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1 Graph Sparsifiers

Let G = (V,E) be an undirected graph. How well can G be approximated by a sparse graph? Such
questions have been studied for various notions of approximation. Today we will look at approximating

the cuts of the graph. As before, the cut defined by U ✓ V is

�(U) = {uv 2 E : u 2 U and v 62 U}.

Let w : E ! R be a weight function on the edges. The weight of a set F ✓ E is defined to be

w(F ) :=
X

e2F
we.

So the weight of the cut defined by U ✓ V is w(�(U)).

A graph sparsifier is a non-negative weight function w : E ! R such that

• w has only a small number of non-zero weights,

• for every U ✓ V ,
(1� ✏)|�(U)|  w(�(U))  (1 + ✏)|�(U)|. (1)

We can think of any edge with weight zero as being deleted. So the goal is to find a sparse, but weighted,
subgraph of G such that the weight of every cut is preserved up to a multiplicative factor of 1 + ✏.

How could one find a sparsifier? A natural idea is to sample the edges independently with some
probability p. That works well if G is the complete graph because it essentially amounts to constructing
an Erdos-Renyi random graph, which is well-studied.

Unfortunately this approach falls apart when G is quite di↵erent from the complete graph. One such
graph is the “dumbbell graph”, which consists of two disjoint cliques, each on n/2 vertices, and a single
edge in the middle connecting the cliques. We would like to get rid of most edges in the cliques, but we
would need to keep the edge in the middle. This example tells us that we should not sample all edges
with the same probability p.
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http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

