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Abstract—A considerable amount of papers has been published
in recent years proposing supervised classifiers to diagnose the
health of a machine. The usual procedure with these classifiers
is to train them using data acquired through controlled experi-
ments, expecting them to perform well on new data, classifying
correctly the condition of a motor. But, obviously, the new motor
to be diagnosed cannot be the same that has been used during the
training process; it may be a motor with different characteristics
and fed from a completely different source. These different condi-
tions between the training process and the testing one can deeply
influence the diagnosis. To avoid these drawbacks, in this paper,
a new method is proposed, which is based on robust statistical
techniques applied in quality control applications. The proposed
method is based on the online diagnosis of the operating motor
and can detect deviations from the normal operational conditions.
A robust approach has been implemented using high-breakdown
statistical techniques, which can reliably detect anomalous data
that often cause an unexpected overestimation of the data vari-
ability, reducing the ability of standard procedures to detect faulty
conditions in earlier stages. A case study is presented to prove the
validity of the proposed approach. Motors of different character-
istics, fed from the power line and several different inverters, are
tested. Three different fault conditions are provoked: a broken
bar, a faulty bearing, and mixed eccentricity. Experimental results
prove that the proposed approach can detect incipient faults.

Index Terms—Diagnostic expert systems induction motors,
maintenance, monitoring, quality control.

I. INTRODUCTION

CONDITION monitoring of induction motors is an ongo-
ing field of research since they account for over 80% of

energy conversion in industrial and commercial sectors. An ad-
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equate warning of incipient faults via condition monitoring has
important advantages such as prevention of costly shutdowns,
providing sufficient time for controlled shutdown of the pro-
cess, reducing the costs of outage time and repairs, diagnosing
present maintenance needs, scheduling future preventive main-
tenance, and providing safer operation of the motors Therefore,
the availability of a method capable of detecting incipient faults
is of great interest.

Moreover, nowadays, there is a great amount of motors that
are fed by voltage source inverters (VSI). Consequently, a prac-
tical condition monitoring scheme must have the ability to detect
a faulty machine independently of the power source. Neverthe-
less, as it has been widely reported, detection and diagnosis are
more challenging for VSI-fed motors due to the rise in noise,
dynamically changing excitation frequency [1]−[3], and the
fact that the field harmonics amplitude is affected by the sup-
ply voltage, particularly when speed control is based on volt-
age regulation, keeping constant the voltage/frequency ratio [4],
and that harmonic content depends strongly on the used tech-
nique for the control of the inverter and the chosen switching
frequencies [5].

One of the most active fields in this area is the application of
machine learning techniques to the automatic detection of faulty
motors with the aim of improving the reliability and efficiency
of the diagnosis. A considerable amount of papers have been
published in recent years proposing supervised classifiers to
diagnose the health of the machine. These classifiers provide a
function (linear or nonlinear depending on the chosen classifier)
to separate the data into two or more classes. This function
is inferred from a set of training examples characterized as
a labeled training data, with the labels corresponding to the
different motor conditions to diagnose.

One of the most popular tools in diagnosis is the artificial
neural networks. They have been extensively used to moni-
tor broken bars [6]−[11], eccentricity [12]−[14], and bearing-
related faults [7]−[10], [15]−[21]. Similarly, the use of support
vector machines to diagnose motors faults has been widely re-
ported in literature: for broken bars [6], [22]−[25], bearings
[19], [26]−[33], and eccentricity [29].

