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Abstract 
In the chemical industry, the optimal management of processes has 

become a topic of great interest in recent years since it enables to operate 
and makes decisions efficiently with respect to economic, environmental 
criteria or product qualities. Within the process industry, this management 
is usually performed at a top layer in the hierarchical control structure called 
Real Time Optimization (RTO), which is based on process models and uses 
optimization methods to provide the optimal operation of the process. 

However, optimal operation is not guaranteed since the process models 
used by RTO are always inaccurate, so the optimum computed from the 
model may not be the same as the optimum of the process. In addition, the 
layers of control structure use different models for making decisions, RTO 
typically involves nonlinear first-principles models that describe the steady-
state behaviour of the plant, whereas MPC is usually based on dynamic 
linear models, creating inconsistencies between them that affect the final 
result. 

The Modifier Adaptation methodology (MA) was developed to deal with 
these problems. This technique uses the process measurements to estimate 
the gradients of the process and, with this information, computes certain 
corrective terms that are added to the cost function and constraints of the 
optimization problem to lead the process to its optimum operating point  
despite the presence of structural uncertainty between the model used in 
the RTO layer and the process.  

Nevertheless, this methodology has some limitations. One of the main 
drawbacks is related to the dimension of the problem with respect to the 
number of decision variables and constraints, which increase significantly 
the number of required modifiers, thus slowing down the convergence of 
the method considerably, making the implementation of MA in this type of 
problems infeasible. To try to solve this issue, in examples with many 
operational constraints, this thesis presents an alternative MA formulation 
that makes the number of modifiers depend solely on the number of 
process inputs, reducing the dimension of the problem. In addition, this 
formulation is implemented following the Nested Modifier Adaptation 
methodology (NMA), which does not require the calculation of gradients to 
obtain the modifiers, thus making the implementation of the algorithm 
easier and speeding up the convergence towards the plant optimum. 



Another important limitation of the MA methodology is the necessity of 
waiting for the steady state of the process to update the modifiers at each 
iteration of the algorithm. In many real applications, for example the 
operation of distillation columns, this steady-state can be achieved after 
several hours of operation, which means that the convergence of the 
method is very slow and the optimum operating point is reached after 
several days of operation. This problem makes the implementation of this 
methodology ineffective in real processes, especially in those that have a 
long settling time. Therefore, this thesis has worked on the use of transient 
measurements to estimate the plant gradients and compute the modifiers 
during the transient, running the RTO layer with a higher frequency, without 
waiting for the steady-state of the plant, so the convergence rate to the 
optimum is sped up.  

Furthermore, after reviewing the existing literature on MA, it can be seen 
that there are not many large scale applications or realistic problems with a 
hierarchical control structure. For this reason, this thesis also focuses on 
showing the potential of this tool and the great benefits that could be 
obtained from applying it in the process industry. The considered case 
studies are very realistic, large-scale problems, such as the transport of 
natural gas through gas networks and the operation of a depropanizer 
distillation column present in any refinery. 

 

 

 

  



Resumen 

La gestión óptima de procesos dentro de la industria química se ha 
convertido en un tema de gran interés a lo largo de los últimos años, ya que 
permite operar y tomar decisiones de forma eficiente con respecto a 
criterios económicos, medioambientales o de calidades de producto. Dentro 
de la industria de procesos, esta gestión suele realizarse en una capa 
superior dentro de la estructura jerárquica de control denominada 
Optimización en tiempo real (RTO), que en base a modelos del proceso y 
utilizando métodos de optimización proporciona las directrices óptimas de 
operación del proceso.  

Sin embargo, los modelos utilizados nunca reflejan fielmente la realidad 
por lo que el óptimo calculado en base a estos modelos puede no 
corresponder al óptimo real del proceso. Además, las diferentes capas de la 
estructura de control usan  modelos distintos, mientras que la capa RTO está 
basada en modelos estacionarios no lineales, la capa MPC utiliza modelos 
dinámicos lineales, de modo que podría existir una falta de coherencia entre 
los mismos que afecte al resultado final.  

Para tratar esta problemática surge la metodología de adaptación de 
modificadores (MA) que utiliza las medidas del proceso para estimar los 
gradientes del proceso y con esta información calcular ciertos términos 
correctores que se añaden a la función de coste y a las restricciones del 
problema de optimización para conducir el proceso a su punto óptimo de 
operación a pesar de la presencia de incertidumbre estructural entre el 
modelo utilizado en la capa RTO y el proceso real. 

Sin embargo, dicha metodología presenta ciertas limitaciones. Una de 
sus principales desventajas está relacionada con la dimensión del problema 
con respecto al número de variables de decisión y de restricciones que 
aumentan considerablemente el número de modificadores necesarios 
ralentizando mucho la convergencia del método, llegando a hacer inviable la 
aplicación de MA. Para tratar de resolver este problema en el caso de que 
existan numerosas restricciones operacionales, la presente tesis presenta 
una formulación alternativa de MA que hace que el número de 
modificadores dependa únicamente del número de entradas del proceso 
reduciendo así la dimensión del problema. Además, esta formulación se 
implementa siguiendo la metodología de adaptación de modificadores 
anidados (NMA) que evita el cálculo explícito de gradientes para la 



obtención de los modificadores facilitando aún más la implementación del 
algoritmo y acelerando la convergencia hacia el óptimo de la planta. 

Otra importante limitación de la metodología MA es la necesidad de 
esperar al estado estacionario del proceso para actualizar los modificadores 
en cada iteración del algoritmo. En muchas aplicaciones reales, por ejemplo,  
la operación de columnas de destilación, dicho estado estacionario puede 
alcanzarse después de varias horas de operación lo que supone que la  
convergencia del método sea muy lenta y el punto óptimo de operación se 
alcance después de varios días de operación. Éste problema hace que la 
implementación de esta metodología en procesos reales, especialmente en 
aquellos que presentan largos tiempos de asentamiento, no sea eficaz. Por 
ello, en esta tesis se ha trabajado en el uso de medidas transitorias del 
proceso para estimar los gradientes de la planta y estimar los modificadores 
durante el transitorio, ejecutando la capa RTO con una frecuencia mayor, sin 
esperar al estado estacionario de la planta, de modo que la velocidad de 
convergencia al óptimo se vea acelerada.  

Además, después de revisar la literatura existente sobre la metodología 
MA uno puede darse cuenta que no existen muchas aplicaciones en 
problemas con un considerable número de variables o sobre ejemplos 
realistas que cuenten con una estructura jerárquica de control. Por ello esta 
tesis también está enfocada en demostrar el gran potencial que tiene esta 
metodología y los enormes beneficios que se podrían obtener si fuera 
aplicada en la industria de procesos. Los casos de estudio sobre los que se 
ha trabajado son ejemplos realistas y de gran escala como, el transporte de 
gas natural o la operación de una columna de destilación despropanizadora 
presente en todas las refinerías. 

 



  



 



1 INTRODUCTION 
This chapter introduces the key role that process optimization plays in the 

chemical industry, the basic ideas to formulate optimization problems and the way 
to carry out the optimal operation in practice through Real Time Optimization. The 
issue of model uncertainty to manage processes efficiently is also addressed, 
describing the current methods to solve it and providing the motivation of this thesis 
to contribute to the research and development of new methods in this field.  Finally, 
the chapter concludes with the main contributions of the present thesis and its 
organization. 



 

  



INTRODUCTION 21 

1.1 Process Optimization 
The growing competition in the chemical industry has led to try to a 

determination to find the optimal way to operate processes so as to reduce 
costs, increase benefits, maximize process efficiency and improve the 
quality of the obtained products. For this reason, process optimization has 
evolved from a methodology of academic interest into a technology with a 
significant impact in engineering practice.  

In the chemical industry, optimal operation is typically addressed by a 
hierarchical structure, as shown in Figure 1.1. 

Real Time 
Optimization

MPC

Distributed 
Control System

PROCESS

Planning

Scheduling

“What to make”
LP optimization problems

(Months - Weeks)

“When to make”
LP optimization problems

(Weeks - Days)

Optimization of Set Points

Multivariable control
(Minutes)

Basic control
(Seconds)

 
Figure 1.1.Hierarchical control structure. 

This control structure is formed by several layers with different 
objectives that are defined as follows: 

• Planning: the aim of planning is to answer the question “what to 
make”, that is, decide what feedstock to purchase, which products to 
make, and how much of them. In almost all large scale chemical 
plants, a linear program (LP), or successive LPs, are used for planning 
and are based on economics, typically an overall plant profit objective 
function, as well as forecasts of some aspects such as price variations 
or future demands. 
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• Scheduling: this is a decision-making process to determine “when”. 
Given a plan in a specific time horizon, scheduling addresses the 
timing of the necessary actions and events to execute that plan, 
optimizing work and workloads in the production process. 

• Real Time Optimization (RTO): this provides the bridge between plant 
scheduling and process control. At this level, medium-term decisions 
are made, typically on a time scale of hours, by explicitly considering 
economics in operations decisions. This step relies on a real-time 
optimizer that determines the optimal operating point under 
changing conditions, such as changes in raw material quality or in the 
operating conditions. The operating point computed by this layer is 
characterized by set points for a set of controlled variables that are 
passed on to the lower-level controllers. RTO typically involves 
nonlinear first-principle models describing the steady-state behaviour 
of the real process. These models are often relatively large, and the 
model-based optimization may require substantial computing time 
(Marlin & Hrymak, 1997). 

• Multivariable predictive control (MPC): this provides multivariable 
dynamic control of the plant, giving some amount of optimization 
capability. The associated time scale is usually in the order of minutes. 

• Distributed control system (DCS):  at the lowest level, measurements 
made by sensors are collected from the plant, and basic flow,  
pressure and temperature control is implemented on a time scale of 
seconds. The DCS layer is typically the main operator interface for 
monitoring and controlling the plant, including generating alarms for 
abnormal situations. Also implemented in this layer are advanced 
regulatory controls, such as cascade, ratio and constraint controllers, 
as well as sequencing controls.  

The multilevel structure leads to a vertical decomposition of the 
automation tasks. However, this has some drawbacks. The main limitation is 
that sampling and optimization have to be delayed until the controlled plant 
has settled to a new steady state (Engell, 2007). This delay occurs at each 
RTO step after a change in the input variables, and worse, after the 
occurrence of disturbances, so the adaptation of the operating conditions 
can be slow. Inconsistencies may also arise from the use of different models 
at the different levels. For instance, RTO typically involves nonlinear first-
principles models that describe the steady-state behaviour of the plant, 
whereas MPC is usually based on dynamic linear models obtained 
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empirically. So, there might be inconsistencies between them that affect the 
final result. 

Furthermore, RTO presents important challenges that have to be 
addressed, such as proposing algorithms that manage the existing model 
uncertainty, handling the interaction between the RTO and MPC layers, or 
speeding up the execution rate of RTO to adapt the operating conditions 
faster. These issues, and some others, will be explained in more detail 
throughout this thesis.   

1.1.1 Real Time Optimization 

RTO emerged in the seventies together with model predictive control 
(MPC), at the time when on-line computer control of chemical plants 
became available. Since then, RTO has been widely applied in the process 
industry. The applications go far beyond the chemical and petrochemical 
industries, and include food production or biological processes, among 
many other applications. These plants are made up of a large number of 
interconnected units, so achieving an optimal management is not a trivial 
task because of the inherent difficulties of the process itself, as well as the 
uncertainties and disturbances that continuously modify the operating 
conditions. Therefore, the development of a systematic mechanism, such as 
RTO, to achieve optimal operation has been most useful for the process 
industry.  Thanks to RTO, important economic payoffs can be obtained since 
RTO aims to reduce costs and improve profitability. Its success has meant 
that many companies have developed RTO solutions and related software, 
whose use is increasing due to the highly competitive market. 

RTO consists of solving an optimization problem by considering economic 
objectives through the explicit use of models for making decisions in real 
time that are passed to lower level controllers. One of the main challenges 
in RTO systems comes from the fact that models are simplified 
representations of reality and are thus subject to uncertainty. The most 
intuitive way to deal with this problem is to use process measurements to 
update the process model in order to give a better prediction of the plant 
outputs. This is the classical “two-step” approach, which consists of a  
parameter estimation step followed by an economic optimization step to 
compute the new operating point to be applied to the process in an iterative 
scheme until no further improvements in the cost function are observed 
(Behrens, et al., 2014). 
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However, in the presence of structural plant-model mismatch and 
unmeasured disturbances, the solution provided by the “two-step” 
approach might result in suboptimal, or even infeasible, plant operation. 
Even in the presence of parametric uncertainty, this methodology does not 
always provide correct results, since it is not straightforward to decide 
which model parameters to adapt by means of parameter estimation and 
which ones to keep at fixed values. In addition, these parameters should be 
identifiable from the available measurements, but this is not always the case 
(Yip & Marlin, 2002).  

Hence, there is a clear interest in devising and studying RTO 
methodologies that are tailored to enforcing feasibility and optimality, while 
alleviating model accuracy and updating requirements. With this in mind,  
this thesis describes the main advances in RTO and develops new techniques 
to improve its applicability in the process industry. 

1.1.2 Problem formulation 

From a practical point  of view, the optimization task consists of finding 
the best operating point that satisfies process specifications and constraints 
on many variables. To carry out this task a mathematical optimization 
problem that contains the following elements must be formulated (Biegler, 
2010): 

• Objective function: a quantitative performance measure to be 
minimized or maximized. This can for instance be operational costs, 
yield or profit. 

• Model: set of equations that describe the behaviour of the process. 
For the optimization problem, this translates into a set of equations 
and inequalities named constraints which comprise a feasible region 
that defines the performance limits for the system. 

• Decision variables: these are degrees of freedom in the process, that 
is, variables that can be adjusted to satisfy the constraints and find 
the optimal value for the objective function. 

• Operating constraints: the limitations on the values of some variables 
that can be divided mainly into four groups: equipment constraints 
(valve position, compressor speed ...), safety constraints (explosive 
limit, critical pressure…), quality constraints (reaction yield, purity…) 
and environmental constraints (pollutant emissions). 
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RTO typically uses an approximate nonlinear steady-state model of the 
process to make decisions: 

( )uxhyβuxF ,0,),( ==,  (1.1) 

where F and h∈ℜnh×1 are vectors of nonlinear functions, 𝛽𝛽∈ℜn𝛽𝛽×1 the 
model parameters, u∈ℜnu×1 the decision variables, y∈ℜny×1 the outputs 
predicted by the model and x∈ℜnx×1 accounts for some internal model 
variables. 

Then, RTO involves solving a constrained, steady-state optimization 
problem whose general formulation is given by (1.3) where φ is the cost  
function to be minimized and gi represents the inequality constraints (i = 
1,…, ng) which can be approximated from the knowledge of u and y as (1.1) 
shows . h is the set of nh equality constraints given by the model, 𝛽𝛽∈ℜn𝛽𝛽×1 

the model parameters, and u∈ℜnu×1 the decision variables which present 
lower and upper limits uL and uU.  
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For simplicity, notation )( βu,φ will stand for )),(( βuyu,φ in the rest of the 
thesis with no loss of generality. 
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(1.3) 
 

Assume φ and gi are twice continuously differentiable in a 
neighbourhood of u*, the gradients of the active constraints gi (u*, β) are 
linearly independent, and that u* is a local minimizer. The first-order 
necessary conditions of optimality for the problem (1.3), also known as the 
Karush-Kuhn Tucker (KKT) conditions, must be hold at u*, where u* is  a local 
optimum of problem (1.3) and they are defined as follows: 

UL uuu ≤≤≤ 0ig  (1.4) 
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where the Lagrangian L is defined as: 

( ) ( ) ( )uuζuuζζζβu U −+−++= ∑
=

LLU

1

LU TT

:
gn

i
iii g,,,μ,L µφ  (1.8) 

where μ ∈ℜng, ζU, ζL∈ℜnu are the Lagrange multiplier vectors. 

The necessary conditions of optimality can be divided into: (1.4), the 
primal feasibility conditions; (1.5), the complementary slackness conditions;  
and (1.6), (1.7) that are referred to as the dual feasibility conditions. Any 
point u* for which there exist Lagrange multipliers μ*, ζU*, ζL*, such that, (u*, 
μ*, ζU*, ζL*) satisfies the KKT conditions is called a KKT point. 

These conditions are necessary conditions that must hold at each local 
minimum; however, they may be satisfied by a point that is not a local 
minimum. Sufficient conditions must be satisfied for a KKT point to be a 
strict local optimum.  

In order to assure that the solution given by the first order KKT 
conditions is a minimum, and not a maximum or a saddle point of the 
Lagrangian L in (u*, μ*), the second order conditions are formulated. 

Second order conditions provide sufficient optimality conditions for the 
solution and are given by the following expression involving the Hessian 

L2
u∇ :  

( ) ( ) 0*2T* >∇ uZuZ uL  (1.9) 

So, the Hessian of L with respect to u is positive definite in relation to all 
vectors Z orthogonal to the gradients of the active constraints at u*. 

Although, RTO is traditionally based on solving nonlinear steady-state 
problems, it is important to note that there are many other classes of 
optimization problems, depending on several factors, such as the kind of 
functions and variables involved in the problem or the dependence of these 
functions on time. A possible classification is shown in Figure 1.2.  
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YES

Optimization Problems

Time 
dependent?

Dynamic Static

NO

Linear Nonlinear

Function 
linearity

Function 
linearity

Type of 
variable

Continuous Mixed Integer

Type of 
variable

Continuous Mixed Integer

Linear Nonlinear

 

Figure 1.2. Classes of optimization problems. 

The first separation in the classification considers whether model 
equations depend on time or not, distinguishing between dynamic and static 
problems. The linearity of the equations divides the optimization problems 
into two groups: linear (all the functions involved are linear) or nonlinear 
(any of the functions are nonlinear). 

If the variables involved in the problem are continuous, there is a  
continuous problem; if all of them are discrete, the problem is called 
integer, and finally, if there are both types of variables, the problem is 
mixed. The discrete variables are often restricted to taking 0 or 1 values to 
define logical or discrete decisions, such as the assignment of equipment 
and sequencing of tasks.  

There are other classes of optimization problems that have not been 
shown in Figure 1.2, such as deterministic or stochastic problems. In 
deterministic problems, the input data for the given problem is known 
accurately, whereas stochastic problems are solved under uncertainty, 
involving random variables. There is also multiobjective optimization, which 
involves minimizing or maximizing multiple objective functions subject to a 
set of constraints. 
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There is an important distinction in whether they are convex or 
nonconvex. A problem is considered convex if the following conditions are 
satisfied: 

• A set S∈ℜnu is convex if and only if all points on the straight line 
connecting any two points in this set are also within this set. For all 
α∈(0,1) and u1, u2 ∈ S, this can be stated as: 

( ) ( ) S∈+= 21 -1 uuu ααα  (1.10) 

• A function φ (u, 𝛽𝛽)  is convex if its domain U is convex and  

( ) ( ) ( ) ( )( )αφφααφ uuu ≥+ 21 -1  (1.11) 

holds for all α∈(0,1) and u1, u2 ∈ X 

• Convex feasible regions require gi (u, 𝛽𝛽) to be convex functions and 
h(u, 𝛽𝛽) to be linear. 

• A function  φ is concave if -φ is convex. 

If   (1.3) is a convex problem, any local solution, that is, a feasible solution 
that cannot be improved within a neighbourhood around this one, is 
guaranteed to be a global solution to   (1.3), i.e., a better solution cannot be 
found. However, nonconvex problems may have multiple local solutions. 

Other important kind of optimization problems are the dynamic ones 
which play an important role in disciplines such as chemical industry or 
aerospace applications. A dynamic optimization problem (DAE) is 
formulated as follows: 
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(1.12) 
 

where x(t) ∈ℜnx×1 are the state variables, which are functions of time,      
𝑡𝑡 ≥0, u(t) ∈ℜnu×1 are the decision variables and β∈ℜnβ×1  are parameters that 
are independent of time. The main characteristics of this optimization 
problem are that some of the equations are given as differential equations 
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like f, equality constraints h, inequality constraints g and decisions variables 
are made over time. 

A wide variety of approaches have been developed to address the 
solution of (1.12). These strategies can be loosely classified as “Optimize 
then discretized” and “Discretized then optimize” (Biegler, 2010). A 
schematic of the different optimization strategies is shown in Figure 1.3. 

DAE optimization problem Indirect approach

Direct NLP approach Sequential approach

Simultaneous approach Multiple shooting

Discretize 
controls

Discretize all 
variables

Provide initial 
states in periods. 

Discretize 
controls

 

Figure 1.3. Schematic of DAE solver methods. 

• Indirect methods: indirect methods attempt to solve optimal control 
problems by seeking a solution to the necessary conditions of 
optimality, such as those presented earlier in (1.4)-(1.7). Many 
indirect methods use iterative procedures based on successive 
linearization to find a solution to the system of NCO. A nominal 
solution is chosen that satisfies part of the NCOs, then this nominal 
solution is modified by successive linearization so as to meet the 
remaining NCOs. Popular indirect methods for optimal control include 
quasi-linearization methods, gradient methods such as control vector 
iteration, and indirect shooting methods (see (Bryson & Ho, 1975)). 

• Direct methods: Nonlinear programming solvers NLP are a kind of 
optimization tool based on the availability of nonlinear models and 
first and second derivatives. As seen in Figure 1.3, methods which 
apply NLP solvers can be classified into two groups, the sequential 
and the simultaneous approaches. 
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Sequential approach: In the sequential methods, the control variables 
are discretized with control vector parameterization (CVP) methods,  
generating an equivalent problem that can be solved as one NLP,  
where the cost function and the constraints are obtained by 
integrating the system. For more information see  

Examples of control profile of various degrees and continuity orders 
are shown in Figure 1.4 represented as piecewise polynomials. 

 
Figure 1.4. Examples of control variable profiles. 

 

Simultaneous approach: In this case, a full discretization of the state 
and control profiles, is performed, generating an algebraic set of 
equations, so that, the dynamic optimization can be solved as a large 
NLP one. For more information see  

Multiple shooting approach: Optimization with multiple shooting 
serves as a bridge between sequential and direct transcription and 
was developed to deal with unstable DAE systems. In this approach,  
the time domain is divided into smaller time elements and the DAE 
models are integrated separately in each element. In addition, the 
initial values of the state variables at every interval xi are incorporated 
as new decision variables. For an extended review of multiple 
shooting, (Bock & Plitt, 1984) and (Leineweber, 1999) are 
recommended. 
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1.2 Handling uncertainties in process optimization 
Process optimization typically involves significant uncertainty due to 

imprecise knowledge of the plant operation, transforming deterministic 
problems into stochastic ones, the solution of which undoubtedly remains 
challenging and with a great practical importance. The uncertainties in 
process optimization can arise from two sources: those due to the random 
behaviour of the process variables and those due to the presence of plant-
model mismatch, which can be divided into structural mismatch arising from 
the approximation of the underlying process mechanisms, parametric 
mismatch that stems from uncertain process parameters and process 
disturbances. 

To deal with uncertainty, several approaches have been developed such 
as stochastic programming or robust optimization. Other approaches focus 
on modifying the model or the optimization problem from process 
measurements to cope with modelling errors.  

There are basically three groups of methods for dealing with uncertainty 
depending on the use of process measurements. The first approach, the 
most intuitive, consists of using the process measurements to update the 
model parameters and then using this corrected model to carry out the 
economic optimization (Chen & Joseph, 1987). This formulation, the “two-
step” approach, is solved iteratively until the algorithm converges to an 
optimal solution, i.e. once a steady-state of the process is achieved, both 
problems are solved (parameter estimation and economic optimization). 
However, the presence of significant structural uncertainty about the model 
and the real process means the described methodology is not able to 
achieve the plant optimum. A second technique uses the process 
measurements to estimate the gradients of the objective function of the 
process with respect to the decision variables. It does so in order to 
compute some modifiers for the cost function and the constraints of the 
optimization problem to enforce the necessary optimality conditions (NCO) 
of the modified optimization problem, matching them to the ones for the 
real process. In this way, the algorithm will converge to the plant optimum. 
This method is named ISOPE (Integrated System Optimization and 
Parameter Estimation) (Roberts, 1979) and represents the base for the 
Modifier Adaptation methodology (MA). The MA technique uses the process 
measurements to estimate the plant gradients and compute some corrector 
terms for the cost function and the constraints of the optimization problem 
without updating the model parameters. Instead of updating the model or 
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considering all the possible values of the uncertain parameters, MA changes 
the optimization problem, incorporating information from process 
measurements, so that the solution of the modified problem coincides with 
the solution obtained with a perfect model. The main advantage of MA is 
the capacity to converge to the plant optimum despite the presence of 
structural plant-model mismatch. The third group of methods incorporate 
the plant information so as to directly update the process inputs, replacing 
the optimization problem by a feedback control problem which tries to 
satisfy the process optimality conditions. Some examples are Extremum-
Seeking Control (ESC) (Krstic & Wang, 2000) and Neighboring-Extremal 
Control (NEC) (François, et al., 2005). 

1.2.1 Stochastic programming 

In process optimization, an important source of uncertainty is the 
random behaviour of some parameters. When the parameters, or significant 
disturbances, are known only within certain bounds, one approach to 
tackling such problems is to take decisions that cover the different 
realizations of the uncertainty. In this case, the goal is to find a solution 
which is feasible and optimal for all such data in some sense. Stochastic 
programming models take advantage of the fact that the random variables 
present expected bounds and belong to a probability space with a given 
probability distribution function (PDF). The goal here is to find some policy 
that is feasible for all (or almost all) the possible data instances and 
maximizes the expectation of some function of the decisions and the 
random variables.  

The first works concerning linear stochastic programming date back to 
the mid-1950s (Dantzig, 1955), (Beale, 1955). From then on, a huge amount 
of works have followed this research, making stochastic programming a very 
active field with applications in many different disciplines, such as 
operations research, finances and engineering. 

One important formulation of stochastic programming considers a two- 
or multi-stage problem based on different scenarios of the uncertainty 
(Birge, 1997) as will be explained below. First, it is important to understand 
a general concept for stochastic programming called recourse. This concept 
refers to the fact that the decision-maker can adapt future decisions to 
future observations, which is usually illustrated in the separation of the 
decisions between here-and-now decisions that have to be fixed at a certain 
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time instant and the wait-and-see decisions, which can be adapted 
according to future observations. 

1.2.1.1 Two-stage programming 

The most widely applied and studied stochastic programming models are 
two-stage (linear) programs. Here the decision-maker takes some action in 
the first stage, after which a random event occurs affecting the outcome of 
the first-stage decision. A recourse decision can then be made in the second 
stage that compensates for any bad effects that might have been 
experienced as a result of the first-stage decision. The optimal policy from 
such a model is a single first-stage decision and a collection of recourse 
decisions (a decision rule) defining which second-stage action should be 
taken in response to each random outcome.  Its formulation involves the 
assumption that the second-stage uncertain data can be modelled as a 
random vector with a known probability distribution (Shapiro & Philpott, 
2007). 

1.2.1.2 Multi-stage programming 

The stochastic programming model discussed before is static in the sense 
that a decision (supposedly optimal) is made at one point in time, while 
accounting for possible recourse actions after all uncertainty has been 
resolved. But there are many problems where decisions should be made 
sequentially, at certain periods of time based on information available at 
each time period. Such multi-stage stochastic programming problems can be 
viewed as an extension of two-stage programming to a multi-stage setting. 
In each stage, decisions must be taken considering the previous ones and 
the probability distribution function of the random variable in the future, 
which is called a multi-stage recursion problem. It is assumed that, after a 
certain number of time periods or stages (robust horizon), it  is possible to 
have information on the uncertainties, so the corresponding actions to be 
carried out at that time can be computed, assuming a known value of the 
uncertainty (Martí, 2015). 

