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 

Abstract— This paper presents an electroencephalographic 

(EEG) P300-based brain-computer interface (BCI) Internet 

browser. The system uses the “odd-ball” row-col paradigm for 

generating the P300 evoked potentials on the scalp of the user, 

which are immediately processed and translated into web 

browser commands. There were previous approaches for 

controlling a BCI web browser. However, to the best of our 

knowledge, none of them was focused on an assistive context, 

failing to test their applications with a suitable number of end 

users. In addition, all of them were synchronous applications, 

where it was necessary to introduce a “read-mode” command in 

order to avoid a continuous command selection. Thus, the aim of 

this study is twofold: (i) to test our web browser with a 

population of multiple sclerosis (MS) patients in order to assess 

the usefulness of our proposal to meet their daily communication 

needs; and (ii) to overcome the aforementioned limitation by 

adding a threshold that discerns between control and non-control 

states, allowing the user to calmly read the web page without 

undesirable selections. The browser was tested with sixteen MS 

patients and five healthy volunteers. Both quantitative and 

qualitative metrics were obtained. MS participants reached an 

average accuracy of 84.14%, whereas 95.75% was achieved by 

control subjects. Results show that MS patients can successfully 

control the BCI web browser, improving their personal 

autonomy. 

 
Index Terms—Brain-computer interfaces, P300 event-related 

potentials, electroencephalography, web browser, multiple 

sclerosis, asynchronous control. 

 

I. INTRODUCTION 

HE application of Brain-Computer Interface (BCI) can 

improve the quality of life of those who have a disability 

that limits their ability to communicate, such as 

neurodegenerative diseases, traumatic brain injuries, Guillain 

Barré syndromes, degenerative muscle disorders, and other 

diseases that impair the neural pathways that control muscles 
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or even the muscles themselves [1]–[4]. BCI applications 

establish a communication system between the brain and the 

environment, translating the user’s intentions into device 

control commands. Even though there are a variety of methods 

for monitoring brain activity, electroencephalography (EEG) 

is commonly used due to its non-invasive nature. The electric 

potentials are recorded by means of placing several electrodes 

on the scalp [3], [4]. 

People who suffer multiple sclerosis (MS) are potential users 

of this kind of applications. MS is considered the most 

common autoimmune disorder that affects the central nervous 

system [5]. Twenty years after onset, up to 60% of the patients 

experience motor disability [5]. Although most people with 

MS have a normal or near-normal life expectancy, in rare 

cases, the disease can be terminal. MS is primarily an 

inflammatory disorder that leads to damage the myelin of 

brain and spinal cord nerve cells [6]. This damage disrupts the 

ability of those neurons to communicate, resulting in a wide 

range of symptoms, including motor skill problems, cognitive 

deficit, or even psychiatric disorders [6]. 

MS patients could benefit from this technology for reducing 

their dependence. Due to its advance over the last few 

decades, Internet has caused a profound effect on people’s 

lives, becoming a global means of daily communication. 

However, web browsers are designed for healthy users, 

intended to be used with a keyboard and a mouse, but not with 

a small number of input signals [7]. Therefore, it seems 

suitable to make the Internet accessible for those whose ability 

to communicate is restricted, in order to increase their 

autonomy, and thus their quality of life. 

There had been previously developed several attempts for 

controlling web browsers with BCI applications. The first ones 

used either slow cortical potentials (SCPs) or sensory-motor 

rhythms (SMR) as control mechanisms and were based on 

dichotomous approaches, using binary decision trees for 

selecting or rejecting commands [8], [9].  Besides the 

slowness of the aforementioned approach, those browsers 

needed a supervisor who adjusted several parameters (e.g., 

reading speed, length of the reading pause, address book 

entries, etc.) [8], [9]. In addition, both SCPs and SMR are 

endogenous signals, and it was necessary a long time so that 

the user learnt how to control its own EEG activity [8]–[10]. A 

few years later, Mugler et al [11] overcame the selection 
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slowness of the dichotomous approach developing a BCI 

browser controlled via P300 evoked potentials based on the 

“odd-ball” paradigm [12]. These potentials are produced in 

response to infrequent and particularly significant visual, 

auditory, or somatosensory stimuli about 300 ms after its 

elicitation [3]. Hence, training time was reduced because of 

their exogenous nature and the number of input signals 

drastically increased [11], [13]. In addition, page links were 

tagged with an alphanumeric code and any link could be 

selected by entering the corresponding code with the selection 

matrix [11]. Sirvent Blasco et al [13] also used P300 evoked 

potentials as a control mechanism. However, instead of using 

the page tagging approach, one of the selection matrices was 

intended to work as a virtual mouse, whose commands 

allowed the user to move the cursor a variety of discrete pixel 

distances [13]. Nevertheless, P300-based web browsers were 

synchronous processes and thus, it was needed to introduce 

several “read mode” commands for avoiding a continuous 

selection of items when the user wanted to calmly read the 

webpage, resulting in a rigid navigation [11], [13]. For a truly 

free surfing, however, the synchronous mode is impractical 

because the system will deliver a selection even if the user is 

not paying attention to the stimulation [14]. The latest BCI 

web browser was developed by Yu et al [15]. The work was 

based on a two-dimensional BCI mouse that used SMR 

imagery and P300 potentials for controlling the horizontal and 

vertical movements, respectively. As stated above, its main 

limitation lied in the long required training time for learning to 

control the SMR activity. 

The purpose of this study is twofold: (i) to design, develop 

and test a P300-based BCI web browser with a population of 

MS patients in order to assess the usefulness of our proposal to 

meet their daily communication needs; and (ii) to provide the 

BCI web browser with an asynchronous approach in order to 

overcome the aforementioned limitations, by setting up a 

threshold which determines if the user is paying attention to 

the stimulation (control state) or, otherwise, is ignoring it 

(non-control state). 

II. SUBJECTS AND METHODS 

A. Subjects 

Sixteen MS patients (mean age 42.06 ± 7.47 years; 10 

males, 6 females) and five healthy control subjects (CS) (mean 

age 26.00 ± 4.58 years; 5 males) were included in this study. 

MS participants were patients from the National Reference 

Centre on Disability and Dependence, located in León (Spain). 

The study was approved by the local ethics committee and all 

subjects gave their informed consent for participating in the 

study. Table I summarizes the demographic and clinical 

characteristics of all participants. 

