream was equal to 103.8, 93.7 and 84.9 % of the total biomass fed to the	
290	reactor, respectively.	Comentado [u3]: No se entiende bien de cuales experimentos
291	In the first row of graphs in Figure 2 are compared the mass of soluble material obtained by TOC	
292	with the same values obtained by HPLC for each sample. The number in the figure is the	
293	percentage of the soluble material in the water stream at the end of the experiment respect to the	
294	same value in the raw materialyield. From the graphs is clear that the difference discrepancy	Comentado [u4]: Hacer una tabla con todos los rendimientos
295	between the values obtained withbetween both-the two techniques is reduced when the water	
296	flow- <u>rate</u> through the fractionation reactor is augmented - <u>increased</u> (23.6, -4.1 and -3.2%) for the	(Comentado [u5]: Unidades de medida
297	three flows, respectively). This could indicate that there are sub-products from the sugars	Comentado [u6]: Especificar los caudales (forrespectly)
298	hydrolysis (mainly organic acids) not identified by HPLC. In fact, some peaks identified were not	
299	completely resolved, then, the calculation of the area was not a trivial task. The Ssecond line of	
300	graphics in Figure 2, shows the sugars and soluble oligomers of C5 and C6 obtained from	
301	fractionation in the two temperature stages. The mayor fraction \underline{Most} of the hemicellulose is	
302	hydrolyzed from lignin matrix and comes out from the reactor in the form ofto oligomers-, in fact	
303	Hhemicellulose is highly soluble in water because of it has a lot of the abundance of acetyl groups	
304	in their its structure as well as it is amorphous structure (Miller-Chou, 2003), and after the first	
305	breaking leads to the production of So, it would be expected that produce soluble oligomers	
306	((which size would be around 200 monomers)) after the first breaking.	Comentado [u7]: Referencia
307	The yield of C5 at the end of second stage of temperature was 87.3, 89.8 and 93.1%, respectively.	Comentado [u8]: Tabla (ver comentario al final)
308	At-On the contrary, cellulose is insoluble in water due to its cryistallinity and its low acetylation	
309	degree, so only oligomers with a very low molecular weight would be water soluble (e.g. 10	

310	glucose units). In this sense, the amount of hexoses in form of oligomers is similar to the Comentado [u9]: Referencia
311	monomers at lower flow (experiment 1) and this difference is enlarged with the flow increase (2
312	and 3). This distribution could be related to the difference in the activation energy of the cleavege chance the hydrolysis of oligomers to monomers
313	of the hidrogen-hydrogen bonds between celluloses and the α1-4 glycosidic bond, which is known Comentado [u11]: No entiendo bien la frase
314	that is favored at subcritical conditions (Cantero DA 2013; Sasaki et al., 2004). The last row of
315	graphs in Figure 2 displays different amounts of products from hydrolysis of xylose, -glucose and
316	fructose. These amounts are despreciabledepreciable in the first stage and are enlargedincreased
317	to in the second stage of after increasing temperature, however, they are one order of magnitude
318	lower than to the soluble sugars. An example is 5 HMF, which takes places mainly in the second
319	temperature stage where conditions makes water highly ionic medium in the fractionation reactor.
320	The main components in this graphs are pyruvaldehyde-glycolaldehyde and lactic acid. The
321	decrease of the residence time of sugarsof liquid inside the reactor diminish their further
322	hydrolysis or transformation. An example is 5 HMF, which takes places mainly in the second
323	temperature stage where conditions makes water highly ionic medium in the fractionation reactor.
324	
325	3.2 Biomass valorization with sub and supercritical fast hydrolysis
326	The ouput outlet stream of from the fractionator fixed bed reactor was feed to the SEMR together Con formato: Sangría: Primera línea: 0"
327	with the <u>a distillate</u> water stream at temperature and pressure around their critical pointat near
328	critical conditions of temperature and pressure, with the aim to obtain a fast and selective
329	hydrolysis of the oligomers extracted from the biomass. Time of residence The reaction time (tr)
330	was modified varied in order to find a major yield to some modify the selectivity to obtain different
331	valuable chemicals.
332	
333	Optimum temperatures and flow-rate for the extraction, have been identified in experiment 1, as
334	they lead to the maximum yield; for this reason, a flowrate of and temperatures of were Comentado [u12]: Flujo y temperatura
335	chosen for most of the experiments; only experiments 10 and 11 were performed with the same
336	liquid flow-rates used in the fractionation experiments 2 and 3 (andrespectively).
337	This approach, moreover, allows to know the composition of the stream entering in the SEMR.
1	

