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ABSTRACT 12 

N2O represents ~6% of the global greenhouse gas emission inventory and the most 13 

important O3-depleting substance emitted in this 21st century. Despite its environmental 14 

relevance, little attention has been given to the development of cost-effective and 15 

environmentally friendly N2O abatement methods. In this context, the potential of a bubble 16 

column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of 17 
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N2O from a nitric acid plant emission was systematically evaluated. The process was based 18 

on the biological reduction of N2O by Paracoccus denitrificans using methanol as a 19 

carbon/electron source. Two nitrogen limiting strategies were also tested for the co-20 

production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N2O 21 

reduction. High N2O removal efficiencies (REs) (≈87%) together with a low PHBV cell 22 

accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV 23 

contents of 38-64% were recorded under N limiting conditions along with N2O-REs of 24 

≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in-situ hybridization 25 

analyses showed that P. denitrificans was dominant (>50%) after 6 months of 26 

experimentation. The successful abatement of N2O concomitant with PHBV accumulation 27 

confirmed the potential of integrating biorefinery concepts into biological gas treatment for 28 

a cost-effective GHG mitigation.  29 
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INTRODUCTION 32 

The increasing public concern about global temperature rise and climate change has 33 

attracted the attention of politicians and the scientific community during the past decade. 34 

Nowadays, there is no doubt about the fact that these environmental problems are caused 35 

by the rapid accumulation of greenhouse gases (GHGs), whose concentrations are 45 % 36 

higher than those prevailing in the preindustrial era.1 Nitrous oxide (N2O), the third most 37 

important GHG with a global warming potential 300 times higher than that of CO2 due to 38 

its high atmospheric persistence (150 years), accounts for 6.2 % of the total GHG emissions 39 

globally. N2O is also one of the main sources of stratospheric NOx and is considered the 40 

most important ozone depleting substance emitted in this 21st century.2 Agriculture is the 41 

principal source of anthropogenic N2O emissions, followed by chemical industry and waste 42 

management processes. The production of nitric and adipic acid are the major N2O source 43 

in industry, whose global emissions reach up to 400 Kton of N2O per year.3 A typical waste 44 

gas from nitric acid production plants is characterized by 100-3500 ppmv of NOx, 300-3500 45 

ppmv of N2O, 1-4 % of O2 and 0.3-2 % of H2O (in a N2 matrix).4 46 

Several physical-chemical technologies such as non-selective catalytic reduction (NSCR) 47 

or catalytic decomposition have been applied as end-of-the-pipe strategies for the treatment 48 

of N2O emissions from industrial sources.5 However, these technologies entail the 49 

consumption of a reducing agent such as hydrocarbons or ammonia and require the 50 

preheating of the tail gas for N2O destruction, resulting in a considerable energy 51 

consumption since nitric acid waste gas is typically emitted at ambient temperature.6 52 

Moreover, the environmental sustainability of NSCR technologies can get also jeopardized 53 
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by fugitive emissions of CH4 derived from an incomplete fuel combustion during the 54 

treatment of N2O.7 55 

Biological technologies have been shown to exhibit a high robustness, cost efficiency and 56 

environmental friendliness for the treatment of industrial off-gases containing malodorous 57 

and volatile organic compounds.8 In spite of their inherent advantages, no biological 58 

process has ever been evaluated for the abatement of N2O emissions from nitric and adipic 59 

acid plants.9,10 This GHG is an obligate intermediate in the reduction of  NO3
- and NO2

- to 60 

N2, which to the best of our knowledge is the only known biochemical mechanism for N2O 61 

removal. Thus, since nitric and adipic acid emissions are mainly composed of N2O, N2 and 62 

trace levels of O2, denitrification appears as an attractive alternative for the abatement of 63 

N2O when a cheap source of organic carbon and electron donor is available for the growth 64 

of heterotrophic bacteria.9,10 In this context, the economic viability of this process can be 65 

significantly improved by coupling the abatement of N2O via denitrification with the 66 

production of added value bioproducts such as polyhydroxyalkanoates (PHA) biopolymers. 67 

