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Abstract
In this paper we present a new approach for non rigid groupwise

registration of cardiac magnetic resonance images by means of

free-form deformations, imposing a prior harmonic deformation

assumption. The procedure proposes a primal-dual framework

for solving an equality constrained minimization problem, which

allows an automatic estimate of the trade-off between image fi-

delity and the Laplacian smoothness terms for each iteration.

The method has been applied to both a 4D extended cardio-torso

phantom and to a set of voluntary patients. The accuracy of the

method has been measured for the synthetic experiment as the dif-

ference in modulus between the estimated displacement field and

the ground truth; as for the real data, we have calculated the Dice

coefficient between the contour manual delineations provided by

two cardiologists at end systolic phase and those provided by

them at end diastolic phase and, consequently propagated by the

registration algorithm to the systolic instant. The automatic pro-

cedure turns out to be competitive in motion compensation with

other methods even though their parameters have been previously

set for optimal performance in different scenarios.

1 Introduction
Image registration, to put it short, is concerned with the

search of an optimal transformation for the alignment of

at least two images. It has many applications in imaging,

such as fusion of image information [1], material points

tracking [2], atlas construction [3], or object-based interpo-

lation of contiguous slices [4]. As for the groupwise regis-

tration problem, it may be posed as finding a spatial trans-

formation ⌧ so that every point in each image is matched

to a point in a reference image that is built out of the whole

image set to be registered; the transformation is found as

the minimization in the space of possible transformations

of an energy function H , i.e., the registration looks for the

optimal transformation that satisfies ⌧⇤ = argmin
⌧

H(⌧).

The energy function associated to the transformation com-

prises two competing goals. The first term represents the

cost associated with the image similarity (i.e., the data fi-

delity term). Examples of common voxel-based similarity

measures are cross correlation [5], mutual information [6]

or mean squared differences, which have proved their use-

fulness either in monomodal or multimodal image align-

ment problems. On the other hand, the second term cor-

responds to the cost associated to the smoothness of the

transformation. Most common smoothness terms try to

favour those solutions in which the first or second-order

derivatives of the displacement field tend to zero (mem-

brane or plate-like solutions) [7, 8] or can be based on a

biomechanical model of deformation [9].

An incorrect use of the smoothness term could result in

unrealistic transformations; therefore, a proper set of ad-

ditional constraints that assures certain properties such as

continuity or differentiability should be introduced in the

problem for a correct definition. Therefore, a parameter

� is often introduced as a trade-off between data fidelity

and transformation smoothness. Clearly, this parameter

will play a major role in the final result, so it should be

set beforehand on the basis of some optimality conditions,

requiring some fine tuning to estimate the optimal value.

This is a time consuming process that may have to be re-

peated according to acquisition protocol, type of pathol-

ogy, etc.

In this paper, we have developed an extension of the frame-

work presented in [10] for its application to non-rigid reg-

istration of cardiac magnetic resonance imaging (MRI),

that combines the advantages of voxel-based monomodal

measures, such as mean squared differences, with a non

rigid transformation model described by free-form de-

formations (FFD) based on B-splines [11], in which the

trade-off between the data fidelity term, related to the

monomodal metric, and the regularization term, related to

the smoothness of transformation, is automatically set due

to an harmonic constraint term.

2 Materials and Methods
2.1 Materials

For the validation of the proposed approach, a synthetic

experiment has been carried out using a simulation en-

vironment based on the 4D digital extended cardio-torso

(XCAT) phantom [12]. The phantom consists of a whole

body model that contains high level detailed anatomical

labels, which feed a high resolution image synthesis pro-

cedure, providing different modalities such as CT, MRI

and PET. The 4D XCAT phantom incorporates state of

the art respiratory and cardiac mechanics, which provide
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sufficient flexibility to simulate cardio-torso motion from

user-defined parameters. Therefore, the phantom provides

us not only with the images themselves, but also with a

ground-truth displacement field.

Additionally, we have performed cardiac studies in a pop-

ulation of 74 subjects, 46 of which are affected by pri-

mary or secondary forms of hypertrophic cardiomyopa-

thy (HCM) [13] and a control group that consists of 28

healthy volunteers. A short axis (SA) SENSitivity En-

coding (SENSE) balanced Turbo Field Echo MR-Cine se-

quence has been acquired on a Philips Achieva 3T scan-

ner for each patient, where the myocardium contours have

been manually traced by two cardiologists at end-diastole

(ED) and end-systole (ES) phases. The latter will be taken

as ground truth for the experiments described in section 3

on real images. Acquisition and resolution details for these

experiments are shown in Table 1.