228	In this cance, a Fight avariments were performed as shown in and their working conditions area	Con formato: Cangría: Drimara línga: 0"
220	in this sense, engine experiments were performed, as shown in and their working conditions are	
539	summed up in-Table 1. Three temperatures ([]) and 6 reaction times ([]) were tested in the	Comentado [u14]: temperaturas
340	SEMR, keeping constant the temperatures of sub-critical water through the fixed bed reactor, and	Concinenta (115), tempos
341	of super-critical water to hydrolyze the oligomers.	Comentado [u16]: Especificar flujo
342	-at the same flow in the fractionation reactor than experiment (1), 350 °C (5 and 8), 380°C (4 and	
343	7) and 400 °C (9), and other two experiments (10 and 11) were performed at same temperature	
344	bur at the same flows than experiments 2 and 3. Two -reactions (7 and 9) were carried out in a	
345	longer reactorat longer tr, with the aim to increase the reaction timeobserve the effect of deeper	Con formato: Fuente: Sin Cursiva
346	conversions. A lower pressure was used in Only one condition at lower pressure were tested	(Comentado [u17]: Indicar Presión
347	(Freaction 6_, see Table 1) with the aim-to observe the influence of the variation of the density	
348	variation-in the product distribution.	
349	Global mass balance, calculated as was commented described in section 3.1, -is presented in the	
850	fourth column of Table 1. The values (avg=96.9%, sd=6.5 %) indicates that no significant	
351	gasification takes place in the supercritical reactor.	
352	First row of graphs in the Figure 2 (b), (c) and (d) are presents the mass balance between the	
853	soluble materials in the raw biomass and the mass quantified in the output stream of SEMR by	
54	means of TOC and HPLC techniques. Some difference between these two analytic procedures is	
55	observable, mainly at the second stage of temperarutetemperature of the fractionation or at high	
856	sugars conversions. This findings could be due to the productions of small organic acids, ketones	
57	and aldehydes (levulinic and acrylic acids, dihydroxyacetone, formaldehyde) and other	
58	compounds not identified in the HPLC analysis, see Figure S2 in Suplementary Material. This	
59	hypothesis agree with the decrease of the mass difference indentified by both techniques when at	
360	high water flow is involved (see first row of graphs in Figure 2 (d)).	Comentado [u18]: Especificar: less residence time→less
361		
362		
363		
364	3.2.1 Oligomers and sugars conversion	

