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Abstract In this paper we present nonlinear incentive strategies that can be applied to a
class of differential games that are frequently used in the literature, in particular, in envi-
ronmental economics literature. We consider a class of nonlinear incentive functions that
depend on the control variables of both players and on the current value of the state variable.
The strategies are constructed to allow some flexibility in the sense that, unlike the common
literature on the subject, the optimal state path evolves close to the cooperative trajectory.
As a consequence of this flexibility, the incentive equilibrium is credible in a larger region
than the one associated with the usual linear incentive strategies.
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1 Introduction

An important issue in cooperative games is to address the question of whether coordinated
outcomes can be sustained (enforced) over time, and this is the central point of this paper.
We shall show that the sustainability over time of an agreement reached at the starting date
of the game can indeed be achieved. As pointed out by Haurie in [1], the initial sharing
rule agreed upon may become individually irrational in the course of the game, implying
that the agreement would be broken at an intermediate instant of time. In other words, the
agreed solution does not satisfy individual rationality if one player stands to receive a lower
payoff in the coordinated solution than what he would get in a noncooperative solution. If
this is the case, the player will find it optimal to deviate, he may have an incentive to cheat
on the agreement, that is, to choose a different course of action than that prescribed by the
agreement.
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Two different approaches have been proposed in the literature to ensure the sustainability
over time of coordinated outcomes. The first proposes the design of a cooperative solution
or an agreement which is time-consistent or agreeable. In this situation, the coordinated
payoffs-to-go are greater than the noncooperative ones, along the cooperative state trajectory
(time-consistency) or along any state trajectory (agreeability). See, for example, [2–6] for
the analysis of time-consistent agreements, and [7–10] for agreeable agreements.

The second approach proposes to design a self-enforceable agreement which is in effect
an equilibrium. In this case, each player will find it individually rational to stick to his part
in the agreed solution. The problem is already solved when the efficient solution is in itself
an equilibrium, as in [11–13]. Usually this coincidence is absent and two different options
have been proposed in the literature to embody the cooperative solution with an equilibrium
property.

The first is to use trigger strategies (see, for example, [14–16]). In the 80s [14, 15],
among others, showed how the use of control-dependent memory strategies permits the
inclusion of a threat in a cooperative strategy, which leads to a class of acceptable equilibria
in dynamic games. These strategies are based on past actions and they include a threat
to punish, credibly and effectively, any player who cheats on the agreement. Within the
limits of differential games theory, this approach presents technical problems because trigger
strategies are in general discontinuous and need the introduction of memory strategies for
the players. These strategies are based on all past information of the game evolution to the
current time and, as a consequence, they are non-Markovian.

The second option to implement cooperative solutions by means of noncooperative play
is through incentive strategies, establishing the efficient solution as an incentive equilibrium.
The key to this result is to design the incentive in such a way that a coordinated outcome be-
comes a Nash equilibrium. These strategies have been introduced in the two-player dynamic
games literature by H. Ehtamo and R.P. Hämäläinen in a series of papers [17–20]. The idea
is to find strategies for both players such that when one player implements, or is believed
to implement his strategy, no temptation exists for the other player to cheat or to break the
agreement in the course of the game. Incentive strategies are functions which depend on the
possible deviation of the other player with respect to the agreed solution. These strategies
recommend that each player implements his part of the coordinated solution whenever the
other player is doing so. These strategies are relatively easy to construct, but the difficulty
of their use arises when studying their credibility. The equilibrium strategies are credible
when it would be more beneficial for each player to follow his equilibrium strategy rather
than his cooperative action, in case the opponent deviates from his cooperative action. This
credibility property establishes that there will not be any temptation for unilateral deviation
from the agreed decision. The credibility of incentive strategies is the topic of this paper.

The starting point of this paper is the main result in [21, 22], where the credibility of
the incentive equilibrium strategies is characterized for the class of linear-state and linear-
quadratic differential games. This result can be summarized as follows: linear incentive
strategies are credible, i.e. the players do believe that the announced strategies will be fol-
lowed, when deviations are not too large.

This result inspires the main research questions of this paper. Does flexibility facilitate
sustainability of cooperation over time? Does the use of more flexible incentive strategies
help in ensuring the credibility of the incentive strategies defined to sustain the coordinated
outcome? The focus of this follow-up paper is to show that the definition of more flexible
nonlinear incentive equilibrium strategies for two-player differential games helps to guar-
antee the sustainability of the agreement over time. The aim of the study is to check if the
definition of less restricted incentive strategies in terms of the permitted deviation from the
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coordinated solution facilitates the credibility and implementation of these strategies. To this
end, we consider a class of incentive strategies that are defined as nonlinear functions of the
control variables of both players and the current value of the state variable. Note that in our
paper instead of considering only decision-dependent equilibrium strategies as is commonly
done in the literature, we also consider state-dependent equilibrium strategies.1

Let us recall that in the previous literature on incentive strategies, these strategies are
constructed in such a way that the incentive equilibrium is the cooperative solution. Impor-
tantly, the idea of this paper is to relax this, in some sense, demanding requirement and look
for an incentive strategy equilibrium such that, first, the corresponding optimal state trajec-
tory is close enough but not necessarily identical to the optimal cooperative trajectory; and
second, in the long run the steady state of the state variable is close to the steady state of the
state variable under the cooperative mode of play. It is worth noting that the incentive strate-
gies defined in this paper have the following, nice, property: the strategy for one player only
calls for a reaction when the control level for the other player is “not close enough” to his
cooperative action. Two different realizations for measuring the “distance” from the coordi-
nated action are proposed. The first concerns the distance in the long run as measured by the
distance from the steady-state level of the state variable. The second refers to the distance
along the whole optimal trajectory measured by the distance from the optimal cooperative
time path.

In both cases we show that it is possible to choose the incentive strategy functions in
such a manner that the optimal state path evolves arbitrarily close to the corresponding
cooperative state trajectory.