Parameters XCAT MR-Cine

�p 1 0.96-1.18

�l 8 8

Np 256 240-320

Nt 20 30

Ns 16 10-15

TR 3 2.9-3.918

TE 1.5 1.45-2.22

↵ 60 45

Card. 1 ⇠ 1

Resp. 5 Navig.

Table 1. Details on the image sequences used in the paper. �p

: Spatial Resolution (mm). �l : Slice Thickness (mm). Np:

Number of pixels along each direction. Nt: Number of Temporal

Phases. Ns: Number of slices. TR : Repetition Time (ms). TE:

Echo Time (ms). ↵: Flip Angle (

�
). Card.: Cardiac Period (s).

Resp.: Respiratory Period (s).

2.2 Methods

The proposed method has been applied to the groupwise

registration of two-dimensional cardiac MR-Cine acquisi-

tions and, specifically, for contour propagation at different

cardiac phases. Many potential uses of this procedure can

be considered, such as motion compensated compressed

sensing accelerated reconstruction [14].

Bearing in mind the aforementioned application, the lo-

cal transformation ⌧ is represented as a combination of B-

spline FFDs. Bilinear interpolation is used to obtain the

intensity of the deformed MR-Cine images on a rectilin-

ear grid [15]. A gradient-descent optimization scheme is

performed, where the step size is updated according to the

variation in the registration metric. The sum of the squared

differences of the image intensity, over a region of interest

(ROI) denoted as �, is used as the registration metric as

follows:

H(⌧) =

Z

�

1

N

NX

n=1

 
In(x, ⌧n)�

1

N

NX

n=1

In0(x, ⌧n0)

!
dx

(1)

In general, the local deformation of cardiac tissue should

be characterized by a smooth transformation. To con-

strain the spline-based FFD transformation to be smooth,

a penalty term which regularizes the transformation is in-

troduced. We have resorted to harmonic regulation, i.e.,

r2(⌧) = 0; in computer vision, the Laplacian operator

has been used for various tasks such as blob and edge de-

tection [16] and its quantity determines the density of the

gradient flow of the displacement field, which is associated

with the smoothness of the transformation.

(a) (b)

Figure 1. The figure on the left shows an example of Laplacian

field coloured by its first order smoothness. The figure on the

right shows the histogram of the components of the Laplacian of

the transformation in a medial slice of a healthy volunteer.

An harmonic constraint seems acceptable for cardiac mo-

tion compensation, as non-regularized solutions, as shown

in Figure 1(b), present a noticeable tendency towards har-

monic fields. Therefore, it should provide an appropriate

level of smoothness over the transformation so as to avoid

registration artifacts. With such constraints, the minimiza-

tion problem would be formulated as:

minimize H(⌧) subject to r2(⌧) = 0. (2)

Introducing the primal-dual framework [10], we can con-

sider the quadratic penalty problem associated with (2) as:

minimize H(⌧) +
�

2
||r2(⌧)||2. (3)

Imposing the first order necessary optimality condition

(null gradient), this problem can be posed as:

rH(⌧) + �A(⌧)Tr2(⌧) = 0, (4)

where A(⌧) is the Jacobian matrix of vector r2(⌧).

These conditions can be rewritten under the form:

F (⌧, y, µ) =

 
rH(⌧) +A(⌧)T y

r2(⌧)� µy

!
= 0, (5)

where y is a vector of Lagrangian multipliers and µ is in-

versely related with �, used for notation convenience.

The equation (5) implicitly defines a trajectory for µ such

that ⌧(µ ! 0) = ⌧⇤ and F (⌧(µ), y(µ), µ) = 0 for suffi-

ciently small values of µ. Now, we can apply a Newton-

like method to equation (5) to obtain a sequence that makes

µ tend to 0. The linearization of (5) at the current iterate

(⌧k, yk, µk) provides an updating for these variables (also

�) that can be extracted from the following linear system:

J(�⌧,�y, µk) +
@F (⌧k, yk, µk)

@µ
�µ = �F (⌧k, yk, µk),

(6)
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where � represents the iterative increment of the variable,

such as �y = yk+1 � yk and J is the Jacobian matrix of

the function F at k-iteration, or an approximation to it.

With such a design, the value of � would increase as µ ! 0
until registration converges; therefore, first iterations will

let the transformation evolve unsmoothly until the har-

monic regularization term becomes dominant owing to �.