These bio-based chemicals, especially poly(3-hydroxybutyrate) (PHB) and poly(3-68 

hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), share with conventional fossil-derived 69 

thermoplastics similar physical/chemical characteristics such as melting point, molecular 70 

weight and tensile strength.11 PHAs also possess a rapid biodegradability in nature, which 71 

render them a perfect substitute of conventional fossil polymers. There are several 72 

denitrifying bacteria such as Paracoccus denitrificans, Pseudomonas aeruginosa and 73 

Ralstonia eutropha, capable of producing intracellular PHA as a carbon storage material in 74 

excess of organic carbon under nutrient limitation.12,13 Therefore, an innovative GHG 75 

biorefinery could be engineered for the simultaneous abatement of N2O and co-production 76 
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of PHAs in nitric and adipic acid plants in order to enhance the economic and 77 

environmental sustainability of N2O abatement.   78 

In this context, the potential of a bubble column (BCR) and an airlift (ALR) bioreactors for 79 

the treatment of a synthetic N2O emission from nitric acid plant was compared. The strain 80 

Paracoccus denitrificans (DSM 413) was used as a model denitrifying bacterium in the co-81 

production of the co-polyester PHBV using methanol as a carbon-energy source under 82 

nitrogen sufficiency and two different nitrogen limiting strategies. 83 

MATERIALS AND METHODS 84 

Chemicals and mineral salt medium 85 

The mineral salt medium (MSM) used in the experimentation was composed of (g L-1): 86 

Na2HPO4·12H2O 6.16, KH2PO4 1.52, MgSO4·7H2O 0.2, CaCl2 0.02, NH4Cl 1.5 and 10 mL 87 

L-1 of a trace element solution containing (g L-1): EDTA 0.5, FeSO4·7H2O 0.2, 88 

ZnSO4·7H2O 0.01, MnCl2·4H2O 0.003, H3BO3 0.03, CoCl2·6H2O 0.02, CuCl2·2H2O 0.001, 89 

NiCl2·6H2O 0.002, NaMoO4·2H2O 0.003. The final pH of the MSM was 7. All reagents, 90 

including methanol, were purchased from PANREAC with a purity of >99 %. Benzoic acid 91 

(>99 %) and PHBV standards were obtained from Sigma-Aldrich® (Sigma-Aldrich, St. 92 

Louis, MO, USA). A 40 L calibrated gas cylinder of 50,000 ppmv of N2O in N2 and 50 L 93 

industrial N2 cylinder were purchased from Abelló Linde S.A. (Barcelona, Spain). 94 

Microorganism cultivation 95 

The methylotrophic strain Paracoccus denitrificans (DSM 413) was purchased from 96 

DSMZ (Braunschweig, Germany). The bacterium was cultivated in sterilized 1 L E-flasks 97 
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with 0.5 L of MSM with methanol (1 % v/v) as the sole carbon and energy source under 98 

aerobic conditions for 3 weeks. 99 

Experimental set up 100 

A BCR of 42 cm of height (H) and 9 cm of inner diameter (ID), and an ALR of the same 101 

dimensions with a concentric draft tube (ID = 5.5 cm, H = 29.5 cm) located at 4 cm from 102 

the bottom of the reactor, were inoculated with 0.5 L of P. denitrificans inoculum and filled 103 

with MSM to a working volume of 2.3 L, resulting in an initial total suspended solid (TSS) 104 

concentration of 56 mg L-1 in both bioreactors. The synthetic nitric acid plant N2O emission 105 

was obtained by mixing the calibrated mixture of N2O (50,000 ppmv), air from a 106 

compressor and pure N2 using mass flow controllers (Aalborg, Denmark). The gas mixture 107 

resulted in BCR and ALR inlet N2O gas concentrations of 3520 ± 290 and 3560 ± 300 108 

ppmv, respectively. The O2 inlet gas concentration remained at 1.1 ± 0.1 % in each 109 

bioreactor. Both the BCR and ALR were supplied with an inlet gas flow rate of 137 ± 8 and 110 

140 ± 10 mL min-1, respectively, which corresponded to a gas empty bed residence time 111 

(EBRT) of ≈17 min. Pure methanol (CH3OH) was injected in the gas line by means of a 112 

syringe pump in a sample port filled with fiberglass wool to facilitate solvent evaporation. 113 