Other machine learning tools have also been reported in liter-
ature. K-nearest neighbors has been applied to diagnose broken
bars [6] and bearing faults [34]. Farajzadeh-Zanjani et al. [35]
use a supervised fuzzy-neighborhood density-based clustering
to diagnose bearing faults. Peng and Chiang [36] apply random
forest algorithm and C4.5 decision tree to ball bearing fault di-
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agnosis. In [37], bagging, boosting, and stacking methods are
implemented to classify eccentricity, broken bars, and bearings
faults via simulation. In [38], broken bars and bearings faults are
diagnosed with a common vector approach. A hidden Markov
model is applied in [39] to diagnose broken bars and in [40]
to bearing faults too, and in [41], the hidden Markov model is
combined with a Naı̈ve Bayesian modeling. Decision trees are
used in [38] and [42] to bearing faults, and in [43], decision trees
are combined with Fuzzy Min–Max (FMM) neural networks,
comprising a hybrid intelligent model to diagnose eccentricity.

Some applications of unsupervised learning techniques to di-
agnose bearing-related faults have also been reported. In these
cases, the data are unlabeled and the procedure tries to find
hidden structure from the data. In [44], a K-means clustering
approach is proposed, while in [45] a weighted local and global
regressive mapping algorithm is proposed and compared with
other unsupervised learning algorithms, such as locality pre-
serving projection, Isomap, principal component analysis, and
Sammon mapping.

The aforementioned methods are attractive although they re-
quire an initial training phase that is critical for optimal oper-
ation. The training phase requires a large set of examples and
may be misleading or produce results limited to a set of systems
[46]. The usual procedure with these classifiers is to train them
using data acquired through controlled experiments. The motor
is run in its healthy state and then is taken to a faulty condi-
tion (or several intermediate conditions). Once the classifier has
been trained with these data, it is expected to perform well on
new data and then to correctly classify the condition of a motor.
But, obviously, the new motor to be diagnosed cannot be the
same that has been used during the training process; it may be a
motor with different characteristics and fed from a completely
different source. These different conditions between the training
process and the testing one can deeply influence the diagnosis.

To avoid these drawbacks, in this paper, a new method is
proposed, which is based on statistical techniques applied in
quality control applications. The proposed method is based on
the online diagnosis of the operating motor, and it can detect
deviations from the normal operational conditions.

Throughout continuous monitoring of the motor, data can be
acquired that correspond to abnormal conditions that do not
reflect a faulty condition but other situations such as measure-
ment or acquisition errors. These anomalous data often cause an
unexpected overestimation of the data variability. As a conse-
quence, this overestimation reduces the ability of standard (non-
robust) procedure to detect faulty conditions in earlier stages. To
avoid it, a robust approach has been implemented using high-
breakdown statistical techniques, which can reliably detect out-
liers in the data. Another interesting approach is given in [47]
where a quick adaptation mechanism is proposed in the online
multivariate monitoring process aimed at dealing with operat-
ing changes (for instance, intentional operators commands). On
the other hand, our proposed methodology aims at dealing with
nonintentional and occasional changes in data, for instance, due
to bad measurements or data acquisition problems. In fact, our
main contribution in this paper is the proposal of using robust
(high breakdown point) techniques as a tool for a better detection
of incipient faults in VSI-fed induction motors. This method-

ology has not been previously considered in the literature for
this problem.

The proposed technique uses a multiresolution technique
based on wavelet functions to smooth the background noise
in the spectrum to enhance the detection of significant fault sig-
natures, and then, a quality control approach based on robust
multivariate control charts using Hotelling’s T-square test is ap-
plied to detect a progressive deterioration of the motor condition.

The fault signatures use to diagnose induction motors is ex-
plained in Section II, while in Sections III and IV, the statistical
technique proposed is exposed and applied to a case study in
Section V.

II. FAULT SIGNATURES

The proposed methodology to diagnose faulty induction mo-
tors can take advantage of any fault signature among all that have
been proposed in bibliography. Hence, it can be used in any mo-
tor running condition, in stationary or nonstationary regime, as
long as a measurable quantity can be extracted. Moreover, the
signatures can be extracted from any physical signal acquired
from the running motor, that is, stator current, vibration sig-
nal, axial flux, torque, etc., in frequency domain, time domain,
or time-frequency domain [48]. The signatures can be mixed
independently of the regime or signal where they have been
extracted.