We illustrate the use of these strategies in a well-known example taken from environ-
mental economics- a transboundary pollution differential game [24]. We present some clues
for the mathematical analysis. Numerical experiments are presented to illustrate the results.
Essentially, the numerical algorithm solves an approximate time-discrete dynamic game.
The dynamic programming equations are solved by a spline collocation method.

The rest of the paper is organized as follows. In Section 2 we briefly review some related
works on incentive equilibrium strategies. In Section 3 we briefly recall the main ingredients
of a linear-quadratic differential game, and in particular, the formulation of a well-known
transboundary pollution differential game and its cooperative solution, the feedback nonco-
operative Nash strategies, as well as the steady-state pollution stocks under cooperative and
noncooperative modes of play. In Section 4, we define two types of incentive strategies and
equilibrium, the so-called stationary incentive and path-dependent incentive. In Section 5,
we analyze the credibility of these incentive strategies. Section 6 concludes. The Appendix
contains the numerical algorithm used throughout the paper.

2 Background

The use of incentive strategies has proved to be successful in analyzing how a desired co-
ordinated strategy can be implemented in different areas like marketing [23, 25–27], en-
vironmental economics [21, 22, 28, 29], and others [30]. In these papers different types of
incentive strategies are used to achieve the cooperative outcome as an incentive equilibrium.
In all the cases, the strategies are assumed to be linear, continuous in the information and

1 [19] (page 674) already pointed out the interest of considering state-dependent equilibrium strategies
instead of decision-dependent equilibrium strategies. [23] (page 818) stated that in the incentive equilibrium
the application of state-dependent strategies may be more complicated and may be a promising area for future
research.
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decision-dependent in the sense that each player makes his current decision contingent upon
the current decision of the other player. All these papers have solvable game structures,
specifically all belong to the class of linear-state or linear-quadratic differential games. Fur-
thermore, the credibility property has only been studied in [21–23, 29].

As already pointed out in [19], the credibility property is usually difficult to study ana-
lytically, and one has to focus on numerical studies. In [19], the authors perform numerical
experiments, adopting piecewise constant functions to describe the players’ possible devi-
ations. In that paper the credibility property was studied numerically in the context of a
continuous time whaling model. In [20], the analysis for the corresponding discrete-time
model is presented. In this discrete-time setting the authors derive the credibility property
analytically. In both papers the authors prove that credibility can be obtained for sufficiently
small values of the deviation from cooperation.

This last result agrees with the findings in [23], where no closed-form results for the
credibility problem are derived in the general case, but some insights are obtained in a sim-
plified model. Credibility is assured only against deviations of the following type: a player
cheats on the agreement by making a lower effort than the desired rate during some initial
period of time.

In [29], in the context of a two-period overlapping generations model in discrete time,
the authors show that the decoupled linear incentive strategies considered may not be credi-
ble for some parameter values, while for some sets of parameters they would be effective to
implement the desired cooperative outcome.

In [21, 22], the credibility of the incentive equilibrium strategies for the class of linear-
state and linear-quadratic differential games is characterized. In each of these papers a gen-
eral condition for credibility is derived and its use is illustrated in two examples. In [21],
sufficient conditions which ensure the existence of neighbourhoods in which the incentive
strategies are credible are provided. In both examples the proposed linear incentive strategies
are not always credible. In particular, and in line with other studies, linear incentive strate-
gies are credible if the deviation from the cooperative solution is less than a fixed quantity.
Alternative ad-hoc nonlinear credible strategies are provided (a hyperbola for the environ-
mental economics game and a parabola for the knowledge accumulation game), suggesting
that we should not stick only to linear incentive strategies even in a simple class of differ-
ential games such as the linear-state one. In [22] in order to preserve the linear-quadratic
structure of the game, the analysis is restricted to linear incentive strategies and, addition-
ally, if one player deviates from the cooperative solution, it is assumed that he will use a
control, which is assumed to be linear. In other words, the analysis focuses on the fulfilment
of inequalities ensuring that the linear incentive strategies are credible when linear devia-
tions are considered. Under these hypotheses, it is not possible to characterize the feasible
sets which ensure credibility of the incentive strategies analytically, showing that obtaining
credibility, even for linear incentive strategies, is tedious. In [22], the authors use numeri-
cal simulations and conclude that only small deviations from the cooperative levels lead to
credible strategies. As far as the credibility property is concerned, the results of all these
papers can be summarized as follows: linear incentive strategies are credible, i.e. the players
do believe that the announced strategies will be followed, when deviations are not too large.

This result inspires the main research question of the present paper. Does the use of
more flexible incentive strategies help in ensuring the credibility of the incentive strategies
defined to sustain the coordinated outcome?
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3 A Linear-quadratic Differential Game

We consider a general infinite horizon two-player linear-quadratic differential game. Player
i’s objective is to maximize

Wi(u1,u2,x0) :=
∫

∞

0
fi(x,u1,u2)e−ρt dt, i = 1,2, (1)

s.t.: ẋ = g(x,u1,u2), x(0) = x0, (2)

where fi is a general quadratic function of its arguments satisfying standard concavity as-
sumptions and g is a linear (affine) function of its arguments, see [16] for details. Parameter
ρ is a positive constant discount rate. Although the setting is more general, it is assumed
that the state x and control variables, ui, i = 1,2, are scalar functions of time t. To simplify
the notation, we will drop the explicit dependence on the time variable when no confusion
can arise.

Let Ui denote the set of admissible controls for Player i. In this paper, we restrict our-
selves to Markovian strategies [16], so, Ui is defined as the set of measurable functions
ui = ui(x, t) defined in R× [0,+∞[ with values in some subset of the set of real numbers,
Ui ⊂ R, such that for all ui ∈ Ui, i = 1,2, the differential equation (2) with ui = ui(x, t),
i = 1,2, possesses a unique absolute continuous solution defined in [t0,+∞[ for all t0 ≥ 0
and x0 ∈ R. Let U := U1×U2.

