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Abstract. Through the present work a biometric signature of a speaker’s voice 
is proposed for the detection of the speaker’s gender. The estimation method 
relies on the extraction of the glottal flow derivative from voice after removing 
the vocal tract transfer function by inverse filtering. This spectral density is 
related to the vocal fold cover biomechanics, and it is well known that certain 
speaker’s features as gender, age or pathologic condition are present in it. For 
such a database of 100 pathology-free speakers equally balanced in gender and 
age is used as an experimental framework to draft the results exposed in the 
work. As the estimated biometric parameters show a certain degree of cross-
correlation Principal Component Analysis (PCA) is used to reduce parameter 
dimension. The principal components are used in unsupervised k-means 
clustering of speakers (unsupervised gender detection). The outcome grouping 
shows an almost complete separation of speakers by gender in terms of the 
most relevant parameters derived from a statistical dispersion study. Possible 
applications of the study can be found in forensic acoustics as well as in speaker 
identification and verification tasks.  

Keywords: Voice Biometry, Speaker’s Identification, Speaker Biometrical 
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1. Introduction 

The present work is oriented to voice characterization to determine a biometric signature of 
voice based on the parameterization of the glottal biomechanics for voice characterization 
(gender, age and speaker’s pathological voice condition being the primary targets, among 
others). A comprehensive review of the characterization of voice may be found in [1]. 
Traditionally the characterization of the speaker has been oriented to gender and age as the 
main goals. Good studies have been published in this sense during the last two decades [2][3] 
[4][5][6]. These works show the way to establish a more structured study regarding voice 
characterization. On one side they point out to the use of time or frequency domain parameters 
as the basis of the study. On the other side, they deal with Vocal Tract or Glottal Source 
biometry. In the present approach the Glottal Source has been selected as the object of the 
research. A generalized signature is proposed on a full description of the Glottal Source spectral 
envelope, concentrating on the singularities appearing on this pattern (peaks and troughs). This 
generalization is based on the biomechanical foundations of the Glottal Source spectral 
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envelope [7], whose singularities may be shown to be strongly conditioned by the 
biomechanical relations among parameters in well-known k-mass models [8]. Principal 
Component Analysis [9] is proposed to produce more compact data sets which can improve 
detection and classification results. This first approach to a more general study is oriented to the 
detection of specific speaker’s characteristics as gender on the glottal biometrical signature of 
voice. Classically most works dealing with the biometry of voice have considered the voice 
signal as a whole, not establishing a clear separation among the roles played by the different 
organs implied in voice production (vocal tract vs vocal folds) [10]. After the early work of 
Brookes and Chan [11] it has been only in the last years when an interest has appeared in 
studying the characteristics of the Glottal Source separately from the vocal tract for speaker 
recognition [12][13]. Nevertheless, it seems intuitive that in treating voice biometry following a 
deconstructive way, important improvements could be obtained. This means that glottal 
parameters have to be treated separately accordingly to their statistical inter-speaker and intra-
speaker characteristic distributions. Considering the classical source-filter voice generation 
model [14] composed by an excitation (Glottal Source) and a modulating structure (Vocal 
Tract), it may be expected that the excitation will depend on the biometric low-level 
characteristics of the speaker (glottal system physiology) being weakly influenced by the 
message (text), but strongly conditioned by the production process (physiological and 
emotional conditions, prosody, tonal height, production gesture, pathology, etc.). An analytical 
description of voice biometry is proposed in Figure 1. 

Voicing 

 
Figure 1.  Analytic description of voice biometry in terms of vocal characteristics (mainly 
message dependent) or glottal characteristics (mainly biometric). 

The parameterization of voice may be carried out using estimates of one of the following 
main categories (from left to right in the picture): 
• The Whole Voice Power Spectral Density (WVPSD), estimated by FFT or LPC. The 

short-time power spectrum is coded as Mel-Frequency Cepstral Coefficients (MFCC) [15].  
• The Vocal Tract Transfer Function Modulus (VTTFM). The WVPSD reflects the 

influence of the Glottal Source spectral envelope as a 1/f spectral tilt, which distorts the 
Vocal Tract Transfer Function. A separation between Vocal Tract and Glottal Source 
could render better results in the decoding of message (Speech Recognition) as well as in 
the characterization of the source (Speaker Recognition). 

• The Glottal Source Power Spectral Density (GSPSD). The Glottal Source can be 
parameterized in the time or in the frequency domain. Time domain methods are based in 
the well-known Liljiencrants-Fant model [16]. Frequency domain methods are preferred as 
they tend to be more robust facing noise or pathology [5]. 