B. Description of the BCI Internet Browser 

The application is composed of three different stages: data 

acquisition, EEG processing stage, and web surfing stage. As 

shown in Fig. 1, data acquisition records the EEG signal and 

delivers it to the EEG processing phase. This stage controls 

the presentation of the stimuli and determines the selected 

command, which is delivered to the web surfing stage, 

responsible for interpreting the order and displaying the 

desired feedback.   

 

1) Data Acquisition 

 The first stage records and pre-processes the EEG signals 

using a spatial and temporal filtering. Those signals were 

recorded using 8 active electrodes placed on Fz, Cz, Pz, P3, 

P4, PO7, PO8 and Oz, according to the International 10–20 

System [16] distribution, using a FPz electrode as a ground 

and referencing the system to the earlobe. This distribution is 

 
Fig. 1.  Structure of the BCI web browser. Three different stages compose 

the proposed system: data acquisition, EEG processing and web surfing.  

TABLE I 

DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE PARTICIPANTS 

 

User Sex Age 
Motor 

disability 

Cognitive 

ability 

Sustained 

attention 

ability 

M
S

 

U01 F 30 Non-existent Very high Very high 
U02 M 31 Non-existent High Very high 

U03 M 43 Mild Very high High 

U04 F 47 Moderate Normal High 
U05 M 56 Moderate Low Very low 

U06 F 32 Non-existent Normal Normal 

U07 M 35 Non-existent Very high Very high 
U08 M 41 Non-existent High High 

U09 F 49 Non-existent Normal Very high 

U10 M 44 Mild Normal Low 
U11 F 41 Moderate Normal High 

U12 M 43 Moderate Very high Normal 

U13 M 44 Non-existent High High 
U14 M 52 Moderate Very high Normal 

U15 F 38 Non-existent Normal High 

U16 M 47 Moderate Normal Normal 

C
S

 

C01 M 23 - - - 

C02 M 31 - - - 

C03 M 23 - - - 

C04 M 31 - - - 
C05 M 22 - - - 

CS: control subjects, MS: multiple sclerosis patients, F: female, and M: 

male. 
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commonly used to record P300 potentials, mainly generated 

over the parietal cortex [17]–[19]. Electrodes were connected 

to a g.USBamp amplifier (g.Tec, Guger Technologies, 

Austria) with a sampling frequency of 256 Hz. Band-pass (0.1 

Hz to 60 Hz) and notch (50 Hz power interference) filters 

were applied. In order to reduce the noise inside the recording, 

a common average reference (CAR) spatial filter was also 

applied. BCI2000 software [20], [21] was used to control the 

presentation of the stimuli, record and save data on a laptop 

(Intel Core i7 2.40 GHz, 8 GB RAM, Windows 8.1). The 

selection matrices and the browser were displayed on an 

additional panoramic monitor (23’’ screen) adjacent to the 

laptop. 

 

2) EEG Processing Stage 

The second stage, implemented in C++, processes the EEG 

signal received from the data acquisition. To this end, the 

system evokes the P300 potentials by means of the 

aforementioned “odd-ball” paradigm. In this paradigm, a 

target infrequent stimulus, which has to be attended, is 

presented among other more frequent background stimuli that 

have to be ignored [3], [12]. When the user receives the target 

stimulus, a P300 evoked potential appears on the parietal 

cortex about 300 ms later. It has been widely documented that 

the amplitude of the P300 varies directly with the relevance of 

the eliciting events and inversely with the appearance 

probability of the target stimulus [3], [12]. Specifically, we 

have used an application of the “odd-ball” paradigm known as 

row-col paradigm, whose stimuli are visual: matrix rows and 

columns are randomly flashed [22]. When the target’s row or 

column are illuminated, a P300 potential is generated, used for 

figuring out what the desired command is [3], [11]–[13], [15]. 

More specifically, each random stimulus lasts for 62.5 ms and 

then the screen remains unvarying for 125–250 ms [19]. 

The application displays the browser on the left side of the 

screen and a selection row-col paradigm based matrix on the 

right side. Specifically, Google Chrome was selected as the 

target browser because it allows developers to comfortably 

program extensions (i.e., small software programs that can 

modify and enhance the functionalities of the browser). In 

order to provide a free and complete navigation, many 

commands are needed. Due to the large number of commands, 

the application uses alternatively two different matrices 

intended for different purposes (Fig. 2). “Navigation matrix” 

is the default one. Its small size (53) allows the user to 

quickly select the commands and thus, it is intended for web 

browsing. Hence, it contains navigation commands, such as 

scrolls, home page, reload, history forward and backward, 

among others. The other one is called the “keyboard matrix” 

(95), which is intended to write e-mails or fill out forms. For 

this reason, it contains all the alphanumeric characters and a 

variety of symbols commonly used on the Internet.  

Once all the rows and columns have been flashed, it is 

needed to extract the most relevant features of the EEG signal. 

Because of the high sampling rate of the recordings relative to 

the low frequency of the P300 response, a dimensionality 

reduction for removing redundant features is beneficial for the 

real-time classification [23]. In this case, a subsampling of 20 

Hz over an 800 ms window from the stimulus onset is applied 

[13], [19]. Therefore, each stimulus is considered a vector f of 

128 features: 16 samples (20 Hz · 0.8 s)  8 channels. As a 

result, the feature matrix of each character epoch would be 

 TT

m

TT
fffx ,...,, 21 , with scr NNNm  )(  (sum of rows 

and columns  number of sequences). 

The feature matrix is the input of the classification phase, 

which aims to determine the command the user wants to 

select. A linear classifier is used to determine whether there is 

 
Fig. 2.  User application interface: current selection matrix is displayed on the right side of the screen and a Wikipedia web page on the left side. Selection 
matrix can be commuted by the user between navigation matrix (left) and keyboard matrix (right). As shown in the buffer (a), the user has previously selected 