From now on, the state variable is the (unique) solution of the ordinary differential equa-
tion (2) given the pair of admissible controls u1 and u2. As problem (1)–(2) is autonomous,
we assume, unless explicitly stated otherwise, that the players use stationary Markovian
strategies ui = ui(x). For notation simplicity, we will use Wi(u1,u2) instead of Wi(u1,u2,x0),
dropping the dependence on the initial condition when no confusion can arise.

The cooperative solution denoted by uc = (uc
1,u

c
2) is obtained as the result of the joint

optimization problem

max
u∈U

(W1 +W2) = max
u∈U

∫
∞

0
( f1(x,u1,u2)+ f2(x,u1,u2))e−ρt dt

subject to dynamics (2). Here, and in the rest of the paper, we have used the notation u to
represent a pair u = (u1,u2) ∈U = U1×U2.

The cooperative strategies can be explicitly computed. As is well known, the cooperative
feedback optimal controls are given by affine function of the state variable of the form
uc

i (x) = ac
i x+ bc

i , i = 1,2, where the coefficients ac
i and bc

i are characterized in [22]. Note
that such coefficients are not relevant for our analysis, so they will be not presented here. We
denote by xc(t) the optimal cooperative trajectory, that is the unique solution of (2) when
ui = uc

i (x), i = 1,2.
In the noncooperative case, a Markov-Perfect Nash Equilibrium (MPNE) [16], uN ∈U ,

uN = (uN
1 ,u

N
2 ), can be obtained as a pair of linear strategies, uN

i (x) = aN
i x+bN

i , i = 1,2. The
Nash equilibrium, uN , is defined by the following pair of inequalities

W1(uN
1 ,u

N
2 )≥W1(u1,uN

2 ),∀u1 ∈U1; W2(uN
1 ,u

N
2 )≥W2(uN

1 ,u2),∀u2 ∈U2.

In some models the coefficients aN
i and bN

i can be explicitly computed, see [22] for an
example. We denote by xN(t) the solution of (2) when the Markov-Perfect Nash strategies
are used.

We assume that, as is the case in the majority of models used in practice, both xc(t) and
xN(t) converge to a steady state denoted by xc

ss and xN
ss, respectively.
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Although the concepts and techniques presented here can be applied to the general case
with obvious modifications, for simplicity of presentation we focus, from now on, on a
particular linear-quadratic model borrowed from environmental economics literature. This
particularization will allow us to compare our results with previous literature on the subject.

Let us consider two players (countries, regions, ...) who wish to coordinate their pollu-
tion strategies in order to maximize their joint payoff. The control variables, denoted by
ui(t), i = 1,2, are the emissions of the two players (countries) at time t ≥ 0. The state
variable, denoted by x(t), represents the stock of pollution, which we assume follows the
dynamics defined by the ordinary differential equation

ẋ = g(x,u1,u2) := β (u1 +u2)−αx. (3)

In the model, β > 0 is a scale parameter and α > 0 denotes the natural absorption rate. The
objective of player i is defined by functional (1) with

fi(x,ui,u j) := ui

(
Ai−

1
2

ui

)
− 1

2
ϕix2, (4)

where Ai and ϕi are positive parameters. We suppose, as is commonly done for the model at
hand, that Ui = [0,+∞[, i = 1,2, although other restrictions are also advisable.

Particular cases of our specification are analyzed in [24,31]. Both models are completely
symmetric (Ai = A,ϕi = ϕ for all players). In [24], an n-country model is studied, whereas
[31] concentrates on a two-region differential game.

In this particular model both cooperative and Markov-Perfect noncooperative feedback
linear strategies can be explicitly computed, see [22]. In [22], it is proved that xc

ss < xN
ss,

so that, the noncooperative game gives a greater long-term stock of pollution than the one
under cooperation.

As is well-known in the related literature, the noncooperative mode of play leads to an
overpolluted environment in the long run. However, the environmentally preferred coordi-
nated solution is not an equilibrium, and the players have an incentive to deviate from the
prescribed paths. The main aim of this paper is to design an incentive strategy such that
the players (countries) will not move away significantly from their part of the coordinated
solution. As a result, in the particular model at hand, the optimal time path of the stock
of pollution will be close to the cooperative trajectory and the steady state of the stock of
pollution will be near the steady state of the stock of pollution under the cooperative setting.

4 Incentive Equilibria

We start this section with the definition of incentive equilibria. The set Γi of admissible in-
centive strategies for Player i is defined as the set of piecewise smooth functions ψi, defined
in Ui×U j×R with values in Ui, such that, for all vk = vk(x, t)∈Uk, k = 1,2, the function de-
fined by Ψi(x, t) = ψi(vi(x, t),v j(x, t),x, t), satisfies Ψi ∈Ui. For notation simplicity, in what
follows we drop the explicit dependence of ψi on the time variable t when no confusion can
arise.

Definition 4.1 A pair ψ1(v1,v2,x), ψ2(v1,v2,x) with ψi ∈ Γi, i = 1,2, is an incentive equi-
librium at (u∗1,u

∗
2) ∈U = U1×U2 iff for all u1 ∈U1 and u2 ∈U2,

W1(u∗1,u
∗
2)≥W1(u1,ψ2(u1,u∗2, x̂)), W2(u∗1,u

∗
2)≥W2(ψ1(u∗1,u2, x̌),u2),
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where x̂ and x̌ satisfy ˙̂x = β (u1 +ψ2(u1,u∗2, x̂))−α x̂, and ˙̌x = β (ψ1(u∗1,u2, x̌)+ u2)−α x̌,
respectively, with x̂(0) = x̌(0) = x0. Furthermore, u∗1 = ψ1(u∗1,u

∗
2,x
∗), u∗2 = ψ2(u∗1,u

∗
2,x
∗),

where ẋ∗ = β (u∗1 +u∗2)−αx∗, with x∗(0) = x0.