365	Oligomer conversion to C5 and C6 monomers was calculated by difference between the stream -
366	entering to the SEMR (composition obtained in experiment 1), and the stream leaving the reactor
367	after the hydrolysis.
368	\underline{T} -By mass balance between the inlet (all the products from the fractionation) and outlet stream,
369	the conversions of oligomers of to C5 and C6 monomers were calculated and their values are
370	reported in the upper left corner of each graph in second row of Figure 2 (b), (c) and (d). In all
371	the runs, oligomers conversion was higher than 85%, the exception seems to be experiment (11),
372	in which the small <i>tr</i> and high dilution of the inlet stream could be the cause of the low conversion.
373	Sugars- in-C5 (xylose) and C6 (cellobiose, glucose and fructose) are intermediary compounds in
374	the reaction pathway. From Figure 2, comparing the amount of sugars C6 and C5 in experiments
375	4 and 5, it is shown that the conversion of sugars to other products is faster than the oligomers
376	hydrolysis to monomers in at subcritical temperatures, even at temperatures higher than the water
377	critical point (380 °C), however near to 400 °C , like in experiment 9, oligomers conversion is
378	faster than sugars hydrolysis, in agreement with the observations reported in the literature for
379	oligomers originating from microcrystalline cellulose (Peterson et al., 2008) (Cantero et al.,
380	2013b). SuprinsinglySurprisingly the time needed for complete conversion of sugars is quite
381	greater larger than the pure cellulose hydrolysis at the same temperature (eg. 350°C: 2 s vs 12 s),
382	which could be related with the hydrolysis of fluidized biomass microparticles whiting the
383	fractionation stream, which contain an insoluble lignin structure where C5 and C6 were contained
384	inside of it. Also -concentration of the biopolimers and the presence of other ions or substances
385	could be linked to this atenuation.
386	
387	3.2.2 Added value products (AVP) produced from the sugars hydrolisis
388	Thirth row of Figure 2 (b), (c) and (d) displays the added value chemicals produced from
389	further hydrolisis from of cellobiose, glucose, fructose and xylose. Reaction pathway of
390	cellulose hydrolisis involving oligomers and cellobiose as intermediaries was reported in the

Con formato: Sangría: Primera línea: 0"

Comentado [u19]: Poner in tabla

Comentado [u20]: referencia

Con formato: Sin Resaltar

391 literature (Cantero et al., 2013a; Kabyemela et al., 1997a; Kabyemela et al., 1999; Kabyemela et al., 1997b; Lü & Saka, 2012; Sasaki et al., 2004; Sasaki et al., 2002). Xylose hydrolisis in 392

393	near critical and supercritical water was analized by several authors (Aida T.M. et al., 2010;
394	Sasaki M. et al., 2003). The combined reaction pathway is presented in Figure 3. Not all the
395	products involved in this scheme was identified in the liquid chromatography. The cellulose
396	pathway shown in Fig. 3 involves two main steps: 1st step in which the oligosaccharides are
397	hydrolyzed to glucose and xylose; 2nd step in which glucose and xylose are involved in two
398	possible pathways: isomerization and dehydration or retro-aldol condensation (Aida T.M. et
399	al., 2010; Sasaki et al., 2002). Glucose can follow a reversible isomerization to produce
400	fructose, however, the reverse reaction, is almost inhibited at the same conditions (Kabyemela
401	et al., 1999; Kabyemela et al., 1997b). Glucose can also be transformed into 1,6
402	anhydroglucose and fructose can be transformed into 5-hydroxymethylfurfural through a
403	dehydration reaction (Kimura et al., 2011). The other alternative of glucose conversion is the
404	retro-aldol condensation reaction that produces glycolaldehyde and erythrose (Cantero et al.,
405	2013a). Erythrose is further transformed into glycolaldehyde by the same reaction mechanism
406	(Sasaki et al., 2002). The other important reaction of fructose is the retro-aldol condensation
407	to produce glyceraldehyde and dihydroxyacetone. These molecules are further isomerized into
408	pyruvaldehyde (Kabyemela et al., 1997a) that is considered as a lactic acid precursor. From
409	the hemicellulose hydrolysis, depolymerization takes place up to xylose, and after that, xylose
410	can be isomerized to D-xylulose, assuming that D-xylulose as an intermediate for furfural and
411	retro-aldol products (glyceraldehyde, pyruvaldehyde, lactic acid, glycolaldehyde,
412	dihydroxyacetone, formaldehyde) (Aida T.M. et al., 2010; Sasaki M. et al., 2003). This
413	reaction pathway consists, a Lobry de Bruyn-Alberta van Ekenstein (LBET) a retro-aldol
414	reaction from D-xylose and D-xylulose similar to that involving D-glucose and fructose.
415	In all the cases the products distribution is complex experiments, though majora considerable
416	amount of pyruvaldehyde/glycolaldehyde and lactic acid is observed. From Figure 2 (a) and
417	(b) reactions 4 and 5 the product distribution is similar, but a little difference in the amount of Comentado [u21]: No se entiende bien, 5 está en c)
418	pyruvaldehyde is perceived principally in the first stage of temperature of the fractionation
419	step. Different density and Kw of water prevails at both temperatures (352 vs 383°C, 614.7 vs Comentado [u22]: Que entiendes?
420	319.7 kg/m ³ and 5 10 ⁻⁶ vs 1 10 ⁻⁸ , respectively) (Akiya N. & Savage P.E., 2002), which means