“01” and thus, potential selections (b) are highlighted in green, while the rest of them (c) are colored in grey. In this shot, the fourth row of the current selection 

matrix is being illuminated (d). 
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a P300 potential in each stimulus or not. In this study, we used 

a step-wise linear discriminant analysis (SWLDA), a linear 

classifier that projects the data simultaneously minimizing the 

within-class covariance and maximizing the between-class 

covariance [24]. In addition, the algorithm selects the most 

suitable features to be included in a multiple discriminant 

model, optimized for each user, reducing the dimensionality of 

the projection weight vector w . However, this solution and 

least-square regression are equivalent for binary classification 

tasks [23]. The step-wise method decides to add or to remove 

a feature from the model by means of a combination of 

forward selection (add if p–value < 
inp ) and backward 

elimination (remove if p–value > 
outp ) steps, respectively 

[17], [23]. Therefore, significant differences (p–value < 0.05) 

between models with and without the current evaluated feature 

are assessed to determine whether it provides discriminative 

information to the model or not. In this case, the discriminant 

function was restricted to contain a maximum of 60 features 

[13], [17]–[19], [23], and the selection/elimination criteria was 

set up as 10.0inp  and 15.0outp , commonly applied in 

P300-based BCI studies [17], [19], [23], [25], [26]. Once the 

optimum weight vector w  is computed, under the assumption 

that noise is normally distributed with equal covariances for 

both classes, the output of SWLDA is a log-likelihood ratio to 

belong to the positive class (i.e., presence of P300) [27]. This 

ratio is computed as the Euclidean distance between the 

projected data and the projected mean of the positive class, as 

follows: 

,,, 1μwxwl         (1) 

where w  denotes the weight vector, x  the feature matrix 

and 1μ  the mean of the positive class. In order to predict the 

selected item, it is necessary to turn the 1 ml  vector into a 

matrix cr NN 
P  that indicates the probability of selecting 

each cell. Thus, for each matrix item 
ip , the average of the 

log-likelihood scores of all the stimuli that belong to the same 

row and column is computed, as indicated in equation (2). 

Once the matrix P  is calculated, the predicted item is the one 

that provides the maximum probability, )max(Pcharp .  





cr NN

i

rowi

s

i l
N

p
1

col
2

1
       (2) 

As stated above, row-col paradigm based selection matrices 

are synchronous processes. This means that the system will 

deliver a selection whether the user is paying attention to the 

stimulation (i.e., control state) or not (i.e., non-control state) 

[14], [18]. In this study, we have developed an asynchronous 

approach by placing a threshold ( T ) that is intended to 

distinguish between both states. When enough control and 

non-control state registers are recorded, the probability of the 

predicted item for each character epoch (
charp ) is stored and 

labeled. In other words, two vectors are created by 

concatenating the predicted item probabilities for each 

character, which corresponds to control and non-control 

selections. Due to the absence of attention, non-control 

probabilities are expected to be smaller than control ones and 

thus, it is expected that a constant threshold could discern 

between both states. Therefore, control and non-control 

vectors are fed as two different classes into a receiver 

operating characteristic (ROC) curve, a graphical plot that 

illustrates the performance of a binary classifier system as its 

discrimination threshold varies. The curve is created by 

plotting the true positive rate (i.e., sensibility) against the false 

positive rate (i.e., 1-specificity) for a set of threshold values. 

The custom threshold value for each user is chosen offline 

(i.e., before the evaluation sessions) as the point that fulfills 

the maximization of the sensitivity and specificity pair, 

looking for the best performance when distinguishing non-

control and control states, as shown in Fig. 3. Then, in online 

evaluation sessions, the probability of each new predicted item 

charp  is compared with the threshold value T : if Tpchar  , 

the selection is classified as control state; if Tpchar  , the 

selection is classified as non-control state. Finally, if the user 

intention is classified as a control state selection, it is delivered 

to the web surfing stage. Otherwise, the system considers it as 

a warning and asks the user for trying to select the command 

again.  

 

3) Web Surfing Stage 

 The third and final stage was implemented in JavaScript as 

a Google Chrome extension. It is intended to receive and 

translate the user selections into browser commands and return 

a suitable feedback (Fig. 2). 

Firstly, the extension calculates how many nodes are on the 

current web page, where a node is any kind of clickable 

object, such as links, buttons or forms, among others. Then, 

those nodes are coded with the minimum number of digits 

using numbers from 0 to 5. As can be seen in Fig. 2, those 

numbers are included in the navigation matrix in order to 

increase the manageability of the application. Additionally, the 

“TAG” toggle controls the displaying of those codifications in 

form of tags allocated close to each link.  

 
Fig. 3. Threshold estimation for U07 user. (Left) ROC curve using different 

threshold values for the same subject data. Optimum threshold T (asterisk) 

was calculated as the point that maximizes the sensitivity and specificity pair 
(i.e., minimum Euclidean distance from (0,1) coordinates). (Right) Boxplots 

for control (C) and non-control (N) normalized probabilities of the predicted 

characters and user’s optimum threshold T (dash-dot black line). 
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Thus, any link on the page can be executed by introducing 

its coding only using the navigation matrix [11]. Moreover, 

the application avoids the insertion of an additional “return” 

key to confirm the selection by automatically executing the 

link provided that the user has selected the needed number of 

characters, increasing the web surfing speed. 

Feedback is provided to the user in several ways. On the 

one hand, when tag displaying is enabled, the extension 

initializes a buffer on the upper left corner of the screen that 

indicates what numbers were previously selected. In case of a 

selection error, user can remove the last selection with the left 

arrow command. On the other hand, potential selections (i.e., 

selections whose coding starts with the previously selected 

numbers) are highlighted in green, as shown in Fig. 2.  

C. Evaluation Procedure 

During the assessment, all participants were sat down on a 

comfortable chair or on their own wheelchair, in front of a 

panoramic screen. Each user carried out four different 

sessions: two calibration sessions (Cal-I and Cal-II) and two 

evaluation sessions (Eval-I and Eval-II). 

 

1) Calibration Sessions 

The first calibration session was divided in two parts: 

classifier optimization and threshold calibration. Classifier 

optimization approximately lasted 24 min, and it was divided 

in 4 trials of 6 items (i.e., words composed of six characters). 

Users were asked for sequentially paying attention to those 

items while the matrix was flashing. Fifteen sequences were 

used (i.e., each row and column was illuminated 15 times in a 

single trial), so each desired character was highlighted 30 

times. In order to keep the attention on the task, users were 

recommended to count how many times the target item was 

being flashed. In this initial session, only the keyboard matrix 

was displayed. Then, SWLDA was performed for assigning 

the optimum weights and number of sequences for each user. 

This custom classifier was used during the rest of the 

assessment. 