There is only one practical limitation on the number of sig-
natures to be used. This limitation is related to the calculation
of the covariance matrix of the signatures, and it is inherently
related to the number of tests that have been performed on the
motor. The greater the number of tests, the greater the number
of features that can be selected. Nevertheless, the use of features
that do not contribute to explain the variability of the response
variable (the motor condition) can disturb the performance of
the diagnosis procedure. Hence, a feature selection can be advis-
able using any available procedure. ANOVA [49] or a dimension
reduction technique such as principal component analysis [50]
can be used to estimate the variability of the response explained
by the feature

In the case study analyzed in Section V, stator current is the
signal measured and processed, which is a common practice
in this field, due, mainly, to the advantages that it provides the
used sensor (a clamp meter), being noninvasive, cheap, and easy
to manage. The features are extracted in the frequency domain
using fast Fourier transform (FFT) to analyze the stator current
during a steady-state operation of the motor.

In these conditions, the characteristic fault frequencies are
well known. In the case study shown in Section V, three different
faults are analyzed: broken bars, mixed eccentricity, and bearing
faults.

When the motor is supplied by a solid-state inverter, line
current will contain time harmonics, which will modify the
amplitude of existing harmonics or will generate new air gap
spatial ones. Therefore, in the case of cage asymmetry and
nonsinusoidal voltage supply, fault signatures are identified as
sidebands around the frequencies of time harmonics of line
current, at frequencies given by

fbb = (k ± 2ns) f1 (1)



3078 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 53, NO. 3, MAY/JUNE 2017

where k is the order of the line current time harmonics, s is
the motor slip, f1 is the main frequency, and n is any positive
integer.

In the case of a bearing-related fault, since ball bearings sup-
port the rotor, any bearing defect will produce a radial motion
between the rotor and stator of the machine, causing the ma-
chine air gap to vary in a manner that can be described by a
combination of rotating eccentricities moving in both directions
[51]. Therefore, a faulty bearing can be diagnosed observing
the sidebands around the stator current harmonics due to the
frequency power converter at frequencies given by

fbrn =
[
k ± n q

(1 − s)
p

]
f1 (2)

where p is the number of pair of poles and q depends on the kind
of bearing fault and on the characteristics on the bearing (number
of balls, ball diameter, and ball pitch diameter, respectively, and
the contact angle of the ball with the races) [52].

For mixed eccentricity, in VSI-fed motors, the fault frequen-
cies are observed as sideband pairs around principal current har-
monics introduced by the power supply, situated at a distance
equal to the mechanical rotation frequency, according to (3)

fecc = kf1 ± nfr . (3)

where

fr =
[

1 − s

p

]
f1 . (4)

III. QUALITY CONTROL CHARTS

Control chart is surely the most widely used tool of the “mag-
nificent seven” tools [53] of Statistical Process Control (SPC).
In the recent literature of SPC, it is common to distinguish
two phases in the development and implementation of control
charts. Phase I, sometimes called Initial Study (e.g., see [54]),
is primarily used, according to [53], to bring the process to a
state of statistical control, analyzing historical process data to
establish an initial set of in-control data that contains no outliers
[55]. This analysis may require several iterations to detect these
points and correct its causes. In the multivariate context we are
considering, the construction of this initial in-control data set
is more difficult as some additional problems not arising in the
univariate context may appear such as, among others, the deter-
mination of the proper functional form of the variables involved,
the possible appearance of multicollinearity, which would lead
to an unstable estimate of the covariance matrix of the variables
and the determination of multivariate outliers. A full descrip-
tion of these problems and the ways of dealing with them can
be found in [56].