421 different concentration of H⁺ and OH⁻ (1.2 vs 22.810⁻³ M) coming from water dissociation are 422 involved. However, under such disimilardissimilar conditions, the product distribution after 423 the hydrolysis of the fractionation stream seems to be not so different. This behavior could be 424 explained by the presence of large amounts of H⁺ coming from the fractionation in addition to 425 that produced in the water ionization, since the autohydrolysis produces acetic acid and other 426 ions. Under such conditions, isomerization of pure cellulose to fructose is favored and 427 dehydration reactions could be favored too (Kimura et al., 2011). In spite of this, retro aldol 428 pathways seems to take place as well, which is evidenced by the high yields of 429 pyruvaldehyde/glycolaldehyde, and lactic acid. The reactions (4) and (7) were performed at 430 similar temperature and pressure but involving deeper conversion in the last case (tr = 1.06 vs 431 11.15 s, respectively). For this one, the acetic acid amount is highly increased, mostly in the 432 first stage of temperature of the fractionation reactor. This amount of acetic acid, exceeds the 433 amount produced in the hemicellulose hydrolysis process. This finding could indicate that the 434 retro aldol pathway coming from Xylose by means of Glyceraldehyde route, must contribute 435 mainly to the acetic acid production obtained directly from lactic acid decarbonylation (Jin et 436 al., 2005). The contribution to the acetic acid could not only be considered from the 437 hemicellulose source, since there is also a large concentration of C6 in monomer and oligomer 438 form in the first fraction of the inlet stream (see Figure 2 (a)), which could also contribute to 439 the glyceraldehyde route. Figure 4 displays the pH of the output stream after the Fractionation 440 (1) and the -Fractionation+Hydrolysis coupled process (4),(5),(7) and (8). The pH after a 441 further hydrolysis is lower than the outcoming from the fractionation during the first stage, 442 and after this, the pH values becomes similar, in accord to the fact that extra amounts of acetic 443 acids are produced when a deeper hydrolysis is performed (7 and 8). Similar result is observed 444 from reactions 5 and 8, however in this case large amount of formic acid is observed than the 445 above mentioned (see Figure 2 (c)). 446 The pressure change has no great effect on the products distribution (see reactions 5 and 6).

This observation means that the density as well as Kw variation, do not modified largely the

selectivity between isomerization-dehydration and retro aldol pathways like it does in the pure

447

448

Con formato: Sin Resaltar

449	cellulose hydrolysis, where isomerization of glucose to fructose is highly inhibited by				
450	decreasing density (Cantero DA 2013). The major highest yield of				
451	pyruvaldehyde/glycolaldehyde was obtained at this conditions- (24.4%). <u>A Different different</u>				
452	product distribution is observed in the reaction (9), where lactic acid is the most abundant				
453	product and the acetic acid amount is depleted compared to the reactions above mentioned				
454	(see Figure 2 (d)). This finding could be explained by short time of residence of the mixture				
455	at high temperature condition in which the reactions are stopped at lactic acid stage in the				
456	glyceraldehyde route, inhibiting the acetic acid formation. This selectivity seems to take place				
457	principally during the first stage of temperature in the fractionation reactor, because after that,				
458	the production of lactic acid and pyruvaldehyde is lower. The major yield of lactic acid was				
459	found at this conditions -(25.5%). The augment increase of water flow-rate in the fractionation				
460	reactor has no clear effect on the product distribution (see reactions 10 and 11 in Figure 2 (d)).				
461	In both cases the retro aldol pathways are followed equitatively in both stages of temperature				
462	producing pyruvaldehyde and lactic acid, however more acetic acid is formed in reaction 10				
463	for which we have no explanation.				
464					
465	Conclusions				
466					