Quite often, multi-stage stochastic optimization is performed where, in 
the first stage, the uncertain variable (with robust horizon equal to one) can 
have any value, but in the second stage, they can be considered to be 
known. Notice that, in the first stage, a single decision must be taken in spite 
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of the different realizations of the uncertainty; while different decisions can 
be taken for every value of the uncertainty variables in the second stage. 

In terms of the probability distribution function of the random variables, 
the most widely used method considers a scenario representation of the 
random space as a finite-dimensional approximation of the original 
problem, transforming the original stochastic optimization problem into a 
large scale deterministic equivalent (Dupacova, 1995). 

The model uncertainty is taken into account by considering a tree of 
discrete scenarios for each possible value of the uncertainty, as depicted in 
Figure 1.5, where j

kx  represents the state-vector at stage k in the position j, 
j
ku  the vector of control inputs, and j

kd are the disturbances. The formulation 
of a scenario tree makes it possible to take into account, explicitly, the fact 
that future decisions can depend on new information (measurements) that 
will become available in the future. 
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Figure 1.5. Scenario tree presentation of the uncertainty evolution for multi-stage 
programming.  

In this way, the future control inputs are adapted according to the future 
realizations of the uncertainty and the conservativeness of this approach is 
reduced in comparison to other robust methods that search for a single 
sequence of control inputs to satisfy the constraints for all the possible 
values of the uncertainty. 
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1.2.2 Robust optimization 

Robust optimization is an approach to optimization under uncertainty, in 
which the uncertainty model is not stochastic, but rather deterministic and 
set-based. Instead of seeking to immunize the solution in some probabilistic 
sense to stochastic uncertainty, here the decision-maker constructs a 
solution that is optimal for any realization of the uncertainty in a given set  
(Bertsimas, et al., 2011). In the early seventies, Soyster (Soyster, 1973) was 
one of the first researchers to investigate explicit approaches to Robust 
Optimization. The general formulation for Robust Optimization is described 
by (1.13). 
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Here si ∈ℜns are disturbance vectors or parameter uncertainties, and 
Si∈ℜns are uncertainty sets, which will always be closed. The objective of 
(1.13) is to find the decision variables that minimize the cost function among 
all the solutions which are feasible for all realizations of the disturbances si 
within Si. This problem offers some measure of feasibility protection for 
optimization problems containing parameters which are not known exactly, 
since the solutions are computed to ensure feasibility when the problem 
parameters vary within the prescribed uncertainty set. 

While this technique achieves the desired effect of immunizing the 
problem against parameter uncertainty, it is overly conservative for practical 
implementation (Bertsimas & Thiele, 2006). This issue was addressed by 
Ben-Tal and Nemirovski (Ben-Tal & Nemirovski, 1998), (Ben-Tal & 
Nemirovski., 1999) and El-Ghaoui and Lebret (El Ghaoui & Lebret, 1997), (El 
Ghaoui, et al., 1998) who proposed restricting the uncertain parameters to 
belong to ellipsoidal uncertainty sets, which removes the most unlikely 
outcomes from consideration and yields tractable mathematical 
programming problems. Other ways for modelling the uncertainty have also 
been proposed, for example, the use of polyhedral uncertainty sets 
(Bertsimas & Sim., 2004), or uncertainty sets described by more general 
norms (Bertsimas, et al., 2004).  
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1.2.3 Model Parameter Adaptation 

Model parameter adaptation updates the parameters of the process 
model and repeats the optimization. It refers to the standard way of 
implementing RTO, called the “two-stage” approach (Chen & Joseph, 1987), 
also referred to in the literature as repeated identification and optimization. 
In the first step, the values of the adjustable model parameters 𝛽𝛽 are 
estimated using the process output measurements. This is typically done by 
minimizing the lack of closure in the steady-state model equations, such as 
the weighted sum of squared errors between the measured outputs yP and 
the predicted outputs y from the model. In order to implement this method,  
one has to select the set of model parameters to be adjusted, as these 
parameters should represent actual changes in the process and contribute 
to approaching the process optimum. Clearly, the smaller the subset of 
parameters, the better the confidence in the parameter estimates, and the 
lower the required excitation. However, too few adjustable parameters can 
lead to completely erroneous models, and thereby to a false optimum. 

In the second step, the updated model is used to determine a new 
operating point by solving an economic optimization problem.  

The interaction between the model-parameter adaptation and 
reoptimization steps must be considered carefully for the two-step 
approach to be able to achieve optimality. This is due to the fact that the 
objective of the parameter adaptation might be inconsistent with the 
economic optimization problem, since minimizing the mean-square error in 
y may not help to find feasibility and optimality.  

The convergence of this methodology has been addressed by several 
authors (Forbes & Marlin, 1994), (Biegler, et al., 1985); showing that optimal 
operation may be reached if model adaptation leads to matched Karush-
Kuhn-Tucker (KKT) conditions for the model and the plant, which is not 
possible if the model presents structural uncertainty. 

1.2.4 Direct Input Adaptation 

Direct input adaptation turns the optimization problem into a feedback 
control problem and implements optimality via tracking of the necessary 
conditions of optimality.  

The aim of this feedback control is to compute the set points for the 
manipulated variables while trying to maintain certain measures of 
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optimality fixed. The challenge is to find the optimality functions calculated 
from the measured variables that must be fixed by changing the decision 
variables to enforce the NCO of the plant. In other words, the goal of the 
control structure is to achieve a similar steady-state performance as would 
be realized by a fictitious, on-line optimizing controller.  

In self-optimizing control (Skogestad, 2000), the idea is to use a process 
model to select linear combinations of the output variables, the tracking of 
which results in good performance. However, tracking linear combinations 
of the output variables, although very convenient, hardly provides any 
guarantee that a plant optimum is reached upon convergence. To 
circumvent this difficulty, a rather natural idea is to choose the controlled 
variables as the NCO components with the corresponding set points equal to 
0, thereby enforcing the plant NCO. Two classes of approaches fall within 
this category: extremum-seeking control (Guay & Zhang, 2003), and NCO 
tracking (François, et al., 2005). Tracking the NCO of the plant consists of 
three steps: (i) determining the active set (positivity condition on Lagrange 
multipliers), (ii) enforcing the active constraints, and (iii) pushing the 
sensitivity to zero (Chachuat, et al., 2009). These techniques are briefly 
described below: 

• Extremum seeking (Guay & Zhang, 2003): this is based on the 
assumption that the input (decision variable) to output (objective 
function) map is static. Under this assumption, one possibility to 
attain an extremum is to first estimate the gradient of the input–
output map and then design a control law to keep it as close to zero 
as possible. This extremum-seeking controller is derived from the 
NCO. A popular strategy for estimating the process gradients consists 
of exciting the plant with a sinusoidal input in order to extract the 
information to compute the required gradients. 

• NCO tracking (François, et al., 2005): this is a general framework that 
turns a (dynamic or static) optimization problem into a control 
problem. It uses the fact that, at the optimal operating point, the first  
order necessary optimality conditions must hold. Basically, the NCO 
are the controlled variables and the NCO tracking procedure adapts 
the inputs at given sample times. Instead of controlling “normal” 
measurements, the gradient is measured (or estimated), and used as 
a controlled variable. When a disturbance enters the process, the 
NCO tracking control scheme adapts the inputs iteratively such that 
the NCO are satisfied after some iterations. 
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1.2.5 Modifier Adaptation methodology 

Modifier Adaptation methodology is one of the most used for real-time 
optimization of uncertain processes. MA modifies the cost and constraints 
of the economic optimization problem by adding some extra terms called 
modifiers and then repeating the optimization so that the KKT conditions of 
the model and the plant can match. These modifiers are computed using 
plant data and can be divided into three groups: constraint bias terms, cost-
gradient modifiers and constraint-gradient modifiers. 

The idea of adding a gradient modifier to the cost function of the 
optimization problem dates back to the work of Roberts in the late 1970s. 
Note that it was originally proposed in the framework of two-step methods 
to better integrate the model update and optimization sub-problems, which 
led to the so-called ISOPE approach (Roberts, 1979). 

Gao and Engell (Gao & Engell., 2005) proposed adding first-order 
modifiers to the process-dependent constraints, in addition to the 
constraint bias terms. This modification allows, not only the values of the 
constraints, but also their gradients to be matched. 

The adaptation methodology was finally formalized by Marchetti and co-
workers, who presented the Modifier Adaptation Methodology (Marchetti, 
et al., 2009). The authors analyzed the convergence to the real optimum 
when the adaptation in the economic optimization is performed by 
correcting the gradients of the objective function and the constraints, from 
the point of view of the KKT matching between the model and the real 
process. 

The modified optimization problem to be solved in the RTO layer is 
formulated as follows: 
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where φM and gM are the modified cost function and constraints; uk-1
* is 

the input applied in the previous steady state, that is, the optimal solution of 
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the previous RTO; and the modifiers λ, γ  and ε are computed from the 
following equations: 
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where the subscript P indicates that the cost function and constraint 
gradients, as well as the output variables, are all evaluated from process 
measurements. 

This methodology will be explained in more detail in chapter two. 

1.3 Motivation 
The optimization of an operating process is not a trivial task, since the 

processes are very complex and there are a lot of disturbances that can 
affect the process operation. In addition, these processes are not perfectly 
known, so the presence of uncertainty is inherent to process optimization. 
Hence, the existence of a tool like RTO makes sense, since it is able to find 
the optimal operating point, despite uncertainties, using plant 
measurements; thus increasing the added value of a given process. 

RTO is based on steady-state plant models which are generally simplified 
representations of reality and are thus subject to uncertainty. Therefore, the 
optimum computed from the model may not be the same as the optimum 
of the process. For this reason, the study and development of RTO methods 
able to overcome this mismatch is an important area for research in order to 
better deal with the uncertainties that affect process optimization, 
overcoming the partial knowledge of the process. 

This thesis focuses on the use of the Modifier Adaptation methodology 
to deal with uncertainty in RTO. MA has become a very useful tool and 
several applications have shown the effectiveness of this methodology. 
Important features of MA are the fact that it uses a fixed model in the RTO 
layer and its ability to deal with structural uncertainty. However, it is subject 
to some limitations. More specifically, after the study of the different MA 
approaches, it has been concluded that the main disadvantages of this 
technique are three: 

• It requires the gradients of the plant cost and constraints to be 
estimated with respect to the decision variables. 
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• When dealing with problems with many operational constraints and 
decision variables, the number of modifiers increases and therefore 
makes the computational task more complicated. 

• The necessity of waiting for the steady state of the process to update 
the modifiers in each RTO iteration, since this optimization layer is 
based on stationary models. 

These two problems slow down the convergence rate of this 
methodology, making its implementation in large-scale, real processes 
inviable. To overcome these issues, this thesis tries to speed up the 
convergence of MA in three different ways: 

• Reducing the number of required modifiers. 

• Using transient measurements to estimate plant gradients. 

• Improving the applicability of methods that do not require the 
computation of plant gradients like Nested-Modifier Adaptation 
(NMA) in order to speed up the convergence. 

Furthermore, after reviewing the existing literature about MA, it is clear 
that there are not many large scale applications or realistic problems with a 
hierarchical control structure that could really be useful to show the 
potential of this tool. One of the objectives of this thesis, therefore, is to test 
MA in realistic case studies to show how powerful it is, as well as the 
enormous benefits it can bring to the chemical industry. 

1.4 Objectives and working plan 

The general objective of this thesis is to contribute to the development 
of MA by proposing methods that facilitate its applicability in real processes,  
speeding up the convergence rate to the optimum operating point. 
Moreover, the applicability of MA in large scale systems is demonstrated 
with examples of the implementation of the developed methods in such 
simulated systems as; the transportation of natural gas through a gas 
pipeline network, or the operation of a depropanizer distillation column of a 
petrol refinery. In addition, an experimental flotation column has also been 
used to test the new methods. 

To reach this general objective, the following particular objectives have 
been considered: 
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• The study and implementation of different MA approaches found in 
the literature. 

• Building large scale dynamic models, based on first principles, to be 
considered as real processes in simulation for the natural gas network 
and the depropanizer distillation column.  

• Applying the existing MA techniques in large scale problems with a 
hierarchical control structure. 

• Model reduction to be used in the RTO layer. 

• The study of the reduction in the number of modifiers in MA,  
formulating an alternative way to compute the modifiers using 
Lagrangian functions. 

• The study of different plant gradients estimation techniques 
proposing a method based on transient information to speed up the 
convergence rate of the Modifier Adaptation. 

• Testing the proposed approaches in realistic problems, such as the 
operation of a depropanizer distillation column and the 
transportation of natural gas through gas networks. A well-known 
benchmark, the Otto-Williams reactor, has also been considered. 

• Testing the proposed approach based on transient information in real 
applications, such as a laboratory-scale flotation column for copper 
concentration. 

1.5 Organization of the thesis 
The thesis is organized as follows: chapter two reviews the existing MA 

approaches, describing how to apply them to real processes and analysing 
the implementation issues. Chapter three explains a new methodology to 
handle operational constraints in MA and its application to the Otto 
Williams reactor. In chapter four, different MA techniques based on 
transient information are described and implemented in the Otto Williams 
reactor and in a laboratory-scale flotation column. These approaches are the 
following: 

• Modifier Adaptation computing plant gradients from neighbouring 
extremal control. 
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• Modifier Adaptation approach using Recursive Extended Least 
Squares to compute process gradients. 

• A combination of transient and steady-state measurements. 

The considered case studies are described in chapter five and chapter six 
showing the results obtained after the implementation of the presented MA 
approaches. Two case studies have been used that corresponds to the 
transport of natural gas through gas pipelines and the operation of a  
depropanizer distillation column of a petrol refinery. The complete models 
to simulate the real processes and the reduced ones to be used in the RTO 
layer are described. Finally, conclusions and future work are presented in 
chapter seven. 

1.6 Contributions and publications 
Journal papers: 
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2 MODIFIER ADAPTATION METHODOLOGY 

FOR RTO 
Modifier Adaptation methodology has become a powerful tool for RTO of 

uncertain processes. This chapter presents an overview of the different approaches 
that have been developed in this field and the way to implement them. Then, a 
summary of applications is made followed by the explanation of some 
implementation issues that remain challenging within this methodology.  



 
 

 

  



MODIFIER ADAPTATION METHODOLOGY FOR RTO 49 

2.1 State of the art: Modifier Adaptation 
methodology 

RTO comprises a set of optimization methods that incorporate plant 
measurements in the optimization framework to drive a real process to the 
optimum operating point, while guaranteeing constraint satisfaction. 
Process optimization is typically carried out by following a sequence of steps 
that include, firstly, process modelling, secondly, numerical optimization 
using the process model, and lastly, the application of optimal inputs to the 
plant (Marchetti, et al., 2016).  

RTO typically involves solving a constrained, steady-state optimization 
problem whose general formulation is given by (2.1), where φ is the cost 
function to be minimized, gi represents the inequality constraints (i = 1,…, 
ng), h the set of nh equality constraints given by the model, 𝛽𝛽∈ℜn𝛽𝛽×1 the 
model parameters, and u∈ℜnu×1 the decision variables which present lower 
and upper limits uL and uU.  
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 However, the model optimum obtained by solving (2.1) may not be the 
same as the plant optimum unless the model is a perfect representation of 
the process and the value of all disturbances is known. This often results in 
suboptimal plant operation and even in constraint violation. 

RTO has emerged over the past forty years and uses diverse strategies to 
overcome the difficulties associated with plant-model mismatch by 
incorporating process measurements in the optimization framework to 
combat the adverse effect of uncertainty. This uncertainty can have three 
main sources; namely, parametric uncertainty, when the values of the 
model parameters do not correspond to the reality of the process; structural 
plant-model mismatch, when the structure of the model is not perfectly 
known; and the third type, process disturbances. 

The most intuitive strategy to combat the uncertainty is to use process 
measurements to update the model. This is the main idea behind the “two-
stage” approach (Chen & Joseph, 1987), (Darby, et al., 2011). Here, 



50 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 

deviations between predicted and measured outputs are used to update the 
model parameters, and new inputs are computed on the basis of the 
updated model. This iterative process is repeated until convergence is 
reached. However, the “two-stage” scheme works well only when the plant-
model mismatch is parametric and the operating conditions provide 
sufficient excitation to efficiently estimate the model parameters. 

This difficulty of converging to the plant optimum has motivated the 
development of a modified “two-stage” approach, known as Integrated 
System Optimization and Parameter Estimation (ISOPE) (Roberts, 1979) and 
(Roberts, 1995), that will be explained in the following subsection. ISOPE 
requires both output measurements and estimates of the gradients of the 
plant outputs with respect to inputs. These gradients will be used to modify 
the cost function of the optimization problem in order to enforce NCO 
matching between the model and the process. 

MA has its origins in this technique, but differs in the definition of the 
modifiers and in the fact that no parameter estimation is required. MA uses 
measurements of the plant constraints, measurement of the objective 
function and estimates of the plant gradients to modify the cost and 
constraint functions in the model-based optimization problem without 
updating the model parameters (Marchetti, et al., 2009) to match the first-
order NCO upon convergence. As will be explained later, the main 
advantage of MA is that it is able to reach plant optimality upon 
convergence despite the presence of structural plant-model mismatch. 

MA has evolved from its beginnings in the seventies, with numerous 
schemes emerging, some of which will be described hereafter. Its 
implementation in several case studies, such as the Otto-Williams reactor 
(Marchetti, et al., 2010), (Navia, et al., 2013), or the operation of a 
depropanizer distillation column (Rodríguez-Blanco, et al., 2015), has shown 
that MA is a great tool for optimizing the process operation in the presence 
of a high degree of uncertainty. A review of the fundamentals of MA and the 
principle approaches developed in this field is made in this section, 
describing the main features and how to implement them. 

2.1.1 Integrated System Optimization and Parameter 
Estimation (ISOPE) 

To take into account the plant-model mismatch in RTO, a two-stage 
algorithm emerged called ISOPE. This technique adds a parameter to the 
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cost function of the economic optimization problem solved in the RTO layer 
that makes the model gradient match the process gradients in such a way 
that the KKT conditions (defined in equations (1.2)-(1.5)) of the modified 
problem match those of the real plant. The following steps, described in 
Algorithm 2.1, have to be followed to implement this methodology. For 
simplicity, an unconstrained economic optimization problem has been 
considered, although ISOPE has also been developed and implemented in 
the presence of operational constraints (Brdys, et al., 1986). 

ALGORITHM 2.1: ISOPE (Roberts, 1979) 

Step 1: Once the steady state of the process is reached, the k execution 
of the RTO is carried out. The inputs applied to the plant being uk-1, and 
measuring the output variables yP(uk-1), a parameter estimation problem is 
solved to update the uncertain model parameters βk, whose lower and 
upper limits are defined by βL and βU, respectively. This problem (2.2) is 
solved under the condition that the outputs computed from the model 
match those measured from the process y(uk-1, βk) =yP(uk-1) ∈ℜny , obtaining 
the optimal solution for the uncertain parameters βk

*, where h ∈ℜnh are the 
set of equality constraints given by the model.  
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Step 2: Assuming that the output plant gradient 
1−

∇
kuPu y is available, 

the first order modifier λ k ∈ℜnu is computed from steady state information 
of the process by applying (2.3). 
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Step 3: Once the model has been updated and the modifier has been 
computed, the modified economic optimization problem (2.4) of the RTO 
layer is solved, where φM is the modified cost function, in order to obtain the 
new inputs uk

*that will be applied to the process until the next RTO 
iteration, which will be carried out when the process reaches a new steady 
state. 
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In this way, the gradient of the modified cost function will coincide with 
the plant gradient at uk

*, so that the qualification condition of the model 
described in the literature of the ISOPE method (Brdys & Roberts, 1987) is 
satisfied; i.e, at the optimum, the KKT conditions of the modified problem 
are equal to those of the process. These KKT conditions have already been 
defined in chapter one, equations (1.2)-(1.5) and (1.7). 

Step 4 (optional): Smooth input changes and improve the convergence 
to the optimum by filtering the inputs obtained by (2.4) by means of a first  
order exponential filter (2.5), where K ∈ℜnu×nu is a diagonal matrix of 
damping factors whose eigenvalues vary from 0 to 1. The filtered inputs are 
applied to the plant. 

)( 11 −− −+= k
*
kkk uuKuu  (2.5) 

Step 5: Check that the convergence criterion is satisfied. This criterion 
can be defined as toluu ≤− 1-kk , i.e., there are no changes in the RTO 
decision variables higher than a fixed tolerance. If this is satisfied, stop the 
algorithm, otherwise, k = k + 1, and return to step 1 when the next steady 
state is reached. 

Thus, by applying this methodology, each RTO execution corresponds to 
a steady state of the process. 

2.1.2 Modifier Adaptation methodology 

In 2002, Tatjewski proved that the convergence to the optimum of the 
ISOPE method does not depend on the estimation of the uncertain 
parameters, but on the equality between the process and model outputs in 
each RTO execution (Tatjewski, 2002). For this reason, he introduced a new 
modifier, bk ∈ℜny, that takes into account the difference between the 
process and model outputs ensuring that, upon convergence, these values 
will be the same. The resultant optimization problem solved in the RTO layer 
is described by (2.6), where φM is the modified cost function, uk-1

* is the input 
applied in the previous steady state, i.e., the optimal solution of the 
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previous RTO, h represents the set of equality constraints imposed by the 
model, and the subscript P indicates that the cost function gradient and the 
output variables are evaluated from process measurements. 
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One extension of this method was developed by Gao and Engell, who 
defined new modifiers for the process constraints (Gao & Engell., 2005). The 
main contribution of this work is the way they correct the process 
constraints. In addition to the bias corrector added to the constraints εk that 
results from the difference between the value of the process and model 
constraints (Forbes & Marlin, 1994), they add correction terms to the 
constraint gradients. These modifiers, k,iγ ∈ℜnu×ng, are computed as the 
difference between the constraint gradients estimated from the model and 
those from the real plant. In this way, upon convergence, the finding of an 
operating point that satisfies the NCO of the process is guaranteed. In this 
case, gM,i  are the modified constraints and gP,i are the process constraints. 
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The MA methodology was developed from the equality of the KKT 
conditions (defined in equations (1.2)-(1.5)) of both the process and the 
model. This technique was presented by Chachuat in 2009 (Chachuat, et al., 
2009) and formalized by Marchetti (Marchetti, et al., 2009). The authors 
removed the modifier bk, with the justification that by using the rest of the 
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modifiers, upon convergence, the KKT conditions of the modified 
optimization problem would match those of the process. The problem (2.10) 
is iteratively solved by implementing the optimal inputs uk

* to the process 
and updating the modifiers when a steady state has been reached, as shown 
in Figure 2.1: 
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where the modifiers are computed as shown in (2.9). In this formulation, 
the number of modifiers (nmod) is given by (2.11), where it can be observed 
that it depends on both the number of decision variables (nu) and the 
number of constraints (ng): 

1)( ++= gugmod nnnn  (2.11) 

By using these modifiers, if (u*, μ*) is a KKT point of the modified problem 
it will be a KKT point of the process as it can be seen in the following 
expressions. Under convergence u* = uk

*= uk-1
* and therefore uk

*- uk-1
* = 0: 
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Replacing the first- and zeroth-order modifiers given by (2.9) in equations 
(2.12), (2.13) and (2.14): 
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Figure 2.1. General formulation of MA methodology. 

A graphical interpretation of the modifiers for the constraint gi is shown 
in Figure 2.2. The modifier εi,k corresponds to the gap between the plant gP,i 

and the predicted constraint values gi at uk, whereas k,iγ  represents the 
difference between the slopes of gP,i and gi at uk. 
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Figure 2.2. Modification of the constraint gI at uK. 
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This algorithm has the advantage that it is not necessary to know a priori 
the set of active constraints, adding as many k,iγ modifiers as operational 
constraints, at the expense of slowing down the convergence of the 
method.  Furthermore, the method achieves the process optimum, even in 
the presence of structural uncertainty. The main disadvantage is that, 
although the method converges to an operating point that satisfies the NCO 
of the process, it may do so following an infeasible way, since there is no 
guarantee of feasibility in the intermediate iterations. Therein lies the 
importance of using first order exponential filters for the modifiers, as those 
shown in (2.18), to smooth changes and to try to follow a feasible path to 
the optimum. 
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 where Kλ, Kγ y Kε, are diagonal matrixes whose eigenvalues are within 
the interval (0,1].  

The model used for RTO must satisfy certain adequacy conditions for MA, 
which guarantees that the real optimum u∞ can be found. These conditions 
are the following. 

First, a process model is said to be adequate for use in an RTO scheme if 
it is capable of producing a local minimum for the RTO problem and a fixed 
point for the RTO algorithm at the plant optimum u∞.  In other words, u∞ 
must be a local minimum of the RTO problem when the RTO algorithm is 
applied at u∞. The plant optimum u∞ is an operating point that satisfies the 
first-and second-order NCO of the plant. 

The adequacy criterion requires that u∞ must also satisfy the first- and 
second-order NCO for the modified optimization (2.10), with the modifiers 
(2.18) evaluated at u∞. As MA matches the first-order KKT elements of the 
plant (defined in equations (1.2)-(1.5)), only the second-order NCO remains 
to be satisfied. That is, the reduced Hessian of the Lagrangian ∇2

r LM(u∞) 
must be positive definite at u∞.(1.7), then the process model is adequate for 
use in the MA scheme (Marchetti, et al., 2016). This positive-definiteness 
requirement is independent of the modifier values themselves. 

In general, the MA can be implemented by following the next steps: 
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ALGORITHM 2.2: Modifier Adaptation  (Marchetti, et al., 2009) 

Step 1.Initialize k = 0 and the initial value for the modifiers λ0, γ0 and ε0. 

Step 2: Once the process has achieved the steady state, the process cost 
function ϕP,k-1  and the constraints gP,i,k-1 are measured. Compute the zeroth 
order modifier εi,k from (2.9) for each constraint. 

Step 3: Estimate the process gradients required to compute the first 
order modifiers. This step will be different in each of the described 
methodologies since each one considers a different estimation method, as 
will be seen later in this chapter. 

Step 4 (optional): Filter the modifiers given by the upper optimization 
layer using (2.18). 

Step 5: Compute the new decision variable uk
*

 that will be applied to the 
process until the next steady state by solving the modified optimization 
problem (2.10). 

Step 6: Check if the convergence criterion is satisfied, for instance, 
,k-1k toluu ≤− **  that is, there are no changes in the RTO decision variables 

higher than a fixed tolerance. Another stop criteria can be considered, for 
example, there are no changes in the process cost function higher than a 
specified value tol≤− *

1-,
*

kPP,k φφ . If any of these criteria is satisfied, stop 
the algorithm, otherwise, k = k + 1, and return to step 2 when the next 
steady state is reached. 