The systems were operated in a controlled temperature room at 25 ºC. A detailed diagram 114 

of the experimental setup can be found in Figure S1 (supporting information).  115 

Operational conditions 116 

Three operational strategies, corresponding to Stages I, II, and III, were evaluated in both 117 

bioreactors under different MSM nitrogen concentrations in order to assess the feasibility of 118 

a simultaneous N2O removal and PHBV cell accumulation. During the first 43 days of 119 
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operation (Stage I) the bioreactors were maintained under nitrogen sufficiency by supplying 120 

MSM with 396 mg N L-1 and 124 g C m-3 d-1 of CH3OH. During Stage I, 300 mL of the 121 

cultivation broth was replaced by fresh MSM three times per week, which resulted in a 122 

dilution rate of ̴ 0.056 d-1 and an N inlet load of 22.1 g N m-3 d-1. Stage II (days 44 to 127) 123 

was devised to promote the accumulation of  intracellular PHBV at a CH3OH inlet load of 124 

93 g C m-3 d-1, which guaranteed carbon availability. The N concentration in the MSM was 125 

reduced to 34 mg N L-1 during Stage II, with 300 mL of fresh MSM being replaced every 126 

two days. This resulted in a N inlet load of 2.2 g N m-3 d-1, a dilution rate of 0.065 d-1 and 127 

nitrogen fast:famine cycles of 1d:1d. In Stage III (days 128 to 179), the nitrogen 128 

concentration in the MSM was increased to 68 mg N L-1 while decreasing the frequency of 129 

MSM replacement (300 mL) from two to four days at a CH3OH inlet load of 108 g C m-3 d-
130 

1. The dilution rate and N inlet load during Stage III was 0.033 d-1 and 2.2 g N m-3 d-1.  A 131 

mass transfer test was carried out according to Cantera and coworkers14 at the end of Stages 132 

II and III by increasing the N2O inlet concentration from ≈3527 to ≈9058 in order to 133 

elucidate the limiting factor during N2O reduction to N2 under the experimental conditions 134 

evaluated. 135 

Sampling and analytical procedures 136 

The gas phase monitoring procedure entailed the periodical measurement of N2O, CO2 and 137 

O2 gas concentrations at both inlet and outlet bioreactors sampling ports. The monitoring of 138 

the liquid phase involved the withdrawal of 300 mL of cultivation broth from each 139 

bioreactor in order to determine the dissolved total organic carbon (TOC), total nitrogen 140 

(TN), CH3OH, TSS and PHBV concentrations. The dissolved oxygen concentration was 141 

measured in-situ. In addition, 20 mL of the cultivation broth was centrifuged, wash with 142 
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distilled water and dried at 105 ºC for 24 h for the measurement of C, N, H and S cell 143 

content at the end of each experimental conditions.  144 

The N2O and CO2/O2 gas concentrations were measured by GC-ECD and GC-TCD 145 

according to Frutos et al.9 and Lopez et al.,15 respectively. TOC and TN concentrations 146 

were measured using a TOC-VCSH analyzer (Shimadzu, Tokyo, Japan) coupled with a 147 

total nitrogen chemiluminescence detection module (TNM-1, Shimadzu, Japan). Dissolved 148 

CH3OH concentration was determined in a GC-FID (Bruker 3900, Palo Alto, USA) 149 

equipped with a SupelcoWax (15 m × 0.25 mm × 0.25 µm) capillary column. GC-FID 150 

injector and detector temperatures were maintained at 200 and 250 ºC, respectively. 151 

Nitrogen was used as the carrier gas at 1 mL min-1 while H2 and air flows were fixed at 30 152 

and 300 mL min-1, respectively. N2 was also used as the make-up gas at 25 mL min-1. The 153 

determination of TSS concentration was performed according to standard methods16. The 154 

dissolved oxygen concentration was measured with a handheld OXI 330i oximeter (WTW, 155 

Germany) while pH was periodically monitored using a pH/mV/°C meter (pH 510 Eutech 156 

Instruments, Nijkerk, the Netherlands). To quantify the PHBV concentration, 2 mL of the 157 

cultivation broth were centrifuged at 9000 rpm for 15 min and the biomass pellet obtained 158 

was processed according to Zuñiga and coworkers,17 using chloroform as extraction 159 

solvent. The PHBV extracted was measured by GC-MS (Agilent Technologies: GC System 160 