– – Con formato: Sangría: Izquierda: 0"

468 Acknowledgements

469	The authors acknowledge the Spanish Economy and Competitiveness Ministry, Project		
470	FracBioFuel: ENE2012-33613, Spanish Government through the Research Project		
471	CTQ2015-64892-R (MINECO/FEDER) and and the regional government (Junta de		
472	Castilla y León), Project Reference: VA330U13 for funding. MEng. Gianluca Gallina		
473	wish to acknowledge the Spanish Economy and Competitiveness Ministry for the		
474	scholarship/predoctoral contract BES-2013-063556.		
475	Abbreviations and symbols		
476	\mathcal{E} : Porosity of the bed, dimensionless.		Con formato: Fuente: 11 pto, Color de fuente: Automático, Inglés (Estados Unidos)
477	$\mathcal{E}_{\underline{i}}$: Porosity of the bed, calculated at the end of the experiment, dimensionless,		Con formato: Fuente: Times New Roman, 11 pto, Color de fuente: Automático, Inglés (Estados Unidos)
478	Eav: Average porosity of the bed, between the beginning and the end of the experiment,		Con formato: Fuente: Times New Roman, 11 pto
479	dimensionless,		Con formato: Fuente: 11 pto, Color de fuente: Automático, Inglés (Estados Unidos)
480	$\mathcal{E}_{\underline{\rho}}$: Porosity of the bed, calculated at the end of the experiment, dimensionless.		Con formato: Fuente: Times New Roman, 11 pto, Color de fuente: Automático, Inglés (Estados Unidos), Sin Superíndice / Subíndice
481 182	m_0 initial mass of the solid in the reactor.		Con formato: Fuente: 11 pto, Color de fuente: Automático, Inglés (Estados Unidos)
102		100	Con formato: Fuente: Times New Roman, 11 pto
483	$\underline{m(i)}$ (RM) total amount of component (i) in the raw material, extracted by acid hydrolysis and		Con formato: Fuente: 11 pto, Color de fuente: Automático, Inglés (Estados Unidos)
484 185	<u>detected by HPLC analysis, g.</u>		Con formato: Sangría: Izquierda: 0", Espacio Después: 10 pto, Interlineado: sencillo, Dividir palabras
486	$Mw\SigmaC(i)$ molecular weight of the sum of the atoms of carbon in component i, g/mol.		Con formato: Fuente: Times New Roman, 11 pto, Color de fuente: Automático, Inglés (Estados Unidos)
		(X)	Con formato: Sin Superíndice / Subíndice
487	<u><i>m_{sol} tot (RM)</i> total amount of soluble compounds in the raw material, extracted by acid hydrolysis</u>	11	Con formato: Fuente: Cursiva
488	and detected by HPLC analysis, (g)	11	Con formato: Fuente: Cursiva
400		11	Con formato: Fuente: Cursiva
489 490	<u><i>r</i> ratio between the molecular weight of the soluble compounds extracted and the molecular</u> weight of the atoms of carbon dimensionless	\sim	Con formato: Fuente: Cursiva
170	weight of the atoms of earbon, annensionless.		Con formato: Fuente: Cursiva
491	r(i) ratio between the molecular weight of the soluble compounds extracted and the molecular	١	Con formato: Fuente: Cursiva
492	weight of the atoms of carbon for compound i, dimensionless.		
493			
494	٨		Con formato: Inglés (Estados Unidos)
495	•		Con formato: Inglés (Reino Unido)

 496

 497

 Con formato: Fuente: 11 pto, Sin Negrita

 Con formato: Sangría: Izquierda: 0", Espacio Después: 10 pto, Interlineado: sencillo, Dividir palabras