Threshold calibration was composed of 8 trials with 6 

items: half of those trials were intended to record the control 

state and the rest of them the non-control state. Navigation 

matrix was used in order to reduce the task time. Due to the 

variation on the optimum number of sequences for each user, 

the duration of this task differed between users (average trial 

duration, ME 3:12 ± 1:08 min, CS 2:58 ± 0:51 min). Control 

state was recorded with the same procedure as the classifier 

optimization: asking the users for focusing their attention on 

specific series of commands. However, non-control state 

recordings followed a different procedure. A wide text was 

displayed on the left of the screen while navigation matrix was 

flashing. Users were asked to ignore the stimuli and read the 

text. 

The second calibration session was only composed of 

another threshold calibration. That was necessary because the 

amplitude and latency of the P300 potentials usually vary 

between sessions, owing to the variation of the cap position on 

the scalp, user attention, attitude, among others [28]. 

Therefore, recording the intensity of control and non-control 

state potentials in two different days increases the robustness 

of the asynchronous threshold customized for each user. The 

final threshold value was calculated as the average of both 

optimal thresholds. 

Whether a user did not reach a minimum of 70% 

classification accuracy in the first calibration session, the 

classifier calibration was repeated in the second one. If after 

both sessions the user could not obtain more than 70% 

accuracy, considered as the minimum rate for experiment a 

satisfactory performance, the user was discarded of the 

assessment [11], [19]. This case occurred three times in the 

MS subject group. 

 

2) Evaluation Sessions 

Both evaluation sessions were intended to assess the quality 

of the web browser by means of setting different tasks. 

Nonetheless, threshold was not applied in the first one in order 

to determine if there is an improvement when it is applied 

(i.e., in the second one).   

The first evaluation session was made up of five different 

tasks that required the use of the web browser. The four first 

ones were intended to assess the control state and the last one 

was only intended to assess the non-control state behavior. As 

pointed out earlier, tasks duration varied between users due to 

the optimal number of sequences for each one. However, a 

mean average time and its standard deviation are provided. 

The evaluation tasks were the following: 
1) Link selection. Users had to scroll up and down a 

Wikipedia page and select one link (6 items, MS 4:01 ± 

1:31 min, CS 2:33 ± 0:24 min). 

2) Google searching. Users had to select the Google 

search form, write “BCI” inside it and select “ENTER” 

for running the search (8 items, MS 6:00 ± 1:28 min, 

CS 4:28 ± 1:03 min). 

3) Publishing a tweet. Users had to select the Twitter 

form, write a two-character tweet and send it (6 items, 

MS 4:13 ± 1:19 min, CS 2:38 ± 0:31 min). 

4) Writing an e-mail. Users had to read an inbox mail and 

reply it (13 items, MS 8:18 ± 3:31 min, CS 6:18 ± 2:13 

min). 

5) Passive reading. Users had to read a piece of news 

while ignoring the stimuli (10 items, MS 5:17 ± 1:56 

min, CS 4:17 ± 0:45 min). 

The second evaluation session was intended to assess the 

behavior of the web browser when threshold is enabled. It was 

made up of three slightly different tasks that involve the use of 

control and non-control states, alternating web page reading 

and web surfing: 

1) Reading and link selection. Users had to scroll a 

Wikipedia page, read the information and select one 

link (8 items, MS 4:44 ± 1:08 min, CS 4:18 ± 1:44 

min). 

2) Publishing a tweet. Same procedure as Eval-I (6 items, 

MS 3:44 ± 1:00 min, CS 3:25 ± 1:28 min). 

3) Active reading. Users had to read a piece of news, 

scrolling down the web page if needed (4 items, MS 
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2:20 ± 0:55 min, CS 1:58 ± 0:35 min). 

The number of steps and the time needed to accomplish 

those tasks was recorded, as well as the mistakes and 

selections needed for solve them. With this information, a 

quantitative testing was performed, obtaining the users’ 

accuracies and the false negative rate (FNR) for each task, 

defined as the ratio of false negatives (i.e., correct selection 

classified as non-state selection) to the total number of 

selections.  

Also, a qualitative testing was performed in order to acquire 

a more accurate evaluation of the BCI web browser. At the 

end of the last session, users were asked for fulfilling a 

questionnaire. The survey consisted on 20 items to be ranked 

in a 7-point Likert scale that assessed the browser interface, its 

speed, the difficulty for selecting a command, the duration of 

sessions, users’ motivation, their expectations and their 

previous experience with BCI applications, among others. 

Additionally, one open-ended question allowed users to make 

personal suggestions for further improvement. 

III. RESULTS 

A. Quantitative Analysis 

The results of the copy-spelling calibration sessions are 

presented in Table II. The optimum number of sequences, the 

number of committed errors and calibration sessions 

accuracies for each user are shown. Accuracy is defined as the 

ratio of the number of correct selections in control state mode 

to the number of all performed selections, taking into account 

all the extra-selections made to correct the wrong ones. As can 

be seen, three MS patients could not obtain a minimum of 

70% classifier accuracy and thus, they were removed from 

subsequent assessment. Also, as could be expected, CS users 

obtained a higher accuracy and a lower number of sequences 

than MS patients. 

Tables III and IV show the results of the evaluation tasks. 

For each task, the duration and the accuracy are presented. In 

addition, Table IV also indicates the FNR for each user and 

task.  At the end of both tables, average session accuracy is 

shown for further comparison of the system behavior when 

threshold is disabled (Eval-I) or enabled (Eval-II). 

B. Qualitative Analysis 

Satisfaction questionnaire results are shown in Table V. It is 

noteworthy to mention that, in general, participants were quite 

satisfied with the BCI browser. All positive statements were 

rated above the mean value (4, neutral) and almost all negative 

ones were rated below it. As can be seen, the exceptions were 

the statements 3 and 13.  

The third statement was intended to evaluate the speed of 

the browser. Some MS patients indicated that, in their opinion, 

it took much too long to surf the Internet with the BCI 

browser. In the thirteenth statement, both groups of users 

declared to be slightly happy that the assessment sessions were 

over.  

Regarding the open-ended question, MS patients suggested 

increasing the command selection speed, adding a tab key 

command, trying to make the flashing less annoying, planning 

shorter sessions or trying to reduce the minimum number of 

sequences. CS users added that the number of symbols could 

be increased, for instance, by using other nested matrix. Also, 

they pointed out that sometimes they unintentionally focused 

their sight on adjacent cells. 

IV. DISCUSSION 

The application was assessed by sixteen MS patients and 

five CS users in four different days: two calibration and two 

evaluation sessions. Calibration sessions were intended to 

calculate the optimal SWLDA weights, number of sequences 

and threshold for each user, whereas evaluation sessions were 

intended to assess the BCI web browser completing different 

tasks. Moreover, a qualitative analysis was made giving a 

satisfaction questionnaire to the users. 