An incentive equilibrium is thus characterized by the following pair of optimal control
problems

max
ui∈Ui

Wi(ui,u∗j) =
∫

∞

0

(
ui

(
Ai−

1
2

ui

)
− 1

2
ϕix2

)
e−ρt dt,

s.t.: ẋ = β (ui +ψ j(ui,u∗j ,x))−αx, x(0) = x0,

(5)

with u∗i = argmaxui Wi(ui,u∗j), i, j = 1,2, i 6= j. The equilibrium condition u∗i =ψi(u∗i ,u
∗
j ,x
∗),

i, j = 1,2, i 6= j, has to be satisfied.

Remark 4.1 Some authors have argued that the observations of the current actions of the
other player may only be available after a time lag. Thus, the implicit assumption of instan-
taneous observability in Definition 4.1 should be understood as a mathematical abstraction.
It is possible to introduce a time lag in the observations of actions as, for example, in [18,19].
However, in [19] the authors argue that when the delay is small, its effect can be neglected
in theoretical considerations. At the end of the paper, the authors consider the construction
of incentive strategies by introducing a constant time lag. They show that when the lag is
small, the payoffs and the incentive strategies in their model are very similar (they are the
same to an accuracy of four digits) for both specifications (without and with time delay).
However, this point could be an interesting question for future research in the context of
nonlinear incentive strategies.2

Remark 4.2 Linear incentive strategies are a particular case of Definition 4.1. In [17] (see
also [21, 22, 28]), the incentive strategy is defined as an affine function with the following
form,

ψ j(ui,u j,x) = ψ j(ui) = uc
j +D j(ui−uc

i ), i, j = 1,2, i 6= j, (6)

with D j, j = 1,2, denoting an appropriate non-zero constant.
In this case, the incentive equilibrium is the pair (u∗1,u

∗
2) = (uc

1,u
c
2), that is, the incentive

equilibrium is exactly the cooperative solution and, consequently, for all t ≥ 0, x∗(t) = xc(t),
and x∗ss = xc

ss, where x∗ss denotes the steady state of the system when the incentive strategies
are used.

The main idea of this paper is to relax this somehow exigent result, looking instead for
an incentive strategy equilibrium (u∗1,u

∗
2) such that, first, the corresponding optimal state

trajectory x∗(t) is close enough but not exactly equal to the cooperative trajectory xc(t); and
second, in the long run the steady state of the stock of pollution satisfies xc

ss ≤ x∗ss < xN
ss, with

x∗ss close to xc
ss and lower than the long-run value under the noncooperative setting, xN

ss.
In the rest of this section we present two different realizations of this idea.

4.1 Stationary Incentive

In the first realization, that we call stationary incentive, we choose the incentive functions
ψ j, j = 1,2, in Definition 4.1 of the form

ψ
s
j(ui,u j,x) = (uc

j +D j(ui−uc
i ))φ(x− xc

ss,ε)+u j(1−φ(x− xc
ss,ε)), (7)

2 We thank an anonymous reviewer for bringing this point to our attention.
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where ε > 0 is a small positive parameter and φ(x,ε) is a smooth function satisfying

φ(x,ε) = 0, if x≤ ε; φ(x,ε) = 1, if x≥ 2ε. (8)

The superscript s is used to denote “stationary” incentive scenario.

Remark 4.3 Note that, with the previous definition, if the state trajectory x(t) is far from
the steady-state value of the stock of pollution under cooperation, then the linear incentive
strategy (6) is activated by forcing the players’ choices in such a way that the game state path
returns close to the cooperative long-term state, xc

ss. When the state path x(t) is close enough
to xc

ss (as measured by parameter ε) the nonlinear stationary incentive (7) gives freedom
to the players who are not restricted to use any type of incentive. That is, in this case, the
players are allowed to choose any time path.

Note also that the incentive strategy is implemented only if, at some point, the trajectory
x(t) is above xc

ss, so only deviations of the cooperative outcome by one player leading to a
more polluted environment imply an immediate response by the other player.

The same technique can be applied, with obvious modifications, in different models if
the incentive is implemented for deviations below and/or above the desired outcome.

The incentive equilibrium functions ψs
j , j = 1,2, do not depend explicitly on time.

Therefore, in this case, problem (5) is autonomous. The value function V s
i (x), for Player

i, i = 1,2 satisfies the system of Hamilton-Jacobi-Bellman equations

ρV s
i (x) = max

ui∈Ui

{
fi(x,ui,u∗sj )+

d
dx

V s
i (x)g

s
i (x,ui,u∗sj )

}
, (9)

where the function fi has been defined in (4) and

gs
i (x,ui,u j) = β (ui +ψ

s
j(ui,u j,x))−αx, i, j = 1,2, i 6= j. (10)

The optimal policies u∗si , i = 1,2, are defined by

u∗si (x) = arg max
ui∈Ui

{
fi(x,ui,u∗sj )+

d
dx

V s
i (x)g

s
i (x,ui,u∗sj )

}
, j 6= i.

4.2 Path-dependent Incentive

In the second realization, the pair of incentive functions ψ j, j = 1,2, is allowed to depend
on t through the cooperative state trajectory xc(t); hence the name path-dependent incentive
strategies. More precisely, we define for i, j = 1,2, i 6= j, and t ≥ 0,

ψ
ns
j (ui,u j,x, t) = (uc

j +D j(ui−uc
i ))φ(x− xc(t),ε)+u j(1−φ(x− xc(t),ε)), (11)

where xc(t) is the cooperative state trajectory and φ is the cut-off function defined in (8).
Superscript ns is used to denote “non-stationary” as opposite to stationary incentive scenario.