 Within the VTTFM a clear distinction could be made between frequency regions below 
3000 Hz, which are more influenced by the message, and above 3000 Hz which are more 
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influenced by the speaker’s gesture and personality. The parameterization of the Vocal Tract 
can be given as well in terms of its associated area functions (Sagital Section). In this case it is 
also possible to establish two segments: the oral part and the glottal part. The former is more 
influenced by articulation, the later is more related to the speaker’s characteristics. Concerning 
the parameterization of the Glottal Source the time domain methods are oriented to the 
estimation of OC, SC, ClQ, RQ and NAQ (Open, Speed, Closing, Return and Normalized 
Amplitude Quotients). The frequency domain (GSPSD) is oriented to the estimation of H1-H2 
which is known to be related to the CQ (Close Quotient), as well as the Maximum Flow 
Declination Rate (MFDR) and the Spectral Slope. Other methods are based on MFCC or LPCC 
parameterization of the power spectral density of the glottal signals (glottal flow derivative, 
glottal source derivative, etc.) similarly to VTTFM. Another line is related with the 
parameterization of the Glottal Source frequency envelope and the extraction of the 
biomechanical parameters of a k-mass glottal model by inversion as in [21]. 

2. Estimation of the glottal source 

The methodology proposed in this work is based in a frequency domain parameterization of 
the glottal source power spectral density, with the following distinctive characteristics: 
- It is carried out either on the Glottal Source or on the Mucosal Wave Correlate (MWC), 

derived from the Glottal Source by removing the Acoustic Average Wave (AAW) [17]. 
- It estimates the singularities of the Mucosal Wave Correlate Power Spectral Density 

(MWCPDS) as sets of peaks and notches relative to F0. Therefore it can be considered as a 
generalization of the parameters used in [5]. 

Its biometrical character is granted by its inter- and intra-speaker statistical variability 
mainly conditioned by the personal characteristics of the speaker (gender, age, tension, glottal 
gesture, etc). The methodology used for the estimation of the Glottal Source is based on the 
elimination of the vocal tract by inverse filtering by well-known methods [18], and in the 
separation of the Glottal Source into the two referred components (AAW and MWC). An 
example of the glottal signal estimation results from inverse filtering may be seen in Figure 2 
from quasi-stationary utterances of the vowel /a/ by typical male and female speakers. 

 
Figure 2.  Examples of reconstructed glottal signals from vowel /a/ for prototype male and 
female speakers (#185 –left-, and #158 -right). From top to bottom: input voice, glottal 
residual, source and flow (four left templates: male prototype; four right templates: female 
prototype). Horizontal axes are given in sec for a sampling frequency of 11,050 Hz. 

The plot in Figure 3 reproduces in detail the time evolution of a cycle of the Glottal Source 
(full line) where the four phonation phases may be observed separated by vertical dot lines 
from left to right: return, closure, open and closing phases. Two other variables are plotted as 
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well: the Average Acoustic Wave (dash-dot) and the Mucosal Wave Correlate (dash). The 
dash-dot plot corresponds to the ideal Glottal Source if no Vocal and Pharyngeal Tracts were 
present under non inertial load conditions assuming that each Vocal Fold could be represented 
by a single body mass (1-mass model). This would be equivalent to two ideal Vocal Folds with 
a single mass behaviour attached to the walls of the tract by single elastic springs. The vibration 
would describe perfect semi-sinusoidal arches accordingly to the relation between mass and 
spring constants. This signal coincides with the Acoustic Average Wave (AAW) and has been 
evaluated by optimally fitting a semi-sinusoid arch to the Liljencrants-Fant pattern [7]. 

 
Figure 3. Splitting the Glottal Source (a) into the Average Acoustic Wave (b) and the 
Mucosal Wave Correlate (c). The minimum in the derivative of the MWC (d) marks the end of 
the return phase. The vertical middle dot line divides the phonation cycle into the close phase 
(left) and the open phase (right). The vertical side dot lines mark the return and closing points. 

The dash plot corresponds to the difference between the AAW and the L-F Glottal Source 
plots, and is thus referred as the Mucosal Wave Correlate. This signal shows interesting 
properties, such as the ability of pointing out the start of the open phase, which takes place at its 
minimum (middle vertical dot line). This property may be used in detecting the open and close 
intervals of the phonation cycle. 