7820A MSD 5977E, Santa Clara, USA) equipped with a DB-wax column (30 m × 250 µm 161 

× 0.25 µm) with detector and injector temperatures of 250 ºC and a split ratio of 1:10. The 162 

oven temperature was initially maintained at 40 ºC for 5 min, increased at 10 ºC min-1 up to 163 

200 ºC and maintained at this temperature for 5 min. The PHBV cell content was 164 
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normalized as %PHBV= (g PHBV/g TSS) × 100. The analysis of C, N, H and S biomass 165 

content was conducted using a LECO CHNS-932 elemental analyzer. 166 

Electron microscopy analysis 167 

Cultivation broth samples of 1 mL were drawn from the bioreactors at the end of Stage III 168 

and centrifuged at 4000 rpm and 4 ºC for 5 min. Subsequent biomass pellets conditioning 169 

was carried out according to Bozzola.18 The samples were then cut in thin slices by a 170 

microtome and contrasted according to Wendlandt and coworkers.19 A TEM JEOL JEM-171 

1011 electron microscope (Teknolab, Indonesia) equipped with an ES1000W Erlangshen 172 

CCD camera (Gatan, Germany) was used for the analysis. 173 

Fluorescence in situ hybridization (FISH) analysis 174 

Aliquots of 250 uL of the cultivation broth from both bioreactors at the end of each 175 

operational stage were fixed in 4 % (w/v) paraformaldehyde for 3 h, washed three times 176 

with phosphate-buffered saline (PBS) and then preserved in alcohol 96 % (v/v). Aliquots of 177 

10 µL of samples were placed on glass microscope slides and dehydrated with ethanol at 50 178 

%, 80 % and 96 % (v/v). The probes used were EUB338 I-II-FITC (for general 179 

bacteria)20,21 and PAR651-Fam (specific for the genus Paracoccus).22 Hybridization was 180 

carried out at 46 ºC using formamide at 40 % .23 For quantitative FISH analysis, 16 images 181 

were randomly acquired from each well on the slides using a Leica DM4000B microscope 182 

(Leica Microsystems, Wetzlar, Germany). The relative bio-volumes of the specific genus 183 

Paracoccus from the total bacteria (EUB338 I-II) were calculated using  the commercial 184 

software DAIME and split into individual color channels before image segmentation.24 185 
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RESULTS AND DISCUSSION 186 

Influence of nitrogen supplementation on N2O abatement 187 

The two bioreactors exhibited a low and stable dissolved oxygen (DO) concentration during 188 

the entire experimentation (0.07 ± 0.1 mg L-1 in both bioreactors). Similarly, a stable pH of 189 

6.8 ± 0.2 was recorded in both systems along the three operational stages. The N2O REs 190 

reached a steady state 10 days after the startup of the bioreactors. Hence, steady state N2O 191 

REs of 87 ± 3 % were reached during Stage I in the BCR with inlet and outlet N2O 192 

concentrations of 3380 ± 340 and 440 ± 74 ppmv, respectively (Figure 1A). Similarly, the 193 

ALR supported steady state REs of 88 ± 2 % with inlet and outlet N2O concentrations of 194 

3610 ± 340 and 420 ± 69 ppmv, respectively (Figure 1B).  195 
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 196 

Figure 1. Time course of the inlet (□) and outlet (○) N2O gas concentrations and removal 197 

efficiency (solid line) in the BCR (A) and ALR (B). Vertical lines indicate the different 198 

operation stages.  199 

The CO2 produced from the oxidation of CH3OH during Stage I was correlated with the 200 

removal of N2O, resulting in comparable CO2 production rates of 85 ± 8 g C m-3 d-1  and 91 201 

± 8 g C m-3 d-1 in the BCR and ALR, respectively (Figure 2A). Biomass concentration, 202 

measured as TSS, reached stable values of 853 ± 76 and 856 ± 90 mg L-1 in BCR and ALR, 203 

respectively, after 20 days of operation (Figure 2B). 204 
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 205 

Figure 2. Time course of CO2 production rates (A) and TSS concentrations (B) in the BCR 206 