Remark 4.4 Note that, with the choice (11), the players implement the linear incentive
strategies when the state trajectory is far from the cooperative trajectory, xc(t). The dif-
ference with the stationary incentive (7) presented in Subsection 4.1, is that there the play-
ers were forced to be not far from the stationary steady-state of the cooperative game, xc

ss,
whereas now, when the path-dependent incentive (11) is used, they are forced to be close to
the whole trajectory of the cooperative game, xc(t).
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In the case of a time-dependent incentive, the problem is non-autonomous and, in con-
sequence, the value function V ns

i (t,x), for Player i = 1,2, satisfies the system of time-
dependent Hamilton-Jacobi-Bellman equations

− ∂

∂ t
V ns

i (t,x)+ρV ns
i (t,x) = max

ui∈Ui

{
fi(x,ui,u∗ns

j )+
∂

∂x
V ns

i (t,x)gns
i (x,ui,u∗ns

j , t)
}
, (12)

where, fi, i = 1,2 is defined in (4) and

gns
i (x,ui,u j, t) = β (ui +ψ

ns
j (ui,u j,x, t))−αx, i = 1,2, i 6= j (13)

with ψns
j defined in (11).

Equation (12) is supplemented with the boundary condition

lim
t→∞

V ns
i (t,x) =V s

i (x), (14)

which is a natural boundary condition, taking into account that limt→∞ xc(t) = xc
ss. The opti-

mal policies u∗ns
i (t,x), i = 1,2 are defined by

u∗ns
i (t,x) = arg max

ui∈Ui

{
fi(x,ui,u∗ns

j )+
∂

∂x
V ns

i (t,x)gns
i (x,ui,u∗ns

j , t)
}
, j 6= i.

4.3 Computing Nonlinear Incentive Strategies

The analysis of the nonlinear incentive strategies presented in the previous subsections re-
quires numerical methods. In this section, we present some results obtained with the numer-
ical method described in the Appendix. Let us analyze a symmetric example. Similar quali-
tative results were found in all the numerical experiments carried out. We present here only
the results for the following particular values of the parameters: A1 = A2 = 0.5, ϕ1 = ϕ2 = 1,
α = 0.2, β = 1, ρ = 0.1. The threshold ε in the definition of the cut off function φ in (8)
defining the nonlinear incentive were set to ε = 0.025. The parameter D j in (7) and (11)
was set to D j = 1, j = 1,2 as in [22]. In this first experiment, the initial condition was set to
x0 = 0.

In Figure 1, we have represented the optimal control time paths and optimal state tra-
jectories for four different modes of play. Discontinuous (purple) lines represent the coop-
erative control (left) and state (right) optimal trajectories; dotted (red) lines are the optimal
trajectories corresponding to the noncooperative MPNE under linear strategies. The opti-
mal trajectories for the stationary and path-dependent incentive equilibrium strategies are
represented using solid (black) line and dash-dotted (blue) lines, respectively.

As we can see in Figure 1 (left), the emission of pollutants when the incentive equilib-
rium strategies are implemented are higher than in both the cooperative and noncooperative
games for a short period of time. This has the effect of rapidly adjusting the trajectory to
the specific target of the corresponding incentive strategy. In both cases, stationary and time-
dependent incentive equilibrium, the long-term steady-state, x∗ss, is within a distance of 2ε to
the steady state of the pollution stock of the cooperative game, see the right part of Figure 1.
In the case of the path-dependent incentive, after a short period of adjustment, the whole
trajectory is within a distance of 2ε of the cooperative trajectory. In Figure 1 (right) we can
see that the cooperative and path-dependent incentive state trajectories are, after the adjust-
ment period, parallel. The distance between cooperative and path-dependent trajectories can
be controlled by means of parameter ε in (8).
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Fig. 1 Optimal control (left) and state (right) trajectories. Initial condition x0 = 0. Discontinuous (purple)
line: Cooperative game. Dotted (red) line: Noncooperative game, linear MPNE. Solid (black) line: Stationary
incentive equilibrium. Dash-dotted (blue) line: Path-dependent incentive equilibrium.

Furthermore, the stationary and path-dependent incentive trajectories are very close in
the long term. In fact, by construction, they provide the same steady state of the pollution
stock, x∗ss. We remark that the steady state of pollution stock can be made arbitrarily close to
the Pareto efficient pollution stock by choosing a smaller value of parameter ε . One feature
that is worth noting is that, in the long run, the emission levels are very close, in both cases
(stationary and time-dependent incentive), to the Pareto efficient emission level (Figure 1).
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Fig. 2 Stationary feedbacks. Discontinuous (purple) line: Cooperative feedback. Dotted (red) line: MPNE.
Solid (black) line: Stationary incentive equilibrium feedback.

In Figure 2 we represent the symmetric stationary incentive optimal feedback law to-
gether with the optimal feedback laws for the cooperative and noncooperative cases. The
cooperative feedback u = uc

i (x), i = 1,2 is represented with a dashed (purple) line, the linear
feedback Nash equilibrium u = uN

i (x), i = 1,2 with a dotted (red) line and the stationary in-
centive equilibrium u = u∗i (x), i = 1,2, with a solid (black) line. The dash-dotted light grey
line represents the line of possible steady states for the dynamics (3) with symmetric strate-
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gies. That is the line defined by the equation 2βu−αx = 0. We have not included the natural
restriction u ≥ 0 in this picture in order to facilitate its comprehension. In the picture, we
can observe the role played by parameter ε: it marks the point at which the emissions should
start to decline towards its stationary level. With a smaller value of ε the emissions should
start their fall earlier in order to have a steady state closer to the cooperative steady-state.
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Fig. 3 Optimal control (left) and state (right) trajectories. Initial condition x0 = 0.25. Discontinuous (purple)
line: Cooperative game. Dotted (red) line: Noncooperative game, linear MPNE. Solid (black) line: Stationary
incentive equilibrium. Dash-dotted (blue) line: Path-dependent incentive equilibrium.