As aforementioned above, three MS subjects were removed 

from the assessment due to their low classifier accuracy 

(<70%). This might be because their P300 evoked potentials 

were too attenuated and/or their latency was too variable. In 

addition, users could not be able to hold the attention while 

stimuli were presented. It is not surprising with regard to the 

U05 user owing to his lack of sustained attention capability, as 

shown in Table I. However, the clinical characteristics of users 

U11 and U16 do not show an apparent reason for this 

behavior. Fig. 4 shows two P300 potentials recorded in the Pz 

electrode for control and non-control states. It can be noticed 

that the P300 potentials of this kind of users were quite noisy 

TABLE II 

COPY-SPELLING CALIBRATION SESSIONS RESULTS 

 
User 

Cal-I  Cal-II  
Ns 

 Accuracy WS(1) Accuracy WS(1) 

M
S

 

U01 87.50% 3 79.17% 5 10 

U02 91.67% 2 87.50% 3 6 
U03 41.67% 14 75.00% 6 15 

U04 79.17% 5 95.83% 1 13 

U05 <70% - <70% - - 
U06 83.33% 4 66.67% 8 15 

U07 83.33% 4 91.67% 2 7 

U08 83.33% 4 70.83% 7 6 
U09 75.00% 6 95.83% 1 10 

U10 91.67% 2 75.00% 6 13 

U11 <70% - <70% - - 
U12 66.67% 8 70.83% 7 9 

U13 83.33% 4 66.67% 8 8 

U14 87.50% 3 87.50% 3 10 
U15 91.67% 2 75.00% 6 6 

U16 <70% - <70% - - 

Mean(2) 80.45% 5.14 79.81% 4.85 9.85 

SD(2) 13.65% 3.57 10.60% 2.54 3.29 

C
S

 

C01 100.00% 0 100.00% 0 7 
C02 100.00% 0 91.67% 2 11 

C03 100.00% 0 100.00% 0 6 

C04 100.00% 0 91.67% 2 10 
C05 100.00% 0 91.67% 2 9 

Mean 100.00% 0 95.00% 1.20 8.60 

SD 0.00% 0 4.56% 1.10 2.07 

CS: control subjects, MS: multiple sclerosis patients, WS: wrong 
selections, Ns: Optimal number of sequences for each subject. 

(1) Each session was composed of a total number of 24 selections. 
(2) Mean and SD were calculated regardless of the discarded users (i.e., 

those who could not reach a minimum of 70% accuracy in both calibration 

sessions). 
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and almost undetectable due to their low amplitude, which 

would explain the poor performance of their classifier.    

CS users obtained higher calibration accuracy than MS 

patients in both sessions. Furthermore, their optimal number 

of sequences was lower than MS patients, so their browser 

surfing speed was higher. This is reflected in the 

questionnaire, specifically in the third statement, where CS 

users stated that it does not take too long to surf the Internet 

with the BCI browser, whereas MS patients requested a higher 

speed. 

Regarding the first evaluation session, although all CS users 

could finish all tasks, it is worthy to note that not all MS 

patients were able to finish them. As expected due to its large 

number of minimal sequences, the fourth task, writing an e-

mail, ended up as the most difficult one for both type of users, 

reaching the lower local accuracies (CS 90.96%, MS 71.11%). 

In contrast, link selection and publishing a tweet tasks were 

the easiest ones for CS and MS users, respectively. Average 

accuracies show that CS users got a better control of the 

browser (accuracy of 94.23%) than MS patients (accuracy of 

77.46%). Nonetheless, even though some MS patients could 

not finish the tasks, five MS patients obtained average 

accuracies greater than 80%, and one of them (user U02) 

reached a perfect accuracy in all tasks (average accuracy of 

100.00%). In the case of CS users, all of them obtained 

average accuracies greater than 80%, and two of them, C01 

and C03, reached a perfect control of the browser (average 

accuracy of 100.00%). 

In relation to the assessment of the threshold in Eval-I 

passive reading task, both type of users reached high 

accuracies (CS 96.00%, MS 85.77%). In fact, three CS users 

and three MS patients obtained a perfect accuracy, which a 

priori suggest that the use of threshold could improve the BCI 

browser performance. 

In the second evaluation session, eight MS patients obtained 

average accuracies greater than 80%, and one of them (user 

U04) reached a perfect control of the browser. CS users 

achieved accuracies greater than 80% and 2 of them (users 

C03 and C05) obtained a perfect performance. Regarding the 

FNR, threshold causes an average of 4.61% ± 8.71% and 

TABLE IV 
ASSESSMENT RESULTS FOR THE SECOND EVALUATION SESSION 

User(1) Reading & Link Tweeting Active reading Average 

Accuracy TIM FNR ACC TIM FNR ACC TIM FNR ACC 

U01 6:05 0,30 92.31% n.c. 0,00 44.44% 1:45 0,00 100.00% 76.92% 

U02 4:02 0,25 91.67% 2:31 0,13 85.71% 2:48 0,00 100.00% 92.00% 
U03 n.c. 0,13 100.00% n.c. 0,13 62.50% 2:39 0,00 100.00% 85.00% 

U04 3:50 0,00 100.00% 2:48 0,00 100.00% 1:53 0,00 100.00% 100.00% 

U06 5:42 0,00 77.78% 3:45 0,00 85.71% 4:30 0,00 85.71% 82.61% 

U07 n.c. 0,40 100.00% 3:21 0,22 88.89% 1:29 0,00 100.00% 95.65% 

U08 3:22 0,00 70.00% 3:42 0,09 81.82% 2:08 0,00 75.00% 76.00% 

U09 n.c. 0,17 83.33% n.c. 0,36 92.86% n.c. 0,00 75.00% 86.67% 
U10 n.c. 0,08 63.64% n.c. 0,14 71.43% n.c. 0,00 75.00% 68.18% 

U12 n.c. 0,17 33.33% n.c. 0,00 75.00% n.c. 0,33 83.33% 72.00% 
U13 5:24 0,33 91.67% 5:24 0,20 100.00% 1:54 0,00 100.00% 96.30% 