Once the in-control data set has been established, the
in-control process parameters estimated and the control limits
determined, in Phase II, also called Control to Standard,
the process is monitored comparing the successive observed
values of the process with the control limits thus detecting
when the process goes out of control. In the multivariate
context, the interpretation of out-of-control signals is also
more involved than in the univariate case as the reason for

this signal may come, for example, from one or more of the
variables considered or from departures from the correla-
tion structure coming from the in-control data set. Several
methods have been developed to interpret out-of-control
signals such as the MYT decomposition [57] or Hawkings
method based on regression adjustments [58]. A comparative
study of these classical methods can be found in [59]. More
recently, classification techniques, such as, among others,
neural networks or decision trees, are being used to analyze
and interpret these signals. In [60]−[62], a description of these
methods is given, together with a comparison among them, with
boosting [63] showing the best performance according to [62].

IV. ROBUST QUALITY CONTROL CHARTS

As previously commented, two phases may be distinguished
in quality control charts.

Phase I: Assume that xi = (xi1 , . . . , xip )′, i = 1, . . . ,n are
the n observations taken from the in-control situation after mea-
suring key p features (e.g., p seemingly important features ex-
tracted from the frequency domain). It is quite common to use
the Hotelling’s T2 chart as a quality control tool. This chart is
based on monitoring the squared Mahalanobis distance, which
measures the distance of xi to the overall sample mean vector
x̄ and takes into account the covariance structure through the
sample covariance matrix S. In other words, this Hotelling’s T2
chart is based on the monitoring of

T 2
i = (xi − x̄)′S−1 (xi − x̄) , i = 1, . . . , n. (5)

When monitoring these quantities, the following upper con-
trol limit (UCL) is often applied:

UCL =
(n − 1)2

n
Bα ; p

2 , n −p −1
2

(6)

where Bα ;u,v is the (1 − α) percentile of the beta distribution
with parameters u and v. The use of these limits guarantees a
probability α of false alarm for each observation when assuming
multivariate normality for the observations.

However, it is also well known that the sample mean x̄ and
the sample covariance matrix S can be heavily influenced even
by a small amount of outlying observations. Unfortunately, un-
expected outliers are likely to appear in our in-control sample
of observations, given the high signal-to-noise ratios frequently
present in the spectrum, which may result in occasional prob-
lems in the determination of their monitored peaks. Moreover,
multiple outliers tend to inflate the classical variance-covariance
estimates in such a way that they can “mask” each other. This
problem is often known as “masking effect” [63]. The overes-
timation of the scatter of the in-control data causes that all the
T 2

i in (5) simultaneously shrink. Therefore, it may be wrongly
decided to use all the observations to estimate the in-control
parameters. Consequently, there will be problems in Phase II
for detecting out-of-control cases.

To overcome this trouble with outlying observations, it was
suggested to replace the sample mean and the sample covari-
ance matrix S by robust location and scatter matrix estimates
[64]−[66]. For instance, the minimum covariance determinant
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Fig. 1. Tolerance ellipses for the first sideband around the main harmonic
acquired from the healthy motor. Motor fed from an AB VSI.

(MCD) and the minimum volume ellipsoid (MVE) estimators
[65] can be used.

Focusing on the MCD as high-breakdown procedure, this
estimator can be applied by resorting to covMcd function
within the robustbase package available at the CRAN reposi-
tory (http://www.cran.r-project.org) This package returns robust
location and scatter matrix estimators denoted, respectively, as
xMCD and SMCD .

Using these estimators, the robustified Hotelling’s T2 dis-
tances can be defined as

T 2
i,MCD = (xi − xMCD)′ S−1

MCD (xi − xMCD) ,

i = 1, . . . , n. (7)

The distribution of this robustified T2 statistics does not admit
a closed explicit form, but, in order to establish UCL, simula-
tions can be used [65].

Fig. 1 shows how traditional Mahalanobis distances are in-
flated due to the presence of a few outlying observations and,
thus, the classical tolerance ellipsoids (i.e., the use of tradi-
tional Mahalanobis distances) can fail at detecting other clearly
anomalous observations. For instance, traditional (nonrobust)
Hotelling’s T2 chart can detect the three most clear outliers in
the “Broken bar diagnosis” example in the following section.
However, this method fails at detecting other outlying obser-
vations that remain hidden due to the “masking” effect. On the
other hand, we can detect these three clear outlying observations
together with many other outlying ones (see Fig. 2 top) when
using the robustified T2 statistics and a robust Hotelling’s T2
chart.