3. Glottal-Source based Biometric Signature 

Through the present approach a methodology to derive biometrical parameters of the Glottal 
Source in the frequency domain is proposed. The biometrical parameters are estimated on the 
power spectral density of either the Glottal Source or the Mucosal Wave Correlate. The 
signature obtained from the Mucosal Wave Correlate is more specifically related to the 
biomechanics of the vocal fold cover, while that from the Glottal Source includes the 
biomechanics of both the body and the cover of the vocal fold. The estimates based on this last 
approach are more suitable for biometric applications, the estimates from the Mucosal Wave 
Correlate being more suitable for studies in vocal fold pathology. In both cases the parameter 
estimation methodology to be applied is the same. The power spectral densities shown in 
Figure 4 correspond to the Glottal Source from prototype male and female voices. A common 
behaviour may be observed in both cases regarding the envelopes of the power spectral 
densities: a fast raise from low frequencies to a maximum and a decay towards lower 
frequencies with a general trend of 12 dB/oct. In between a series of valleys or local minima 
may be appreciated surrounded by peaks. 
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Figure 4. a) Power spectral density of the glottal source from vowel /a/ for prototype male 
and female speakers (#185 –left-, and #158 -right) showing the singularities superimposed: *-
maxima; ◊-minima. Relative amplitude is given in dB. Horizontal axes are given in Hz. 

In Figure 5 the envelope of the glottal source power spectral density of the male prototype 
has been extracted showing a first maximum TM1 centered at a frequency fM1 followed by a 
descent to a minimum Tm1 in fm1 and to a new maximum TM2 at a frequency fM2. This type of 
notch may appear several more times as the general trend of the power spectral density is 
decaying. The presence of two maxima enclosing a minimum is explained by the resonances 
and anti-resonances in the system of masses and springs on the vocal fold body and cover 
structures [8]. 

 
Figure 5.  Power spectral density envelope of the glottal source for speaker #185 showing the 
first notch profile {TM1, fM1}, {Tm1, fm1} and {TM2, fM2}, and the meaning of 10 of the singularity 
parameters used in the study {p17, p18, p19, p21, p22, p27, p28, p30, p31 and p32}. Relative amplitude 
is given in dB. Horizontal axis is given in Hz. 

Therefore a glottal signature of voice may be established detecting each notch by estimating 
the amplitude and position of its singularity points and its slenderness factor as described in [7]. 
In a practical case the biometrical signature is estimated from the singularities of the power 
spectral density of either the MWC or the Glottal Source as follows  
• The Glottal Source is windowed in 512-sample frames and the power spectral density of 

each window is estimated by FFT in dB as in Figure 4. 
• The envelopes of the power spectral densities are estimated for each frame. 
• The maxima (*) and minima (◊) on the respective envelopes are detected and their 

amplitudes and frequencies collected as two lists of ordered pairs: {TMk, fMk} and {Tmk, 
fmk}, with k the ordering index. 

• The first (and usually the largest of all maxima) (TM1, fM1) is used as a normalization 
reference both in amplitude and in frequency. 

• The normalized singularity points and the approximate envelope of the power spectral 
densities for the MWC are assigned to the parameters for the study accordingly to Table 1. 
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Table 1.  MWC singularity parameters used in the study. 

Parameter No. and Description Parameter No. and Description 

p17 - Amplitude of the first maximum in dB TM1 p26 - Absolute pos. of first maximum fM1 

p18 - Normalized ampl. of first minimum in dB τm1 p27 - Norm. pos. of first minimum φm1 
p19 - Norm. ampl. of second maximum in dB τM2 p28 - Norm. pos. of second maximum φM2 
p21 - Norm. ampl. of second minimum in dB τm2 p30 - Norm. pos. of second minimum φm2 
p22 - Norm. ampl. of third maximum in dB τM3 p31 - Norm. position of third maximum φM3 
p23 - Norm. ampl. of spec. prof. at max. freq. in dB τfm p32 - Norm. position of end value φfm  
p24 - Norm. position of initial value in freq. φi p33 - Slenderness of first notch σm1 

p25 - Norm. pos. of first min. before the first max. φm0 p34 - Slenderness of second notch σm2 
Another possible parameterization strategy would be based on clipping voicing frames in 

segments aligned with the pitch cycle. In this way a different estimation would be produced for 
each cycle-like segment. In the present study voice frame durations of 0.2 sec. long are used 
producing different numbers of pitch cycles for male and female voice (typically ranging from 
20-40). The number of pitch cycles used is designated as M. Assuming reasonable stationary 
conditions along the frame duration (considering that a stable vowel is produced) estimations of 
the parameter means and standard deviations could be used in classification as  

∑
=

=
M

1m
ijmij p

M
1

x  (1)

( )∑
=

−=
M

1m

2
ijijmij xp

M
1σ  (2)

where i is the parameter index and m is the cycle index. In this way the estimations are more 
robust to intra-speaker variability as will be shown in the sequel. 