U14 n.c. 0,18 72.73% 4:37 0,00 100.00% 1:56 0,00 100.00% 87.50% 

U15 n.c. 0,07 85.71% n.c. 0,56 66.67% n.c. 0,00 75.00% 75.00% 

Mean 4:44 0,16 81.71% 3:44 0,14 81.16% 2:20 0,03 83.93% 84.14% 

SD 1:08 0,13 18.78% 1:00 0,17 16.69% 0:55 0,09 11.77% 10.08% 

C01 2:58 0,00 100.00% 2:17 0,00 83.33% 1:29 0,00 100.00% 94.44% 

C02 7:02 0,23 92.31% 5:20 0,10 100.00% 2:44 0,00 60.00% 89.29% 

C03 2:40 0,00 100.00% 2:04 0,00 100.00% 1:20 0,00 100.00% 100.00% 
C04 4:32 0,00 100.00% 4:36 0,25 87.50% 2:20 0,00 100.00% 95.00% 

C05 4:18 0,11 100.00% 2:48 0,00 100.00% 1:55 0,00 100.00% 100.00% 

Mean 4:18 0,07 98.46% 3:25 0,07 94.17% 1:58 0,00 92.00% 95.75% 

SD 1:44 0,10 3.44% 1:28 0,11 8.12% 0:35 0,00 17.89% 4.48% 

MS patients indicated as Uxx, control subjects indicated as Cxx; “TIM” 
indicates the task duration; “ACC” indicates the task accuracy for each user; 

“FNR” indicates the false negative rate, defined as the ratio of false negatives 

to the total of number of selections; and “n.c.” (not completed) means that the 
user could not finish the task and thus, the task duration is not defined. 

(1)MS patients U05, U11 and U16 were removed from the assessment 

because they could not obtain a minimum of 70% calibration accuracy. 
 

TABLE III 

ASSESSMENT RESULTS FOR THE FIRST EVALUATION SESSION 

User(1) Link selection Google searching Tweeting Writing e-mail Passive reading Average 

accuracy(2) TIM ACC TIM ACC TIM ACC TIM ACC TIM ACC 

U01 3:35 100.00% 6:05 100.00% 5:20 77.78% 15:04 66.67% 5:30 90.00% 79.54% 

U02 2:22 100.00% 4:02 100.00% 4:24 100.00% 5:17 100.00% 3:18 100.00% 100.00% 

U03 n.c. 25.00% 6:42 85.71% n.c. 57.14% n.c. - 8:15 100.00% 61.11% 
U04 2:48 100.00% 4:45 100.00% 2:49 100.00% 6:24 92.86% 7:09 87.50% 96.97% 

U06 4:20 87.50% 8:05 72.73% 4:49 77.78% 8:54 75.00% 8:15 87.50% 77.27% 

U07 4:45 72.73% n.c. 40.00% 3:37 83.33% n.c. 50.00% 3:51 60.00% 63.33% 
U08 3:12 100.00% 6:20 100.00% 4:50 88.89% 6:58 100.00% 3:18 90.00% 97.20% 

U09 7:35 100.00% n.c. 70.00% 3:20 100.00% n.c. 62.50% 5:30 50.00% 82.35% 

U10 3:41 100.00% n.c. 66.67% 5:01 75.00% n.c. 62.50% 7:09 100.00% 76.00% 
U12 n.c. 66.67% 8:00 72.73% 7:02 63.64% n.c. 53.33% 4:57 90.00% 62.79% 

U13 n.c. 71.43% 4:26 88.89% 2:13 100.00% 7:12 80.00% 2:45 90.00% 83.78% 

U14 3:48 75.00% n.c. 75.00% 3:08 57.14% n.c. 46.15% 5:30 80.00% 62.50% 
U15 n.c. 42.86% 5:31 70.00% 3:57 75.00% n.c. 64.29% 3:18 90.00% 64.10% 

Mean 4:01 80.09% 6:00 80.13% 4:13 81.21% 8:18 71.11% 5:17 85.77% 77.46% 

SD 1:31 24.48% 1:28 17.84% 1:19 15.93% 3:31 18.67% 1:56 14.94% 14.24% 

C01 2:16 100.00% 3:40 100.00% 2:14 100.00% 3:39 100.00% 3:39 100.00% 100.00% 

C02 2:51 100.00% 5:56 75.00% 3:16 100.00% 9:06 75.00% 5:00 100.00% 82.50% 
C03 2:00 100.00% 3:16 100.00% 2:00 100.00% 4:20 100.00% 3:20 100.00% 100.00% 

C04 2:50 100.00% 4:45 100.00% 2:50 100.00% 6:06 92.31% 4:41 90.00% 96.97% 

C05 2:50 100.00% 4:44 100.00% 2:50 83.33% 8:18 87.50% 4:46 90.00% 91.67% 

Mean 2:33 100.00% 4:28 95.00% 2:38 96.67% 6:18 90.96% 4:17 96.00% 94.23% 

SD 0:24 0.00% 1:03 11.18% 0:31 7.45% 2:13 10.39% 0:45 5.48% 7.39% 

MS patients indicated as Uxx, control subjects indicated as Cxx, “TIM” indicates the task duration, “ACC” indicates the task accuracy for each user, and 

“n.c.” (not completed) means that the user could not finish the task and thus, the task duration is not defined. 
(1)MS patients U05, U11 and U16 were removed from the assessment because they could not obtain a minimum of 70% calibration accuracy. 
(2)This average accuracy includes only the evaluation tasks that do not use the threshold (i.e., it does not include the passive reading results). 
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10.87% ± 14.33% of false negative errors to the total number 

of selections for CS and MS subjects, respectively. In 

addition, average accuracies of the second evaluation session 

(threshold enabled) are higher (CS 95.75%, MS 84.14%) than 

the obtained in the first one (CS 94.23%, MS 77.46%). 

However, it is noteworthy to mention that the improvement in 

terms of accuracy for CS subjects between both evaluation 

sessions is not significantly higher (Wilcoxon signed–rank 

test, p–value = 0.63), probably because of their small number 

of overall errors. Therefore, the threshold avoided less 

uncertain selections for CS subjects than for MS ones. It 

suggests that, on subjects with full physical and cognitive 

capabilities, the introduction of the control state threshold does 

not provide an improvement in terms of accuracy, although it 

may provide a less demanding control. Regarding MS 

patients, there is an improvement of 6.68% between both 

sessions, although it does not provide a significant difference 

(Wilcoxon Signed–rank Test, p–value = 0.11). Nonetheless, 

despite these advantages, a bad optimized threshold can lead 

to an increased required time to finish the proposed task due to 

false negative errors. This fact is clearly present in subject 

C02, who reached a perfect accuracy in the shared publishing 

a tweet task in both sessions. The required time for finishing 

the task was increased in the second one, since a 10% of the 

total selections were false negatives. This problem is caused 

by the inability of the threshold to follow the nonstationary 

changes of the EEG, which compromises a tradeoff between 

browser speed and selection accuracy. However, MS patients 

results reinforce the fact that the BCI browser performance is 

improved when the threshold is enabled, allowing end users to 

avoid selection mistakes when the intensity of their P300 

potentials is not high enough for being considered as a strong 

deliberate selection. 