Therefore, the proposal for Phase I is trying to remove as
much as possible outlying observations. With this idea in mind,

Fig. 2. Robust Phase I charts with outliers (top) and with outliers removed
(bottom). The horizontal line marks the quality control warning. When the
outliers have been removed all the tests are in-control. Motor fed from an AB
VSI.

the xi observations satisfying

T 2
i,MCD > χ2

0.025;p (8)

are going to be directly discarded from the in-control sample.
χ2

α ;p stands for the (1 − α) percentile of the chi-squared distri-
bution with p degrees of freedom. Note that covMcd function in
the robustbase package already incorporates a consistency fac-
tor and a finite sample correction factor to achieve consistency
under the multivariate normal assumption [67].

Phase II: By using the criteria in (8), a subset of indexes
{i1 , . . . , im} ⊂ {1, 2, . . . , n} is obtained for a subsample
of (hopefully) outlier-free data points to be considered as
in-control data. Then, the sample mean x−out and the sample
covariance matrix S−out of this subset made up with m
observations are computed. A “robust phase II” chart is then
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TABLE I
SPECIFICATIONS OF THE TESTED MOTORS

Motor Rated Power
(kW)

Rated Voltage
(V)

Rated Current
(A)

Rated Speed
(r/min)

Pole Pairs

M1 0.75 3x230/400 1.9 1395 2
M2 1.1 3x230/400 2.6 1415 2

TABLE II
DESCRIPTION OF THE TESTS PERFORMED (BROKEN BAR CONDITION)

Condition State Description Hole Depth (mm)

1 Healthy motor 0
2 Incipient fault 6.4
3 Semi-broken bar 11.7
4 Full-broken bar 17

derived by examining

T 2
i,−out = (xi − x−out)

′S−1
−out (xi − x−out) (9)

where xi are the new observations to be monitored. The UCL
is also changed to

UCLm =
(m − 1)2

m
Bα ; p

2 , m −p −1
2

(10)

i.e., as in (6) but now only based on those m outlier-free sub-
sample.

An observation is finally labeled as out of control if T 2
i,−out >

UCLm . In the next section, the proportion of observations
labeled as out of control when using this approach is compared
to the traditional “nonrobust phase II.” Distances (5) and the
cut-off value (6) are directly applied in “nonrobust phase II.”

V. CASE STUDY

Several controlled laboratory experiments were carried out on
induction motors of two kinds of specifications, as shown in Ta-
ble I. The motors were fed from different sources, utility supply
(UT), and VSIs by different manufacturers. Both motors were
loaded with a magnetic powder brake. The following instrumen-
tation and software was used to collect and analyze data: a Fluke
Hall Effect probe, a PCI-6250 M DAQ board by National Instru-
ments, LabView, MATLAB, and R statistical software. The data
acquisition resolution was 80 kHz. MATLAB was used to pro-
cess the motor line current estimating the power spectral density
(PSD) from the signal applying the Hanning Window in order
to reduce the spectral leakage. In order to obtain a normalized
PSD, the function provided by MATLAB has been modified,
with the amplitude of the fundamental frequency corresponding
always to 0 dB.

A. Broken Bar Diagnosis

Four rotor conditions (see Table II) were tested by progres-
sively drilling a hole into one of the rotor bars. The motor was
fed from three different sources: utility supply and two VSIs
by Allen Bradley (AB) and Siemens and at different operating

Fig. 3. Phase II charts. Nonrobust (top) and robust (right) approaches. The
dots are the healthy motor tests (100 tests). The triangles, crosses, and x symbols
represent the different faulty (broken bar) condition states (see Table I) (50 tests
for each condition). Motor fed from an AB VSI.

frequencies (35, 50, and 65 Hz). As fault signatures, the first
sideband around the main harmonic was used. Nevertheless,
as it has been stated in Section I, the proposed method does
not limit the number or the characteristics of the features used.
In cases where the detection might be especially challenging,
more features can be used, extracted from current signal or from
other signals (such as vibration acoustic or axial flux signals,
for example).