In the rest of this section we present the results obtained when the initial condition
is set to x0 = 0.25, so the initial state is larger than the cooperative steady-state, xc

ss and
lower than the noncooperative steady-state, xN

ss. In Figure 3 we have represented the optimal
control (left) and state (right) paths. We have used the same colour and type of line code than
before: discontinuous purple line for the results of the cooperative game, dotted red line for
noncooperative case and solid black line for the stationary incentive results. In this particular
case, the stationary and path-dependent incentives coincide. We can observe in Figure 3
that, in a first period of time, the optimal controls, in both the cooperative and incentive
equilibrium cases, are null, forcing the stock of pollution to decrease, see the right-hand
picture in Figure 3. In consequence, cooperative and incentive equilibrium state trajectories
coincide in this initial period of time. After this period, the incentive equilibrium control
path rapidly adjusts to its stationary level, driving the stock of pollution near the incentive
equilibrium stationary state x∗ss. We remark that |x∗ss− xc

ss| ≈ 2ε so that, the difference can
be made as small as needed by choosing ε appropriately. In the noncooperative game, the
optimal emissions trajectory is positive and decreases towards its stationary level. As can be
appreciated in Figure 3, the stock of pollution increases steadily towards xN

ss, the stationary
steady-state of the noncooperative game, which is much larger than both xc

ss and x∗ss.

5 Credibility

We start this section with a definition of credible incentive that is an extension of that ap-
plicable only to the case of linear incentive strategies, given in [21–23, 29]. As indicated in
the introduction, the credibility of the incentive strategies means, essentially, that if Player j
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deviates unilaterally from his incentive equilibrium action, u j = u∗j(x), then, it will be more
beneficial for Player i to follow the incentive strategy, rather than to stick to ui = u∗i (x). This
credibility property establishes that there will not be any temptation for unilateral deviation
from the pair u j = u∗j(x), j = 1,2.

Definition 5.1 A pair of incentive equilibrium strategies ψ1(v1,v2,x), ψ2(v1,v2,x), with
ψi ∈ Γi, i = 1,2, is credible in a set U1×U2 ⊂U1×U2 iff given u1 ∈U1 and u2 ∈U2 there
exist û1 ∈U1 and ǔ2 ∈U2 such that

W1(ψ1(û1,u2, x̂),u2)≥W1(u∗1,u2), W2(u1,ψ2(u1, ǔ2, x̌))≥W2(u1,u∗2), (15)

where x̂ and x̌ satisfy ˙̂x = β (ψ1(û1,u2, x̂)+ u2)−α x̂ and ˙̌x = β (u1 +ψ2(u1, ǔ2, x̌))−α x̌,
respectively, with x̂(0) = x̌(0) = x0.

A sufficient, although obviously not necessary, condition for credibility is that for all u1 ∈U1
and u2 ∈U2

W1(ψ1(u∗1,u2, x̂),u2)≥W1(u∗1,u2); W2(u1,ψ2(u1,u∗2, x̌))≥W2(u1,u∗2),

where x̂ and x̌ are defined as in Definition 5.1, with û1 = u∗1 and ǔ2 = u∗2.

Remark 5.1 Note that, in the case of linear incentive strategies, ψ j is given by (6). Then,
Definition (5.1) reduces to Wi(ψi(u j),u j) ≥Wi(u∗i ,u j), ∀u j ∈U j with u∗i = uc

i , for i = 1,2,
which is the credibility definition proposed in the literature (see, for example, [21–23, 29]).

In what follows, we restrict ourselves to the stationary incentive defined in (7). Def-
inition 5.1 requires conditions (15) to be checked in some subset of admissible controls
U1×U2 ⊂ U1×U2. In order to be able to analyze the credibility properties of the non-
linear incentive strategies we assume that the set of possible deviations is restricted to
U1 =U2 = {u(x) = ax+b,a≤ 0,b≥ 0}. This is enough to illustrate the credibility proper-
ties of the proposed incentive strategies and allows us to compare with the linear incentive
strategies studied in [22].
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Fig. 4 Region of credibility. Symmetric case. Parameter values as in subsection 4.3.

In Figure 4 we have represented the region of credibility for deviations of Player 2 in the
symmetric scenario studied in Subsection 4.3. We have checked condition (15) for deviation
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of Player 2 in the set U2 with −2≤ a≤ 0, 0≤ b≤ 1. This set contains both the cooperative
control uc

i and the linear MPNE uN
i . We have represented with light grey colour the region

C of parameter values where, if u2(x) = ax+b with (a,b) ∈C,

W1(ψ1(u∗1,u2, x̂),u2)≥W1(u∗1,u2).

That is, C is the region of credibility for Player 1 against deviation of Player 2. The regions
D represented in a darker grey colour in Figure 4, correspond to the set of parameter values
where the following two conditions are satisfied simultaneously

W1(ψ1(u∗1,u2, x̂),u2)<W1(u∗1,u2) and W2(u∗1,u2)<W2(u∗1,u
∗
2).

That is, D is a region where the incentive equilibrium strategy is not credible following
Definition 5.1, but it is irrational that Player 2 implements a strategy that would provide him
a smaller payoff than that associated with the incentive strategy. Finally, the darkest region
E is the non-credible region. For a deviation of Player 2 in E, we have

W1(ψ1(u∗1,u2, x̂),u2)<W1(u∗1,u2) and W2(u∗1,u2)≥W2(u∗1,u
∗
2).

We can clearly see in Figure 4 that, apart from the very small region E, the incentive
strategy is credible for affine deviations from the incentive equilibrium that provide a greater
payoff to the deviating player. Furthermore, the incentive strategy also has the following
interesting property

W2(ψ1(u∗1,u2, x̂),u2)<W2(u∗1,u
∗
2), ∀u2 ∈U2.

This last inequality means that the incentive strategy works also as a trigger strategy (see,
for example, [14–16]), against possible deviation of Player 2 in the set U2.
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Fig. 5 Optimal control (left) and state (right) trajectories. Initial condition x0 = 0. Discontinuous (purple)
line: Cooperative game. Dotted (red) line: Noncooperative game linear MPNE. Solid (black) line: Stationary
incentive equilibrium. Dash-dotted (blue) line: Path-dependent incentive equilibrium.