(∆) and ALR (○). Vertical lines indicate the different operation stages.  207 

The decrease in N supply rate from day 44 (Stage II) in order to achieve 1d:1d nitrogen 208 

fast-famine cycles resulted in a progressive reduction in the N concentration down to a 209 

complete depletion by day 66 in both bioreactors (Figure 3). Nitrogen depletion entailed a 210 

gradual deterioration in N2O REs down to steady state values of 62 ± 7 % in BCR and 58 ± 211 

6 % in ALR (Figure 1A). This significant decrease in N2O REs was correlated to a 212 

concomitant reduction in biomass concentration as a result of the limited N availability. In 213 

this context, the TSS concentration decreased gradually to steady values of 422 ± 76 in the 214 
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BCR and of 285 ± 99 mg L-1 in the ALR from day 94 (Figure 2B). Surprisingly, the 215 

microbial population in the ALR was more impacted by N deprivation than that present in 216 

the BCR. This result suggested that the hydrodynamics of the ALR configuration might 217 

entail a harmful stress to microbial growth. In this sense, the internal draft tube of the ALR 218 

may have avoided a proper liquid mixing, which ultimately resulted in a poor nutrient 219 

distribution and a lower biomass growth compared to the BCR. This phenomenon was 220 

previously observed by Wong and co-workers25 during the operation of two ALRs with 221 

different draft tube lengths (35 and 50 cm) and a BCR for Chlorella vulgaris cultivation. 222 

The authors recorded higher biomass concentrations in the BCR and in the ALR with the 223 

shorter draft tube as a result of a better liquid mixing (i.e. nutrients distribution) compared 224 

to the ALR with the longer draft tube. The reduction in biomass concentration and N2O RE 225 

resulted in a concomitant decrease in the CO2 production rate in the ALR (63 ± 3 g C m-3 d-
226 

1) compared to CO2 production rates of 78 ± 7 g C m-3 d-1 in the BCR (Figure 2A). A mass 227 

transfer test was conducted at this point to assess the limiting factor in N2O removal during 228 

Stage II. An increase in the N2O inlet load by a factor of 2.4 ± 0.2 did not result in a 229 

concomitant increase in CO2 production rate and N2O elimination capacity (Figure S2). 230 

Hence, this tests confirmed that both bioreactors were limited by microbial activity due to 231 

the low biomass concentration supported by the limited N supply imposed.  232 

The increase in N concentration by a factor of 2 along with the reduction in the dilution rate 233 

from 0.065 d-1 to 0.033 d-1 by day 127 (Stage III) supported an increase in biomass 234 

concentration to 1017 ± 71 mg TSS L-1 and 646 ± 64 mg TSS L-1 in the BCR and ALR, 235 

respectively. This entailed a concomitant increase of N2O removal in the BCR up to steady 236 

REs of 84 ± 3 % but similar N2O-REs of 57 ± 7 % were recorded in the ALR during Stage 237 
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III (Figure 1, Figure 2). Biomass concentration did support an increase in the CO2 238 

production rates up to 85 ± 5 and 78 ± 6 g C m-3 d-1 in the BCR and ALR, respectively. In 239 

this context, the mass transfer test carried out at the end of Stage III revealed that both 240 

systems were limited by N2O mass transfer. Thus, the increase in N2O inlet load by a factor 241 

of 2.8 ± 0.1 promoted a rapid increase in the N2O elimination capacity by a factor of 2.4 ± 242 

0.1 in both reactors (Figures S3). Mass transfer limitations have been previously identified  243 

as the limiting step in a bioscrubber treating N2O laden air emissions from wastewater 244 

treatment plants, where a gas EBRT of 40 min was needed in the adsorption column in 245 

order to obtain a satisfactory N2O RE of 92 %.10 246 

To the best of the authors’ knowledge, this study constitutes the first biological process 247 

devoted to the treatment of N2O emissions originated from a nitric or adipic acid production 248 

plants and one of the pioneering works on the development of GHG biorefineries. Bubble 249 

column and internal loop airlift bioreactors have been consistently proven as low cost 250 

alternative technologies for the treatment of wastewaters and off-gases.26–29 These 251 

bioreactor configurations are pneumatically agitated, resulting in low energy consumptions. 252 