To thoroughly describe the proposed methodology, one of the
tested cases is now explained in detail. In this case, a motor of
type M2 is fed from a VSI by AB with an operating frequency
of 35 Hz.
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TABLE III
BROKEN BAR CONDITION

Source Operating Frequency Method Condition State

2 3 4

AB VSI 35 Hz Nonrobust 19.05% 15.00% 13.33%
Robust 45.24% 95.00% 100.0%

50 Hz Nonrobust 6.52% 92.50% 97.83%
Robust 32.61% 100.0% 100.0%

65 Hz Nonrobust 73.17% 97.96% 91.11%
Robust 97.56% 100.0% 97.78%

Siemens VSI 35 Hz Nonrobust 9.52% 85.71% 93.33%
Robust 30.95% 100.0% 100.0%

50 Hz Nonrobust 2.33% 69.05% 71.11%
Robust 23.26% 90.48% 84.44%

65 Hz Nonrobust 43.90% 45.65% 91.11%
Robust 68.29% 78.26% 95.56%

Utility 50 Hz Nonrobust 5.00% 11.90% 2.13%
Robust 35.00% 85.71% 91.49%

Results of the tests performed with the nonrobust and robust approaches. Percentage of
diagnosed tests for each condition state.

Fig 1 shows the tolerance plot with the two chosen fault sig-
natures. The tolerance ellipse obtained with a classical approach
only considers as outliers the signatures from 4 tests, while with
the robust approach, 12 more tests are marked. This fraction of
anomalous data inflates the variance−covariance matrix estima-
tor, affecting the values of the Mahalanobis distances defining
classical Hotelling’s T2 values. The effect of these outliers can
be observed in Fig. 2, where the control limits set without re-
moving the outliers are shown (see Fig. 2, top), and when these
values have been removed (see Fig. 2, bottom), obtaining a
control limit more useful for diagnosis purposes in Phase II.

Fig. 3 shows the control charts in the nonrobust (see Fig. 3,
top) and robust versions (see Fig. 3, bottom) when monitoring
the IM. The line in the figures corresponds to the quality con-
trol warning. If the classical approach were used, some tests
belonging to the healthy motor state would be labeled as faulty
ones, that is, there would be a warning although the motor is in
a healthy state, while the first tests performed with an incipient
fault would not be detected. On the contrary, with the robust im-
plementation, these false alarms are eliminated and none of the
healthy cases would be mislabeled. Moreover, when the fault
is produced, it is almost immediately detected by the control
monitoring.

Table III gathers the results of the tests performed with the
three voltage sources and three different operating frequencies.
The last three columns show the percentage of tests that are diag-
nosed for each condition state with the nonrobust approaches. It
can be observed that the robust approaches always outperformed
the nonrobust one. It has to be taken into account that these per-
centages correspond to the corresponding condition state, but for
condition states 3 and 4, all the cases are diagnosed as faulty, al-
though in some few cases, the degree of severity is not correctly
diagnosed.

B. Bearings

One of the original bearings of a motor of type M1 was
replaced by other bearing by SKF. The mounted open-cage ball

Fig. 4. Phase II charts for bearing faulty state with the motor connected
directly to the utility supply and running at full load. Nonrobust (top) and robust
(right) approaches. The dots are the healthy motor tests (ten tests). The triangles
represent the faulty bearing state (ten tests).

bearing belongs to the 6004 series (characteristic q values were
consulted in SKF charts). To provoke the faulty condition, a cut
was made in the rolling ring.