As can be seen in Figure 2.1, this methodology requires the computation 
of model and experimental gradients. Whereas there are tools to compute 
the model gradients accurately, the plant gradients are more difficult to 
estimate. Because of the necessity of estimating the process gradients, 
several approaches have emerged to compute them properly, implemented 
in step 3, which are combined with the general MA methodology described 
by the Algorithm 2.2. The most intuitive method consists in estimating the 
plant gradients by forcing an increase in each manipulated variable, waiting 
for the steady state and computing each gradient by finite differences. 
However, this requires a high number of intermediate experiments to 
estimate all the gradients (nu experiments) before each RTO execution, 
which makes this type of estimation impractical. 
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2.1.3 Dual Modifier Adaptation  

The Dual Modifier Adaptation method (DMA), initially proposed by Brdyś 
and Tatjewski (Brdyś & Tatjewski, 1994), (Brdyś & Tatjewski, 2005) and 
named Dual ISOPE, is an MA approach where an extra constraint is added to 
the RTO problem (dual constraint) to guarantee that the actions applied in 
the past will have generated enough excitation to accurately estimate the 
plant gradients. These experimental gradients are estimated from past 
operating points generated by the previous RTO iterations using the 
definition of directional derivative. Assuming that there is a collection of 
nu+1 points uk, uk-1,…, uk-nu applied in the past RTO iterations, the vectors of 
differences with respect to previous points sk,i are defined by (2.19). 

uikki,k n...,i 1,=∀−= −uus    (2.19) 

Supposing that the vectors sk,i are linearly independent, it is possible to 
formulate a nonsingular square matrix Sk ∈ℝ(nu ×  nu) whose condition 
number will give the degree of excitation of the process: 

[ ]Tn,ki,kk u
.... ssS =  (2.20) 

The process gradients are obtained from the definition of directional 
derivative as shown in (2.21), where the variable z would represent either 
the process cost function ϕP or the constraints gP,i. 
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To ensure that gradients are obtained accurately, a new constraint         
(κ -1(Sk) ≥ a) is added to the optimization problem, where κ represents the 
condition number ( ( ) kkk SSS 1−=κ for any consistent norm) of Sk, which is 
the matrix formed by the vectors of the differences of the decision variables 
with respect to nu samples before, as shown in (2.20), and the parameter a 
indicates the minimum degree of excitation (Gao, et al., 2016). This 
constraint represents the dual characteristic of the method: while the rest of 
the optimization aims to converge to the optimum of the modified model 
(primal objective), the dual constraint ensures that, in the next RTO 
iteration, the system will have enough excitation to estimate the process 
gradient adequately (dual objective). The introduction of this constraint 
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reduces the feasible region, which may imply a loss of optimality with 
respect to solving the original modified optimization problem (2.10), but 
increases the quality of the process gradient estimation. Following the 
described methodology, the modified optimization problem to be solved in 
the RTO layer is given by (2.22). 
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The implementation of DMA is carried out following Algorithm 2.2, in 
which steps 1, 3 and 5 have been replaced by the ones described below in 
Algorithm 2.3: 

ALGORITHM 2.3: Dual Modifier Adaptation (Brdyś & Tatjewski, 2005) 

Step 1: Execute nu + 1 steady states to acquire enough information to 
initialize the computation of plant gradients and, therefore, the initial value 
for the modifiers λ0, γi,0 and ε0. Initialize k = 0. 

Step 3: Estimate the plant gradients from (2.21). 

Step 5: Choose the tuning parameter a and compute the new decision 
variables uk

*
 by solving the modified optimization problem (2.22). These 

inputs will be applied to the process until the next steady state. 

The main advantage of this algorithm is that the process gradients are 
computed from information taken in the previous RTO executions, so extra 
excitation is not required, as in the case of estimating the gradients by using 
finite differences. However, the evolution of the algorithm is very sensitive 
to the value of parameter a, whose optimal value is not easily known a 
priori. This tuning parameter must be carefully chosen since a high value 
implies a high process excitation and this may drive the process to an 
operating point that satisfies the NCO of the process, but following an 
infeasible way. On the other hand, a small value may cause the gradients to 
be inaccurately estimated. 
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2.1.4 Iterative gradient-modification optimization 
combined with derivative free optimization 

One of the major challenges of MA in practice is the estimation of the 
plant gradients from noisy measurement data. The iterative gradient-
modification method (IGMO) explores the inherent smoothness of the plant 
mapping to enable an efficient and reliable optimization, even if the data is 
subject to a high level of noise. The idea behind this approach is to combine 
the quadratic approximation approach used in derivative-free optimization 
techniques with the iterative gradient-modification optimization scheme. 

The IGMO scheme computes plant gradients based on the data collected 
at the previous operating points, in the same way as DMA does from the 
expression (2.21) . In this method, the dual constraint defined in (2.22) was 
used to decide whether to perturb the process additionally. The 
perturbation uaddi is optimized by maximizing the inverse of the condition 
number of Sk

a subject to the adapted process constraints. 
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where  
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To provide reliable convergence in the presence of measurement noise, 
IGMO extracts the gradients from quadratic approximations. In this way, this 
scheme is complemented by the following elements (Gao, et al., 2016): 

• Selecting points from the collected data set for a well-poised 
regression set. 

• Introducing a constrained search space for the next move based on a 
covariance analysis of the regression set. 

• Tracking the prediction accuracies of the adapted model-based 
mappings (φad(u) and gad(u)) and the approximating quadratic 
functions, and also switching between model-based and data-based 
optimizations according to the observed accuracies. 
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How to choose the regression set and the evaluation of the search space 
are discussed in detail in (Gao, et al., 2016).  

Let Uk and Bk represent the regression set and the search space at the k 
iteration. ρm,k and ρq,k are the prediction accuracies of the adapted model-
based mappings and the quadratic functions (see (Gao, et al., 2016) to know 
how to compute these values). φq and gq,i are the regressed objective and 
constraint functions from the quadratic approximation. The implementation 
of this method is carried out by following the steps set out below: 

ALGORITHM 2.4: Iterative gradient-modification optimization (Gao, et al., 
2016) 

Step 1: Choose an initial operating point u0 and apply that point and       
u0 +c ei to the plant, where c is a suitable step size and ei unℜ∈ (i=1, … nu) are 
mutually orthogonal unit vectors. Compute the gradients at u0 by applying 
the finite difference approach and run IGMO until (nu +1) (nu +2)/2 set points 
have been generated. Run the screening algorithm (see (Gao, et al., 2016)) 
to obtain the regression set Uk. Initialize ρm,k = ρq,k =0. 

Step 2: Compute the quadratic functions φq and gq,I and determine the 
search space Bk. 

Step 3: Extract the gradients from the quadratic functions. Adapt the 
model-based optimization problem and determine ûk as follows: 

a) If ρm,k  ≤ ρq,k , run the adapted model-based optimization (2.10) under 
the constraint u ∈ Bk. 

b) Otherwise, perform an optimization based on the quadratic 
approximation. 
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Step 4: If uuu Δ≤− kkˆ , where ∆u is the parameter used by the 
screening algorithm to handle the influence of measurement noise, and 
there is at least one point uj ∈  Uk such that uuu 2Δ >− kj , set                      
ûk = (uj+uk)/2. This step is used to improve the quadratic approximation.  

Step 5: Evaluate the process at uk to obtain φP and gP,I . The next iteration 
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is defined depending on the following conditions: 

a) Successful iteration. If k,Pk,P
ˆ φφ < , where ( )kPk,P ˆˆ uφφ = , define ûk+1 = uk 

and run the screening algorithm to define the next regression Uk+1.  

b) Update the quality indices ρm,k+1 and ρq,k+1. Check the termination 
criterion, if it is not satisfied, set k = k+1 and go to step 2. 

Unsuccessful iteration. If k,Pk,P
ˆ φφ ≥ , run the screening algorithm to 

update the regression set for uk with the value ûk in the collected data. Due 
to the screening algorithm, ûk will be included in the regression set to 
achieve an improved quadratic approximation around ûk. Return to step 2. 

Compared to the finite-difference calculation of the plant gradients, the 
quadratic approximation method decreases the influence of noise by 
capturing the curvature information from more distant points to provide a 
smooth mapping. These points are chosen by the screening algorithm based 
on the collected data. However, the previously collected data might be 
invalid in the presence of varying disturbances. This issue was discussed by 
Wenzel (Wenzel, et al., 2015), studying the effect of considering only 
recently collected data in the regression set for quadratic approximations. 

2.1.5 Nested Modifier Adaptation  

Although the MA techniques based on the computation of experimental 
gradients guarantee an operating point that satisfies the process NCO,  
regardless of the method used to estimate the gradients, the fact is that, it 
might be a problem in real applications; either because it is expensive, for 
instance, in the case of interconnected processes where the disturbances 
needed for the computation affect other units, or because this estimation is 
not accurate enough, as happens in the presence of measurement noise. To 
avoid the calculation of gradients, a new formulation was developed, Nested 
Modifier Adaptation (NMA) (Navia, et al., 2015). This method uses nested 
optimization architecture with a gradient-free optimization algorithm, for 
example, the Nelder-Mead algorithm, to directly update the modifiers, using 
them to iterate over the modified optimization until the process optimum is 
found. In this way, the process gradient estimation is replaced by another 
method that takes into account the minimization of the Lagrangian function 
measured directly from the process.  The steps that have to be followed to 
implement NMA are shown in Algorithm 2.2, replacing step 3 with the one 
described below in Algorithm 2.5. In this formulation, it has been supposed 



MODIFIER ADAPTATION METHODOLOGY FOR RTO 63 

that the gradient-free algorithm implemented in the upper layer is the 
Nelder-Mead, but other direct search methods can be considered. This 
algorithm has been chosen because it is particularly parsimonious in 
function evaluations per iteration. This is because, in practice, it typically 
requires only one or two function evaluations to create a new iteration, 
whereas other direct search methods require nu or more function 
evaluations to build a new simplex (Griffiths & Watson, 1995). This property 
is very important, as each function evaluation implies a change in the 
operating point of the plant (Navia, et al., 2015). The Nelder-Mead algorithm 
tries to find the process optimum by exploring the cost surface by means of 
a geometric figure with nγ + nλ + 1 vertices, the simplex, where nγ + nλ is the 
number of first-order modifiers. Each vertex corresponds to a set of values 
of the decision variables and is associated with its corresponding value of 
the measured cost function. Then, with four basic operations: reflection, 
expansion, contraction and shrinking, the algorithm iterates with the set of 
decision variables, looking for the optimum, as shown in Figure 2.3 for the 
case of two decision variables, where pmin is the point with the lowest cost  
function, pmax is the point with the highest cost function, pr is the reflected 
point, pe is the expanded point and pc is the contracted point. 

 
Figure 2.3. Nelder-Mead optimization. 

The implementation of NMA is graphically shown in Figure 2.4. 

λk-3, γ  k-3, φP, k-3 

λk-2, γ  k-2, φP, k-2 

λk-1, γ  k-1, φP, k-1 
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Figure 2.4. Implementation  of Nested Modifier Adaptation. 

ALGORITHM 2.5: Nested Modifier Adaptation  (Navia, et al., 2015) 

Add to Step 1: The initialization of the Nelder-Mead algorithm requires 
information about nγ + nλ + 1 previous steady states to construct the initial 
simplex, whose vertices correspond to different values for the first order 
modifiers obtained from the initial λ0 ,γ0. 

Step 3: The upper unconstrained optimization updates the value of the 
first order modifiers λk ,γi,k with the objective of minimizing the measured 
Lagrangian by solving (2.26), as its stationary point corresponds to the KKT 
conditions of the process. The corresponding multiplier T

k 1−μ  associated 
with the modified optimization problem solved in the previous RTO. 

1111 −−−− += k,
T
kk,Pk,P,

Lmin
kk

Pγλ
gμφ  (2.26) 

 

The main advantage of NMA is that it does not require the calculation of 
experimental gradients that can be quite complicated in practice; in 
addition, it is less sensitive to noise than other methods such as DMA, 
because, as has already been said, it does not need the computation of 
gradients. However, this algorithm needs a good initial estimation of the 
modifiers; if it does not have this, then the way to the optimum might be 
infeasible and not very direct. Furthermore, the use of Nelder-Mead in the 



MODIFIER ADAPTATION METHODOLOGY FOR RTO 65 

upper optimization layer presents certain drawbacks, such as the proper 
choice of many tuning parameters that may affect the convergence to the 
optimum, or the fact that each iteration can require several steady-states. In 
addition, the unconstrained optimization layer works well if the uncertainty 
remains constant, which is difficult to guarantee if it takes several steady-
states to converge, if not, the optimal modifiers will not be found. Finally, 
when there are a high number of modifiers due to the presence of many 
decision variables or operational constraints, the convergence to the 
optimum may be very slow, since the number of decision variables in the 
upper optimization layer increases considerably and its convergence is 
slowed down. To solve this problem, a new NMA formulation for dealing  
with a high number of operational constraints, described in chapter three, 
has been developed in this thesis. Since NMA measures the process 
Lagrangian, whose value incorporates the measurement of the plant 
constraints, this alternative approach consists of using the NMA 
methodology but reducing the number of required modifiers since both, 
cost function and constraints are taking into account in the measurement of 
the Lagrangian. In this way, it is necessary only to add one modifier for each 
process input in the cost function, independently of the number of 
constraints. These modifiers are obtained by the upper optimization layer 
with the objective of minimizing the value of the process Lagrangian 
function. 

2.1.6 Directional Modifier Adaptation 

One of the main disadvantages of the previously described methods is 
related to the problem size, since the number of required modifiers depends 
on both the number of decision variables and the number of operational 
constraints, as can be seen in (2.11). 

The estimation of experimental gradients is the most difficult task in the 
application of MA. This experimental work increases with the number of 
decision variables, with the implementation of MA becoming impossible in 
processes with many inputs. For instance, applying DMA, a high number of 
decision variables implies a great number of previous steady states to 
initialize the algorithm, making the convergence rate of the method slower. 
In addition, all the changes applied to the process inputs in previous sample 
times must be linearly independent, that is, all the possible directions in the 
process inputs space must be explored so DMA cannot drive the process 
directly to the optimum but will converge slowly exciting all the process 
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inputs. A new formulation called Directional MA (D-MA) was developed to 
solve this problem. This method obtains the plant derivatives only in certain 
privileged directions.  

D-MA has been developed for dealing with problems that present many 
input variables. This methodology overcomes the limitation of standard MA 
in these cases by estimating the experimental gradients only in nr < nu  
privileged directions. In this way, the convergence to an operating point that 
satisfies the NCO of the process is speeded up, since fewer experiments are 
required to estimate the plant gradients in each RTO iteration. D-MA defines 
Ur = [δu1…δur] as a matrix (nu×nr) whose columns contain the nr privileged 
directions in the input space, in which the directional derivative is estimated 
for the cost function and the constraints at the operating point uk [38]. The 
directional derivative is considered a partial gradient that contains 
information about how a function varies (locally) in certain directions r of 
the input space and is given by (2.27). 
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where r∈ℜnr. The plant gradients are approximated by the following 
expressions (2.28): 
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where the superscript (.)+ represents the Moore-Penrose pseudoinverse 
and Inu is the identity matrix of size nu×nu. By applying D-MA, the gradients of 
the process cost function and the constraints needed to estimate the 
modifiers by (2.9) are replaced by the approximations given by (2.28) for 
each value of uk. 

Costello describes, in (Costello, et al., 2016), how to select the privileged 
directions for the case with parametric uncertainty. This choice is carried out 
by a sensitivity analysis of the gradient of the Lagrangian function with 
respect to the uncertain model parameters β. The main idea is that if the 
parameter variations significantly affect the gradient of the Lagrangian 
function in only a few directions of the input space, it is enough to estimate 
the plant gradients in these directions. 
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D-MA is easy to implement and has important theoretical properties 
which allow a fast convergence rate and guarantee that the plant optimum 
is achieved. 

The D-MA algorithm is described below in Algorithm 2.6. The 
methodology to be followed is the same as presented in Algorithm 2.2, 
adding new variables to initialize and replacing the computation of 
experimental gradients by the estimation of the directional derivatives: 

ALGORITHM 2.6: Directional Modifier Adaptation (Costello, et al., 2016) 

Add to Step 1: Choose a matrix of privileged directions in the input space 
Ur, in which the plant gradients are estimated. To know how to obtain this 
matrix, see (Costello, et al., 2016). Therefore, to start the algorithm, it is 
necessary to collect the information about nr previous operating points. 

Step 3: Estimate the directional derivative of the process cost function 
)( kP u

rU φ∇  and the constraints )( ki,Pg u
rU∇ from (2.27) and then compute 

the plant gradients )( kP uφ∇  and )( ki,Pg u∇ from (2.28). These derivatives 
must be estimated using the measurements collected in at least nr 
successive operating points near to uk. 

The main advantage of this method is that if the number of selected 
privileged directions is much smaller than the number of decision variables, 
the task of estimating experimental gradients is drastically reduced; 
however, there is the drawback of choosing these directions properly. 

2.1.7 Summary of MA applications in literature 

MA has many useful features and a high potential that make it very 
interesting for investigation and application. The methods previously 
described have been successfully implemented in numerous applications in 
realistic simulations, but few of them have reached the industrial stage. The 
Otto-Williams reactor (Roberts, 1979) has been the principal benchmark 
problem for testing MA approaches in the literature. This problem is quite 
challenging due to the presence of significant structural plant-model 
mismatch, as the plant is simulated as a 3-reaction system, whereas the 
model includes only two reactions with adjustable kinetic parameters. The 
different MA variants such as ISOPE (Roberts, 1979), DMA (Marchetti, et al., 
2010) and NMA (Navia, et al., 2013), have been applied to this example and 
it will be used to test the different approaches developed in this thesis. All 
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these methods can achieve an operating point that satisfies the process 
NCO.  

A more realistic application will also be used in this thesis that considers 
the operation of a depropanizer distillation column with a model predictive 
control layer (Rodríguez-Blanco, et al., 2015). This problem presents two 
types of uncertainty; the first is due to the use of an erroneous steady state 
model in the RTO layer, and the other is originates from the presence of 
different kinds of models in the control structure (RTO is based on nonlinear 
steady state models, whereas MPC uses dynamic linear models). This case 
study can be considered as a large scale problem from the point of view of 
the model size, since the dynamic model used to represent the process very 
precisely is formed by 2152 variables (1976 explicit, 129 derivative, 40 
algebraic and 7 boundaries) and 2145 equations (129 differential equations 
and 2023 algebraic equations). However, the RTO layer uses a simplified 
steady state model with only 32 algebraic equations and 39 variables (29 
explicit, 3 algebraic and 7 boundaries), which supposes a great structural 
plant-model mismatch. This case study will be explained in more detail in 
chapter five, since the approaches developed during this thesis have been 
implemented on this example. For comparison, static methodologies like 
DMA and NMA have been implemented on this example (Rodríguez-Blanco, 
et al., 2015), observing that the optimum is achieved after 60 hours, which 
implies 10 steady states. To speed up the convergence to the plant 
optimum, new methods based on transient measurements developed 
during this thesis were implemented, (Rodríguez-Blanco, et al., 2016), 
(Rodríguez-Blanco, et al., 2017), achieving plant optimum in only one steady 
state, after approximately 8 hours of operation. 

Additionally, D-MA was applied to the challenging problem of optimizing 
the flight path of a power-generating kite (Costello, et al., 2016). This 
problem deals with 40 decision variables, which makes the implementation 
of standard MA infeasible. In the presence of parametric and structural 
uncertainty, D-MA is able to find the optimal path, estimating the gradients 
in two directions (nr = 2) after only 10 iterations. The performance 
comparison was made considering a greater number of directions (nr = 4),  
concluding that the convergence is much slower in this case, since gradients 
are estimated in more directions than necessary. 

Other interesting case studies where this methodology has been 
implemented are: semi-batch reactors (Jia, et al., 2016), batch 
chromatography (Gao & Engell., 2005), chromatographic separation 
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(Behrens, et al., 2014), sugar and ethanol plant (Serralunga, et al., 2013), 
solid-oxide fuel cell (Bunin, et al., 2012), leaching process (Zhang, et al., 
2015), parallel compressors (Milosavljevic, et al., 2016) and experimental 
flotation columns (Navia, et al., 2016) . 

This latter will be used to test the methodology experimentally, based on 
transient measurements developed in this thesis (Navia, et al., 2017). The 
results obtained and the process description are explained in chapter four. 

2.2 Implementation issues 
This chapter has summarized the main MA approaches that have been 

developed within this methodology. However, these techniques present 
some drawbacks for its implementation. One of them is the application of 
MA in problems with many operational constraints or many input variables. 
As has been shown in (2.11), the bigger the number of constraints, the 
bigger the number of modifiers that have to be estimated. A high number of 
modifiers require the computation of more experimental gradients, which 
requires more excitation to estimate them or more previous operating 
points to start the estimation, depending on the applied methodology. D-
MA has been developed to solve problems with many inputs, but handling  
many operational constraints is still an open issue. To overcome this 
problem, chapter three describes a modification of the NMA approach to 
deal with operational constraints. This NMA approach is based on the 
minimization of the Lagrangian function that includes, in only one modifier, 
the correction in the cost function and the constraints. Therefore, this new 
method requires only one modifier to be added to the RTO cost function for 
each input, independently of the number of constraints.  

Another issue is the convergence rate of MA. As has been noted, MA 
proceeds by iteratively adjusting the optimization problem with first and 
zeroth order corrections, calculated from steady state information at each 
RTO execution. This fact implies that each correction in the RTO has to wait 
until a new steady-state has been reached, which implies a long 
convergence time. To solve this problem, chapter four presents several MA 
approaches based on the computation of plant gradients from transient 
measurements to speed up the convergence to an operating point that 
satisfies the process NCO. 

However, there are some remaining problems that have not been dealt 
with in this thesis. For instance, MA does not guarantee the feasibility of the 



70 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 

successive RTO iterates. So, an open issue is to guarantee the feasibility to 
the process optimum without slowing down the convergence rate.   

The Sufficient Conditions for Feasibility and Optimality (SCFO) have been 
used, combined with RTO, to enforce plant feasibility (Bunin, et al., 2013). 
However, SCFO fails to enforce sufficiently fast convergence because of the 
necessity to upper bound uncertain plant constraints using Lipschitz 
constants. Feasibility in DMA has also been studied in (Navia, et al., 2012), 
where the authors propose the use of a PI controller that is only activated 
when the measurements show a violation in the constraints. The use of 
convex upper-bounding functions to guarantee feasibility has also been 
discussed in (Marchetti, et al., 2017). Despite the existence of numerous 
studies in this field, there is still a trade-off between the convergence rate 
and plant feasibility which means that guaranteeing feasibility in MA is still 
an open issue that requires further investigation.  

One possibility for dealing with this problem is to apply MA in Dynamic 
RTO. In this way, path and terminal constraints are considered in the 
resolution of the optimization problem, so MA would ensure convergence 
following a feasible path. In addition, inconsistencies between control layers 
would be reduced, since both the MPC and the RTO would use dynamic 
models. The main difficulty of this approach would be to obtain the 
modifiers from the NCO formulated for dynamic optimization problems. 

The robustness of MA to gradient uncertainty is another open issue, 
since the estimated gradients have inherent errors. The extent to which MA 
is robust for this type of uncertainty should therefore be defined. Several 
works in this field point out that MA is quite robust for this uncertainty 
(Marchetti, et al., 2009), (Marchetti, et al., 2010), but in reality, it has to be 
assumed that gradient uncertainty is additive and bounded.  

Taking into account the important benefits that may be obtained by 
applying MA in the industry and the fact that there remain several open 
issues, MA has become an interesting topic on which further research 
should be done. 



 



 



3 HANDLING OPERATIONAL CONSTRAINTS 

IN MODIFIER ADAPTATION 
MA has been successfully implemented in several applications; however, the size 

of the problem with respect to the number of decision variables and the number of 
constraints is still an open issue, as it increases the number of modifiers and the time 
required to estimate them, slowing down convergence to the optimum. For dealing 
with process-dependent constraints without increasing the number of modifiers, an 
alternative MA methodology can be implemented. This consists in estimating the 
modifiers from information provided by the Lagrangian function, adding only one 
gradient modifier for each process input to the cost function. These modifiers are 
used in the NMA technique, which does not require the computation of experimental 
gradients, thus making its implementation in practice easier.  
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3.1 Introduction 
Although the MA techniques presented in the previous chapters have 

been successfully implemented in several applications, the size of the 
problem with respect to the number of decision variables (nu) and the 
number of constraints (ng) is still an open issue, since it increases the 
number of modifiers (nmod) and therefore the number of experimental 
gradients that must be estimated, as shown in (3.1), making the 
convergence of the MA to the real optimum slower.  

1)( ++= gugmod nnnn  (3.1) 
 

In particular, DMA requires nu + 1 operating points to make the first 
estimation of the plant gradients and initialize the algorithm. Moreover, the 
greater the number of constraints, the larger the number of experimental 
gradients that have to be estimated, thus increasing the computational 
work. In the case of NMA, the influence of the problem size is more direct, 
as the main drawback of this methodology is that it requires nmod +1 
previous operating points to construct the initial simplex and initialize the 
algorithm. In this way, the greater the number of constraints, the larger the 
number of required initial operating points and, therefore, the slower the 
convergence to the optimum, since the number of decision variables of the 
unconstrained optimization layer increases. 

This chapter proposes an alternative MA methodology for dealing with 
process-dependent constraints without increasing the number of modifiers. 
The key feature consists in computing the modifiers from the gradient of the 
Lagrangian function, thereby requiring a single gradient modifier per process 
input. In this way, the first-order modifiers that are usually included in the 
inequality constraints are not necessary because these corrections are 
included in the expression for the gradient of the Lagrangian. 

In the context of NMA, this feature represents a great advantage as it 
reduces the number of decision variables in the outer optimization that 
directly affect the convergence speed. To overcome this problem, this thesis 
presents a new NMA approach to deal with problems with many operational 
constraints so as to get a faster convergence and make the implementation 
of this technique easier in practice. 

The performance of the proposed methodology is illustrated through a 
case study corresponding to the operation of the Otto-Williams reactor, in 
the presence of both parametric and structural plant-model mismatch. 
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In addition, another two case studies will be considered, as will be shown 
in chapters five and six: the operation of an industrial depropanizer 
distillation column of a petrol refinery and the transport of natural gas 
through gas pipeline networks.  

3.2 Alternative MA using the Lagrangian gradients 
In order to deal with process-dependent constraints, Brdyś proposed 

using a modifier for the gradient of the Lagrangian function in the context of 
the ISOPE method (Brdys, et al., 1986). An equivalent approach can be 
applied in MA. The following equation shows the alternative modified 
optimization problem, correcting the Lagrangian gradients, described by 
(3.2), which can be compared to the original problem given by (2.10): 

UL
M

u

uuu

εβugg

uλβu

≤≤

≤+=

+=

0)(

)( T

k

k
,L

kM

,t.s

,min φφ

 

 
(3.2) 

 

where φM and gM∈ℜng are the modified cost function and constraints, 
εk∈ℜng

  are the zero-order constraint modifiers, and λL
k ∈ℜnu

 is the 
Lagrangian gradient modifier which represents the difference between the 
Lagrangian gradients of the plant and the model, as shown in (3.3). The 
subscript “P” indicates that the variable is evaluated from the process 
measurements. 
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where the plant and model Lagrangians, LP and L, are computed as 
follows, and μk ∈ℜng

 are the Lagrange multipliers of the modified problem 
given by (3.2): 

gμgμ P,
T
k

T
kPp LL +=+= φφ                                (3.4) 

 
If the MA algorithm converges, the Lagrangian gradient of the modified 

problem (3.2) matches the Lagrangian gradient for the plant, as can be seen 

next. The modifier TL
∞λ  is obtained from the equality of the first order NCO 

at k = ∞ of the process and the modified problem (3.2) as shown by 
equations (3.5) to (3.8), where LM, defined by (3.5), is the Lagrangian of the 



HANDLING OPERATIONAL CONSTRAINTS IN MODIFIER ADAPTATION 77 

modified problem. ( ) ( )( )∞∞∞∞∞ = ΛμΛuU **T ,  is the solution of the problem 

defined by (3.2) with modifiers ][ TLT
∞∞ = λΛ , where *

∞μ  is the value of the 

Lagrange multipliers for gM and T
∞Λ  is the value of the modifiers at this 

point: 

M
T
kMML gμ+=φ                    (3.5) 

( ) ( )∞∞∞∞∞ ∇=∇ Λμuμu uu ,,L,L MP                    (3.6) 

( ) ( ) ( ) ( )*
P

T*
P

*TTL* ,, ∞∞∞∞∞∞∞ ∇+∇=∇++∇ ugμuβugμλβu uuuu φφ                   (3.7) 
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If the scheme converges, then, under the following assumptions, it will 
do so to a KKT point of the plant. It is assumed that functions φ(u,β) and 
g(u,β) are twice continuously differentiable with respect to (u, μ) in a 
neighbourhood of T

∞U , the Lagrangian function ( ) ( ) ( )ugμuμu P
T
kPP ,L +=φ is 

continuously differentiable with respect to (u, μ) in a neighbourhood of T
∞U , 

and (u*(.),μ*(.)) are continuously differentiable with respect to Λ in a 
neighbourhood of T

∞Λ . The following conditions for the model-based 
problem have to be satisfied: 

1. *
∞u  is a regular point for the active constraints. This means that the 

gradient vectors of the active constraints ( )*
act, ∞∇ ugu M  are linearly 

independent. 