498 References

499	Aida T.M., Shiraishi N., Kubo M., Watanabe M., Smith Jr. RL. 2010. Reaction kinetics of d-				
500	xylose in sub- and supercritical water. Journal of Supercritical Fluids, 55, 208-216.				
501	Akiya, N., Savage, P.E. 2002. Roles of Water for Chemical Reactions in High-Temperature				
502	Water. Chemical Reviews, 102(8), 2725-2750.				
503	Akiya N., Savage P.E. 2002. Roles of water for chemical reactions in high-temperature water.				
504	Chemical reviews, 102 (8), 2725-50.				
505	Bicker, M., Endres, S., Ott, L., Vogel, H. 2005a. Catalytical conversion of carbohydrates in				
506	subcritical water: A new chemical process for lactic acid production. Journal of				
507	Molecular Catalysis A: Chemical, 239(1–2), 151-157.				
508	Bicker, M., Kaiser, D., Ott, L., Vogel, H. 2005b. Dehydration of d-fructose to				
509	hydroxymethylfurfural in sub- and supercritical fluids. The Journal of Supercritical				
510	Fluids, 36 (2), 118-126.				
511	Bobleter, O. 1994. Hydrothermal degradation of polymers derived from plants. Progress in				
512	polymer science, 19 (5), 797-841.				
513	Cantero, D.A., Bermejo, M.D., Cocero, M.J. 2013a. Kinetic analysis of cellulose				
514	depolymerization reactions in near critical water. Journal of Supercritical Fluids, 75,				
515	48-57.				
516	Cantero, D.A., Bermejo, M.D., Cocero, M.J. 2014. Reaction engineering for process				
517	intensification of supercritical water biomass refining. The Journal of Supercritical				
518	Fluids(0), doi:10.1016/j.supflu.2014.07.003.				
519	Cantero DA , B.M., Cocero MJ. 2013. Kinetic analysis of cellulose depolymerization reactions				
520	in near critical water. Journal of Supercritical Fluids, 75, 48-57.				
521	Cantero, D.A., Dolores Bermejo, M., José Cocero, M. 2013b. High glucose selectivity in				
522	pressurized water hydrolysis of cellulose using ultra-fast reactors. Bioresource				
523	Technology, 135 , 697-703.				
524	Cantero, D.A., Martinez, C., Bermejo, M.D., Cocero, M.J. 2015. Simultaneous and selective				
525	recovery of cellulose and hemicellulose fractions from wheat bran by supercritical				
526	water hydrolysis. Green Chemistry, DOI: 10.1039/c4gc01359j.				
527	Chen, Y., Wu, Y., Ding, R., Zhang, P., Liu, J., Yang, M., Zhang, P. 2015. Catalytic				
528	hydrothermal liquefaction of D. tertiolecta for the production of bio-oil over different				
529	acid/base catalysts. AIChE Journal, 61(4), 1118-1128.				
530	Elliott, D.C., Biller, P., Ross, A.B., Schmidt, A.J., Jones, S.B. 2015. Hydrothermal liquefaction				
531	of biomass: Developments from batch to continuous process. Bioresource Technology,				
532	178 , 147-156.				