In Figure 5, we can observe, with more detail, the mechanism through which the in-
centive defined by (7) is able to annihilate the possible advantage of a deviating player. In
Figure 5 we have represented the control (left) and state (right) trajectories when one of the
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players, for example Player 2, plays his part of the linear MPNE strategy u2 = uN
2 , instead

of the incentive equilibrium, whereas the other player, say Player 1, plays u1 = ψ(u∗1,u
N
2 , x̃),

where x̃ is the solution of equation (2) with this choice of u1 and u2. We have used a dotted-
dashed (blue) line to represent the state trajectory in Figure 5 (right). The control trajectories
for Player 1 and Player 2 are represented, on the left part of Figure 5, using dotted-dashed
and dashed (blue) lines, respectively. For reference, we have also depicted the trajectories
when both players apply the strategies given by the incentive equilibrium (u∗1,u

∗
2) (repre-

sented using solid (black) line), the trajectories when both players play the Nash equilibrium
(uN

1 ,u
N
2 ) (represented using dotted (red) line) and the trajectories when both players apply

the cooperative solution (uc
1,u

c
2) (represented using discontinuous (purple) line). We can ob-

serve that when the stock of pollution (state variable) lies below the threshold (xc
ss+ε) which

defines the incentive (see formulas (7) and (8)), Player 1 emits pollutants at rate u1 = u∗1,
regardless of the deviation of Player 2. However, when, as a consequence of the strategy,
u2 = uN

2 , implemented by Player 2, the stock of pollution (state of the system) separates
from the threshold allowed, Player 1 changes smoothly but rapidly, to the rate of emission
given by his part of the linear MPNE strategy, u1 = uN

1 , neutralizing the advantage obtained
by Player 2 when it separates from the incentive equilibrium. In this way, the final out-
come of the game is that both players play à la Nash and, of course, the stock of pollution,
eventually, approximates to xN

ss.
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Fig. 6 Credibility region for Player 1 (left) and Player 2 (right). Nonsymmetric case. A1 = 1.01, A2 = 1.00.
Regions E, D and E are defined as in Figure 4.

To finish this section we compare the nonlinear incentive proposed in the present paper
with the linear incentive used in the same model in [22]. We repeat the experiment using the
same value of the parameters used in [22]. Specifically, A1 = 1.01, A2 = 1.0, ϕ1 = ϕ2 = 1,
α = 0.2, β = 1, ρ = 0.1 and x0 = 0.05. We have represented in Figure 6 the regions of
credibility for Player 1 against deviations of Player 2 on the left of the picture and the region
of credibility for Player 2 against deviations of Player 1 on the right of the picture. We have
used the same colour codes as in Figure 4. We can see, that, in both cases, the region of
credibility attained with the nonlinear incentive contains and is considerably greater than
that reported for the linear incentive in [22]. In fact, −0.85 ≤ a1 ≤ −0.7, 0.15 ≤ b1 ≤ 0.2
for deviation of Player 1 of the form u1 = a1x+b1 (compared with the right part of Figure 6)
and −0.9≤ a2 ≤−0.7, 0.15≤ b2 ≤ 0.2 for deviation of Player 2 of the form u2 = a2x+b2
(compared with the left part of Figure 6). However, in the case of the paper [22], the final
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outcome was exactly the cooperative Pareto efficient solution, whereas in our case, this goal
is, by construction, only approximately attained.

This comparison allows us to positively answer the main research question of this paper.
We can conclude that the introduction of flexibility can be a useful device to facilitate the
sustainability of cooperation over time.

6 Conclusions

Previous literature on dynamic games has shown that incentive strategies could be an inter-
esting device for sustaining cooperation over time of a cooperative agreement, if they happen
to be credible. In this paper, we have proposed a class of nonlinear incentive strategies that
lead to an optimal state path that remains close to the cooperative state trajectory. These non-
linear incentive strategies, defined as a nonlinear function of the control variables of both
players and the current values of the state variable, act as trigger strategies discouraging the
player to separate from the incentive equilibrium, and, finally, from the cooperative solu-
tion. Furthermore, these nonlinear incentive strategies enlarge the credibility region. This is
an interesting feature that, we think, merits exploration in more detail. The characterization
of credible incentive strategies defined by means of more general nonlinear functions is an-
other future research project that could be of interest, if the aim is to extend the results of
this paper to more general economic or environmental models. Finally, appropriate numeri-
cal methods are needed to design and analyze more realistic differential game models. This
will be the subject of future research.

Appendix A The Numerical Method

We discretize problem (5), with the incentive functions ψi, i= 1,2, defined in (7), by consid-
ering a time-discrete problem. To this end, let h > 0 be a positive parameter. We introduce
the time steps tn = nh, with n ∈N a positive integer. We will use the notation ūi to represent
a sequence of real numbers {ui,n}∞

n=0 with ui,n ∈Ui for all n ∈N. The set of such sequences
is represented by U i.

We consider the time discrete, infinite horizon, pair of problems

max
ūi∈U i

Wh,i(ūi, ū
∗ξ
j ) =

∞

∑
n=1

δ
n
[

ui,n

(
Ai−

1
2

ui,n

)
− 1

2
ϕix2

n

]
, (16)

s.t.: xn+1 = xn +h
(
β (ui,n +ψ

ξ

j (ui,n,u
∗ξ
j,n,xn))−αxn

)
,

where x0 is the initial condition in (5), δ = 1−ρh and where superscript ξ is used to denote
s or ns depending on the particular realization at hand. For simplicity, we have omitted the
time variable in ψns

i . It is assumed that the equilibrium condition

u∗ξi,n = ψ
ξ

i (u
∗ξ
i,n ,u

∗ξ
j,n,x

∗
n), i, j = 1,2, n≥ 0,

is satisfied. We are using the notation ū∗ξi := argmaxūi Wh,i(ūi, ū
∗ξ
j ), i = 1,2.