2. The strict complementary slackness for problem (3.2) holds at *
∞u  

( )( )0M =∞∞ βugμ ,*T . 

3. ( ) 0 0, M ≤≥ ∞∞
*ugμ  

4. The gradient of the Lagrangian is equal to zero ( ) 0u =∇ ∞∞ ΛU ,L T
M  and 

the Hessian of LM, ( )∞∞∇ ΛU ,L T
M

2
u  is positive definite. 

Then is a KKT point associated with the plant corresponding to a local 
optimum. For more details see (Navia, et al., 2015). 
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As usual in MA methodology, the modifiers can be applied after using a 
first-order exponential filter, as shown in   (3.9) where Kλ and Kε are diagonal 
matrices with eigenvalues in the interval (0, 1], in order to smooth changes 
in the decision variables and to ensure convergence. 

( )
1k1k1k1k ,,P

L
1k

L
k LL

−−−−
∇−∇+−= − μuuμuuλKλKIλ )( λ  

( ))()()( 1 1k1kk −−− −+−= ugugKεKIε Pεεk  

                             
(3.9) 

 

The Lagrange multipliers can also be adjusted as follows: 

{ } gk,i
*

ik,ik,i n,...,i,)(b,
k,i

10max 11 =−+= −− µµµµ         (3.10) 

where μi,k
* are the optimal values of the Lagrange multipliers of the 

modified problem (3.2) and bi is the gain of the first order filter. 

The number of required modifiers is drastically reduced by using the 
corrections computed by   (3.9), as shown in equation (3.11), compared to 
the number of modifiers for the standard version given by (3.1). 

ugmod nnn +=                                 (3.11) 

Compared to traditional gradient based MA techniques, this approach 
has the advantage that it only requires one gradient modifier λL

k for each 
process input; but it has the disadvantage that the modified cost and 
constraint functions do not provide first-order approximations of the plant 
constraint at each RTO iteration, that is, the slope of the modelled 
constraint is not being adjusting by first-order modifiers that are required to 
achieve matched first-order optimality conditions. This fact may make the 
convergence rate slower if gradient-based MA techniques are applied 
(Marchetti, et al., 2016). In addition, during the intermediate iterations, 
constraints may be violated as they are not being properly corrected. This 
problem, however, is common to all the MA approaches, despite the 
introduction of first-order corrections in the constraints. Nevertheless, it will 
converge to the optimum because the KKT point will be satisfied
( )0=∇=∇ MP LL uu  LM being the Lagrangian of the modified problem given by 
(3.2), as has been demonstrated before. 
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3.3 Efficient Nested Modifier Adaptation for 
dealing with operational constraints 

This section shows the use of the previously defined Lagrangian gradient 
corrections in NMA. For this methodology, the use of these corrections 
implies a clear advantage, since it is directly affected by the size of the 
problem. The larger the number of modifiers, the bigger the number of 
decision variables of the upper optimization layer, which may imply a slow 
convergence to the optimum. Figure 3.1 describes the alternative NMA 
method that considers the minimization of the Lagrangian function 
measured from the process and only one modifier for the cost function: 

One step of 
unconstrained 
optimization  

Filtering

Nested  Modified 
Economic Optimization 

Steady?

PROCESS

k = k +1

YES

NO

L P,k-1   gP,k-1

Convergence? YES STOP

λL
k,  εk 

λL
k 

uk, μ k

 

Figure 3.1. Schematic alternative NMA. 

As stated in chapter 2, the key point of NMA is to avoid the calculation of 
experimental gradients by using a gradient-free optimization algorithm to 
directly update the modifiers. In this case, the optimization problem solved 
in the upper layer takes into account the minimization of the process 
Lagrangian as shown in (3.12), with the idea of reducing the number of 
required modifiers: 

)()()( *
k

T*
k

*
k

*
k ugμuμu P

λ
kPP ,Lmin

L
k

+=φ        (3.12) 

The alternative NMA approach can be implemented as shown in 
Algorithm 3.1: 
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ALGORITHM 3.1: Efficient NMA for dealing with operational constraints  
(Rodríguez-Blanco, et al., 2017) 

Step 1. Set k = 0 and initialize λ0
L, μ0

*, u0
* and ε0. If the Nelder-Mead 

algorithm is used in the upper optimization layer, it is necessary to take 
information from nmod + 1 previous operating points to construct the initial 
simplex. These points will be generated by solving nmod RTOs, where the 
value of the modifiers is changed from those λ0

L initially given. 

Step 2: Given uk-1
*and μk-1

*, apply uk-1
* to the process and wait for a 

steady state to be achieved to measure gp,k-1 and φp ,k-1. Estimate the process 
Lagrangian via LP(uk-1

*,μk-1
*) = φp(uk-1

*)+ μk-1
Tgp(uk-1

*) and the zeroth order 
modifier εk. 

Step 3: Perform one step of the upper optimization problem described 
by (3.12) to update the modifiers λk

L, in order to minimize LP. 

Step 4: Solve the modified optimization problem described by (3.2) to 
obtain uk*and μk

*.  μk
* is given by the optimizer at uk

*.Compare uk
* with uk-1

* 
and if the convergence criterion is satisfied, that is, |uk

*- uk-1
*|≤ tol, then 

stop. Otherwise, set k = k + 1 and go to step 2. 

3.4 Implementation in the Otto-Williams reactor 
The effectiveness of the proposed methodology is illustrated through a 

case study corresponding to a simulated Otto-Williams reactor presented in 
Figure 3.2. It is a continuous stirred-tank reactor (CSTR) that has been widely 
used in the literature to study the performance of different RTO approaches 
with modelling mismatch (Williams & Otto, 1960), (Roberts, 1979), (Navia, 
et al., 2013) and (Marchetti, et al., 2010). It will also be used in this thesis to 
study the performance of the developed MA methods. The obtained results 
are compared to those obtained by applying the traditional DMA and NMA 
techniques. 

3.4.1 Process description 

The system consists of a CSTR that is fed with two sources of raw 
material, A and B, by means of the streams FA (kg/s) and FB (kg/s),  
respectively. Inside the vessel, three parallel reactions take place forming 4 
new compounds: C, G, E and P, as (3.13) shows.  
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,EPCB,CBA 21 kk +→+→+ GPC 3k→+  
(3.13) 

These compounds, along with the unused reactive, leave the reactor 
from the bottom of the vessel in a single stream FR. Xi represents the mass 
fraction of the i compound (i = A, B, C, E, G, P)   inside the reactor and TR (oC) 
is the reactor temperature. 

 

Figure 3.2. Diagram of the Otto-Williams reactor. 

The system can be described using a first principles model, where the 
mass balance for each compound in the reactor is defined as follows: 
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BAR FFF +=  (3.20) 
where M𝑖𝑖 represents the molecular weight of the compound i, and rj is 

the molecular reaction rate of the chemical reaction j defined with respect 
to its limiting reactive. VR is the volume expressed as kg, since density is 
considered a constant in the reactor. As we are dealing with pseudo-
compounds it is necessary to define the relation between their molecular 
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weights. This can be obtained by assuming that MA = MB = MC. Under this 
consideration the ratios from (3.15)-(3.19) are: 

0.51.521 ======
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B

E

B

C

A
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B
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M
M

M
M

M
M

M
M

M
M

M
M  (3.21) 

Regarding the reaction rate, it can be calculated as follows: 

BA11 XXkr =  (3.22) 

CB22 XXkr =  (3.23) 

PC33 XXkr =  (3.24) 

where kj is the kinetic constant of the reaction j that can be obtained 
using an Arrhenius expression, and EAj is the activation energy from reaction 
j. 
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3.4.2 Steady-state RTO model 

The mass fraction of the product C is one order of magnitude below the 
rest of the compounds. Therefore, a common choice in a gross 
representation of the process is to consider only the other five species, with 
the corresponding modelling mismatch. Then, only two parallel reactions 
inside the reactor are considered: 

EGPBA,EPB2A 21 k~k~ +→+++→+     (3.26) 

with this source of modelling mismatch, the steady state model to be 
used in the RTO layer is the following: 

0r~Vr~VXFF 2R1RARA =−−−     (3.27) 

0r~Vr~V2XFF 2R1RBRB =−−−     (3.28) 

0r~V2XF 1RER =+−     (3.29) 

0r~V3XF 2RGR =+−     (3.30) 

0r~Vr~VXF 2R1RPR =−+−     (3.31) 

BAR FFF +=    (3.32) 
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2
BA11 )X(Xk~r~ =     (3.33) 

PBA22 XXXk~r~ =     (3.34) 
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   (3.35) 

where the tilde represents the parameters used in the model that 
includes mismatch. 

3.4.3 Optimization problem 

The optimization objective, as described in the benchmark (Williams & 
Otto, 1960), is to maximize the operating profit expressed as the cost 
difference between the product and reactant flowrates, so the process cost 
function is defined by (3.36): 

BBBAAAEEPPR CXFCXF)PXPX(F −−+=φ  (3.36) 

where PP and PE are the prices for the products P and E, respectively, and 
CA and CB the cost of the reactants A and B. The flowrate of reactant A (FA) is 
fixed at 1.8275 kg/s. The flowrate of reactant B (FB) and the reactor 
temperature (TR) are the decision variables, thus u = [FB, TR].  

So, the model based optimization can be summarized as: finding the 
decision variables FB and TR that maximize the profit, subject to a model that 
only takes into account five compounds and two chemical reactions, 
corresponding to the simulated modelling mismatch. In addition, for the 
implementation of the alternative NMA method described in this chapter, 
two operational constraints have been added to the original benchmark. 
These constraints fix the upper limits for the composition of compounds A 
and G (XA

U = 0.085, XG
U = 0.105): 
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The optimal steady-state solution for the plant (simulated reality) is 
presented in Table 3.1. The mass fractions obtained at the optimal solution 
are given in Table 3.2. 

Table 3.1. Process Optimum. 

FB
*
 (kg/s) TR

* (oC) φ * ($/s) 
4.899 89.985 191.017 

Table 3.2. Mass Fractions at the Optimum. 

XA
* XB

* XC
* XE

* XG
* XP

* 
0.085 0.397 0.015 0.288 0.105 0.110 

The values of the parameters used from (3.14) to (3.35) are summarized 
in Table 3.3. 

Table 3.3. Value of the Model Parameters. 

Parameter Value Parameter Value 
FA (kg/s) 1.8725 1AE~ (oC) -8077.6 
VR (kg) 2105 2AE~ (oC) -12438.5 

k1
0 1.6599×106 FB

L(kg/s) 3 
k2

0 7.2177×108 FB
U(kg/s) 6 

k3
0 2.6745×1013 TR

L (oC) 70 
EA1(oC) -6666.7 TR

U (oC) 100 
EA2(oC) -8333.3 PP ($/kg) 1143.38 
EA3(oC) -11111 PE ($/kg) 25.92 

0
1k~  2.611×1012 CA ($/kg) 76.23 
0

2k~  1.655×108 CB ($/kg) 114.34 

By applying traditional MA, the modified optimization problem solved at 
each RTO iteration is described by (3.38), where φM is the modified cost 
function and gM,1, gM,2 are the modified constraints: 
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(3.38) 

where the first order modifiers λk, γk are computed as the difference 
between the model and experimental gradients as shown in (3.3), obtained 
from past operating points using DMA, or given by the upper optimization 
layer when NMA is applied. In this problem, according to (3.1), the number 
of modifiers is eight, two first-order modifiers for the cost  function, another 
two for each constraint plus the zeroth-order modifiers for both constraints. 

However, if the alternative MA technique described previously is applied, 
the modified optimization problem will be formulated as (3.39), with only 
two Lagrangian modifiers λk

L, one for each decision variable, and two zeroth-
order modifiers εi,k, one for each constraint. These modifiers are given by 
solving the unconstrained optimization problem (3.12), taking into account 
the minimization of the process Lagrangian. 
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3.4.4 Results 

The results obtained, as a function of the iteration number, are shown in 
the following figures, where NMA indicates the results of applying NMA with 
the traditional modifiers (correcting the cost and constraint gradients) 
solving (3.38). NMALag shows the results obtained by correcting the 
Lagrangian gradients, solving (3.39), and DMA shows the results given by the 
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implementation of the Dual Modifier Adaptation (section 2.1.3). RTO is 
solved every hour, the time required for the process to achieve a new 
steady-state. Modifiers are filtered with a gain of 0.3 for the first order 
modifiers and 1 for the zero order modifiers.  

As explained in the previous chapter, the DMA methodology requires the 
addition of a new constraint on the optimization problem, (κ-1(Sk) ≥ a), which 
takes into account the grade of excitation of the process, so as to ensure 
sufficient information in the measurements to guarantee gradient accuracy. 
This is equivalent to choosing the parameter a (lower limit of κ-1(Sk)), whose 
selected value in this case is 0. 10. 

Both, the simulation and optimization have been carried out in the 
modelling and simulation software EcosimPro (Int, 2013), using an external 
library for the optimization called SNOPT (Gill, et al., 2008), a software 
package for solving large-scale optimization problems.  

The following graphs, in particular Figure 3.3, show that the three 
approaches are able to reach the real optimum. For the case of NMA, the 
use of the Lagrangian based modifier reduces the number of required 
iterations by four times, since the number of modifiers is smaller; so the 
upper layer optimization has fewer decision variables, which makes it easier 
to achieve the optimum. In addition, the time required to achieve the plant 
optimum is also considerably reduced, making the implementation of NMA 
in real applications easier.  

 
Figure 3.3. Evolution of the process cost function φP. 
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Figure 3.4. Evolution of the decision variable FB. 

 

Figure 3.5. Evolution of the decision variable TR. 

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

1 3 5 7 9 11 13

F B
(k

g/
s)

 

Number of iterations 

NMALag
Model optimum
Real optimum
NMA
DMA

86

86.5

87

87.5

88

88.5

89

89.5

90

90.5

1 3 5 7 9 11 13

T R
(o C

) 

Number of iterations 

NMALag
Model optimum
Real optimum
NMA
DMA



88 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 

 

Figure 3.6. Evolution of the process constraint on composition of component A. 

 

Figure 3.7. Evolution of the process constraint on composition of component G. 

Fixing a tolerance band of 0.5% with respect to the optimal value of the 
cost function, the obtained results can be summarized in Table 3.5. The 
differences between the process optimum, the nominal solution and the 
model optimum that is, the results obtained by applying the nominal 
solution (solution of the RTO without modifiers) to the process are shown in 
Table 3.4. For the DMA approach, the number of steady-states needed was 
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9, the first three to initialize the computation of the process gradients (nu 
+1= 3) and 6 related to RTO solutions. NMA requires 46 steady-states: first, 
3 initial steady-states to estimate plant gradients for the computation of 
initial modifiers, then 7 to construct the first  simplex corresponding to the 
number of first-order modifiers plus 1, and finally 36 RTO executions. The 
alternative NMA formulation only requires 11 steady-states: 3 for the initial 
estimation of the modifiers, another 3 to construct the simplex and, finally, 
5 RTO executions to converge to the optimum. 

Table 3.4. Model and process optimum. 

 Process optimum Model optimum Nominal solution 
FB (kg/s) 4.899 5.349 5.349 
TR (oC) 89.985 86.648 86.648 
XA 0.085 0.086 0.085 
XG 0.105 0.079 0.090 
φ  ($/s) 191.017 176.678 199.141 

Table 3.5. Summary Results. 

 NMA NMALag DMA 
Decision variables 2 2 2 

Constraints 2 2 2 
Number of Modifiers 8 3 8 
First-order modifiers 6 2 6 

Iterations 14 4 6 
Steady state points 46 11 9 

As can be seen in Table 3.5, the use of the corrections based on the 
Lagrangian gradients makes the results obtained from NMA very similar to 
the ones obtained after applying DMA. This fact supposes an important 
advantage since, traditionally, DMA drives the process to the optimum in a 
faster and more direct way than NMA, as it deals with the information of the 
plant and process gradients. This formulation allows the performance of 
both approaches to be comparable and even NMA will be faster as the 
number of constraints increases. 
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3.4.5 Conclusions 

This chapter has proposed an alternative MA formulation, whereby the 
traditional modifiers that correct the cost and constraint gradients are 
replaced by modifiers for a single Lagrangian gradient. As with all other MA 
schemes, this formulation also guarantees that a point which satisfies the 
first-order optimality conditions of the plant will be reached upon 
convergence, since the KKT conditions will be satisfied, ( )0=∇=∇ uu MP LL . 
The main advantage of this approach is that the number of required 
modifiers is reduced, which significantly speeds up convergence. 

In the context of NMA, this feature represents a major advantage since it 
is directly affected by the size of the problem. The larger the number of 
modifiers, the bigger the number of decision variables of the upper 
optimization layer, which may imply a slow convergence to the optimum. In 
this chapter, the alternative method has been implemented in the Otto-
Williams reactor, but other applications will be shown in chapters five and 
six. Realistic case studies have been considered corresponding to a 
depropanizer distillation column of a petrol refinery and the transport of 
natural gas through the gas pipelines. It can be concluded that, using the 
described formulation, the number of iterations is considerably reduced, 
compared to standard MA formulations, and therefore the time required to 
achieve the real optimum, which makes the implementation of NMA in real 
applications easier.  

The use of these modifiers allows NMA to achieve the plant optimum 
with a similar convergence rate to DMA. Using the traditional modifiers, 
DMA drives the process to the optimum in a faster and more direct way 
than NMA, since it deals with the information of the model and process 
gradients. However, using the Lagrangian gradients, the convergence rates 
of both methods, NMA and DMA, are very similar, NMA can be even faster if 
it is applied in a case study with a large number of operational constraints, 
since the benefits of the proposed approach will be larger, the greater the 
number of process-dependent constraints. 

 

 

 

 



 



 



4 MODIFIER ADAPTATION USING TRANSIENT 

MEASUREMENTS 
Traditionally, MA proceeds by iteratively adjusting the optimization problem with 

modifiers calculated from steady-state information at each RTO execution. This 
implies a long convergence time. This chapter presents several approaches to speed 
up the convergence to the optimum by using transient information of the process.  
Among them, a new method is described that is based on a recursive identification 
algorithm to estimate process gradients from transient measurements, achieving 
the plant optimum faster than traditional MA techniques. 
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4.1 Introduction 
MA is normally applied based on static information, as happens in the 

gradient based method called DMA (Brdyś & Tatjewski, 1994) or the 
gradient free method, NMA (Navia, et al., 2015). However, the 
implementation of these methods is sometimes impractical, especially in 
processes with a long settling time, as the process needs to reach the 
steady-state at each RTO execution to estimate the process gradients. Over 
these long periods of time, the operating conditions or differences between 
process and model may change and the method may not converge to the 
real optimum, that is, an operating point that satisfies the NCO of the 
process. This issue makes the application of this methodology impractical in 
these cases. Besides, and not less important, this kind of method does not 
guarantee a feasible path during convergence to the real optimum, only 
when this point is achieved are all the process constraints satisfied. So, the 
longer it takes to achieve the optimal operation, the bigger the probability 
of violating operational constraints, which may lead to the loss of benefits or 
to the violation of safety and environmental constraints that may result in a 
dangerous operation. 

In order to speed up the convergence of the MA methodology for slow 
dynamic processes and reduce the risk of process constraint violations, 
several researchers have suggested the use of transient measurements to 
estimate the variables required by the steady-state optimization solved in 
the RTO layer. This idea was pursued by Zhang and Roberts in 1990 (Zhang & 
Roberts., 1990), who combined the ISOPE scheme with a linear dynamic 
model identification to compute process gradients for the steady-state 
optimization of nonlinear constrained processes with slow dynamics.  
However, this work did not address the problem of shortening the gradient 
estimation time. In contrast, in 2014, François and Bonvin (François, et al., 
2014) proposed an approach that uses transient measurements to compute 
process gradients by the neighbouring extremal method, NE, which relies on 
the accuracy of the linearization resulting from a variational analysis of the 
nominal model (see section 4.2). However, none of these techniques work 
well in the presence of strong structural plant-model mismatch.  

Two approaches are developed in this thesis to overcome this problem. 
The first combines the NE-based gradient estimation during the transient 
with the estimation of gradients based on stationary data. In this way, it is 
possible to deal with both parametric and structural plant-model mismatch 
(see section 4.3). 
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The second aims to extend the idea of using transient measurements to 
speed up convergence to the optimum of the MA methodology by 
estimating the process cost and constraint gradients directly using a 
recursive identification method. Thus, waiting for the steady-state at each 
RTO iteration is no longer necessary (see section 4.4). This identification 
method does not require any assumption about the type of uncertainty of 
the model, parametric or structural, or the knowledge of the parameter 
responsible for the plant-model mismatch. For this reason, it is able to deal 
with both parametric and structural uncertainties. The key here is to 
estimate the plant gradients at the steady-state from process 
measurements taken during the transient. The estimated gradients are then 
used to update the value of the modifiers and solve the modified economic 
optimization problem every sample time during the transient, so as to drive 
the plant operation to a point that satisfies the NCO of the plant faster than 
traditional MA, as can be observed in the results obtained from the 
implementation of this technique on the Otto-Williams reactor and a 
laboratory-scale flotation column (see sections 4.4.2 and 4.4.3). 

4.2 Modifier Adaptation computing plant 
gradients from neighbouring extremal control 

The idea of speeding up the convergence of MA was pursued by Francois 
and co-workers (François & Bonvin, 2014), who developed an MA scheme 
that, under certain assumptions, satisfies this aim. The philosophy behind 
this framework is inspired from Neighbouring-Extremal techniques (NEC), 
which use transient information for steady-state optimization. The main 
difference is that the control update is not obtained by computing a control 
law, but rather by solving a modified optimization problem. 

NEC aims to maintain process optimality in the presence of disturbances 
by implementing a control law that forces the satisfaction of the process 
NCO. It relies on linear approximations around the nominal optimum, 
namely the first-order variations of the necessary optimality conditions, to 
estimate the variation of the parametric uncertainty, δ𝛽𝛽, from the changes 
in the output measurements, δy, and the inputs, δu. For this reason, one 
condition that must be satisfied is ny ≥ n𝛽𝛽, that is, there are at least as many 
output measurements y as there are uncertain parameters 𝛽𝛽. 
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Consider the following static optimization problem: 

gi n...,i0,gt.s

,min

1,)(

)(

=≤βu

βu
u

φ
 

 

(4.1) 

where ϕ is a smooth function that represents the cost depending on the 
unknown parameters 𝛽𝛽 and the decision variables represented by u and gi 
are the inequality constraints. Moreover, the model includes the output 
equation (4.2): 

)( βuHy ,=  (4.2) 

Here, u and y represent the inputs and outputs, respectively, at steady-
state. 

From the variational analysis of the first-order variations of the NCO, 
considering the parametric variations, δ𝛽𝛽, around the nominal values of the 
parameters, 𝛽𝛽nom, a first-order approximation to the cost gradient can be 
expressed as (4.3) 

βBuAu δδφ +=∇  (4.3) 

with A being the Hessian matrix ( )uu nn ×  and B the ( )βnnu × matrix 
given by (4.4) 

φφ uβuu BA 22 ∇=∇=  (4.4) 

Output variables can be linearized with respect to u and 𝛽𝛽: 

βPuQy δδδ +=  (4.5) 

with the ( )uy nn ×  matrix Q and the ( )βnny ×  matrix P computed by (4.6) 

yPyQ βu ∇=∇=  (4.6) 

Let us assume ny ≥ n𝛽𝛽, that is, there are at least as many output 
measurements as there are uncertain parameters. Using (4.5), the 
parametric variations δ𝛽𝛽 can be inferred from δy and δu as follows: 

)( uyDβ δδδ Q−=  (4.7) 

where D is an ( )ynn ×β   pseudoinverse of P. 
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Equation (4.3) provides a first-order approximation of the cost gradient, 
which can be estimated from δy and δu, using (4.7) to eliminate δ𝛽𝛽, 
obtaining (4.8). 

uGyG uyu δδφ +=∇  (4.8) 

with  

( )+∇∇== yBDG βuβy φ2  (4.9) 

( ) yyBDQAG uβuβuuu ∇∇∇−∇=−= +φφ 22  (4.10) 

The first-order RTO modifiers λ can be expressed by the following 
equations, where yP(t) and y are the vector of output measurements from 
the process (measured during the transient) and the model, uP and u the 
vector of inputs applied to the process and the model, and finally, ynom, the 
vector of model outputs for the nominal solution unom, that is, the solution 
of RTO without modifiers. The parametric uncertainty causes the optimal 
inputs and outputs, as well as the gradient, to deviate from their nominal 
values. For this reason, the plant gradients are estimated using the 
approximation shown in (4.8), but adding the deviation in the process inputs 
and outputs with respect to the nominal values to extract information about 
the effect of the uncertain parameters on the estimated gradients. Since this 
method considers that there is only parametric plant-model mismatch, Gy 
and Gu will be equal for the RTO model and the plant. 

)()(

)(

uuGyyG

uGyGuGyGλ

PuPy

uyPuPyuu

δδδδ
δδδδφφ

−⋅+−⋅

=+−+=∇−∇= P  
(4.11) 

where, 

( ) nomPP yyy −= tδ   (4.12) 

nomyyy −=δ   (4.13) 

and 

nomPP uuu −=δ   (4.14) 

nomuuu −=δ   (4.15) 

The same estimation procedure is followed to compute the constraint 
modifiers γi, formulating (4.8) as the estimation of constraint gradients and 
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computing Gy and Gu as a function of the constraint value instead of the cost  
value.  

gi,i,i n...,ig 1,=+=∇ uGyG uyu δδ    (4.16) 

( )+∇∇== yDBG βuβy iiii, g2    (4.17) 

( ) yyQDBAG uβuβuuu ∇∇∇−∇=−= +
iiiiiii, gg 22    (4.18) 
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−⋅+−⋅

=+−+=∇−∇=

i,i,

i,i,i,i,iii gg
 

  (4.19) 

The main advantage of this method is that the process cost gradient is 
only estimated by using the model offline, through the expression for Gy and 
Gu, and Gy,i and Gu,i, whereas Pyδ is measured from the process during the 
transient. Nevertheless, this method also presents strong limitations, such 
as: 

• The method works well only if there is parametric uncertainty or little 
structural plant model mismatch. 

• The user has to know what the uncertain parameters are, although 
their exact values are unknown. 

• There have to be at least as many available output measurements as 
uncertain parameters ( βnny ≥ ).   