As fault signatures, the two first sidebands [n = 1, 2 in (2)] for
the fundamental train frequency [52] have been chosen. Figs. 4
and 5 show the control charts when the motor was directly
connected to the utility supply. Fig. 4 shows the Phase II con-
trol charts in the nonrobust (top) and robust versions (right)
when monitoring the IM running at full load. In both cases,
there are no false alarms for the healthy state (dots in Fig. 4,
ten tests). For the faulty bearing state (ten tests, triangles in
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Fig. 5. Phase II charts for bearing faulty state with the motor connected
directly to the utility supply and running at almost no load. Nonrobust (top) and
robust (right) approaches. The dots are the healthy motor tests (ten tests). The
triangles represent the faulty bearing state (ten tests).

Fig. 4), all the tests are detected and diagnosed as faulty with
the robust approach, but with the nonrobust one, two of them are
mislabeled. In the case shown in Fig. 5, the motor was running at
almost no load. In this situation, the nonrobust approach would
be completely useless since none of the faulty cases would be
detected.

Fig. 6 shows the Phase II control charts in the nonrobust (top)
and robust versions (right) when the motor is fed from a VSI by
Telemecanique with an assigned frequency of 50 Hz, running at

Fig. 6. Phase II charts. Motor fed from a Vart VSI at different loads from
almost no load to full load. Nonrobust (top) and robust (right) approaches. The
dots are the healthy motor tests (20 tests). The triangles represent the faulty
bearing state (20 tests).

different loads from almost no load to full load. In both cases,
there are no false alarms for the healthy state (dots, 20 tests).
For the faulty bearing state (triangles, 20 tests), all the tests are
detected and diagnosed as faulty with the robust approach, but
with the nonrobust one, two of them are mislabeled.

C. Mixed Eccentricity

An artificially created eccentricity was provoked in a motor
of type M2 by putting an L-shaped iron wedge under the motor
support held by a pair of cinches.
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Fig. 7. Phase II chart for the mixed eccentricity case. The motor is fed from
a Siemens VSI with an operating frequency of 65 Hz. The dots are the healthy
motor tests (20 tests). The triangles represent the mixed eccentricity condition
(20 tests).

In the case shown in Fig. 7, the motor was fed from a VSI
by Siemens with an assigned frequency of 65 Hz. In this case,
there are no false alarms for the healthy state (dots in Fig. 7, 20
tests). For the mixed eccentricity condition (20 tests, triangles
in Fig. 7), all the tests are detected and diagnosed as faulty. In
this analysis, there is no difference between both approaches.

VI. CONCLUSION

In this paper, we have developed a procedure for detecting
incipient faults in VSI-fed induction motors using multivariate
quality control charts and shown its good performance with real
motor data under different types of faults. In the case study pre-
sented, two motors of different rated power are fed from four
different voltage sources, utility supply, and VSIs from three dif-
ferent manufacturers with different assigned frequencies (from
35 to 65 Hz) and running at different loads. The main advantage

of our technique is that it can be implemented without having
observations of the motor in a faulty condition, thus allowing for
direct usage in industrial practice with a healthy motor. Another
important advantage is that our procedure does not depend on
the motor brand or on the feeding system.

The procedure relies on online monitoring using a multireso-
lution technique based on wavelet functions to detect fault sig-
natures on the spectrum and on a multivariate control chart that
incorporates robust statistical procedures for the detection of
multivariate outliers corresponding to deteriorated states. This
robust technique, which has not been previously considered in
the literature for this problem, is aimed at dealing with noninten-
tional and occasional changes in data, for instance, due to bad
measurements or data acquisition problems. This control chart
can be implemented using distribution free software, which is
the third main advantage of our procedure.

Future work could be focused, as suggested by an anony-
mous reviewer, on employing techniques from the field of
self-adaptive systems, developing models able to adapt and re-
configure as new data are acquired, as well as models from
transfer learning, where knowledge acquired while solving a
problem can be applied to a related problem.
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