Even though we are comparing the evaluation sessions in 

overall terms in order to assess the possible improvements 

when threshold is enabled, only one task (publishing a tweet) 

is strictly the same in both sessions. Due to the absence of 

threshold in the first session, none of the tasks involved the 

use of non-control state. Owing to the fact that the asynchrony 

management is one of the main contributions of the paper, we 

decided to slightly vary the first session tasks in order to 

involve changes between both states. For this reason, although 

the tasks are almost the same in both sessions, two of the 

second session tasks require commutations between the states, 

which increases the number of minimum selections and thus, 

the time to accomplish the tasks. Only one task remains 

TABLE V 

QUESTIONNAIRE RESULTS FOR THE POST-STUDY ASSESSMENT OF THE BCI WEB BROWSER 

Statement 
CS MS 

Mean SD Mean SD 

1 I am not used to surf the Internet 1.2 0.4 3.2 2.3 

2 I have found interesting to use the BCI web browser 6.4 0.5 6.2 0.9 

3 In my opinion, it takes much too long to surf the Internet with the BCI browser 4.0 1.0 4.8 0.9 
4 My expectations for the browser were completely met 6.4 0.5 5.7 1.2 

5 I was bored during the assessment sessions 2.8 1.3 2.7 2.0 

6 I can imagine myself using this browser in my daily life 3.4 1.1 4.6 1.7 
7 I became impatient during the assessment sessions 2.2 0.8 2.8 1.8 

8 I found the assessment sessions entertaining 5.2 0.4 5.4 1.2 

9 It was stressful to concentrate when it was required 2.0 1.0 2.9 1.7 
10 I would gladly carry out more testing sessions with the BCI browser 6.6 0.5 5.6 1.2 

11 The assessment sessions made me feel tired 2.8 1.8 3.0 1.9 

12 User interface is intuitive and easy to understand 5.4 2.1 5.9 1.3 
13 I am happy that the assessment sessions are over 4.6 0.9 4.2 1.9 

14 I found it easy to select “keyboard matrix” commands 4.6 1.7 5.3 1.3 

15 I found it difficult to select “navigation matrix” commands 2.4 1.1 2.5 1.3 
16 I like computers and information technologies 6.0 1.0 4.9 2.4 

17 Flickering stimuli are annoying 1.8 0.8 3.7 2.1 

18 I would love to participate in other similar studies 6.0 1.0 5.2 1.5 

19 The duration of the assessment sessions was too long 3.0 1.0 2.4 1.4 

CS: control subjects, MS: multiple sclerosis patients. 
Each statement was rated on a 7-point Likert scale where 0 means “strongly disagree”, 4 means “neutral” and 7 means “strongly agree”.  

 
Fig. 4. Average P300 potentials for control and non-control states recorded during the calibration sessions over the Pz electrode. User U05 (a) was discarded of 

the assessment due to his low classifier accuracy. His P300 potential is noisy and barely recognizable, in contrast to the user U07 (b), whose P300 potential has 

normal amplitude and latency. 
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unaltered, which is intended to be used for comparing the web 

browser performance when threshold is either enabled or 

disabled.  

In fact, results from the shared task show a clear distinction 

between CS and MS users. In case of CS users, accuracy 

decreases from the first session (96.67% ± 7.45%) to the 

second one (94.17% ± 8.12%). As expected, the slightly 

higher amount of errors and the 7% rate of false negatives lead 

to an increase of the mean required time to accomplish the 

task (from 2:38 ± 0:31 min to 3:25 ± 1:28 min). Regarding the 

MS patients, accuracy remains practically the same (from 

81.21% ± 15.93% to 81.16% ± 16.69%), although the required 

time decreases (from 4:13 ± 1:19 min to 3:44 ± 1:00 min). In 

addition, only a 14% of errors were false negatives. This 

behavior is caused by an increase of the number of users that 

could not finish the task, likely due to the intersession 

variability of the EEG, which cannot be followed by the 

constant threshold. Those nonstationary changes of the EEG 

are emphasized as more sessions are carried out without 

updating the custom classifier of each user and actually 

constitute one of the main limitations of the current BCI 

systems [29], [30]. 

Regarding the qualitative analysis results, as 

aforementioned, participants were quite satisfied with the BCI 

browser. However, thirteenth statement results show that the 

users were slightly happy that the assessment sessions were 

over. This fact reveals that its participation on the study 

implied an effort, which is an important aspect to take into 

consideration when the contents and duration of the sessions 

are planned. Nevertheless, it is worth to note that users were 

willing to participate in further studies. As previously stated, 

for MS patients, the item with the lowest rating was the speed. 

However, browser speed is directly related to classifier 

accuracy, which is calculated in the calibration sessions. A 

more robust classifier, either using a more sophisticated 

training algorithms or having more training samples, could 

obtain higher calibration accuracy. Thus, it could reduce the 

optimal number of sequences in order to experience a faster 

navigation. This issue does not appear in CS users, probably 

because their number of sequences was lower and they 

committed fewer mistakes than MS patients. In contrast, the 

top-rated aspect was the application interface, due to its 

simplicity and user-friendliness.  

Users also pointed out that, sometimes, they unintentionally 

focused their attention on adjacent cells. This issue is known 

as the adjacency-distraction problem and is inherent in the 

row-col paradigm [22]. As its name suggests, adjacent  

non-target flashes distract users and cause selection errors, 

which are commonly found in adjacent cells or in those that 

belong to the target’s row and column. Specifically, the 

percentage of this kind of selection errors out of the total 

number of errors are 100% (out of 14 errors) and 87.57% (out 

of 141 errors) for CS and MS users, respectively. The 

probabilities of randomly selecting one of those cells in the 

navigation and keyboard matrices are 44.66%–66.66% and 

28.88%–35.55% (depending on the position of the target cell), 

respectively. Therefore, it is clear that most errors are due to 

this problem. A possible solution to the adjacency-distraction 

problem is to use the checkerboard paradigm, which solves 

both this and the double-flash problem [22]. 