Moreover, their simple construction (with no moving parts) and high gas-liquid mass 253 

transfer rates constitute also key advantages over their biological counterpart.30–32 In our 254 

particular study, N2O-REs of 80-90 % were consistently achieved concomitantly with the 255 

co-production of added value biopolymers (see section below), which were comparable 256 

with the N2O abatement efficiencies of conventional physical/chemical technologies such 257 

as NSCR7. However, the gas EBRT (≈17 min) required to obtain high REs in the two 258 

bioreactor configurations evaluated would entail high bioreactor volumes. 259 

 PHBV accumulation during N2O abatement 260 
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A low PHBV cell content was recorded during Stage I (1.9 ± 1.3 % in the BCR and 2.6 ± 261 

1.3 % in the ALR) under TN concentrations in the cultivation broth of 238 ± 38 and 238 ± 262 

40 mg N L-1 in the BCR and ALR, respectively. The dissolved CH3OH concentrations in 263 

the BCR and ALR also remained constant during Stage I at 395 ± 20 and 367 ± 39 mg C L-
264 

1, respectively.  265 

 266 

Figure 3. Time course of the PHBV cell content (∆) and TN concentrations (○) in the BCR 267 

(A) and the ALR (B). Vertical lines indicate the different operation stages. 268 

N was completely depleted by day 66 in Stage II, which promoted the gradual increase in 269 

the PHBV cell content in both bioreactors (Figure 3). The nitrogen supply strategy 270 
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evaluated during Stage II resulted in 24 hour of nitrogen sufficiency after MSM renewal 271 

followed by 24 h under nitrogen limitation, where PHBV synthesis and accumulation was 272 

likely to occur. N-limitation induced a steady state PHBV cell content of 38 ± 7 % in the 273 

BCR under TN and dissolved CH3OH concentrations of 2.6 ± 0.5 mg N L-1 (Figure 3A) and 274 

177 ± 28 mg C L-1, respectively. The PHBV cell content recorded in the ALR was 275 

significantly higher than in the BCR, with average values of 64 ± 11 % (Figure 3B) under 276 

steady TN concentrations of 2.8 ± 0.6 mg N L-1 and dissolved CH3OH concentrations of 277 

368 ± 39 mg C L-1. The transmission electron micrographs depicted in Figure 4 confirmed 278 

the accumulation of PHBV as granules inside bacteria with a cell diameter ranging from 0.5 279 

to 1 µm, which matched the cell size of P. denitrificans.33  280 

 281 

Figure 4. Transmission electron micrographs of cells containing PHBV in the BCR (a, c) 282 

and the ALR (b). Samples were drawn at the end of Stage III. 283 

Process operation at a reduced dilution rate of 0.033 d-1 under similar N loads as Stage II 284 

mediated microbial cultivation with N sufficiency for 24 h followed by 3 days of N 285 
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deprivation in Stage III. These operational conditions promoted an enhanced PHBV cell 286 

content in the BCR of 47 ± 5 %, under steady TN and dissolved CH3OH concentrations of 287 

2.3 ± 0.3 mg N L-1 and 134 ± 23 mg C L-1, respectively. However, the PHBV cell content 288 

recorded in the ALR decreased to 40 ± 8 % in spite of the comparable TN concentration 289 

(1.9 ± 0.4 mg N L-1) and dissolved CH3OH concentrations (373 ± 72 mg C L-1). The 290 

highest PHBV yield (0.44 ± 0.2 gPHBV g-1
CH3OH) was observed in the ALR in Stage II, 291 

decreasing to average values of 0.22 ± 0.03 gPHBV g-1
CH3OH during Stage III. The BCR 292 

supported comparable production yields of 0.17 ± 0.05 gPHBV g-1
CH3OH and 0.22 ± 0.03 293 

gPHBV g-1
CH3OH in Stages II and III, respectively. The yields obtained were in agreement 294 

with previously reported PHBV yields ranging from 0.06 to 0.4 gPHBV g-1
CH3OH using 295 

methanol as the carbon source.34–37 296 

The GC-MS analysis of the copolymer PHBV showed a small share of 3-hydroxyvalerate 297 