533	Fang, Z., Fang, C. 2008. Complete dissolution and hydrolysis of wood in hot water. AIChE
534	Journal, 54 (10), 2751-2758.
535	Fletcher, R. 1971. A Modified Marquardt Subroutine for Nonlinear Least Squares. United
536	Kingdom Atomic Energy Authority.
537	Gallina, G., Cabeza, Á., Biasi, P., García-Serna, J. 2016. Optimal conditions for hemicelluloses
538	extraction from Eucalyptus globulus wood: hydrothermal treatment in a semi-
539	continuous reactor. Fuel Processing Technology, 148, 350-360.
540	Gullón, P., Romaní, A., Vila, C., Garrote, G., Parajó, J.C. 2012. Potential of hydrothermal
541	treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 6(2),
542	219-232.
543	Holgate, H.R., Meyer, J.C., Tester, J.W. 1995. Glucose hydrolysis and oxidation in supercritical
544	water. AIChE Journal, 41(3), 637-648.
545	Jin, F., Zhou, Z., Moriya, T., Kishida, H., Higashijima, H., Enomoto, H. 2005. Controlling
546	Hydrothermal Reaction Pathways To Improve Acetic Acid Production from
547	Carbohydrate Biomass. Environmental Science & Technology, 39(6), 1893-1902.
548	Kabyemela, B.M., Adschiri, T., Malaluan, R., Arai, K. 1997a. Degradation Kinetics of
549	Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water.
550	Industrial & Engineering Chemistry Research, 36 (6), 2025-2030.
551	Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K. 1999. Glucose and Fructose
552	Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway,
553	Mechanisms, and Kinetics. Industrial & Engineering Chemistry Research, 38(8), 2888-
554	2895.
555	Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K. 1997b. Kinetics of Glucose
556	Epimerization and Decomposition in Subcritical and Supercritical Water. Industrial and
557	Engineering Chemistry Research, 36(5), 1552-1558.
558	Kilambi, S., Kadam, K.L. 2013. Production of fermentable sugars and lignin from biomass
559	using supercritical fluids. in: US Patent, Google Patents. United States of America.
560	Kim, T.H., Lee, Y.Y. 2006. Fractionation of corn stover by hot-water and aqueous ammonia
561	treatment. Bioresource Technology, 97(2), 224-232.
562	Kimura, H., Nakahara, M., Matubayasi, N. 2011. In Situ Kinetic Study on Hydrothermal
563	Transformation of d-Glucose into 5-Hydroxymethylfurfural through d-Fructose with
564	13C NMR. The Journal of Physical Chemistry A, 115(48), 14013-14021.
565	Lü, X., Saka, S. 2012. New insights on monosaccharides' isomerization, dehydration and
566	fragmentation in hot-compressed water. The Journal of Supercritical Fluids, 61, 146-
567	156.
568	Miller-Chou, B.A., Koenig, J.L. 2003. A review of polymer dissolution. Progress in Polymer
569	Science, 28 , 1223-1270.

570	Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, J.M.J., Tester, J.W. 2008.
571	Thermochemical biofuel production in hydrothermal media: A review of sub- and
572	supercritical water technologies. Energy & Environmental Science, 1(1), 32.
573	Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A.,
574	Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R.,
575	Templer, R., Tschaplinski, T. 2006. The Path Forward for Biofuels and Biomaterials.
576	Science, 311 (5760), 484 -489.
577	Román-Leshkov, Y., Moliner, M., Labinger, J.A., Davis, M.E. 2010. Mechanism of Glucose
578	Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie
579	International Edition, 49 (47), 8954–8957.
580	SN. Sun, XF.C., HY. Li, F. Xu, RC. Sun. 2014. Structural characterization of residual
581	hemicelluloses from hydrothermal pretreated Eucalyptus fiber. International Journal of
582	Biological Macromolecules, 69, 158-164.
583	Sasaki, M., Adschiri, T., Arai, K. 2003. Fractionation of sugarcane bagasse by hydrothermal
584	treatment. Bioresource Technology, 86(3), 301-304.
585	Sasaki, M., Adschiri, T., Arai, K. 2004. Kinetics of cellulose conversion at 25 MPa in sub- and
586	supercritical water. AIChE Journal, 50(1), 192-202.
587	Sasaki, M., Goto, K., Tajima, K., Adschiri, T., Arai, K. 2002. Rapid and selective retro-aldol
588	condensation of glucose to glycolaldehyde in supercritical water. Green Chemistry,
589	4 (3), 285-287.
590	Sasaki M., Hayakawa T., Arai K., Adschiri T. 2003. Measurement of the Rate of Retro-Aldol
591	Condensation of d-Xylose in Subcritical and Supercritical Water. 7th International
592	Symposium Hydrothermal Reactions, Singapore. pp. 169-176.
593	Savage, P.E., Gopalan, S., Mizan, T.I., Martino, C.J., Brock, E.E. 1995. Reactions at
594	supercritical conditions: Applications and fundamentals. AIChE Journal, 41(7), 1723-
595	1778.
596	Sluiter, A.H., B; Ruiz, R; Scarlata, C; Sluiter, J; Templeton, D; Crocker D. 2011.
597	Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable
598	Energy Laboratory, U.S. Department of Energy.
599	Sluiter, A.H., B; Ruiz, R; Scarlata, C; Sluiter, J; Templeton D. 2006. Determination of Sugars,
600	Byproducts, and Degradation Products in Liquid Fraction Process Samples. National
601	Renewable Energy Laboratory, U.S. Department of Energy.
602	Wang, Y., Jin, F., Sasaki, M., Wahyudiono, Wang, F., Jing, Z., Goto, M. 2013. Selective
603	conversion of glucose into lactic acid and acetic acid with copper oxide under
604	hydrothermal conditions. AIChE Journal, 59(6), 2096–2104.
605	Yan, X., Jin, F., Tohji, K., Kishita, A., Enomoto, H. 2010. Hydrothermal conversion of
606	carbohydrate biomass to lactic acid. AIChE Journal, 56(10), 2727-2733.