This methodology has been implemented by the developers of the 
method for the optimization of a simulated continuously stirred tank reactor 
(CSTR) (François & Bonvin, 2014), (François, et al., 2014),  where the goal is 
to maximize the productivity of the most value-added reaction product at 
steady-state. By applying this methodology, the authors conclude that the 
time needed for convergence to the plant optimum varies from about two-
thirds to twice the plant settling time, i.e., a factor of 2−6 reduction 
compared to static MA under the same uncertainty. However, this example 
only considers parametric plant-model mismatch. In this thesis, the 
application of this method in the presence of structural uncertainty has 
been studied (Rodríguez-Blanco, et al., 2016) through the optimization of a 
simulated depropanizer distillation column. The presence of parametric and 
structural uncertainty led to the development of two extensions of the 
previous method that will be presented in sections 4.3 and 4.4. The first one 
combines transient and steady-state measurements. The second uses 
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identification algorithms to estimate the process gradients, also using 
transient information. Both approaches will be explained below and the 
results obtained by its implementation in the distillation column will be 
shown in chapter five. 

4.3 Combination of transient and steady-state 
measurements 

Using the method described in the last section, waiting for the steady 
state at each iteration is not necessary since the modifiers are updated 
every RTO sample time during the transient. In this way the convergence of 
the MA approach is sped up. Nevertheless, this method also presents strong 
limitations that have been mentioned in the previous section. The main 
drawback is the fact that it does not work well in the presence of structural 
plant-model mismatch. 

To overcome this limitation, a first extension is presented in this section 
that combines MA based on transient measurements with the traditional 
methodology which estimates process gradients from steady-state 
information. In that way, both parametric and structural plant-model 
mismatch can be dealt with. 

This methodology consists of two steps: 

1. First, MA is applied by using transient measurements, as explained in 
section 4.2, to overcome the parametric plant-model mismatch 
between the process and the model used in the model-based 
optimization layer. 
 

2. Once the steady-state is achieved, the method based on transient 
measurements will not be able to find a better operating point, so 
static MA is applied at the end of the transient to deal with the 
structural plant-model mismatch, computing the process gradients 
from steady-state information, applying a traditional static MA 
technique, for instance the DMA methodology. 

An example of the application of this methodology, which considers the 
optimal operation of a depropanizer distillation column in the presence of 
parametric and structural uncertainty, will be shown in chapter five. The use 
of this approach reduces the time required to achieve the process optimum 
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by 60% compared to traditional MA techniques based on steady-state 
information. 

 

δyP   δuP   ϕ P,k-1  gP,i k-1
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Filtering

Modified Economic 
Optimization

Steady?

PROCESS

k = k +1

YES

uk*
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NO
YES STOP

∇ϕp|uk-1 ∇gp,i|uk-1

NE-based gradient 
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Convergence?
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k = k +1

 
Figure 4.1. Schematic of MA based on transient and steady-state data. 

4.4 Modifier Adaptation approach using Recursive 
Extended Least Squares to compute process 
gradients 

The second alternative approach that has been developed is also based 
on the use of transient measurements. This technique considers that 
process gradients can be estimated from input-output data during the 
transient using adaptive estimation techniques. The proposed method uses 
transient measurements to estimate the plant gradients, and therefore the 
value of the modifiers, thus allowing faster convergence to the steady-state 
plant optimum than traditional MA, being valid in the presence of both 
parametric and structural uncertainty.  

To estimate the process gradients, it is necessary to suppose an 
approximation for the variation of the process cost function ΔφP,k = φ  P,k - φ  P,k-1. 
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In this thesis, it is proposed to approximate this variation at time k as a 
quadratic Taylor polynomial that depends on the input applied until the 
present sample time uk-1 and the one applied in the previous sample instant 
uk-2 (see Figure 4.3). Other simpler functions can be supposed, for example a 
first-order approximation. However, this approximation would be realistic 
only for linear systems, which are rarely met in practice. 

 This estimator for the variation of the cost function is given by (4.20) 
where the hat “^” indicates that the variable is estimated from the process 
measurements. Δuk-1 is the column vector of the moves of the input variables 
(decision variables of the RTO problem) and the index k represents the RTO 
execution which, in transient methods, does not coincide with the steady-
state number, as happens in static MA. 1−kθ̂ is the column vector of the 
estimated parameters, which contains the required process gradients to 
compute the modifiers as the first element of this vector, i.e., the gradients 
of the process cost function with respect to the decision variables uk-1 .  
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The gradients contained in kθ  are estimated by using the recursive 
extended least squares algorithm (RELS) with forgetting factor α. The 
concept of forgetting means that older data are gradually discarded in 
favour of more recent information (Vahidi, et al., 2005).  

 

This algorithm is based on the difference between the current input uk-1 
and the previous ones and the difference between the measured ΔφP,k and 
the predicted k,P̂φ∆ change in the cost function for the gradient estimation 
(Guay, 2014). Hence, the parameter estimation update approach is given as 
follows: 
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where the terms involved in (4.23) are defined as follows: 
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(4.28) 

 

 

where Σ is the covariance matrix of the estimated error, whose initial 
value is Σ0, ek is the output prediction error, and uk is the solution of the 
modified RTO problem for each sampling instant k during the transient. On 
the other hand, ΔφP,k = φ P,k - φ  P,k-1 is the difference between the current 
process cost function and the cost function measured one sampling time 
before. 

An important drawback of using passive identification with transient 
measurements is the degree of excitation that the system must have to 
estimate the gradients accurately. For this reason, a dual constraint is added 
to the RTO problem (Brdyś & Tatjewski, 1994), (Marchetti, et al., 2010), (κ -

1(Sk) ≥ a), which is described by (2.13) and (2.14). This constraint represents 
the dual characteristic of the method: while the rest of the optimization 
aims to converge to the optimum of the modified model (primal objective), 
the dual constraint ensures that, in the next RTO iteration, the system will 
have enough excitation to estimate the process gradient again (dual 
objective). However, this technique also identifies second order terms 
included in kθ̂  from second order data included in φk whose excitation is 
not guaranteed by the dual constraint. For this reason, the persistent 
excitation condition (4.29), based on the theory of system identification, 
must be checked in order to guarantee that all the plant gradients (included 
the second-order terms) have been properly estimated (Goodwin & Sin,  
1984), (Ljung, 1987). This condition, given by (4.29), indicates that the 
square matrix Ψk Ψk

T must be positive definite in order to guarantee that 
there is enough process excitation. c1 (a positive constant) fixes a lower limit  
for the excitation and Ψk is defined by (4.30). 
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This condition can be satisfied if there are at least as many data sets 
measured from the process as estimated parameters, that is, k ≥ l =size[ kθ̂ ]. 

The persistent excitation condition can be checked after the end of the 
algorithm, once the steady-state of the process has been achieved, or by 
adding a constraint to the RTO problem at the kth execution, where k = size[

kθ̂ ], in order to guarantee that there is enough excitation. If this constraint 
is satisfied at the kth iteration, this condition will be satisfied during the 
whole experiment since the more information we get, the better the 
estimation of the plant gradients. 

This constraint would be formulated as shown in (4.29), where Ψk 
includes the decision variables of the RTO ( )1−−= kkk uuΔu . In this way, 
the optimizer will decide the next inputs to be applied, uk, forcing the 
process to be sufficiently excited. 

On the other hand, taking into account the fact that, sometimes, the 
inputs of the model are not the same as the inputs of the process, for 
example, when there is an intermediate control layer that is not considered 
in the RTO model, or the fact that applying RTO during the transient implies 
that the input variable may not be able to reach the fixed set points; then 
the plant gradients must be estimated with respect to the set points of the 
process. Therefore, the variable uk that represents the solution of the RTO 
problem would indicate the set points computed for the input variables. This 
issue will be shown in the case study described in chapter five, which 
consists of a depropanizer distillation column with a MPC layer that 
determines the set points for the PID controllers. In this case, the decision 
variables in the RTO do not correspond to those of the process due to an 
intermediate MPC layer that is not considered in the RTO model. 

One advantage of this technique, compared to that described in 
subsection 4.2, is that the new formulation does not require any assumption 
about the type of uncertainty of the model, parametric or structural, or the 
knowledge of the parameter responsible for the plant-model mismatch. 
Consequently, the proposed method can be applied to problems with both 
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parametric and structural uncertainty, without modifying the RTO model or 
identifying what the uncertain parameters are.  

If enough measurements are taken during the transient, and therefore, 
the estimated gradients have been sufficiently corrected during this time, the 
true value will be achieved at the steady-state. This implies that an operating 
point that satisfies the NCO of the process may be reached in only one 
steady-state. However, this steady-state will be extended over time because 
the process inputs are very frequently manipulated, every sample time 
during the transient. 

Process Gradient 
Estimation (RELS)

Modifiers 
computation

Modified Economic 
Optimization

PROCESS

uk

λk,   γi,k    εi,k 

k=k+1

k,P ikP , g∆φ∆

k,P ikP , ĝˆ ∆φ∆

Convergence?

YESNO

STOP∇ϕp|uk-1 ∇gp,i|uk-1

Figure 4.2. Schematic of MA based on the direct estimation of process gradients 
over the transient. 

The steps needed to implement the previously described method are 
given next: 

ALGORITHM 4.1: Modifier Adaptation using RELS (Rodríguez-Blanco, et al., 
2017) 

Step 1: Set k = 0 and initialize the vector of estimated parameters 0θ̂ , the 
value of the estimation error e0 and the covariance matrix Σ0, whose 
initial value is given by (4.24). Then, choose the tuning parameters α (the 
forgetting factor), the lower limit a for the dual constraint, and the lower 
limit for the persistent excitation c1. To start the algorithm, it is necessary 
to apply two operating points, uk-1 and uk-2, to make the first estimation 
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for the process gradients. Only two previous points are necessary to 
estimate the first gradient, regardless of the number of decision 
variables. 

 Step 2: At the sample instant k, the process cost function φP and the 
constraints gP,i are measured or calculated directly through other 
measurements.  From these measurements, and those taken in the 
previous sample time k-1, the variation terms ΔφP,k and ΔgPi,k are 
computed and the data vector is formed by: 
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Figure 4.3 shows how the time domain is divided into several sample 
periods, which are the time intervals between two consecutive RTO 
executions. The yellow points indicate the time instants when the 
measurement was taken and the blue points the instants when the new 
inputs obtained by solving the RTO are applied. 

 
Figure 4.3. Sample periods for the estimation of plant gradients. 

Step 3: The estimation error for the variation of the process cost function 
eϕ,k and the constraints eg i,k is computed as follows: 
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Step 4: Estimate the process cost and constraint gradients, 
1−

∇
k,

P
Puuφ and 

1−
∇

k,
i,Pg

Puu contained in k,
ˆ φθ  and k,

ˆ
gθ  using the RELS algorithm 

described by (4.24)-(4.28). 

 Step 5: Compute the modifiers λk, γ k and εI,k for the RTO problem by 
applying the following expressions: 
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Step 6: Solve the RTO modified optimization problem (4.34) to obtain *
ku , 

which is applied to the process until the next RTO execution at k+1. 
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Step 7: Check wheter the convergence criterion is satisfied, for instance, 
toluu ≤− **

k-1k , that is, there are no changes in the RTO decision variables 
higher than a fixed tolerance. Other stop criteria can be considered, for 
example, there are no changes in the process cost  function higher than a 
specified value tol≤− *

1-,
*

kPP,k φφ . If any of these criteria is satisfied, stop the 
algorithm, otherwise, k = k + 1 and return to step two when the next 
sampling time is reached. 

4.4.1 BIBO stability of the closed-loop system 

The gradients estimated during the transient using RELS will be equal to 
the steady-state gradients only when the system converges to a steady 
state. This fact, together with the manipulation of the control set points 
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during the transient, could make the closed-loop system (controlled plant + 
RTO) become unstable. However, according to the small gain theorem (SGT) 
for nonlinear systems (Haddad & Chellaboina, 2008), (Khalil, 1996), the 
following derivations can be made to ensure closed-loop bounded-input, 
bounded-output (BIBO) stability. Figure 4.4 shows the basic scheme 
concerning the interconnection of two systems, in this case, the controlled 
plant (input u, output φP) and the RTO (input φP, output u). 

 

 

 

 

 

Figure 4.4. Closed-loop setup. 

The condition provided by the SGT, to ensure the BIBO stability of the 
closed-loop system HG× , is given by (4.35) for any norm of the involved 
signals: 

1<HG  (4.35) 

In order to fulfil (4.35) for the induced L∞→ L∞ norm (denoted by the L1 
system norm below), the following assumptions are made. 

Assumption 1: 

According to (4.34), u is assumed bounded, so σ≤∞u , where 0>σ  . 
Therefore, the modified optimization problem described by H is BIBO stable, 
that is, ∞<1H . 

Assumption 2: 

The controlled plant, represented by G, is properly designed, stable and 
well posed, such that the system is BIBO stable with ,P ∞∞

≤ uχφ for some

01 >> χ . So, 1<1G . Then, two possible scenarios appear: 

1. The output of the modified RTO problem, i.e. u, is not on the 
constraints. Then, nothing can be concluded about

1H , that is, its 
value may vary between (0, ∞), so the overall closed-loop system 

Pφ  u CONTROLLED 
PLANT (G) 

RTO (H) 
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behaviour may be unstable (φP increases as u does). If this worst case 
happens, then we will enter scenario 2. 

2. u is on the constraints. Then, σ≤∞u independently of how large φP 

is. Therefore, 1<1H applies for largeφP, since
∞∞ ≤ Pφξu , with

10 <<ξ . In this case, considering Assumption 2, the closed loop 
system is BIBO stable by the SGT. 

 
Remark 1:  

The behaviour of the closed-loop system may lie on the stability limit in 
the worst case ( 1=⋅ HG ), i.e., the system may be continuously jumping 
between scenario 1 and 2, but without becoming unstable in the BIBO 
sense. 

Remark 2: 

Note that assumption 2 about 11 <G is strong, but it can indeed be 

relaxed to be 1
1

−< ξG and still fulfil (4.35). Furthermore, the filter 
parameters and the sampling time of the MA algorithm can act as tuning 
parameters to smooth the system response, thus reducing

1H . 

Nevertheless, it is important to note that the closed-loop operation does 
not normally present any stability problems, since the upper-level control 
layers, such as the MPC layer, provides the required system stability. In 
addition, the first-order modifier filters are applied after filtering to smooth 
changes in the plant and prevent it from becoming unstable. Note also that 
the SGT is very conservative (the worst case may appear at a high sampling 
frequency, worst modelling errors and system conditions which excite the 
nonlinearities), so many closed-loop systems whose induced L∞→ L∞ norms 
do not strictly satisfy (4.35) will, in practice, be stable. 

4.4.2 Implementation in the Otto-Williams reactor 

The simulated Otto-Williams reactor described in chapter three, section 
3.4, is used again to show the performance of the new MA approach based 
on RELS to estimate the plant gradients. The obtained results have been 
compared to those obtained by applying traditional static MA, in particular, 
DMA is applied to this example (see section 2.1.3). In this implementation, 
the original problem without operational constraints formulated in the 
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original benchmark (Williams & Otto, 1960) has been considered. Only the 
limits in the decision variables are considered as the original benchmark was 
presented. As explained in chapter three, this example presents a high 
degree of structural plant-model mismatch. 

Therefore, the RTO optimization problem which maximizes the operating 
profit is described by (4.36) 
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By applying MA, the modified optimization problem is given by (4.37) 
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where the first-order modifiers λk are computed as the difference 
between experimental gradients (obtained from past operating points using 
DMA and estimated by RELS using the MA approach based on transient 
information) , and the model gradients as (4.38) shows: 

1k1k
P

T
k

−−
∇−∇= uuλ φφ  (4.38) 

Over the simulated Otto-Williams reactor, a traditional static method, 
DMA, and the recently developed technique based on RELS, in future TMA, 
have been applied. Both approaches are implemented with a value of a 
(lower bound of the dual constraint that appears in (4.34)) and c1 (lower 
bound of the persistent excitation constraint (4.29)) equal to 0.10. For DMA, 
RTO is executed every hour, the time required for the process to achieve a 
new steady-state. However, TMA has been implemented with an RTO 
sample time of 600 seconds, which is one sixth of the process stabilization 
time. The forgetting factor α, considered for the estimation of the process 
gradients has been 0.90. 

The obtained results are represented graphically in Figure 4.5, which 
shows the evolution of the process cost function and Figure 4.6 and Figure 
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4.7, which show the evolution of the RTO decision variables as a function of 
time: 

 

Figure 4.5. Evolution of the process cost function φP. 

 

Figure 4.6. Evolution of the decision variable FB. 
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Figure 4.7. Evolution of the decision variable TR. 

For the implementation of DMA, nu +1 measurements are required to 
initialize the estimation of the experimental gradients. In this case, we have 
information of any nu operating points and then the nominal solution, i.e., 
the optimal solution for the stationary model with uncertainty is applied at 
time three in order to have enough information to make the first gradient 
estimation. 

For the identification of plant gradients using RELS, the first operating 
point is the nominal solution and then, in the second sample period, a 
change in the input variables is imposed to obtain the measurements at a 
different operating point. In this way, data from two operating points are 
obtained and the algorihm has the required information to start the 
estimation of the gradients at the third sample period during the transient. 

Fixing a tolerance band of 0.5% with respect to the optimal value of the 
cost function, the graphs (in particular, Figure 4.5) show that the optimum 
of the process is achieved after approximately 46800 seconds using static 
MA (13 hours). This involves 13 steady states, 11 RTO executions, plus nu 
initial steady-states required to estimate the gradients, where nu is the 
number of decision variables. For this long period of time, operating 
conditions and plant-model mismatch could change, resulting in a loss of 
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optimality since the MA method would not converge to the process 
optimum. 

By applying the new approach, updating the modifiers during the 
transient and fixing the same tolerance band, the optimum operating point 
is achieved after 12000 seconds, approximately 3.5 hours, which means a 
considerable time reduction when compared to the 46800 seconds of the 
static MA approach. It involves 20 RTO solutions executed during the 
transient. 

 A comparison of the performance of the two implemented approaches is 
shown in Table 4.1. 

Table 4.1.Summary Results. 

 DMA TMA 
Convergence time (h) 13 3.3 
RTO sampling time (s) 3600 600 

RTOs executed (#) 11 20 

In view of the results, it can be concluded that the new method developed 
to speed up the convergence of RTO-MA to an operating point that satisfies 
the plant NCO is able to effectively perform the optimization in the presence 
of structural plant-model mismatch, considerably reducing, by a factor of 4 
(about 25% of the time required for DMA) in this example, the time required 
to achieve the process optimum as compared with standard static MA 
techniques, such as DMA. 

4.4.3 Implementation in a laboratory-scale flotation 
column 

The MA approach based on the direct estimation of the process 
gradients using RELS has also been implemented in a laboratory-scale 
flotation column developed and operated at the department of Ingeniería 
química y ambiental, at the San Joaquín campus of the Universidad Técnica 
Federico Santa Maria (Chile). In this real-life set-up, the obtained results 
show that the use of transient measurements results in a time saving of 
around 64% when compared to the application of static MA techniques. The 
process implementation of the RTO and the experimental results are shown 
next. 
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4.4.3.1 Process description 

Most of the copper is found in sulphide ores in copper mines, with an 
average concentration of approximately 0.9% by weight. The copper is 
obtained from these ores through a process that mainly involves three 
stages: comminution, concentration and refination. In the comminution 
stage, copper is extracted from sulphide ores using size reduction methods. 
Then, copper minerals are separated from the remaining materials in froth 
flotation circuits because of the selective hydrophobicity produced by the 
chemical reagents (collectors). Finally, the copper enriched solution is 
refined through smelting and electrochemical processes. 

The application considered in this thesis focuses on the flotation units 
used in the concentration stage. The flotation column is a multivariable 
process whose main control objective is to guarantee the metallurgical yield 
set for the process operation, expressed by the recovery of the valuable 
mineral in the concentrate (Navia, et al., 2016). For this task, a supervisory 
layer is added to the process to find the optimal decision variables.  

Figure 4.8 shows a diagram of a flotation column. The flotation column is 
divided into two zones: the collection zone and the froth or cleaning zone. 
The pulp feed enters below the froth–pulp interface and descends against a 
rising group of bubbles generated by the injection of air through a bubbler. 
Hydrophobic particles of the mineral copper collide and adhere to the 
bubbles, moving upwards in the collection zone (Finch & Dobby, 1990). At  
the top, the froth is formed because of the addition of chemical reagents. 
The froth is stabilized by the addition of wash water passing through a 
shower. The wash water plays an important role in eliminating fine particles 
entering from the concentrate. The column has two outflows: concentrate 
and tail. Concentrate is the stream enriched in floatable minerals (copper 
sulphides in this case) that goes to the refination process or to other 
cleaning stages with the final purpose of being refined. In contrast, the tail is 
used in scavenger concentration units to recover part of the remaining 
floatable minerals. The metallurgical yield of the column can be defined by 
two indicators, recovery and law     (4.39). Recovery (R) is the percentage of 
copper from the feed that is recovered in the concentrate, whereas the law 
of copper (L) represents its concentration in the concentrate. 

Cu
CCu

FF

Cu
CC CL,

CF
CF

R ==      (4.39) 
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where FF and FC are the feed and concentrate flows, respectively, and CC
Cu 

and CF
Cu are the concentration of copper in the concentrate and the feed 

streams, respectively. 

 
Figure 4.8. Diagram of a flotation column. 

The operation of the flotation column has three typical controlled 
variables: bias, air hold-up and froth depth. Bias (B) is defined as the net 
flow of water passing through the interface froth-pulp. It is calculated as 
shown in (4.40)  

FC FFB −=    (4.40) 

The hold-up (εG) corresponds to the air fraction inside the column. This 
variable depends on the air flow, the diameter of the bubbles produced in 
the bubbler, the pulp density and the concentration of chemical reagents. 
For an air–water system with a constant density, the hold-up can be 
estimated as shown in (4.41) (Finch & Dobby, 1990). 

L
P

SL
G Δ

Δ1
ρ

ε −=    (4.41) 

where ΔP is the pressure difference across the collection zone, ΔL is the 
distance between the pressure sensors and ρSL is the pulp density. 

Finally, the third decision variable is the froth depth Hf, that is, the height 
of the froth measured from the froth-pulp interface to the top of the foam. 
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The manipulated variables are the wash water, air and tail flows. Each of 
these flows affects the metallurgical objectives of the system as follows: 

• Wash water: it is added to drag the entering hydrophilic gangue to the 
bottoms to increase L. However, this action also removes part of the 
floatable mineral due to the mechanical action of water, thus 
reducing R. 

• Air: the addition of air increases R because of the availability of 
bubbles, but it also produces a decrease in L due to the fluid dynamics 
in the collection zone. 

• Tail: this variable is related to the residence time of both zones in the 
column. An increase in this flow reduces the volume of the collection 
zone and increases the froth depth, producing a reduction in R and an 
increase in L (Navia, et al., 2016). 

Other variables that affects the operation of the column are: the 
characteristics of the feed and the concentration of flotation reagents. 
However, these variables have not been considered in this work. 

4.4.3.2 Experimental set-up 

A supervisory layer to optimize the process operation has been 
implemented in the laboratory-scale flotation column shown in Figure 4.9. 
The column is made up of an acrylic cylinder with an internal diameter of 9.2 
cm and a height of 3.27 m, with a system to collect the froth at the top by 
overflow. The feed and wash water are pumped using peristaltic pumps,  
whereas the compressed air is injected at the bottom of the column using a 
porous diffuser. Both the air and tail flows are manipulated using globe 
valves. The column has two differential pressure sensors, one located in the 
collection zone, a volumetric flowmeter for the tail, and a mass flowmeter 
for the air. The P&ID described in Figure 4.9 shows the control loops that 
follow the typical pairing for this type of unit: B–wash water (FYC), εG–air 
(DYC) and Hf–tail (LYC). The optimal decisions made in the supervisory layer 
are passed to the regulatory layer that consists of PI controllers. For 
simplicity, the experimental set-up follows a hybrid approach (Bergh, 2007), 
(Bergh, 2012). The main concept behind this approach is that the essential 
phenomena of a process can be divided into two aspects: hydrodynamics 
and physicochemical mechanisms. 
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Figure 4.9. Experimental set-up and P&ID of the column. 

The hydrodynamics of the flotation column can be represented in a 
proper manner for a laboratory-scale unit considering an air–water system 
(Bergh, 2012). However, the physicochemical mechanisms involved in the 
flotation process require the use of expensive instrumentation, such as 
sensors or actuators, and also high maintenance costs, making the 
experimentation infeasible. For this reason, a hybrid experimental set-up 
was developed that, in addition to the physical components above 
mentioned, includes a virtual part with a first-principles model that has been 
developed to emulate the phenomenology of the flotation of copper sulphur 
minerals.  The system takes into account two types of degrees of freedom: 
physical and virtual. The physical degrees of freedom are the variables 
measured from the experimental air-water set-up and the design 
parameters of the column, whereas the virtual ones are the properties of an 
emulated feed pulp, that is, law of copper, slurry density, solid percentage 
and particle size, together with the kinetic relations necessary to calculate 
the recovery and law of copper (Bergh, 2007), (Bergh, 2012). Figure 4.9 
shows that the tail flow is produced due to the pulp level, as there is no 
pump in the outflow of the bottom. The dynamic of the discharge is in the 
order of minutes. Gas enters at the bottom and is discharged to the 
atmosphere at the top of the column with a dynamic on the order of a few 
seconds. This means that the dominant time constant is related to Hf  and 
the tail flow. Because the tail flow affects the net flow of water, the bias is 
also affected. Therefore, the dynamic of B also has important effects on the 
transient, as the control loop modifies the wash water, thus affecting Hf. 
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This interaction can produce important drawbacks in a system with an RTO-
based supervisory layer related to the time needed to reach the next steady 
state. For this reason, it would be desirable to reduce the number of steady 
states needed to find the NCO of the process. For this task, MA based on 
transient information has been applied to speed up convergence to the 
optimum. 

4.4.3.3 Metallurgical model 

A first-principles model has been implemented to represent the 
phenomenology of flotation (Bergh, et al., 1998). This model considers that 
flotation can be described as an elementary reaction between the floatable 
particles and the bubbles. Considering that the concentration of bubbles 
should be larger than the mineral, the kinetic rate of flotation can be 
approximated with a pseudo-first-order expression (Polat & Chande, 2000). 
The recovery in the cleaning (RF) and collection zones (RCi) is given by   (4.42) 
and (4.43), respectively. In these equations, Nd is the vessel dispersion 
number, τS is the residence time of the solid which is a function of Jb, defined 
as the superficial velocity of the bias. In the same manner, Jg and Jw are the 
superficial velocities of the air and wash water, respectively. kCi represents 
the kinetic expression of species i. 
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where the constant ai is computed as follows: 
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The kinetic expressions that represent the probability of reactant 
collisions, in this case air flow and floatable particles with a diameter DP 
equal to 40 μm, are described by (4.45), where the parameters A1 and A2 
have been estimated using operational data from a column located in the 
cleaning zone of a concentration circuit (Bergh, et al., 1998). 
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4.4.3.4 RTO model and optimization problem 

The uncertainty in the model-based optimization has two sources. One is 
the experimental uncertainty related to the precision of the instruments and 
the behaviour of the PI controllers. Another is the plant-model mismatch 
due to the use of a simplified and uncertain RTO model. 

To emulate this modelling mismatch, the dependencies from (4.45) have 
been neglected in the model-based optimization, assuming that kCi is 
constant. 