Let us observe that the discrete problem (16) corresponds to a discretization of the func-
tional in (5) by means of the rectangle rule with a forward Euler discretization of the dy-
namics in (5).
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The discrete optimal incentive equilibrium trajectory starting in x∗0 = x0 is computed
with the sequence

x∗n+1 = x∗n +h
(
β (u∗ξi,n +u∗ξj,n)−αx∗n

)
, n≥ 0. (17)

In the case of the stationary incentive, the (time discrete) value function for problem (16) is
defined by the system of Bellman equations

V s
h,i(x) = max

ui∈Ui

{
h fi(x,ui,u∗sj )+δV s

h,i
(
x+hgs

i (x,ui,u∗sj )
)}

, (18)

where i, j = 1,2, i 6= j. The optimal feedback is defined as

u∗si (x) = arg max
ui∈Ui

{
h fi(x,ui,u∗sj )+δV s

h,i
(
x+hgs

i (x,ui,u∗sj )
)}

,

and fi(x,ui,u∗sj ) and gs
i (x,ui,u∗sj ) are given by (4) and (10).

The solution of the system of equations (18) is approximated using a collocation method
based on shape preserving piecewise cubic Hermite interpolation introduced in [32, 33].
More precisely, let us introduce a grid of points 0 = z0 < z1 < · · ·< zM = X for some fixed
X > 0 that is big enough. We define ∆k = zk+1− zk. The approximation V s

h,M,i to V s
h,i, can be

written for x ∈ [zk,zk+1] as

V s
h,M,i(x) = FkΦ

( zk+1− x
∆k

)
+Fk+1Φ

(x− zk

∆k

)
−Dk∆kΨ

( zk+1− x
∆k

)
+Dk+1∆kΨ

(x− zk

∆k

)
,

where Φ(z) = 3z2−2z3 and Ψ(z) = z3−z2. Note that the coefficients Fk and Dk, are defined
as Fk = V s

h,M,i(zk) and Dk =
d
dxV s

h,M,i(zk), k = 0,1, . . . ,M. The values of the slopes Dk are
chosen as in [33]. This choice guarantees that V s

h,M,i(x) is locally monotone if the data Fk are
locally monotone (see [32, 33]). The interpolant V s

h,M,i(x) possesses continuous first-order
derivatives in [0,zM]. The second derivative is not necessarily continuous.

The piecewise cubic approximation V s
h,M,i(x) is computed by a fixed point iteration solv-

ing, for r ≥ 0,

V s,[r+1]
h,M,i (zk) = max

ui∈Ui

{
h fi(zk,ui,u

[r]
j,k)+δV s,[r]

h,M,i

(
zk +hgs

i (zk,ui,u
[r]
j,k)
)}

, (19)

and
u[r+1]

i,k = arg max
ui∈Ui

{
h fi(zk,ui,u

[r]
j,k)+δV s,[r]

h,M,i

(
zk +hgs

i (zk,ui,u
[r]
j,k)
)}

.

The iteration is initialized with some given V s,[0]
h,M,i(zk) and u[0]i,k , i = 1,2, k = 0, . . . ,M, and

stopped when

max
k=0,...,M

i=1,2

∣∣V s,[r+1]
h,M,i (zk)−V s,[r]

h,M,i(zk)
∣∣< TOL,

where TOL is a prescribed tolerance. Once the convergence criterion is satisfied, the func-
tions V s

h,M,i :=V s,[r+1]
h,M,i are the desired approximations to the value functions, V s

i . The approx-
imated optimal policies are defined as the monotone piecewise cubic Hermite interpolant
u∗sM,i such that u∗sM,i(zk) := u[r+1]

i,k , i = 1,2, k = 0,1, . . . ,M. Finally, the approximate optimal
trajectory is computed from (17) with u∗si,n = u∗sM,i(x

∗
n).
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The time-dependent problem (5) with incentive (11) is discretized along the same lines.
We introduce a fictitious big enough time horizon T = tN = Nh > 0. The time-discrete,
time-dependent value function is defined as the solution of the system of Bellman equations

V ns
h,i(tn−1,x) = max

ui∈Ui

{
h fi(x,ui,u∗ns

j,n )+δV ns
h,i
(
tn,x+hgns

i (x,ui,u∗ns
j,n , tn)

)}
, (20)

where functions fi and gns
i are given by (4) and (13).

Equation (20) is supplemented with the artificial boundary condition V ns
h,i(tN ,x)=V s

h,i(x),
i = 1,2, which is an obvious approximation to (14). The system (20) is numerically solved
backward in time by

V ns
h,M,i(tn−1,xk) = max

ui∈Ui

{
h fi(xk,ui,u∗ns

j,n,k)+δV ns
h,M,i

(
tn,xk +hgns

i (xk,ui,u∗ns
j,n,k, tn)

)}
, (21)

where, for i, j = 1,2, i 6= j,

u∗ns
i,n,k = arg max

ui∈Ui

{
h fi(xk,ui,u∗ns

j,n,k) +δV ns
h,M,i

(
tn,xk +hgns

i (xk,ui,u∗ns
j,n,k, tn)

)}
.

The notation V ns
h,M,i(tn,x) represents, as before, the monotone piecewise cubic Hermite inter-

polant defined by the values V ns
h,M,i(tn,xk), 0 ≤ k ≤M. The backward iteration is initialized

using the boundary condition V ns
h,M,i(tN ,xk) =V s

h,M,i(xk), 0≤ k ≤M.
The approximated optimal policy at time tn, 1 ≤ n ≤ N, is defined as the monotone

piecewise cubic Hermite interpolant of the values u∗ns
i,n,k and it is denoted by u∗ns

M,i(x). Then,
the optimal trajectory can be computed from (17) with u∗ns

i,n = u∗ns
M,i(x

∗
n). System (21) is solved

by a fixed-point iteration similar to that in (19). In this last computation a filtering process
is applied to eliminate possible spurious oscillations.
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