(PHV) regardless of the operational conditions evaluated. PHV/PHBV molar ratios of 2.5 ± 298 

0.9 % and 2.9 ± 1.6 % were recorded at Stage I in the BCR and the ALR, respectively. 299 

When the bioreactors were subjected to nutrient limitation during Stages II and III, this 300 

ratio decreased to 0.46 ± 0.2 and 0.29 ± 0.1 in the BCR, and to 0.35 ± 0.1 and 0.32 ± 0.2 % 301 

in the ALR, respectively. Several authors have recorded similar results using methanol as 302 

the sole carbon and energy source under different nutrient limitation strategies. In this 303 

context, Ueda et al.38 did not detect PHV in the PHBV copolymer accumulated in P. 304 

denitrificans when CH3OH was used as the sole substrate (0.3% v/v). However, the PHV 305 

molar fraction increased up to 87 % when n-amyl alcohol (0.25 % v/v) was supplied 306 

together with CH3OH (0.3 % v/v) . Similarly, Yamane et al.12 explored the role of the type 307 

of alcohols (methanol, ethanol, n-propanol, n-butanol and n-pentanol) at a concentration of 308 
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0.1 % (v/v) on the PHBV cell content in P. denitrificans under N limiting conditions. The 309 

results revealed no PHV accumulation when CH3OH was the sole carbon source, which 310 

suggested that CH3OH is not the most suitable carbon source when a high share of PHV is 311 

desired.  312 

The analysis of the elemental cell composition (C, H, S, and N) carried out at the end of 313 

Stage I showed C and N cell contents of ≈44 and ≈11 %, respectively (Table S1), which 314 

represented a C/N ratio of ≈4. This value was in agreement with the typical elemental 315 

composition for bacterial cells.39 However, a significant reduction in N cell content was 316 

observed in the biomass from both bioreactors as a result of cell adaptation when N limiting 317 

strategies were implemented in Stages II and III. Thus, the C/N ratio recorded in the ALR 318 

and the BCR under nitrogen limitation increased to values ranging from 6.1 to 8.2. The 319 

likely decrease in protein cell content due to the limited N uptake also entailed a decrease in 320 

the S content of the microbial communities present in both bioreactors. A variation in the C 321 

cell content was not observed in spite of the accumulation of the biopolymer likely due to 322 

the similar elemental composition (C, H and O) of PHBV and biomass. 323 

FISH analysis of the microbial population structure 324 

The FISH analysis revealed the variation of the abundance of the P. denitrificans along the 325 

entire operational period (Table S2).  Both bioreactors showed a P. denitrificans abundance 326 

higher than 90 % by the end of Stage I (Figure 5, Table S2). At the end of Stage II (day 327 

120), the abundance of the inoculated strain in the BCR and ALR slightly decreased to 88 328 

% and 86 % (Table S2). These results confirmed that P. denitrificans was capable of 329 

growing and dominating the microbial culture under anoxic conditions using CH3OH as the 330 
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sole carbon/energy source and N2O as electron acceptor. By the end of the experimentation 331 

(day 180), P. denitrificans remained dominant in both bioreactors (abundances > 50 %) 332 

(Figures 5c and 5f). In this context, the presence of others microbial strains capable of 333 

accumulating biopolymers may explain the maintenance of the PHBV cell content observed 334 

in Stage III despite the decrease in P. denitrificans abundance. 335 

 336 

Figure 5. FISH micrographs of the microbial culture present at the end of the three 337 

operational stages evaluated in the ALR (a-c) and BCR (d-f). PAR651-fam (green) appears 338 

yellow due to a double hybridization with the EUB338 I-II- FITC probes (red). 339 

In summary, this work demonstrated the feasibility of the combined biological abatement 340 

of N2O from industrial emissions and co-production of PHBV. High N2O-REs were 341 

recorded in spite of process operation under nitrogen limiting conditions. The nitrogen 342 

limiting strategies assessed in this study resulted in a high accumulation of PHBV by P. 343 

denitrificans using methanol and N2O as the carbon/energy source and the electron 344 

acceptor, respectively. This study reports the first cost-efficient and environmentally 345 
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friendly bioprocess for the active abatement of N2O using a waste-to-value biorefinery 346 

approach.  347 
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