The model-based optimization problem, solved in the RTO layer, is 
formulated by (4.46), where the decision variables are Hf, εG and B, that is, 
uT=[ Hf, εG, B]. 
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The economic objective function has four terms: CE is the energy cost of 
pumping the slurry and compressing the air, CL is the cost of the 
metallurgical losses in the scavenger stage (proportional to the copper that 
cannot be recuperated in this stage), CR is the cost associated to the 
regrinding process, and I represents the incomes of the process related to 
the specific selling price of concentrate and the amount produced as shown 
next. 
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where ρsl is the density of the pulp, xF is the w/w percentage of copper in 
the feed, xC is the w/w percentage of copper in the concentrate, R is the 
total recovery of copper, and PC the specific selling price of concentrate, 
which depends on the copper concentration. 

The operational constraints g are related to metallurgical objectives and 
limits imposed by the experimental set-up, therefore, gT= [L, R, JG, Jw, Jb]. 
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The limits for the decision variables and the constraints are shown in 
Table 4.2. 

Table 4.2. Lower and upper bounds for the optimization problem. 

Variable  Lower bound Upper bound 
L (%w/w) 25 35 

R (%) 70 100 
JG (cm/s) 1 3.5 
Jw(cm/s) 0.04 0.40 
Jb(cm/s) 0 0.28 
Hf (cm) 80 120 
εG (%) 0.07 0.15 

B(l/min) 0 0.8 

The described plant-model mismatch makes that the process optimum 
does not match the model optimum, as can be seen in Table 4.3. 

Table 4.3. Model and process optimum. 

Optimum  J* (USD/h) Hf
*(cm) εG

* (%) B(l/min) 
Process 2.74 80 11.3 0.8 
Model 3.19 80 9.24 0.8 

The modified optimization problem, which is solved by applying MA is 
described by (4.48), where φM is the modified cost function and gM

L and gM
U 

are the modified constraints. Taking into account the fact that the number 
of decision variables is two (since it has been supposed that B is not updated 
by the RTO layer) and the number of constraints is five, the size of the 
modifier vectors is T

kλ ∈ℜ2, T
g,kγ ∈ℜ2x5 and g,kε ∈ℜ5. 
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4.4.3.5 Results 

Starting from the points summarized in Table 4.4, the behaviour of TMA 
(Navia, et al., 2017), (Rodríguez-Blanco, et al., 2017) has been compared 
with the DMA (Brdyś & Tatjewski, 1994). Because of the fact that the 
flotation column presents important controllability problems, the decision 
variable B has not been updated by the supervisory layer (Navia, et al., 
2016). 

The RTO sample time is about 4 minutes for the implementation of DMA, 
the time required for the process to achieve a new steady-state and 36 
seconds when TMA is applied. 

Figure 4.10 shows three experiments with the evolution of the decision 
variables using TMA, while Figure 4.11 presents the same, but using the 
DMA. In each figure, the dashed lines are the set-points of the controllers 
proposed by the supervisory layer (u-SP), the evolution of the manipulated 
variables (u) are represented by solid lines. The optimum of the process and 
the model (uP

* and uM
*) and the limits for the decision variables (uU and uL) 

are shown with horizontal grey dashed lines. The evolution from the three 
points is represented with the following colours: black lines start from point  
1, blue lines from point 2 and red lines from point 3.  

Table 4.4. Starting Points. 

No. of Starting Point Hf (cm) εG (o/1) B(l/min) 
1 80 0.0924 0.8 
2 80 0.07 0.8 
3 90 0.07 0.8 

 

 
Figure 4.10. Evolution of the decision variables using TMA. 
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Figure 4.11. Evolution of the decision variables using DMA. 

From Figure 4.10 and Figure 4.11, it can be seen that the use of MA 
allows a point to be found that satisfies the NCO of the flotation column, 
despite the structural uncertainty associated with the kinetic model of the 
flotation phenomenon and the ability of the regulatory layer to reach the set 
point of the process. The time needed to reach the desired point depends 
on the starting point for both TMA and DMA methodologies. However, TMA 
reduced this time by 82%, starting from point 1, 77.5% from point 2 and 
45.2% from point 3. Considering that the time needed to reach the steady 
state of this laboratory equipment is about 4 min, and the average time to 
reach the NCO of the process with DMA was 65 min, it can be said that on 
average, TMA allowed approximately 10 steady states to be saved. As this 
process interacts with side units and the quality of the feed changes 
periodically, this reduction of time can be seen as an improvement from the 
point of view of the applicability of MA in real processes.  

4.5 Conclusions 
In this chapter, different MA approaches based on transient information 

have been presented. It is important to highlight the description of a new 
method that supposes one of the main contributions of this thesis. The 
mentioned technique obtains the process gradients directly from truncated 
Taylor expansions of the process cost and gradients combined with adaptive 
filtering estimation techniques.  

The method has been tested in the simulated Otto-Williams and the 
results obtained show that it is possible to effectively perform the 
optimization of the operation of the reactor in the presence of structural 
plant-model mismatch. This reduces by a factor of 4 the time required to 
achieve the process optimum as compared with traditional static MA 
techniques, such as DMA. 
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In addition, this approach has been tested in a laboratory-scale flotation 
column, reducing the time needed to detect the NCO of a real process, 
converging to the optimum in only one steady-state, whereas 10 steady-
states are used by the classic MA. The implementation of this technique in 
other case studies will be shown in the following chapter. 

To conclude it can be said that the combination of the modifier 
adaptation methodology, the least squares algorithm using transient 
measurements to compute process gradients, and the use of simplified 
models in the RTO layer, is a really powerful approach to achieve the 
optimal operating point of processes, reducing the convergence time.  

 



 



 
 

5 CASE STUDY I: DEPROPANIZER 

DISTILLATION COLUMN 
The performance of the proposed MA schemes will be illustrated through the 

case study of an industrial depropanizer distillation column found in petrol refineries, 
and the results will be compared to those obtained with standard NMA and DMA. 
This example is an industrial example, very realistic and with a high complexity. The 
successful implementation of MA in large-scale simulated processes like this, shows 
that MA is a powerful tool that can be implemented in real plants. We use both a 
rigorous model to simulate the column and a simplified model to implement RTO, 
that is, there is considerable plant-model mismatch. The case study also considers 
the industrially relevant situation where the decision variables in the RTO problem 
do not correspond to those in the plant. This often results from the presence of an 
intermediate MPC layer that is not considered in the RTO problem formulation.  
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5.1 Modelling and simulation 
The case study considers the optimal operation of a continuous 

depropanizer distillation column of a petrol refinery that is used to separate 
propane (C3H8) from a mixture containing butane (C4H10) and other 
components. In general terms, distillation columns use differences in 
temperature and pressure conditions along the column to get the more 
volatile components at the top of the column, propane in this case, and the 
less volatile component at the bottom of the column.  

The main equipment where separation occurs is the distillation column 
and reboiler. The liquid feed usually enters the distillation column after 
preheating. The liquid flows to the reboiler where steam is used as the 
heating medium. The reboiler provides the initial vaporisation of the liquid 
phase to create the vapour phase. Part of the liquid in the reboiler is 
vaporised and the vapour is returned to the distillation column. The 
remaining liquid leaves the column as bottoms and provides the heat source 
to preheat the feed. 

The vapour flows up the column and leaves as overhead vapour. The 
overhead vapour is condensed in the condenser and collected in the 
accumulator. 

Part of the liquid from the overhead accumulator is withdrawn as the 
distillate, and the rest is returned to the column as reflux liquid. The reflux 
liquid flows down the column, combining with the feed stream in the 
column, and the combined liquid continues to flow down the column.  
Normally, the section of the column above the feed entry is known as the 
rectifying section, and the section below the feed entry is known as the 
stripping section. 

Inside the column, the down-flowing liquid comes into contact with the 
up-flowing vapour. The distillation column is equipped with trays and/or 
packings, to facilitate the vapour-liquid contact. During this contact, the 
vapour is enriched in the more volatile component and stripped of less 
volatile components. 

The control objective for the distillation column is to maintain the 
composition of propane in the distillate stream within the desired 
specifications, satisfying such operational constraints as maximum pressure 
drop to prevent the column from flooding, or limits on head and bottom 
temperature (Acedo Sánchez, 2003).  
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Basic control includes PID loops to maintain the liquid levels in the 
accumulator and the bottom of the column at their desired values. There 
are also controllers to regulate the steam and reflux flows and the head 
pressure. The steam flow controller manipulates the opening of the valve 
located in the steam input, whereas the reflux flow controller manipulates 
the valve located in the reflux input. In the considered case study, the level 
in the accumulator is controlled by manipulating the distillate flow, whereas 
the level at the bottom of the column is controlled by manipulating the 
bottom flow. The pressure at the top of the column is controlled by 
changing the outlet flow of the condenser. 

Control of head and bottom composition can be difficult, both because of 
a lack of reliable measurements and the multivariable nature of the process.  
Because of this, in many refineries, MPC controllers are used to control 
column temperatures instead of composition. In the same way, in our case 
study, a DMC controller, which manipulates the references for the steam 
and reflux flow controllers, tries to maintain head and bottom temperatures 
close to their set points, as an indirect way of controlling distillate and 
bottom compositions. An upper RTO layer improves the economic 
performance of the column computing optimal set points for the DMC, 
while maintaining the composition of propane in the distillate within the 
desired specification. This control structure is shown in Figure 5.1, where it 
can be observed that the decision variables of the RTO layer are the head 
and bottom temperatures that are passed as set points to the DMC 
controller. 
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Figure 5.1. Control structure of a depropanizer distillation column. 

The simulated depropanizer column is based on an industrial example 
located in the Repsol Tarragona Refinery (Spain). The column is made up of 
a total condenser, a top accumulator, a partial reboiler and 37 equilibrium 
stages or trays. In the described case study, the feed mixture enters at stage 
19 with a flow rate of 468 kmol/h and 330.42 K. The composition of the feed 
is 45.55 mol% propane, 44.67 mol% butane and 9.77 mol% ethane. The tray 
efficiency is 60%. A rigorous first-principles model was developed to 
represent the process, the main equations of which are described next. 
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Figure 5.2. Typical refinery distillation column. 

5.1.1. Dynamic rigorous model 

The dynamic rigorous model of the distillation column, developed to 
simulate the process, is based on material and energy balances on each tray 
and vapour-liquid equilibrium equations that define the mass transfer 
between liquid and vapour stream on each tray (Rueda, 2015). The reboiler 
and the condenser of the column are also modelled.  

Material and energy balances: 

The mass balances for each tray read (see schematic in Figure 5.3 and 
nomenclature in Table 5.2):  
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bvl
dt

dmol1 −+= 12
 

(5.4) 
 

overflowrefaccum
accum ldll

dt
dmol

−−−=  
(5.5) 

 

where dmol/dt is the molar accumulation rate (kmol/h), i is the tray 
number, n is the total number of trays, l, v, f stand for liquid, vapour and 
feed molar flows respectively (kmol/h), lref is the molar reflux flow (kmol/h), 
and b and d are the molar flow of bottom and distillate streams, also in 
kmol/h. Equation (5.1) presents the overall mass balance around the ith tray, 
shown schematically in Figure 5.3, where the involved terms are the liquid 
and the vapour leaving the tray i, li and vi, the liquid flowing down from the 
upper tray, li+1, and the vapour flowing up from the below tray, vi-1. 
Equations (5.2), (5.3), (5.4) and (5.5) show the mass balances in the feed tray 
(Tray n_feed), the top of the column (Tray n), the bottom (Tray 1) and the 
top accumulator. In (5.5), laccum is the flow that comes from the condenser 
and loverflow is the excess liquid that overflows from the accumulator 
(Rodríguez-Blanco, et al., 2015), (Coulson & Richardson, 2002): 

The mass flow rates (in kg/h) of the different streams (reflux R, distillate 
D, bottom B and feed F) can be obtained from the molar flow rates as 
follows, where Pm (kg/kmol) indicates the molecular weight of each stream, 
computed from the stream composition xj,i and the individual molecular 
weight of each component Mm,j as (5.6) shows: 
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The component mass balances are expressed by (5.11)-(5.15). These 
balances are defined only for the two components with less composition, in 
this case, butane and ethane, and the majority one, propane, is obtained by 
(5.15) 
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where xj,i and yj,i are the composition of component j (butane, propane 
and ethane) in the liquid and vapour streams through the ith tray (0/1) , zj is 
the feed composition, xj,D is the composition of the distillate stream and xj,B 

the composition of the bottom stream. 
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Figure 5.3. Schematic of material exchange on trays. 

Due to their fast dynamics, the energy balances around the ith tray can be 
modelled as steady-state equations:  

121111 −=−+= −−++ n,...,ilhvHlhvH ii,lii,vni,lii,v  (5.16) 
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where Hv is the vapour enthalpy (kJ/kg), hl is the liquid enthalpy (kJ/kg), 
and hj is the specific enthalpy of each component (kJ/kg) that depends on 
the tray temperature Ti (K), since it is computed as the product of the 
specific heat at the constant pressure of the component Cp,j (kJ/kg K) and the 
temperature Ti. 

The key temperatures in the operation of the distillation columns are the 
head temperature (Thead) and the bottom temperature (Tbottom). These 
temperatures correspond to the sensitive trays of the column where the 
sensors are located. In this case, the sensitive trays are the number 34 for 
Thead and 4 for Tbottom.  
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Vapour- liquid equilibrium: 

The concentration of vapour in contact with liquid at equilibrium yeq j,i in 
each tray is expressed by Raoult’s law (5.20).  

n,...,ixKEy i,ji,jfeq i,j
1==  (5.20) 
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where the equilibrium constant Kj,i is given by the ratio between the 
component j vapour pressure Psat,j (Pa) (computed by the Antoine equation 
(5.22) that includes specific constant values A, B, C for each component j) 
and the total pressure in the ith tray Pi (Pa). The parameter Ef indicates the 
tray efficiency.  

Along the column, there is a pressure drop that is a function of the 
vapour stream passing through the tray and the pressure in the upper tray. c 
is a constant value to compute the pressure drop through the column.  
Pressure at the top of the column Pn is controlled by a PID which 
manipulates the outlet flow of the condenser. 

2
1 )( c/vPP iii += +  (5.23)                                                        

Energy balance of the reboiler: 

A static energy balance is considered in the reboiler:  

bhQvH ,lb,v 111 −=  (5.24) 

)( reboilerb PhΔSQ =   (5.25) 

where Qb (kJ/h) is the heat flow added to the reboiler, S (kg/h) the steam 
flow and Δh the latent heat of vaporization (kJ/kg) that depends on the 
reboiler pressure Preboiler (bar). 
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Energy balance of the condenser: 

The steady-state energy balance corresponding to the condenser is 
expressed by the equation  (5.26).  

)]()([ headn,lheadn,vnc ThTHvQ −=   (5.26) 

where Qc is the heat removed in the condenser (kJ/h), which is computed 
next: 

( )w,inw,outw,Pwc TTCFQ −=   (5.27) 
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( ) ( )( )w,Pwcondcondcond CFAU
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TTT
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−−
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where Fw (kg/s) is the flow rate of cooling water, Tout,w  (oC) and Tin,w  (oC) 
are the outlet and inlet water temperature respectively, Acond (m2) is the 
heat exchange area of the condenser, Ucond (kJ/h m2 oC) is the overall heat 
transfer coefficient, αcond  o/1 of Acond that is being used and CP,w (kJ/kg oC) is 
the specific heat capacity for water. 

The nonlinear dynamic model described above has been simulated using 
the software EcosimPro (EAInt, 2013), a modern object oriented simulation 
environment. The model consists of 2145 equations (129 differential 
equations and 2016 algebraic ones) and 2152 variables (1976 explicit, 129 
derivative, 40 algebraic and 7 boundary variables).  

Table 5.1. Boundary variables in the dynamic model. 

Variable Meaning Units 
F Feed molar flow rate kg/h 

SPThead Set point for the head temperature  K 
SPTbottom Set point for the bottom temperature K 

SPPn Set point for the head pressure K 
zC2H6 Molar fraction of C2H6 in the feed stream  0/1 

zC4H10 Molar fraction of C4H10 in the feed stream  0/1 

Tfeed Feed temperature oC 
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Table 5.2. Nomenclature used in the dynamic model. 

Variable Meaning Units 
l Liquid molar flow rate kmol/h 
v Vapour molar flow rate kmol/h 
f Feed molar flow rate kmol/h 

dmol/dt Molar accumulation rate kmol/h 
lref Reflux molar flow rate kmol/h 

lacum Condenser outlet molar flow rate kmol/h 
loverflow Liquid molar flow rate overflowing from the 

accumulator 
kmol/h 

b Bottom molar flow rate kmol/h 
d Distillate molar flow rate kmol/h 
R Reflux mass flow rate kg/h 
D Distillate mass flow rate kg/h 
B Bottom mass flow rate kg/h 
F Feed mass flow rate kg/h 
S Steam flow to the reboiler kg/h 

Pm Molecular weight kg/kmol 
Mm,j Molecular weight of each component kg/kmol 
xj,i Molar fraction of component j in the liquid stream 

leaving the tray i 

o/1 

zj Molar fraction of component j in the feed stream o/1 

yj,i Molar fraction of component j in the vapour 
stream leaving the tray i 

o/1 

yeq j,i Equilibrium concentration o/1 
Kj,i Equilibrium constant of component j in the tray i  
Hv Vapour enthalpy kJ/kg 
hl Liquid enthalpy kJ/kg 
hj Specific enthalpy of component j kJ/kg 
Ti Tray temperature K 

n_feed Feed tray # 
Thead Head temperature K 

Tbottom Bottom temperature K 
Psat,j Vapour pressure of component j Pa 

Pi Tray pressure Pa 
Ef Tray efficiency o/1 
Qb Heat flow added to the reboiler kJ/h 
Qc Heat removed in the condenser kJ/h 
Δh Latent heat of vaporization kJ/kg 

Preboiler Reboiler pressure bar 
Fw Flow rate of cooling water kg/s 

CP,w Specific heat capacity for water kJ/kg oC 
Tout,w Outlet water temperature oC 
Tin,w Inlet water temperature oC 
Ucond Overall heat transfer coefficient kJ/h m2 oC 
Acond Heat exchange area of the condenser m2 
αcond Portion of condenser area used o/1 
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5.1.2. Steady-state rigorous model 

While the previous dynamic model will be used to represent the real 
process, the RTO layer uses a steady-state model to make decisions. A 
rigorous steady-state model may be developed directly by removing 
derivatives from the dynamic column described above, and removing the 
auxiliary equipment that does not affect the optimization problem, such as 
the energy and mass balances at the accumulator (at steady-state, the inlet 
flow is the same as the outlet flow and the same happens with the 
temperature). 

However, the resulting model has a large number of variables, equations 
and algebraic loops that make the initialization and convergence of the 
optimization difficult. In addition, this complexity makes the optimization 
problem solved in the RTO run slowly (see Table 5.4 and Table 5.7). The 
simulation of this model is shown in section 5.1.4. 

For this reason, a simplified steady-state model has been developed 
specifically in this thesis to be used at the RTO layer. This reduced model is 
described next. 

5.1.3. Steady-state simplified model 

The simplified model takes into account the fact that distillation columns 
can be divided into three sections: namely, the rectifying or enriching 
section, the stripping section and the feeding tray, as shown in Figure 5.4. 

The feeding tray is the tray where the feed is introduced. The rectifying 
section consists of the trays above the feed tray and is so named because, in 
this section, rising vapours are enriched in the more volatile component. 
The section below the feeding tray is called the stripping section because 
liquid is stripped off the more volatile component there. 

 

 

 

 

 

 



138 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 

 

 

 

         
         
         
         
         
         
         
         
         
         
         
         
         
         
          

Figure 5.4.Schematic diagram of the three sections of a continuous distillation 
column used in the steady-state simplified model. 

In order to obtain a fairly small reduced model, the rigorous column 
model has been simplified by considering only three trays and a global 
efficiency. The equations that describe the simplified steady-state model for 
RTO are presented next. 

The overall mass balance of a distillation column is given by (5.29) 

bdf +=  (5.29) 
where f, d and b are the feed, distillate and bottom molar flow rate 

(kmol/h); whereas the mass balances on the enriching and stripping sections 
are given by (5.30) and (5.31) respectively  

dlv ref +=  (5.30) 

bvl SS +=  (5.31) 

where v and vS are the vapour molar flow rate in the enriching and 
stripping sections (kmol/h), lS is the liquid molar flow rate in the stripping 
section (kmol/h), and lref is the reflux molar flow rate (kmol/h). 
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The mass flow rates (in kg/h) of the different streams (reflux R, distillate 
D, bottom B and feed F) can be obtained from the molar flow rates as shown 
in (5.6)-(5.10). 

The component mass balances are expressed by (5.32)-(5.34)  

j,Bj,Dfeed_n,j xbxdxf +=  (5.32) 

j,B
S
j

SS
j

S bxyvxl +=  (5.33) 

j,Dj xy =  (5.34) 

111

111

3

1

3

1

3

1

3

1

3

1

3

1

===

===

∑∑∑

∑∑∑

===

===

j
j,B

j
j

j
j

j

S
j

j

S
j

j
feed_n,j

xyx

yxx
 

 
(5.35)                                                        

where xS
j  and yS

j  are the composition of component j (butane, propane 
and ethane) in the liquid and vapour streams through the stripping section, 
and xj  and yj are the same compositions for the enriching section. These 
equations are applied for two components, in this case butane and ethane, 
which are those present in lower concentrations; while the composition of 
propane is obtained by (5.35). The feed enters the column with a 
composition of xj , n_feed and distillate and bottom streams leave the column 
with a composition equal to xD,j and xB,j respectively. Assumption (5.34) is 
valid since there is a total condenser, so the vapour stream leaving the 
column is totally condensed and there is no accumulator considered in this 
model, so the composition of the reflux stream is equal to the composition 
of the vapour. 

The energy balances are expressed by (5.36)-(5.38)  

))()(( headDheadDc ThTHvQ −=  (5.36)                                                        

)( reboilerb PhΔSQ =  (5.37)                                                        

)()()( bottomBbottom
S

bbottom
SS ThbTHvQThl +=+  (5.38)                                                        

where Qc is the heat removed in the condenser (kJ/h), Qb is the heat flow 
added to the reboiler (kJ/h), Δh is the latent heat of vaporization (kJ/kg) that 
depends on the reboiler pressure Preboiler (bar), HS and hS are the enthalpies 
for liquid and vapour streams in the stripping section (kJ/kmol), hB is the 
enthalpy of the bottom stream (kJ/kmol), hD is the enthalpy of the distillate 
stream (kJ/kmol), HD is the enthalpy of the inlet vapour stream to the 
condenser (kJ/kmol) and S (kg/h) is the steam entering the reboiler. The 
enthalpy values are functions of the corresponding temperatures (ºC), Thead 
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and Tbottom, since they are computed as the product of the specific heat at 
constant pressure of the stream Cp,j (kJ/kg K) and the temperature Ti. 

Along the column, there is a pressure drop that is a function of the 
vapour stream passing through the column and the number of trays ntray  

present in the real column. As V and VS have approximately the same value, 
both of them could be used to compute this pressure drop and, therefore, 
the value of the bottom pressure Pbottom.The head pressure Phead is 
mantained by a controller, while c is a constant value to compute the 
pressure drop through the column. 

tray
S

headbottom nc/vPP ⋅+= 2)(  (5.39)                                                        

The concentration of vapour and liquid streams leaving each zone are at 
equilibrium, expressed by Raoult’s law (5.40), which depends on the 
equilibrium constants K. The parameter Ef indicates the tray efficiency, 
which varies from 0 to 1, which is the same as saying that it varies from 0 to 
100%. At the reboiler, the efficiency is equal to 1, since it is considered an 
ideal tray: 

S
jbottom,bottom

SS
j xTPKy )(=  (5.40)                                                        

S
j

S
jjhead,headfj yyxTPKEy +−= ))((  (5.41)                                                        

Due to the absence of energy balances for each tray of the column, head 
and bottom temperatures were obtained from experimental data using the 
ALAMO (Automated Learning of Algebraic Models for Optimization) 
software for model building, (Cozad, et al., 2014), (Cozad, et al., 2015). 
ALAMO generates algebraic models of simulations or experiments.  

The ALAMO software was developed at Carnegie Mellon University with 
the purpose of generating algebraic models which are accurate, simple in 
functional form and generated from a minimal experimental data set. It is 
based on using an iterative design of experiments to build low-complexity 
surrogate models. It works following the algorithmic flowchart shown in 
Figure 5.5, following a three step iterative process: 

1. Initial design of experiment: define an initial training set. 

2. Model building: build a low complexity surrogate model based on the 
current training, solving an MILP/MINLP problem. 

3. Adaptive sampling: by interrogating the system using Error 
Maximization Sampling (EMS), the training set is updated with new 
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points sampled where the current model breaks down. To do that, 
ALAMO uses a derivative-free optimization solver called SNOBFIT. 

4. Repeat steps two and three until no points can be found that violate 
the model. 

Start

Initial sampling

Build surrogate model

Adaptive sampling

Model converged?

Stop

Update training data set

TRUE

FALSE

 

Figure 5.5. Algorithmic flowchart of ALAMO. 

In this study, since it is assumed that the feed rate and the composition 
are kept constant, the models for the head and bottom temperatures were 
generated as functions of the model inputs, namely, the steam flow to the 
reboiler S (kg/h) and the reflux flow R (kg/h). These expressions are obtained 
from the simulation of the rigorous dynamic model of the distillation 
column, where f1 and f2 represent second order polynomial functions. For 
this task, 82 experiments at different operating points, varying steam and 
reflux flows within the allowed range, were carried out to generate the data 
used to fit the following second-order polynomial functions: 

)(1 R,SfThead =  (5.42)                                                        
)(2 R,SfTbottom =  (5.43)                                                        

In addition, it is assumed that the light key component, ethane, is 
removed completely from the column via the distillate stream, that is, 

0)( 62 =HCxB  (5.44)                                                        
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The new variables included in the simplified model are presented in 
Table 5.3, the rest of the variables have been previously defined in Table 
5.2. 

Table 5.3. Nomenclature used in the steady-state simplified model. 

Variable Meaning Units 
v Vapour molar flow rate in the enriching section kmol/h 
vS Vapour molar flow rate in the stripping section kmol/h 
lS Liquid molar flow rate in the stripping section kmol/h 
V Vapour mass flow rate in the enriching section kg/h 
VS Vapour mass flow rate in the stripping section kg/h 
L Liquid mass flow rate in the enriching section kg/h 
LS Liquid mass flow rate in the stripping section kg/h 
xj

S Molar fraction of component j in the l iquid 
stream through the stripping section 

0/1 

xj Molar fraction of component j in the l iquid 
stream through the enriching section 

0/1 

yj
S Molar fraction of component j in the vapour 

stream through the stripping section 

0/1 

yj Molar fraction of component j in the vapour 
stream through the enriching section 

0/1 

xj,n_feed Molar fraction of component j in the feed stream  0/1 
xD,j Molar fraction of component j in the disti l late 

stream 

0/1 

xB,j Molar fraction of component j in the bottom 
stream 

0/1 

Hs Enthalpy for l iquid stream in the stripping section kJ/kg 
hs Enthalpy for vapour stream in the stripping 

section 
kJ/kg 

hB Enthalpy of the bottom stream kJ/kg 
hD Enthalpy of the disti l late stream kJ/kg 
HD Enthalpy of the input vapour stream to the 

condenser 
kJ/kg 

Pbottom Bottom pressure Pa 
Phead Head pressure Pa 
ntray Number of trays # 

The differences in the number of variables and computation time 
between the rigorous model and the simplified steady-state model are 
presented in Table 5.4, where it can be seen that the model size has been 
reduced by 28 times,  and Table 5.7, where the reduction in the 
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computation time is shown. Both models share the same boundary variables 
as Table 5.5 shows. 

Table 5.4. Size comparison between steady-state models, rigorous and reduced. 