4. Materials and methods 

 
A corpus of 100 normal speakers equally distributed by gender was randomly recruited from 

a wider database recorded during the life of project MAPACI [19]. Speaker ages ranged from 
19 to 39, with an average of 26.77 years and a standard deviation of 5.75 years. The normal 
phonation condition of speakers was determined by electroglottography, video-endoscopiy and 
GRBAS evaluation [20]. The recordings consisted in utterances of the vowel /a/ of about 3 sec 
per record. A 0.2 sec frame from the record centre was used in the estimations. The spectral 
profile parameters {p17-34} As each parameter was estimated on a phonation cycle basis, for a 
prototype male voice (with pitch around 100 Hz) an average of M=20 values was obtained, 
which for female voice (with a typical pitch of 200 Hz) should be around M=40. In this way 
J=46 observation parameters xij were obtained as the average of each observation parameter pim 
over 1≤m≤M phonation cycles following (1) with 1≤j≤J for each speaker 1≤i≤I in the set of 
I=100 speakers. The estimations of observation parameter j for all the speakers 1≤i≤I in the set 
are stacked as a column vector 

[ ]TIjijj2j1j x,xx,x KK=x  (3)

Similarly the estimations for the whole set of parameters are piled as a matrix of observations 

[ ]Jj1 , , xxxX KK=  (4)
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Principal Component Analysis was applied to this dataset as described in [9] and [22] to re-
evaluate the set of observation parameters as 

Jj1;jj ≤≤= Xey  (5)

where the vectors yj contain the new parameters (principal components) for each speaker in the 
list 1≤i≤I their variance diminishing with component order. PCA was applied as follows: 
a) Pre-selection of a database X17-34 from the original parameter set S0 ={x1-46} for the whole 

set of speakers. The resulting subset of parameters S1={x17-19, x21-28, x30-34} included the 
normalized estimates of the power spectral density singularities, as given in Table 1. 

b) Z-score the database X17-34 by subtracting means and normalizing to standard deviations. 
c) Split the database X(S1) in two clusters by k-means blindly (unsupervisedly). 
d) Apply PCA on X(S1) to transform it to a new manifold for 16 principal components 

producing a matrix Y1-16 ordered by component relevance. 
e) Select the three first components for 3-D presentation purposes. 

5. Results and discussion 

The results in Y1-16 have been plotted in terms of the three first principal components, as 
described in a)-e) as given in Figure 6. 

 
Figure 6.  Classification results in the PCA manifold in terms of the first 3 principal 
components. Left: The set of samples is clustered into two main groups. Samples labelled (◊) 
are from male subjects, whereas those labelled (o) are from female subjects with two 
exceptions for #1A1 and #1F3, pinpointed by arrows. Right: Close-up view of the same plot. 

These results show that the unsupervised clustering succeeded in accurately separating speakers 
by gender with the exception of the two male subjects grouped within the female cluster (#1A1 
and #1F3). The female cluster shows a broader branch-like inter-speaker variability than the 
male cluster, which is less spread-out. This may imply that different branches may be found 
within the mainly-female cluster and would deserve a further investigation. As a consequence it 
may be said that it will be easier to establish classifications within female than in male groups. 

The main question to be answered at this point is which parameters will be more sensitive to 
gender, as there is a clear dependence of sample distributions on gender. To gain a better view 
on intra- and inter-speaker variability the following steps were covered: 
• The average values and standard deviations of each speaker were evaluated for each 

parameter in their respective templates in terms of M accordingly with (1) and (2), thus 
serving as estimates of intra-speaker variability. 

• The statistical dispersion of the parameter templates for the set of male and female 
subjects was presented as box plots, thus serving as estimates of inter-speaker variability. 
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Results are presented in Figure 7 (contrasted to the ones from the male and female prototypes). 

 
Figure 7. Statistical dispersion of the profile parameters used in the study from the male 
(left) and female (right) groups compared against their respective prototype male (#185) and 
female (#158) templates. The intra-speaker variability is expressed by the marks (o: mean) 
and (×: standard deviation). The inter-speaker variability is represented as notch-box plots. 