607 608	Yu, Y., Wu, H. 2011. Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE Journal, 57(3), 793-800	
609		
610		
611		
612		
613		
614 615	l	Comentado [u23]: •Falta lista tablas. •Se podría poner otra tabla con los rendimientos de todos los compuestos después del fracciónamento, después de la primera temperatura y después de la segunda
616	List of Figures	Otra tabla con los rendimientos de los compuestos después de la hydrolisis.
617	Figure 1. Experimental setup coupling Fractionation-Hydrolysis reactors.	
618	D.1, D.2: Type II Millipore water deposits, P.1: American Lewa EK6 2KN High pressure piston	
619	pump. P.2: Milton Roy XT membrane pump, V.1, V.2: Parker check valve. H.1: Electric low	
620	temperature heater, 100 cm of 1/8 in SS316 piping and 2 kW resistor. H.2: 1800 cm of 1/8 in	
621	SS316 piping and, high temperature heater and 5 kW resistor. R.1: Fractionation reactor, 40 cm	
622	length, ½ in O.D. SS316 piping. V.2: Parker relieve valve. R.2: Sudden Expansion Micro-Reactor	
623	(SEMR) built with 1/4 in O.D. SS316 tubing. Two reactore sizes were used 11 cm and 100 cm of	
624	length. V.3: Parker relief valve. V.4: high temperature valve Autoclave Engineers	
625	30VRMM4812, IE: 200 cm of concentric tube heat exchanger ½ in- ¼ in. V5: Three way Parker	
626	valve, D.3: Falcon® flasks. D.4: 25 L polyethylene products deposit.	
627		
628	Figure 2. Product distribution and mass balance in the biomass valorization.	
629	(a) Results from the fractionation without supercritical <u>further</u> hydrolysis for different water	
630	flow-rates in the fractionation line. The Efirst line of graphs corresponds represent to the	Comentado [u24]: Especificar los caudales de supercrítico y las temperaturas del fraccionamento.
631	percentage of soluble sugars liquefied identified by total organic carbon (TOC) and	
632	HPLC techniques. Second row of graphs in Figure 2 shows the amount of carbohydrates	

Table 1.

Experiment	T [°C]	P [MPa]	t _r [s]	MB _{TOC} [%]
4	383.7 ± 5.1	245.7 ± 4.6	1.06	92.2
5	352.5 ± 4.4	241.3 ± 3.7	2.10	89.3
6	355.9 ± 5.7	161.8 ± 1.1	8.31	97.3
7	377.2 ± 3.5	251.9 ± 5.9	11.15	105.9
8	349.9 ± 2.4	239.6 ± 4.2	12.50	103.1
9	396.1 ± 3.6	249.1 ± 5.1	0.23	103.6
10	401.2 ± 2.8	252.2 ± 3.9	0.24	93.0
11	398.3 ± 3.0	259.9 ± 3.4	0.24	91.2

Comentado [u27]: Juntar longitud reactor y caudales (sub y supercr)