Table VI shows a comparison between previous BCI 

browsers and our present study. Besides the fact that P300 

evoked potentials and node tagging makes the proposed 

browser faster and more self-sufficient than other previous 

approaches [8], [9], the main advantage is the asynchrony 

management. In this study, a control state threshold was 

implemented, avoiding the use of a constant supervision or a 

rigid “read command” [8], [9], [11], [13]. This approach 

allows users to calmly experiment a free surfing navigation 

while the system continuously detects the users’ intentions 

based on their attention. It is noteworthy to mention that 

strictly speaking, due to the nature of the “odd-ball” paradigm, 

the application actually remains synchronous. The use of this 

control state threshold removes undesired selections when the 

user is ignoring the stimuli, but it does not avoid synchronous 

selections, owing to the fact that the matrices keep flashing. 

Nevertheless, it is common to classify applications that use 

control state detection strategies as “asynchronous BCIs”, 

which is a widely used term in the BCI literature [14], [18], 

[31]–[33]. This strategy makes the control smoother and 

probably less demanding, which is an advantage for end users 

who are suffering from physical limitations. In addition, our 

approach was tested with a bigger patient database than 

previous studies [8], [9], [11], whereas our CS subject pool is 

limited in comparison with [11] and [14]. However, CS 

subjects are not potential users of this kind of applications and 

TABLE VI 

COMPARISON BETWEEN PREVIOUS BCI BROWSERS AND PRESENT STUDY 

Browser 
Year Control signal 

Type of 
signal 

Functionalities Assessment 

Author Ref Link Selection Asynchrony approach Subjects Average accuracy 

Karim et al [8] 2006 SCPs Endogenous Dichotomous tree Supervision 1 ALS 80.00% 

Bensch et al [10] 2007 SCPs or SMR Endogenous Dichotomous tree Supervision 
4 ALS - 

2 CS - 

Mugler et al [11] 2010 P300 Exogenous Node tagging Read mode 
3 ALS 72.00% 

10 CS 93.40% 

Blasco et al [13] 2012 P300 Exogenous Cursor Read mode 4 CS 93.00% 

Yu et al [14] 2012 P300 and SMR Both types Cursor Not needed 7 CS 93.21% 

Present study  2016 P300 Exogenous Node tagging 
Control state 

threshold 

16 

5 

MS 

CS 

84.14% 

95.75% 

SCPs: slow cortical potentials, SMR: sensory-motor rhythms, ALS: amyotrophic lateral sclerosis, CS: control subjects, MS: multiple sclerosis. 
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thus, their results cannot be generalized to any disease. 

Regarding the web browser performance, the differences in 

the accuracies obtained by CS users and MS patients suggest 

that the reason lies on the symptoms of the disease. For the 

MS patients, it has been observed a highly variable classifier 

performance during the sessions. Nevertheless, previous 

studies stated that P300-based BCI systems can be controlled 

by severely disabled people, regardless of their degree of 

disability [1], [2], [19], [28]. As can be seen, notwithstanding 

its lower performance compared to CS subjects, MS patients 

average accuracy (84.14%) is higher than the ones reported in 

the previous approaches tested by ALS patients [8], [11], [13]. 

Significant differences are found between our work and the 

accuracies provided by Mugler et al [11] when using a Mann–

Whitney U–Test (p–value = 0.0193). However, although care 

must be taken owing to the differences between both diseases, 

accuracies show a higher overall performance for the disabled 

subject population in comparison with other previous studies. 

Additionally, the cognitive disability that commonly appears 

in MS patients is rarely presented on ALS patients, since their 

neurologic damage is generally focused on motor neurons. For 

this reason, it is suggested to test the BCI web browser with 

ALS patients as a future line of research in order to get a better 

comparison between both diseases. Similarly, CS users 

average accuracy (95.75%) is also slightly higher than those 

reported in previous approaches [11], [13], [15], although it is 

not significantly different (Mann–Whitney U–Test, p–value > 

0.05). These results reveal that the use of a threshold for 

discerning between control and non-control states could be a 

useful contribution for further asynchronous BCI P300-based 

systems. In addition, a control state threshold appears to be a 

more comfortable solution for users than a “read mode” 

command, because it eliminates the need for being attentive to 

select a command when the user wants to rest or to read a web 

page. 

Even though these results show that our BCI web browser 

has successfully allowed severely disabled people to 

experiment a truly free Internet surfing, we can point out some 

limitations. As previously indicated, the major drawback of 

this kind of applications is the classifier performance 

variability between sessions and users. Reducing this 

variability and increasing the classification accuracy by using 

more suitable processing techniques in both feature extraction 

and selection could improve the robustness of the system [29], 

[30]. In addition, control state threshold is calculated directly 

over the SWLDA scores and thus, it depends on the classifier 

performance of each user. Using algorithms that are not 

dependent on the classifier, such as residual steady-state 

visually evoked potentials, could improve the application 

performance [14], [18], [31]. Another limitation is the 

impossibility to alternate between lower case and capital 

letters, essential for fulfilling user and password forms, and it 

should be a further improvement. To conclude, although we 

have included a significant amount of symbols, an additional 

nested matrix with extra symbols (e.g., tab key, ampersand, 

slashes, brackets, etc.) would contribute to access any web 

page in the address bar.  

V. CONCLUSIONS 

An asynchronous P300-based BCI web browser has been 

designed, developed and evaluated. The system processes the 

EEG signal of the users, and P300 potentials are elicited using 

a visual “odd-ball” row-col paradigm composed of two 

different matrices, which contains navigation and keyboard 

commands. Those commands are sent to a Google Chrome 

extension, which traduces them and gives visual feedback to 

the users. The browser has been tested with five CS users and 

sixteen MS patients. Results show that our BCI web browser 

can successfully meet their daily communication needs, 

allowing end users to surf the Internet in an intuitive way. In 

addition, the average accuracies achieved by CS and MS users 

(95.75% and 84.14%, respectively) are higher than that 

reported in previous approaches. In fact, significant 

differences have been found (p–value = 0.0193) between our 

results and the accuracies reported in previous studies for 

disabled subjects. However, care must be taken owing to the 

fact that end users suffered from different diseases. Therefore, 

control state threshold appears to be an appropriate solution 

for developing further asynchronous BCI systems. 
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