First of all it must be mentioned that certain parameters (as x24, x25 and x26) show almost no 
variability, therefore they are not of specific interest for our study. The impression derived from 
Figure 6 about the wider spread presented by female distributions when comparing male and 
female clusters is clearly confirmed. This dispersion is especially relevant regarding parameters 
x18, x19, x27 and x28, which are related to estimates of the first minimum and second maximum.  
Besides, certain parameter distributions from male and female groups do not overlap, or do so 
slightly, as is the case of x17, x23 and x32. This means that if used in differential clustering 
experiments they will render the best results, as will be shown in the sequel. Another interesting 
result is derived from the comparison between the prototype intra-speaker male template (#185) 
against the spread of the male and female groups. It may be seen that the prototype male 
template fits within the male parameter spread (showing slight deviations for x19, x23, x28 and 
x32). The same template when compared against the female distribution is in clear disagreement 
with respect to parameters x17, x23 and x32. A similar comparison may be carried out on the 
female prototype (#158) against male inter-speaker variability, showing strong disagreements 
again with respect to parameters x17, x23 and x32. On the contrary only parameters x30 and x31 
show slight deviations between the prototype female and the female inter-speaker dispersion. A 
further confirmation of these observations is obtained using Fisher’s Discriminant Ratio 

( )
Jj1;

σσ

μμ
fdr 2

fj
2
mj

2
fjmj

j ≤≤
+

−
=  (6)

where (µmj, σmj) and (µfj, σfj) are the means and standard deviations of the male and female 
distributions for parameter j. The results in Table 2 confirm the observations in the sense that 
x17, x23 and x32 are the most relevant parameters in gender detection. 

Table 2. Relevance of singularity parameters from FDR 
Parameter index and name Relevance Parameter index and name Relevance 

32. MW PSD End Val. Pos. rel. 0.2083 23. MW PSD End Val. rel. 0.1430 
17. MW PSD 1st Max. ABS. 0.1365 33. MW PSD 1st Min NSF        0.0213 
18. MW PSD 1st Min. rel.      0.0146 31. MW PSD 4th Max. Pos. rel. 0.0092 
19. MW PSD 2nd Max. rel.      0.0078 30. MW PSD 2nd Min. Pos. rel. 0.0040 
34. MW PSD 2nd Min NSF       0.0029 28. MW PSD 2nd Max. Pos. rel. 0.0008 
27. MW PSD 1st Min. Pos. rel. 0.0006 21. MW PSD 2nd Min. rel.      0.0005 
22. MW PSD 4th Max. rel.      0.0003 24. MW PSD Origin Pos. rel.   0.0000 
25. MW PSD In. Min. Pos. rel. 0.0000 26. MW PSD 1st Max. Pos. ABS. 0.0000 
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These results may be used in improving clustering strategies as shown in Figure 8, where 
clear differential groupings may be obtained when a non-overlapping parameter as x32 is used 
in a typical differentiating experiment. 

 
Figure 8. Differential clustering in terms of the most relevant parameters according to FDR: 
x17, x23 and x32 where clear gender separation is produced by the plane at x32=75.  

The fact that gender splitting is feasible by hyperplane separation (x32=75) suggests that 
more sophisticated techniques as Support Vector Machines may be used in complex multiple-
feature separation (as gender, age or phonation modality). 

6. Conclusions 

From what has been shown the following important conclusions may be derived: 
• The general decay trend of the glottal signal is coded in parameters p17, p23 and p32. 
• Parameters p17, p23, p32 and p33 are the most sensitive ones to gender. 
• Genders show different parameter dispersions, being broader in female than in male voice. 
• In general intra-speaker parameter dispersion is lower than inter-speaker dispersion. 
• PCA helps interpreting results by dimensionality reduction. 

As a general conclusion it may be said that a structured classification of the biometry of 
voice is a real need, as specific and clearly differentiated biometric information is present in the 
glottal components of voice, independently from features observed in vocal tract features. 
Therefore splitting voice into vocal and glottal components is a reasonable technique when 
articulation and biometry are two different objectives, as for example, in forensic applications 
of voice. As speaker identification and characterization algorithms strongly rely on joint 
probability densities of the parameters used in the experiments the production of glottal and 
vocal parameter descriptions statistically independent may be the clue to more accurate speaker 
recognition methods. This is especially important as far as the False Acceptance rates in 
security applications are critical to determine the suitability of these techniques in a given 
scenario. In this respect a combination of vocal and glottal feature descriptors independently 
and in fusion experiments may help in establishing efficient strategies for the improvement of 
detection rates. The implementation of this methodology may rely in pitch-synchronous or 
pitch-independent strategies, both having been tested with similar results. This makes it suitable 
for its application in real scenarios in forensic and security frameworks. The methodology 
presented may be also generalized to the study of speaker features as age, voice profile, 
emotional features and others alike. 
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