 Rigorous Reduced 
Equations 1076 39 

Explicit variables 921 29 
Algebraic variables 148 3 
Boundary variables 7 7 

5.1.4. Simulation and comparison between models 

In order to test the reduced model, the same changes in the input 
variables, reflux and steam flow rates have been applied to the reduced and 
full models in parallel, as shown in Figure 5.6, starting from a steady-state to 
check the behaviour of the output variables.  

The initial steady-state corresponds to the boundary conditions shown in 
Table 5.5 that include the composition, flow and temperature of the feed 
stream, the steam and reflux flows and the pressure at the top of the 
column. 

Table 5.5. Boundary conditions for the simulation. 

 Rigorous 
z(C2H6) ( 0/1) 0.099 
z(C4H10) ( 0/1) 0.446 

F (kg/h) 22950 
S (kg/h) 5550 
R (kg/h) 8750 
Tfeed( 0C) 57.27 

Phead (bar) 15.74 

Some significant output variables have been represented in Figure 5.7, 
Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11, where it can be observed 
that the achieved steady-states are not the same, due to the strong 
structural differences. 
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Figure 5.6. Changes in the reflux and steam flows.  

 

Figure 5.7. Evolution of the composition of propane in the distillate.  

 

Figure 5.8. Evolution of the bottom flow rate. 
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Figure 5.9. Evolution of the distillate flow rate. 

 

Figure 5.10. Evolution of the bottom temperature. 

 

Figure 5.11. Evolution of the head temperature. 
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5.2 Basic control 
The basic control for the distillation column has also been modelled in 

the rigorous dynamic model. This basic control includes continuous PI  
controllers to control steam and reflux flow rates, the level at the bottom of 
the column, the level in the condenser and the head pressure.  

The steam flow controller manipulates the opening of the valve located 
in the steam inlet to the reboiler. The reflux flow controller manipulates the 
opening of the valve located in the reflux inlet to the column. 

The level in the accumulator is controlled by manipulating the distillate 
flow, whereas the level at the bottom of the column is controlled by 
manipulating the bottom flow. The pressure at the top of the column is 
controlled by changing the outlet flow of the condenser. 

Linear valves have been considered, that is, the flow passing through it, 
Fv, is proportional to the input signal to the valve, uv, and the range of the 
controlled variable (umin : umax): 

( ) minminmaxvv uuuF +−= u  (5.45)                                                        

5.3 Model predictive control DMC 
As shown in Figure 5.1, a DMC controller is responsible for maintaining 

head and bottom temperatures close to the set points given by the RTO 
layer. To do that, the DMC controller manipulates the references for the 
steam and reflux flow controllers. 

DMC uses the step response (5.47) to model the process, only taking into 
account the first N terms, therefore assuming the process to be stable and 
without integrators. In this case, 40 model coefficients have been 
considered. As regards the disturbances ( tn̂ ), their value will be considered 
to be equal to the measured value of the output (ym,t) minus the one 
estimated by the model ( tŷ ) (de Prada, et al., 1993) (Camacho & Bordons, 
2000). 

tt,mt ŷyn̂ −=       (5.46) 

and therefore the predicted value of the output will be   
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tNtN

N

i
itit n̂ugugŷ ++= −

=
−∑

1
∆       (5.47) 

 where gi are the coefficients of the step response model and ∆u the 
input changes with respect to the inputs applied before.  

The rigorous dynamic model described in section 5.1.1 served as the 
basis to identify the linear dynamic model used in the DMC controller, which 
consists of the step responses of the head and bottom temperatures to 
changes in the set points of the reflux and steam controllers (see Figure 5.1). 
No more models are required, since it is an unconstrained DMC, as in the 
commercial controller from AspenTech.  

In this example the linearization operating point corresponds to: Tbottom= 
93 0C, Thead= 49.50C,   S= 5220 kg/h and R= 8620 kg/h. 

The objective of a DMC controller is to drive the output as close to the 
set point wt as possible, in a least-squares sense, with the possibility of the 
inclusion of a penalty term ν on the input moves. Therefore, the 
manipulated variables are selected to minimize a quadratic objective J that 
can consider the minimization of future error alone and can include the 
control effort, in which case it presents the generic form. 

( ) ( )∑∑
=

−+
=

++ +−=
m

i

2
it

p

i

2
itit uwŷJ

1
1

1
∆ν       (5.48) 

The tuning parameters of the DMC controller of the distillation column 
are: a prediction horizon (p) equal to 40, a control horizon (m) of 3 and a 
sample time of 6 minutes. 

5.4 RTO problem formulation  
The optimization problem solved in the RTO layer is based on the non-

linear steady-state simplified model described in the previous section that 
can be considered as a grey-box model, since it combines a partial 
theoretical structure with experimental data to complete the model. This 
model reduction implies a strong structural plant-model mismatch; in 
addition, the real process is controlled by an MPC layer (the DMC controller) 
which is not considered in either the RTO or the steady-state model. So, the 
inputs of the real process, DMC set points for bottom and head 
temperatures, are not the same as the model inputs used by the RTO, that 
is, steam and reflux flows. 
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Another source of uncertainty is due to the identification of the linear 
dynamic models that are required by the DMC controller. This identification 
is carried out around a certain operating point. So these models could be 
incorrect if the process is operated away from this point, resulting in more 
uncertainty the further the decision variables are moved away from the 
identification point. The presence of this strong uncertainty implies that the 
optimal solution of the RTO model will not be the same as the process 
optimum, making it necessary to apply MA methodology to achieve the 
optimal operating point of the process. 

The economic objective of RTO is to maximize the operation profit, 
considering the benefits obtained from producing distillate D (kg/h) with a 
given purity specification and minimizing the steam consumption S (kg/h) 
for a given feed (Porru, et al., 2015). Prices PS and PD have been fixed for 
both streams, 20 €/ton for the steam consumed and 80 €/ton for propane in 
distillate, assuming that it is above the composition specification. Below this 
target, the price decreases as a function of the composition following the 
sigmoid behaviour shown next.  

0.8)600)-)H(C(-( 83e300
900050

DXDP
+

+=       (5.49) 

The objective function is represented by the value of ϕ (€/h) calculated 
by (5.50) and the constraint over the composition of propane in the distillate 
stream g is expressed by (5.51), whereas the RTO problem is formulated as: 

SPDHCxPmax sDD
R,S

−=  ))(( 83φ  (5.50)                                                        

        s.t 

0.80)(
(5.38)-(5.22)processtheofmodel simplifiedstate-Steady

83 ≥= HCxg D

 
(5.51)                                                        

Lower and upper limits are fixed for the model inputs, that is, steam and 
reflux set points. 

110006000
60004000

≤≤
≤≤

R
S

 
(5.52)                                                        

It might happen that, due to plant-model mismatch, the computed set 
points for the bottom and head temperatures cannot be enforced exactly. 
Hence, the values of the temperatures Thead and Tbottom (ºC) in the RTO 
problem are constrained as follows:  



CASE STUDY I: DEPROPANIZER DISTILLATION COLUMN 149 

11080
6040
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≤≤
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(5.53)                                                        

Another constraint is the maximum loss of pressure ΔP to prevent the 
flooding of the column: 

0.25≤P∆  (5.54)                                                        

In this example, as mentioned above, the inputs of the RTO model are 
not the same as the plant inputs due to the presence of the DMC layer. The 
inputs of the RTO model are (S, R), whereas the process inputs are the 
references of the DMC controller (SPTbottom, SPThead), as shown in Figure 5.12. 
The DMC controller manipulates the references for the steam and reflux 
flow controllers to maintain head and bottom temperatures close to the set  
points given by the RTO layer. 

 

 

 

 

 

Figure 5.12.Comparison between plant and model inputs/outputs. 
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Table 5.6. Comparison between Process and Model Optimum. 

 Real Optimum Model Optimum 
S (kg/h) 5558.20 5000.00 
R (kg/h) 9389.67 9265.70 
D (kg/h) 11179.53 9965.52 

SPThead (ºC) 50.98 42.58 
SPTbottom (ºC) 102.02 96.33 
xD(C3H8) (0/1) 0.800 0.819 
ϕP (€/h) 783.19 714.50 

Solving the nominal RTO problem without modifiers implies a decrease of 
8.77 % in the profit obtained. To solve this issue, the MA schemes developed 
in this thesis and the traditional MA approaches are implemented. The NLP 
optimization problems have been solved using a sequential approach with a 
sequential quadratic programming (SQP) algorithm implemented in the 
SNOPT library (Gill, et al., 2008) and executed in EcosimPro software (EAInt, 
2013). 

The size reduction in the model used in the RTO layer (see Table 5.4) 
implies that the optimization problem could be solved faster and more 
easily than by using a more complicated one, as can be observed in Table 
5.7.  

Table 5.7. Time comparison between steady-state models, rigorous and simplified. 

 Rigorous Simplified 
Optimization time (s) 7.594 0.235 
Number of iterations 56 50 
Time per iteration (s) 0.135 0.0047 

The execution of one RTO problem is 32 times faster using the reduced 
model, which allows the use of RTO in real applications, where decisions 
must be implemented within a time scale of a few seconds.  In this example, 
the use of the rigorous model does not imply a problem with respect to the 
optimization time, but it is important to note that this issue could happen 
using large scale models, where the optimization time could be prohibitive 
and the use of reduced models is the only way to deal with them.   
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5.5 Implementation of MA in the depropanizer 
distillation column 

The performance of the proposed MA schemes will be illustrated through 
the case study of the industrial depropanizer distillation column and the 
results will be compared to those obtained with standard MA techniques, 
such as, NMA and DMA. 

The rigorous dynamic model (see section 5.1.1.), including the basic 
control layer (see section 5.2) and the MPC layer (see section 5.3), has been 
simulated in EcosimPro software (EAInt, 2013), to be used as a substitute for 
the real process, in order to study the performance of the different MA 
approaches. First, static MA methods are applied to optimize the operation 
of the depropanizer distillation column. Notice that this process has a long 
settling time, approximately 6 hours, which makes the implementation of 
static approaches impractical for industrial use, since the plant optimum is 
achieved after several days of operation. This long period of time can result 
in loss of optimality, since operating conditions and plant-model mismatch 
could change and the method would not converge to the process optimum. 
To overcome this problem, the proposed MA approaches based on transient 
measurements could be applied to speed up the convergence to the real 
optimum. 

By applying MA, the original optimization problem formulated by (5.50) 
and (5.51) is changed by adding some modifiers in the cost function and 
constraints, giving rise to the modified problem (5.55). In principle, only the 
constraint on the distillate composition will be modified, although other 
constraints will be considered when certain techniques are applied. The 
subscript “P” indicates that the variable is measured from the process and 
the subscript “k-1” is the measurement taken in the previous RTO iteration: 
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(5.55)                                                        
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6040 ≤≤ headT  
11080 ≤≤ bottomT  

The number of modifiers required to adapt the RTO problem nk is given 
by (5.57), where nu is the number of decision variables which are head and 
bottom temperatures (Tbottom, Thead) and ng is the number of constraints 
(distillate composition); so, in our problem, nk = 5: 

1)( ++= gugk nnnn  (5.57)                                                        

The modifiers λ, γ and ε are given by (5.58)-(5.60) and represent the 
difference between experimental and model gradients. Several techniques 
to compute process gradients have been presented in the previous sections.  
However, the calculation of model gradients requires special attention in 
this case because they cannot be computed directly, since Tbottom and Thead 
are not considered independent variables of the RTO model. So the 
modifiers are computed as follows (Costello, et al., 2013), (Rodríguez-
Blanco, et al., 2015): 

( )
*
kk,

*
kk,

P)(Pk
1111 )()(

T

−−−−

+∇∇−∇=∇−∇=
uuuuccuccucc cλ

PP
φφφφ  (5.58)                                                        
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*
kk,

*
kk,

gggg PPk
1111 )()()(
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−−−−

+∇∇−∇=∇−∇=
uuuuccuccucc cγ

PP
 (5.59)                                                        

)())(( 11
*
kk,Pk gg −− −= uuc Pε  (5.60)                                                        

where (+) indicates the Moore-Penrose pseudo-inverse. 

The choice of evaluating the gradients at c(uk-1) does not pose any 
conceptual difficulty, since the set points are applied to the plant. However, 
this would be problematic if the gradients were evaluated at uk-1, since the 
computed uk-1 is not applied to the plant and typically differs from the plant 
inputs achieved by the controlled plant at steady-state (François, et al., 
2016) (Papasavvas, et al., 2017). 

As usual in MA methodology, the modifiers are applied filtered using a 
first-order exponential filter, where Kλ, Kγ and Kε are diagonal matrices with 
eigenvalues in the interval (0, 1], (5.61)-(5.63) to smooth changes in the 
decision variables and to ensure convergence. 

kkk λKλKIλ λ+−= −1)( λ  (5.61)                                                        

kkk γKγKIγ γγ +−= −1)(  (5.62)                                                        
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kk εKεKIε εεk +−= −1)(  (5.63)                                                        

Different MA methodologies have been implemented, using different 
models in the RTO layer and considering different control structures and 
operational constraints.  

In particular, we aim to test the proposed method based on the direct 
estimation of the process gradients (section 5.5.4), comparing it with 
standard DMA and NMA formulations (section 5.5.1), as well as with the one 
based on NEC and transient measurements (section 5.5.4). 

The developed method, based on the combination of transient and 
steady-state measurements, will also be implemented in this example 
(section 5.5.3). 

Another considered approach to speed up the convergence of the NMA 
methodology is that based on the reduction in the number of modifiers by 
computing those modifiers which adapt the optimization problem and 
whose solution minimizes the Lagrangian function, measured directly from 
the process (section 5.5.2). In this way, the implementation of NMA is easier 
and faster, allowing the use of this formulation in real processes. A summary 
of the applications developed during this thesis is given in Table 5.8.



154 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 

 

Ta
bl

e 
5.

8.
 S

um
m

ar
y 

of
 a

pp
lic

at
io

ns
.  

 



CASE STUDY I: DEPROPANIZER DISTILLATION COLUMN 155 

5.5.1 Static MA 

The DMA (Brdyś & Tatjewski, 1994), (Marchetti, et al., 2010) and NMA 
(Navia, et al., 2015) methods have been implemented on the depropanizer 
column solving the RTO optimization problem every 6 hours, the time 
required for the process to achieve a new steady-state. In both approaches, 
DMA and NMA, the first three iterations were used to estimate the process 
gradients by finite differences; in the second approach this is necessary to 
provide a good starting point for the upper optimization layer. Two initial 
operating points are imposed on the real process to take data and then the 
third operating point applied to the process corresponds to the nominal 
solution, that is, the result obtained by solving the RTO problem without 
modifiers. In this way, data from three different operating points are 
obtained to make the first gradient estimation. 

The DMA methodology requires the addition of the dual constraint        
(κ-1(Sk) ≥ a), which guarantees a sufficient level of excitation to estimate the 
gradients accurately. The selected value in this case is 0.10. This dual 
constraint is evaluated using the set point values since, as shown in (5.58)-
(5.60), the modifiers are computed as functions of these references. 
Equation (5.64) shows how to compute the vectors of differences with 
respect to the previous points: 

ukki,k n...,i 1,)()( i =∀−= −ucucs  (5.64)                                                        

Figure 5.13 shows the evolution of the cost function during the process 
operation, whereas Figure 5.14 and Figure 5.15 show the bottom and head 
temperatures. The evolution of the composition of the distillate is shown in 
Figure 5.16, where it can be observed that the achieved operating point 
corresponds to an active constraint represented by the dotted red line. 
Figure 5.17, Figure 5.18 and Figure 5.19 represent the steam, reflux and 
distillate flows, respectively. 
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Figure 5.13. Evolution of the process cost function φP. 

 

Figure 5.14. Evolution of the bottom temperature Tbottom. 
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Figure 5.15. Evolution of the head temperature Thead. 

 

Figure 5.16. Evolution of the composition of propane in the distillate xD(C3H8). 
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Figure 5.17. Evolution of the steam flow S. 

 

Figure 5.18. Evolution of the reflux flow R. 

 

Figure 5.19. Evolution of the distillate flow D. 
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Fixing a tolerance band of 0.5% with respect to the optimal value of the 
cost function, the graphs (in particular, Figure 5.13) show that the optimum 
of the process is achieved after approximately 60 hours, using both DMA 
and NMA approaches. For the DMA approach, the number of steady-states 
needed was 10, the first two to initialize the computation of the process 
gradients (nu = 2) and 8 related to RTO solutions. NMA also requires 10 
steady-states, first, two initial steady-states (nu = 2) to estimate plant 
gradients, then five to construct the first simplex corresponding to the 
number of first- order modifiers plus 1, and finally 3 RTO executions. 

DMA only requires one tuning parameter a, the bigger this parameter 
the greater the excitation of the system, driving the process to the optimum 
following a less optimal path. However, the Nelder Mead algorithm used in 
NMA to estimate the modifiers has many tuning parameters, which strongly 
affect the speed of convergence and the path followed to achieve the real 
optimum. It is a difficult task to tune these parameters, since the effect of 
each one is not really known. So, a bad choice could mean reaching the 
optimum slowly, implying many steady-states. In addition, the estimation of 
the initial modifiers also affects the behaviour of the method. 

An overshoot is observed in Figure 5.17 and Figure 5.18; this is due to the 
saturation of the valves that manipulate the reflux flow and the steam flow, 
which happens because the reference given by the RTO layer to the DMC 
cannot be reached by the process (see Figure 5.14 and Figure 5.15) because 
the valves for the steam and the reflux flows become saturated. This 
solution corresponds to the nominal one, that is, the result of solving the 
RTO problem without modifiers.  In spite of this unfeasible first solution, MA 
is able to bring the process to the real optimum, giving feasible solutions in 
the following iterations.  

One important disadvantage of this kind of method is that they can work 
well with few decision variables, but when the number of inputs increases, 
the number of modifiers also grows, involving a bigger number of steady-
states to converge to the optimal solution, which supposes a problem, 
especially for processes with long settling times like in the depropanizer 
column. To deal with this problem, NMA based on the minimization of the 
Lagrangian function will be implemented to reduce the number of required 
modifiers and therefore, speed up the convergence rate of the method. 
Results are shown in section 5.5.2. 

As shown in Figure 5.13 to Figure 5.19, the convergence to the optimum 
using static MA techniques takes two and a half days, which is a problem if 
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the methodology is implemented in real problems. To deal with this issue, 
transient measurements have been incorporated in the MA methodology to 
speed up the convergence to the real optimum. The corresponding results 
are shown in section 5.5.3 and 5.5.4. 

5.5.2 Alternative NMA for dealing with operational 
constraints 

For dealing with process-dependent constraints without increasing the 
number of modifiers, an alternative MA methodology can be implemented. 
It consists of computing the modifiers from the gradient of the Lagrangian 
function which incorporates information about the constraints, and thus 
only one gradient modifier for each process input is required. These 
modifiers are used in the Nested Modifier Adaptation (NMA) technique 
(presented in section 3.3), which has been implemented in the simulated 
depropanizer distillation column. The use of these modifiers implies a clear 
advantage over the NMA formulation (presented in section 2.1.5) in terms 
of problem size (number of decision variables in the outer optimization 
layer). 

The obtained results show that the convergence rate of the alternative 
NMA approach is faster than applying standard NMA and even faster than 
applying DMA (presented in section 2.1.3). 

To take into account more constraints, an active constraint on the 
column pressure drop has been added, so, the resulting optimization 
problem is given by (5.65) and (5.66): 

SPDHCxPmax sDDR,S
−= ))(( 83φ      (5.65) 
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In this case, the optimum operating point for the process and the RTO 
model is given by Table 5.9, where the real optimum corresponds to the 
solution obtained by solving the RTO problem (5.65) and (5.66), based on 
the rigorous steady-state model, whereas the model optimum is obtained 
by solving the steady-state simplified model and applying the obtained 
solution to the real process. 

Table 5.9. Comparison between Process and Model Optimum. 

 Real Optimum Model Optimum 
S (kg/h) 5558.20 5000.00 
R (kg/h) 9389.67 9265.70 
D (kg/h) 11179.53 9965.52 

SPThead (ºC) 50.98 42.58 
SPTbottom (ºC) 102.02 96.33 
xD(C3H8) (0/1) 0.800 0.822 
∆P(bar) 0.250 0.408 
ϕP (€/h) 783.19 726.39 

The modified problem applying the standard MA formulation is given by 
(5.67) and  (5.68). The subscript “P” indicates that the variable is measured 
from the process and the subscript “k-1” is the measurement taken in the 
previous steady state: 
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The modifiers λk, γk and εk are given by (5.61)-(5.63) and represent the 
difference between experimental and model gradients. 

However, if the alternative NMA technique described in chapter 3, 
section 3.3 is applied, using the Lagrangian formulation, the modified 
optimization problem will be formulated as follows, where the modifiers λk

L , 
εk  are given by (5.71) and (5.72), where the first-order modifiers are directly 
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computed by the unconstrained upper optimization layer using the Nelder-
Mead algorithm:  
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where the Lagrangian for the process (LP) and the Lagrangian for the 
model (L) are defined as follows: 

gμgμ P,
T
k

T
kPp LL +=+= φφ                           (5.73) 

In this example, using the Lagrangian formulation, the number of 
modifiers is reduced from 8 to 4, namely, two first-order modifiers 
corresponding to the Lagrangian gradient with respect to the two inputs and 
two zeroth-order modifiers for the two constraints. 

As has been mentioned before, the RTO layer is executed every 6 hours, 
which is the time required for the process to reach steady state. In both dual 
MA and standard NMA, the first three operating points (nu + 1) are used to 
estimate the process gradients by finite differences; in NMA, this is 
necessary to provide a good starting point for the outer optimization layer. 
Note that the starting point for the algorithms corresponds to the nominal 
model solution, that is, the result obtained by solving the RTO problem 
without modifiers. 

DMA has been applied with a lower value for the dual constraint equal to 
0.10. In DMA and NMA, three previous operating points (nu + 1) are required 
to initialise the estimation of the modifiers, the third operating point 
corresponding to the nominal solution, that is, the result obtained by solving 
the RTO problem without modifiers. 
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The following figures show the obtained results as a function of the 
iterations, where NMA indicates the results of applying standard NMA, 
NMALag indicates those obtained by using the Lagrangian formulation, and 
DMA the results for the implementation of DMA. Figure 5.20 shows the 
evolution of the cost function during the process operation, whereas Figure 
5.21 and Figure 5.22 show the bottom and head temperatures. The 
evolution of the composition of the distillate is shown in Figure 5.23 and the 
pressure drop is presented in Figure 5.24, where it can be observed that the 
achieved operating point corresponds to the active constraints represented 
by the dotted red line. In this case, the modifiers have been applied without 
filtering, that is, Kλ=Kγ =Kε = I. 

Note that, since the model optimum violates the constraint on the 
pressure drop as given in Table 5.9, the first RTO iteration is performed with 
a non-zero value for the zeroth-order modifier ε0,2 so as to start the 
algorithm from the feasible region. 

 
Figure 5.20. Evolution of the process cost function φP. 
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Figure 5.21. Evolution of the bottom temperature Tbottom. 

 

Figure 5.22. Evolution of the head temperature Thead. 
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Figure 5.23. Evolution of the composition of propane in the distillate xD(C3H8). 

 

Figure 5.24. Evolution of the pressure drop ∆P. 
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gradients for both DMA and NMA. (5.24) shows the evolution of the process 
cost function, whereas (5.25) and (5.26) show the bottom and head 
temperatures. (5.29) shows the evolution of the composition of the distillate 
and (5.30) the pressure drop in the column during the operation 
corresponding to the active constraints represented by the dotted red line 
at the optimum: 

 
Figure 5.25. Evolution of the process cost function φP. 

 

Figure 5.26. Evolution of the bottom temperature Tbottom. 
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Figure 5.27. Evolution of the head temperature Thead. 

 

Figure 5.28. Evolution of the composition of propane in the distillate xD(C3H8). 

 

Figure 5.29. Evolution of the pressure drop ∆P. 
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These figures show that all three approaches are able to reach the plant 
optimum. The fastest convergence is achieved with NMALag. Indeed, the 
use of the Lagrangian formulation reduces the number of modifiers and thus 
also the number of decision variables in the outer optimization layer. This 
ultimately reduces the number of steady-states needed to reach plant 
optimality. However, it is important to keep in mind that the Nelder-Mead 
algorithm may require, in some cases, more than one steady-state value for 
each iteration, since it may need to evaluate several operating points to 
decide on the next simplex move. 

The performance of each scheme to converge within 0.5% of the optimal 
cost is given in Table 5.10. For the DMA approach, the number of 
experiments is 16, namely, the first 3 to initialize the computation of the 
plant gradients (nu + 1= 2) and 13 related to RTO iterations. NMA requires 22 
experiments, namely, 3 to estimate the plant gradients used in the 
computation of the initial modifiers, 6 to construct the first simplex 
(corresponding to the number of first-order modifiers plus 1), and 12 RTO 
iterations. The NMALag scheme requires only 11 experiments, namely, 3 for 
the initial estimation of the modifiers, 3 to construct the simplex and finally 
5 RTO iterations to converge to the optimum. 

Table 5.10. Summary results. 

 DMA NMA NMALag 
Number of Modifiers 8 8 4 
First-order modifiers 6 6 2 

RTO iterations 13 12 5 
Total steady state points 16 22 11 
 

5.5.3 MA combining transient and steady-state 
measurements 

To speed up the convergence of the MA method, it is possible to use 
transient measurements to compute plant gradients during the transient. 
However, as explained in section 4.2, the methodology based on NEC only 
works if there is parametric uncertainty. For this reason, to deal with 
parametric and structural plant-model mismatch, an extension is presented 
in section 4.3 that combines the estimation of process gradients from the 
transient using NEC-MA and steady-state information using DMA.   
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In this example, the rigorous steady-state model obtained directly from 
removing derivative terms in the dynamic model is used in the RTO layer. 
This model has been chosen in this case because the MA method based on 
NEC works well only if there is parametric uncertainty, since it is necessary 
to know what the uncertain parameters are. Then structural uncertainty will 
be added to this model to check that MA based on NEC is not able to find 
the process optimum in the presence of structural plant-model mismatch. 

The parametric modelling mismatch, which is added between the 
stationary RTO model and the dynamic process, is on the tray efficiency Ef  
(+20%) that affects the vapour-liquid equilibrium (5.20). The MPC layer is 
omitted in this example so as not to introduce more plant-model mismatch. 
In this case, then, the inputs of the process are the same as the inputs of the 
model, the references for the steam and reflux flow controllers. 

Then, structural uncertainty is added by assuming that pressure is 
constant along the distillation column, that is, there is no pressure drop 
across the column and also, significant energy losses Elost (kJ/h) in each tray 
are considered in the model used by the RTO layer as a function of the 
difference between tray temperature Ttray and ambient temperature Tamb 
multiplied by a global heat transfer coefficient U. This term has been 
considered in the steady-state model because it is easier to modify the RTO 
model than the model describing the real process. The real process is 
considered to be perfectly insulated, so there are no energy losses to the 
environment. 

( )ambtraylost TTUE −=      (5.74) 

The RTO problem is defined as follows: 
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The modified RTO problem solved at each iteration is given by the 
following equations: 
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The differences between the model optimum obtained by solving the 
RTO based on the rigorous steady-state model with uncertainty and the real 
optimum obtained by solving the RTO based on the rigorous model without 
uncertainty are shown in Table 5.11 

Table 5.11. Comparison between Process and Model Optimum. 