3 Results
In this Section, we test the accuracy of our automated reg-

ularization method in comparison with other methods that

use a previously-set non-variable � parameter. The lat-

ter methods are two, namely, one that considers first-order

regularization both in the spatial and the temporal dimen-

sion, as in [7], and a second one which uses harmonic reg-

ularization, as we do, but with a unique � that is set before

the optimization takes place.

We have carried out a synthetic experiment with the data

provided by the XCAT phantom on which we have mea-

sured the error of the estimation of cardiac displacement

field (on a previously defined ROI). The optimal � param-

eters for the whole myocardium have been empirically set

to � = 0.007 for the harmonic regularization and �s = 0.3
(spatial) and �t = 0.1 (temporal) for the first-order regu-

larization; those parameters have provided the best results

by visual inspection.

Figure 2. Boxplot diagrams of error modulus in mm for estimated

displacement field at myocardial points.

In Figure 2 we show the boxplot diagrams of the distribu-

tions of the differences in modulus between the estimated

2-D displacement field and the ground-truth as a measure

of accuracy. Accuracy for all these methods seems suit-

able for motion estimation as in most myocardial points

error is lower than pixel resolution. Nevertheless, the au-

tomated procedure gives comparable results with the other

two; specifically, no significant differences were found be-

tween these methods either in displacement error measures

or in overlapping indices (Dice coefficient [17]) measured

from the propagated segmentations.

In addition, for the real data we have tested the ability

of the aforementioned procedures to propagate the manual

segmentations (at ED phase) throughout the cardiac cycle.

In this experiment, we have performed a quantitative anal-

ysis of the overlapping using the Dice coefficient between

the propagated segmentations and the ground-truth at ES

phase for each patient. As for the choice of �, we have

made a distinction between HCM and healthy cases, since

this pathology greatly affects the characteristics of cardiac

motion [13]; for each group this parameter has been set

by visual inspection on a representative patient and then

we have used this value for the remaining patients of the

group. This is due to the fact that for all them the acquisi-

tion protocol has remained unchanged; in addition, the reg-

istration procedure has been run on a medial slice, where

variability is much lower than in apical or basal slices.

In Figure 3 we show the boxplot diagrams of the Dice co-

efficient obtained from the aforementioned non variable

methods with optimal settings and our automated regular-

ization proposal. The optimal � parameters for the har-

monic regularization method were � = 0.2 for HCM pa-

tients and � = 0.5 for the control group, while for the first

order regularization method; �s = 1,�t = 3 for HCM

patients and �s = 3,�t = 8 for the control group [15].

Figure 3. Boxplot diagrams of Dice Coefficient distributions of

propagated segmentations to ES and ground-truth segmentations.

As observed in Figure 3, the automated procedure shows a

considerable improvement in terms of overlapping com-

pared with the other two methods, both for HCM pa-

tients and healthy volunteers, even though � has been

selected ad-hoc for each group. Mann-Whitney U-tests

have been performed on the Dice coefficient distributions,

finding significant improvements when using the auto-

regularization method both over first order regularization

(p = 0, 0254 for HCM and p = 0, 042 for controls) and

harmonic regularization methods ( p = 0, 0351 for HCM

and p = 0, 0512 for control groups). These results high-

light that a proper criterion of accommodation of the regu-

larization parameter may enhance the development of reg-

istration algorithms in comparison with fixed, albeit opti-

mal, parameters.

Furthermore, better performance figures are obtained for

HCM patients in comparison with those from controls; in

our opinion, this may be due to the fact that this partic-

ular pathology implies a loss of the myocardial function-

alities leading into myocardial thickening, specially in the

septum, as well as to a significant reduction of cardiac de-

formation [13]; this combined effects seem to ease motion

compensation and segmentation propagation and, conse-
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quently, improving overlap indexes.

4 Conclusions and Future Work
We have presented an image processing methodology for

non-rigid registration of cardiac MRI based on a primal-

dual framework with harmonic constrained minimization

that iteratively calculates the trade-off between the two

terms involved in the problem. This methodology com-

bined with the use of simple registration metrics under the

groupwise paradigm has proven to be reliable in the prop-

agation of manual segmentations through the cardiac cy-

cle and accurate in the estimation of cardiac displacement

fields, being useful as a motion compensation technique.

The automated procedure for the update of weighting pa-

rameters has been successfully tested in different scenarios

with different grades of regularization requirements, sig-

nificantly improving the performance obtained with opti-

mized fixed weighting parameters procedures.

Finally, more complicated multimodal metrics, such as the

one proposed in [18], could help to perform topology pre-

serving registration in highly artifacted images, such as the

typically observed in echo planar abdominal diffusion ac-

quisitions.
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