
216 Sketches

hd

i

+g1(i)c

+g3(i)c

+g2(i)c

+g4(i)c

h1

Fig. 5.4 Count Sketch data structure with w = 9 and d = 4.

array. The row estimate for f(i) is now gj(i) ∗ C[j,hj(i)]. It can be seen
that this version of the sketch is essentially equivalent to the version
described above, and indeed all the properties of the sketch are the
same, except that w can be half as small as before to obtain the same
accuracy bounds. This is the version that was originally proposed in
the 2002 paper [45]. An example is shown in Figure 5.4: an update is
mapped into one entry in each row by the relevant hash function, and
multiplied by a second hash function g. The figure serves to emphasize
the similarities between the Count Sketch and Count-Min sketch: the
main difference arises in the use of the gj functions.

5.3.2.1 Refining Count-Sketch and Count-Min
Sketch Guarantees

We have seen that the Count-Sketch and Count-Min sketch both allow
f(i) to be approximated via somewhat similar data structures. They
differ in providing distinct space/accuracy trade-offs: the Count sketch
gives ε

√
F2 error with O(1/ε2) space, whereas the Count-Min sketch

gives εN error with O(1/ε) space. In general, these bounds cannot be
compared: there exist some frequency vectors where (given the same
overall space budget) one guarantee is preferable, and others where the
other dominates. Indeed, various experimental studies have shown that
over real data it is not always clear which is preferable [65].

However, a common observation from empirical studies is that these
sketches give better performance than their worst case guarantees
would suggest. This can be explained in part by a more rigorous anal-
ysis. Most frequency distributions seen in practice are skewed: there
are a few items with high frequencies, while most have low frequencies.