 Real Optimum Model Optimum 
S(kg/h) 5558.20 5473.42 
R(kg/h) 9389.67 8549.26 
Thead (ºC) 50.98 59.68 

Tbottom (ºC) 102.02 103.29 
xD(C3H8) (0/1) 0.80 0.76 
ϕP (€/h) 783.19 491.36 

As Table 5.11 shows, if the operating point obtained by solving the RTO 
without modifiers is applied to the process, the obtained distillate does not 
meet the specification. Below this target, the price decreases as a function 
of the composition following a sigmoid behaviour and, therefore, its value 
and the obtained profit are considerably reduced, to be precise, by about 37 
% in this case.  

First, it has been checked that the MA methodology using transient 
measurements is not useful for the case where structural uncertainty is 
present. This can be observed when this approach is applied in this case 
study, which presents both parametric and structural uncertainty. 

In this case, RTO is executed every half an hour so the modifiers are also 
updated every half an hour. Figure 5.30 shows the evolution of the process 
cost function where TMA indicates the results obtained by applying 
transient MA based on NEC. Figure 5.31 and Figure 5.32 show the evolution 
of the decision variables, the set point of the steam and reflux flow 
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controllers in this case, while the evolution of the constraint on propane 
composition in the distillate stream is shown in Figure 5.33. 

 
Figure 5.30. Evolution of the process cost function φP. 

 

Figure 5.31. Evolution of the steam flow controller set point S. 
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Figure 5.32. Evolution of the reflux flow controller set point R. 

 

Figure 5.33. Evolution of the composition of propane in the distillate xD(C3H8). 
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considered or even satisfy the process constraint on the propane 
composition (≥0.80) at steady state.  

Now, the approach explained in section 4.3 is implemented. MA using 
transient measurements is applied until the steady-state is achieved and this 
method is not able to find a better operating point, in this case 4 hours, so a 
step of traditional modifier adaptation from steady state information is 
implemented until the real optimum is achieved as seen in Table 5.12. 

Figure 5.34 shows the evolution of the process cost function. Figure 5.35 
and Figure 5.36 show the evolution of the RTO decision variables, the set 
point of the steam and reflux flow controllers, with the evolution of the 
constraint on propane composition in distillate stream shown in Figure 5.37. 

 
Figure 5.34. Evolution of the process cost function φP. 
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Figure 5.35. Evolution of the steam flow controller set point S. 

Figure 5.36. Evolution of the reflux flow controller set point R. 
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Figure 5.37. Evolution of the composition of propane in the distillate xD(C3H8). 

The optimum operating point is achieved after 22 hours, which means a 
considerable time reduction compared to the traditional static MA applied 
in section 5.5.1. This period of time involves eight RTO during the transient 
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Table 5.12. Summary results. 

 Real Optimum TMA TMA+DMA 
S(kg/h) 5558.20 5679.83 5590.26 
R(kg/h) 9389.67 9753.26 9523.33 
Thead (ºC) 50.98 55.54 50.79 

Tbottom (ºC) 102.02 103.34 102.03 
xD(C3H8) (0/1) 0.80 0.78 0.80 
ϕP (€/h) 783.19 577.66 783.17 
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5.5.4 MA based on transient measurements 

In this section, the results obtained by applying the MA techniques based 
on transient measurements to estimate process gradients are presented. In 
particular, the proposed method described in section 4.4 will be compared 
to the method presented in section 4.2 based on NEC. In this example, plant 
measurements are taken every hour without waiting for a steady-state and 
the RTO problem is updated at the same rate. This sample time corresponds 
to one sixth of the settling time of the process. 

First, we present the results of the proposed method based on 
estimating process gradients using a recursive parameter identification 
algorithm, to be precise, Recursive Extended Least Squares (RELS), with a 
forgetting factor α equal to 0.99 and the lower bound for the degree of 
excitation, c1, of the system is fixed at 0.05. The lower bound for the degree 
of excitation, a, of the system is fixed at 0.02. The results obtained using this 
approach are shown in the figures as EstMA. In this example, the size of the 
data vector and the estimated parameters, given by (5.79) and (5.80), is five, 
so, after the fifth iteration, there is enough collected data to check if the 
persistent excitation condition is satisfied. 
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For comparison purpose, the approach described in section 4.2, based on 
NEC to estimate process gradients is also applied. It needs to know where 
the parametric uncertainty between process and model is located. The use 
of the reduced steady-state model implies a strong structural plant model 
mismatch; for this reason, this mismatch has been adjusted to the rigorous 
one that represents the real process by adding some offsets that take into 
account the structural mismatch. In this case, the steady-states achieved by 
the dynamic process can be matched with those of the model by changing 
three uncertain parameters that have been considered as parametric 
uncertainty: two constants (chead and cbottom) added in the equations used to 
compute head and bottom temperatures, (5.42) and (5.43) with a nominal 
value of 0, being the easiest way to deal with it, but not the most efficient, 
and the global efficiency (Ef) of the column (5.41), whose nominal value is 
equal to 0.98, a value which has been adjusted from simulation results.  



CASE STUDY I: DEPROPANIZER DISTILLATION COLUMN 177 

However, these parameters are time variant, so the implementation of this 
technique is possible and its performance is considerably improved,  
although the real optimum is not achieved. This task, to translate the 
structural uncertainty into parametric, could be a difficult task in some 
cases, so it is a clear disadvantage of this technique: 

headhead cR,SfT += )(1       (5.81) 

bottombottom cR,SfT += )(2        (5.82) 

Therefore, when the NEC-based method is applied (see section 4.2), the 
vector of uncertain parameters is 𝛽𝛽 = [chead, cbottom, Ef], the decision variables 
(the model inputs) are u = [R, S] and the vector of output variables y = [B, D, 
xB(C3H8)]. It is possible to choose a different set of output variables, but the 
selected ones are the most sensitive to the uncertain parameters. The 
results using this method are shown in the figures as TMA. 

The process starts from a certain operating point and, after one hour, the 
value of the optimal manipulated variables of the nominal solution is 
applied to the process, that is, the RTO solution without modifiers. Thus,  
both methodologies have the same transient information when they start 
working. In this example, modifiers have been applied without filtering, that 
is, Kλ=Kγ =Kε = I. 

Figure 5.38 presents the evolution of the process cost function for both 
methods, whereas Figure 5.43 and Figure 5.42 show the bottom and head 
temperatures. The evolution of the composition of the distillate is shown in 
Figure 5.41, observing that the achieved operating point corresponds to an 
active constraint indicated by the dotted red line. Figure 5.42 and Figure 
5.43 represent the steam, reflux and distillate flows respectively. 
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Figure 5.38. Evolution of the process cost function φP. 

 

Figure 5.39. Evolution of the bottom temperature Tbottom. 
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Figure 5.40. Evolution of the head temperature Thead. 

 

Figure 5.41. Evolution of the composition of propane in the distillate xD(C3H8). 
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Figure 5.42. Evolution of the steam flow S. 

 

Figure 5.43. Evolution of the reflux flow R. 

 

Figure 5.44. Evolution of the distillate flow D. 
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Observing the previous graphs (in particular Figure 5.38), one can see 
that the convergence of both methods to a region near the optimum (a 
tolerance band of 0.50% with respect to the process cost function has been 
considered) is faster than in the previous section, around 8 hours in both 
cases, which is a clear advantage that the approaches based on transient 
information present. However, notice that, due to the presence of structural 
uncertainty, there is an offset with respect to the real process optimum in 
the solution provided by the method based on NEC. This offset could be 
removed if once the steady-state is achieved a step of static MA is applied, 
as shown in section 5.5.3. 

By contrast, when estimating the process gradients directly with the 
proposed recursive identification algorithm, the real optimum is achieved 
after one steady-state. Nevertheless, it must be pointed out that the settling 
time of the process has grown, since the DMC set-points were being 
changed continuously (every hour) during the transient.  

By applying the RELS algorithm to update the modifiers during the 
transient, the optimum operating point is achieved after 8 hours, which 
involves 8 RTO solutions (one per hour), reducing by approximately 8 times 
the time required to achieve the optimum as compared with traditional 
static MA techniques, such as DMA or NMA.  

5.5.4.1 Evaluation of the dual constraint in transient MA 

A dual constraint has been added to the MA technique based on the 
estimation of the process gradients using RELS to ensure that, in the next 
RTO iteration, the system will have enough excitation to estimate the 
process gradients again. Figure 5.45 shows the evolution of the dual 
constraint in the implementation described in the section before. In this 
case, the lower limit for the dual constraint is 0.02. 
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Figure 5.45. Evolution of the dual constraint. 

In view of the results, it can be concluded that the system has enough 
excitation during the whole operation. In some iterations, the dual 
constraint becomes active. This is because, the RTO solution does not 
provide enough excitation, so the dual constraint acts to guarantee that the 
gradients will be properly estimated in the next RTO. 

A second example is shown below to prove the effect of the dual 
constraint in a system that not is adequately excited. A very small constant 
filter has been considered, Kλ = Kγ = Kε = 0.15.I, to force that situation, that 
is, the changes in the variables proposed by the RTO do not provide enough 
excitation to estimate the plant gradients accurately. In this situation, if 
excitation is forced by the dual constraint, an operating point that satisfies 
the NCO of the process can be achieved. In the following figures, RTO 
filtered, indicates the results obtained without adding the dual constraint 
and RTO dual, present the results adding the dual constraint to ensure 
excitation. Figure 5.46 presents the evolution of the process cost function,  
whereas Figure 5.47 and Figure 5.48 show the evolution of head and bottom 
temperatures, respectively. Figure 5.49 shows the value of the dual 
constraint whose lower limit has been fixed at 0.10. 
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Figure 5.46. Evolution of the process cost function φP. 

 

 

Figure 5.47. Evolution of the bottom temperature Tbottom. 
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Figure 5.48. Evolution of the head temperature Thead. 

 

Figure 5.49. Evolution of the dual constraint. 
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slowing down the convergence of the method compared with Figure 5.38-
Figure 5.44. 

5.6 Conclusions 
In this chapter, we have analysed the performance of different MA 

approaches. One first conclusion is that most of them work well, but the 
developed method based on RELS is able to speed up the convergence of 
RTO-MA to the real plant optimum. It is based on transient information, 
obtaining process gradients directly from truncated Taylor expansions of the 
process cost and gradients combined with adaptive filtering estimation 
techniques. The method has been tested in a realistic case study 
corresponding to a depropanizer distillation column of a petrol refinery and 
the results obtained show that it is possible to effectively perform the 
optimization of the distillation column in the presence of structural plant-
model mismatch and the presence of an MPC layer not considered explicitly 
in the RTO model. In the considered case study, the method reduces by a 
factor of 8 the time required to achieve the process optimum as compared 
with traditional static MA techniques, such as DMA or NMA. 

This application also shows the clear advantages of using simplified 
steady-state models in the RTO layer; the solution time is significantly 
reduced during the optimization of the depropanizer column operation 
(approximately 28 times in this case), which allows the implementation of 
RTO in real, large-scale processes. In addition, the reduced model is easier to 
understand and easier to update and maintain if necessary. 

Therefore, the combination of modifier adaptation methodology, the 
least squares algorithm to use transient measurements to compute process 
gradients, and the use of simplified models in the RTO layer, is really a 
powerful approach to achieve the optimal operating point of processes,  
reducing the convergence time.   

Another effective way of speeding up the convergence of static MA 
consists of reducing the number of modifiers to be adapted at each RTO 
iteration. In this sense, the new NMA approach, based on the Lagrangian 
function, has been tested in this example, getting a faster convergence than 
usual NMA and DMA, and making the implementation of NMA easier in 
practice. 

 



 



6 CASE STUDY II: NATURAL GAS NETWORKS 
The second case study considered in this thesis is the optimal transport of natural 

gas through gas pipelines. The results obtained after applying MA to the RTO 
optimization problem are shown in this chapter.  
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6.1 Natural gas networks 
Natural gas is becoming one of the most widely used sources of energy in 

the world due to its environmental friendly characteristics. Usually, the 
location of natural gas resources and the place where the gas is supplied to 
the consumer are far apart. This transport is carried out through pipeline 
network systems where the gas flows through pipes and various devices 
such as regulators, valves and compressors. During transport, the pressure 
of the gas is reduced mainly due to the friction with the wall of the pipe. The 
gas temperature also varies due to the heat transfer between the gas and 
the surroundings (Woldeyohannes & Majid, 2011). 

A library of dynamic and rigorous components to simulate the behavior 
of natural gas flowing through pipelines has been developed in the 
simulation software EcosimPro (EAInt, 2013). The library is composed of 
natural gas pipelines, compressor stations, regulation and measurement 
stations, valves, turbines, etc.  

This library can be used for different purposes such as: the optimal 
management of gas transport, training operators, detecting instrumentation 
failures, or predicting the behavior of the gas before changes in the 
operating conditions. The developed models are complex, since they are 
formed by partial differential equations that include variables that depend 
on the time and position along the pipeline. Due to the large size of these 
networks, according to the number of variables and equations needed to 
simulate the behavior of the gas, a simplified model has also been 
developed to be used for optimization purposes. 

6.2 Gas network library1 
The natural gas network library comprises the following elements: 

• Gas pipelines: high-pressure gas pipelines are channels for the 
transport of gas, made from carbon steel and with high levels of 
elasticity, the joints of which are welded. The maximum pressure in 
the pipeline is about 80 bar and the minimum 30 bar. The only 
exceptions are underwater sections that have a design pressure of 
220 bar.  
    
1 This library was develop ed at the Dpt . of Systems Engin eering and Auto matic  control of th e University  
of Valladol id within the p roject : “Mod elado y supervision de red es de gas natu ral” to gether with  
Intergeo Tecnología and Aplein Ingenieros. 



190 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 
 
• Compressor stations: these are facilities located along a natural gas 

pipeline which compress the gas to a specified pressure, thereby 
allowing it to continue flowing along the pipeline to the intended 
recipient. The compression process is normally carried out by 
centrifugal compressors. 

• Measurement and regulation stations: these are located at delivery 
points. The pressure is reduced to 16 bar in these stations as a means 
of starting the adaptation process to the final pressure used by 
companies and private individuals, which can be as low as 20 millibar. 
In this installation, the natural gas is filtered and heated if necessary, 
to compensate the future loss of temperature due to the gas 
expansion in the pressure regulator; the gas pressure is reduced in the 
reducer and immediately after that, the required variables are 
measured at fixed pressure and temperature conditions.  

A natural gas network library has been developed in the modelling and 
simulation software EcosimPro (EA Int, 2013) that includes all the elements 
described above. A picture of the appearance of this library is shown in 
Figure 6.1. In addition to the gas pipelines model, other essential 
components  for the simulation of the natural gas transport, such as the 
compressor stations (Figure 6.2), used to recover the pressure loss due to 
the transport through the gas networks, or the regulation and measurement 
stations (Figure 6.3), located in the supply points, where the gas pressure is 
reduced in order to initialize the adaptation process to the final pressure of 
the gas as used by companies and individuals.  

 
Figure 6.1. Dynamic library of natural gas networks in EcosimPro. 
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Figure 6.2. Schematic of the compressor station. 

 
Figure 6.3. Schematic of the regulation and measurement station. 
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6.3 Gas network modelling 

6.3.1 Compressor station modelling 

One important part of the library is the modelling of the compressor 
stations. As natural gas flows along a pipeline, it slows due to friction 
between it and the pipeline. This results in a loss of pressure along the 
pipeline. In order to make the gas flow continuously at a desired flow rate, it 
is re-pressurized at suitable locations along the pipeline. This is done by 
mechanically compressing the gas at sites connected to the pipeline known 
as compressor stations. The location and quantity of compressor stations 
required in a pipeline system is dependent on a number of factors, including 
the operating pressure of the pipeline, the diameter of the pipe used, 
elevation changes along the pipeline route and the desired volume of gas to 
be transported. 

The two main components of the compressor station are the gas turbine 
and the compressor, see Figure 6.2. The compressor mechanically re-
pressurizes the gas in the pipeline using an impeller that converts the 
mechanical energy into kinetic, then a diffuser converts the kinetic energy 
into potential in pressure form. The energy required to drive the 
compressors is provided by the gas turbines that are mechanically coupled 
to the compressor impeller. The gas turbines are powered by a portion of 
the natural gas that flows through the pipeline.  

In this section, we focus our attention on the modelling of the centrifugal 
compressor. Each compressor has a characteristic curve that is given by the 
manufacturer. This curve represents the iso-efficiency and iso-speed lines 
represented in the axis of the pressure difference (called height if it is 
expressed in meters of column of fluid) and the flow in abscissa. 

The operating point of the compressor will be given by the intersection 
of the characteristic curve for a given speed of rotation, of the increase in 
pressure in the compressor and the flow passing through it. 

However, from a practical point of view, not all points of the 
characteristic curve can be achieved. Figure 6.4 shows the operating 
margins that must be respected for the proper operation of the compressor 
(Mirsky, et al., 2012). 

1. Surge line. Surge is the left hand boundary of the compressor map.  
Operation to the left of this line represents a region of flow instability.  
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It indicates the minimum load for each rotational speed. When the 
flow is reduced below the surge limit, the pressure at the discharge of 
the compressor exceeds the pressure-making capability of the 
compressor, causing a momentary reversal of flow. When this flow 
reversal occurs, the pressure of the discharge system is reduced, 
allowing the compressor to resume delivering flow until the discharge 
pressure again increases, and the surge cycle repeats. Surging usually 
creates a clearly audible noise. Prolonged operation in this unstable 
mode can cause serious mechanical damage to the compressor. 

2. Maximum speed line. This is the maximum speed at which the 
compressor can work properly. 

3. Minimum speed line. This is the minimum speed at which the 
compressor can work properly. Continuous operation beyond 
maximum and minimum speed is not allowed as mechanical strength 
limits may be reached when above maximum speed and the possible,  
unacceptably high levels of vibration beyond both maximum and 
minimum speeds. 

4. Choke line. Choking of the centrifugal compressor occurs when the 
compressor is operating at low discharge pressure and very high 
flowrates. These high flowrates at compressor choke point are 
actually the maximum that the compressor can push through.  

5. Maximum power line. This represents the limit above which the 
turbine is not able to give more power to the compressor.  

 
Figure 6.4. Characteristic curve of a centrifugal compressor. 
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A dynamic model has been developed for the centrifugal compressor. 

This model is based on mass and energy balances and the pressure profiles. 

Mass balance 

It is assumed there is no mass accumulation in the compressor, so mass 
balance is expressed by (6.1). 

FFF outin ==  (6.1)                                                        

where Fin and Fout (kg/s) are the inlet and outlet mass flow rates of 
natural gas at the compressor. 

Energy balance 

The compression process is considered an adiabatic transformation, 
since the heat transmission process is very slow compared with the 
compression process so, the energy balance does not consider any term of 
heat loss to the ambient (Qamb=0). 
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(6.2)                                                        

where E (kJ) is the compressor energy, Qamb (kW) is the heat exchanged 
with the ambient, P (kW) is the power supplied to the compressor, h (kJ/kg) 
is the natural gas enthalpy, v is the gas velocity (m/s), z (m) is the height and 
g (m/s2) is the gravity. 

The variation of the compressor speed is computed as the difference 
between the turbine (Pt) and compressor torque (Pc):  

N
P

w
P

dt
dNJ t

ct −=−= PP  
(6.3)                                                        

where J (kg m2) is the moment of inertia, Pt is the turbine power (kW), 
and w (rad/s), N (rps) are the rotational speed of the compressor expressed 
in different units. 

The changes in the kinetic and potential energy are negligible, as well as 
the heat loss to the environment, so the resulting energy balance is given by 
(6.4). 
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( )outinin hhFP
dt
dE

−+=  
(6.4)                                                        

Besides, the compressor energy E is a combination of mechanical and 
thermal energy: 

mUJN2mUJw
2
1E 222 +=+= π  

(6.5)                                                        

where U (kJ/kg) is the internal energy of the natural gas and m (kg) is the 
compressed gas mass. 

Then, differentiating E from equation (6.5) and substituting in (6.4), 
equation (6.6) is obtained: 

( )outin
2 hhFP

dt
)mU(d

dt
dNJ4 −+=+π  

(6.6)                                                        

In addition, taking into account the definitions for the internal energy 
(6.7) and the variation of enthalpy (6.8), the global energy balance of the 
compressor is defined by (6.9): 

( )
dt

dCmT
dt
dTmC

dt
mUd v

v +=  
(6.7)                                                        

( )outinPoutin TTChh −=−  (6.8)                                                        

( )outin
v

v
2 hhFP

dt
dCmT

dt
dTmC

dt
dNJ4 −+=++π  (6.9)                                                        

where Cp (kJ/ kmol) is the calorific capacity of the natural gas at constant 
pressure, Cv (kJ/ kmol) is the calorific capacity of the natural gas at constant 
volume and T (K) is the gas temperature. 

The power supplied to the compressor (P) is obtained from (6.10). 

FWP a ⋅=  (6.10)                                                        

where Wa (kJ/kg) is the real work of the compressor computed by 
  

P

P
a

WW
η
−

=−  (6.11)                                                        
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where ηP is the polytropic efficiency. 
 
The work performed by the compressor is computed from (6.12). 
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where WP (kJ/kg) is the polytropic work absorbed by the gas, Zm is the 
average compressibility factor (explicitly computed by the Sarem method 
(Pitzer, 1955)), R (J/K mol) is the ideal gas constant, M (g/mol) is the 
molecular weight of the gas and n is the polytropic coefficient that normally 
varies from 1.5 to 1.6 and whose value has been chosen as 1.5 in this model. 

Pressure variation at the compressor 

The variation in the pressure increase at the compressor is given by 
(6.13). The pressure increase produced by the compressor is a function of 
the compressor speed and the flow passing through the compressor. This 
variation of pressure is obtained by interpolating the gas volumetric flow Q 
and the speed in the characteristic map of the compressor.  

)N,Q(fP =∆  (6.13)                                                        

Finally, the discharge pressure of the compressor Pc (Pa) is defined by 
(6.14) where Pin (Pa) is the suction pressure and ∆P the pressure increase at 
the compressor. 

PPP inc ∆+=  (6.14)                                                        

Gas turbine modelling 

The energy required to drive the compressor is provided by the gas 
turbine, which is mechanically coupled to the compressor impeller. The gas 
turbine is powered by a portion of the natural gas that flows through the 
pipeline. A simplified model has been developed for the turbine that 
includes the mass balance (6.15) and the computation of the turbine power 
Pt (6.16). 

gcout,gcin,gc FFF ==  (6.15)                                                        
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( )out.gcin.gcgc,Pgct TTCFP −=  (6.16) 

where Fgc,in and Fgc,out (kg/s) are the inlet and outlet mass flow rates of 
combustion gas at the turbine, CP,gc (kJ/kg) is the calorific capacity at 
constant pressure and Tgc,in, Tgc,out (oC) are the inlet and outlet temperatures 
of the combustion gases. 

 The gas turbines have a characteristic curve which relates the gas flow 
passing through the turbine Fgc, the rotational speed of the compressor Nt  
(rpm) and the pressure difference between the inlet and the outlet ∆Pt (Pa). 
Assuming that this pressure decrease is perfectly controlled, it has been 
considered a curve that relates the rotation speed as a function of the gas 
consumed. 

 
Figure 6.5. Characteristic curve of the turbine. 

The combustion between the natural gas taken from the gas pipeline and 
the compressed air is carried out at the combustor. Therefore, the inlet gas 
comes from the gas network and the outlet combustion gases are expanded 
in the turbine. 

The fraction of natural gas taken from the gas network required to make 
the combustion is obtained taking into account a typical air/fuel mass ratio 
whose value is 16:1. Another typical mass ratio relates the mass flow rate of 
combustion gases with the mass flow rate of natural gas entering the 
turbine. This ratio is supposed to be 17:1. 
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Valve modelling 

The equation (6.17) is used to compute the mass flow circulation through 
a valve, where Kv (m3/h) is the valve flow coefficient, uv  (%) is the valve 
opening, Pv,in and Pv,out (Pa) are the inlet and outlet pressure and ρv (kg/m3) 
is the fluid density. The volumetric flow Qv (m3/s) passing through the valve 
is given by (6.18). 

( ) )( in,vout,vvin,vvvv PP1P100/uKF −⋅⋅⋅⋅= ρ  (6.17)                                                        

vvv FQ ρ=  (6.18) 

There are two main valves in the compressor station, the valve located at 
the inlet of the turbine which circulates the combustion gases, whose 
opening is uvalv_HP and the recycle valve of the antisurge control, whose 
opening signal is uvalv_rec. 

Compressor discharge pressure control 

The typical control structure for compressor stations has also been 
modelled. This structure includes the control of the discharge pressure and 
the antisurge control (Acedo Sánchez, 2003). 

The discharge pressure of the centrifugal compressor is controlled by 
varying the rotational speed of the turbine. This speed is adjusted by 
modifying the valve opening that allows the inlet of combustion gases to the 
turbine (uvalv_HP), as shown in Figure 6.2. 

When the discharge pressure decreases, the control system will open the 
valve to allow a larger flow of gas entering the turbine, increasing the 
rotational speed of the turbine, also therefore increasing also the 
compressor speed. 

Compressor antisurge control 

As mentioned above, the phenomenon of surge occurs when the flow is 
reduced to below the surge limit. The compressor surge is dangerous 
because it causes the compressor to vibrate and is detrimental because it 
causes damage to the compressor parts. To prevent this problem, 
centrifugal compressors have an antisurge controller.  

Antisurge is an inferential control, so the first step in designing the 
control system is to obtain the surge line equation. The equation of the line 
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with slope K and independent term B0 is obtained by computing the 
corresponding straight line passing through two points on the map, located 
near the working rotational speed, for example, 80-100% of the nominal 
speed, as can be observed in Figure 6.6. 

 
Figure 6.6. Surge line. 

The equation for the surge line is defined as follows: 

0BPKQ +⋅= ∆  (6.19)                                                        

The control system detects when a process compression stage is 
approaching surge and subsequently takes action to reverse the movement 
of the operating point towards the surge line. This decreases the pressure 
and increases the flow through the compressor, resulting in stable working 
conditions. It is normally achieved by opening a control valve in a recycle 
line (Figure 6.2), returning the discharge gas to the inlet of the compressor. 
The resulting increase in compressor inlet volume flow moves the operating 
point away from surge. 

Due to inaccuracies in measurements and response times of transmitters 
and valves, antisurge control achieves a surge control line parallel to the 
surge limit line. The control line is offset to the right of the surge line by a 
margin; typically equal to 3-10% of inlet volume flow at surge (Figure 6.7). 
However, a lower margin is also desirable, as higher efficiency could be 
obtained by closing the recycle valve (Ghazanfarihashemi & 
Ghanbariannaeeni, 2012). 
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Figure 6.7. Surge control line. 

This control system comprises a PID controller, shown in Figure 6.2, 
which receives the measurement of the controlled variable (gas flow 
entering the compressor). This is compared to the set point (minimum inlet 
flow) and sends the corresponding control signal to the recycle valve 
(valv_rec) to modify its opening and recycle the required flow to guarantee 
compressor safety.  

6.3.2 Gas pipeline dynamic rigorous modelling 

This section is focused on the modelling of gas pipelines, the main 
element of natural gas transport. A rigorous gas pipeline model must include 
the following mass balances, energy and momentum. 

General assumptions 

To know the dynamic of the model variables (mass, composition, 
velocity, pressure and temperature) as a function of both time t and the 
longitudinal coordinate of the gas pipeline x, the corresponding mass 
balance, momentum and energy are considered. It is supposed that the 
variables remain constant in the radial direction and that natural gas is 
composed of 12 components: methane (CH4), ethane (C2H6), propane (C3H8), 
i-butane (i-C4H10), n-butane(n-C4H10), i-pentane (i-C5H12), n-pentane (n-
C5H12), hexane (C6H14), nitrogen (N2), heptane (C7H16), carbon dioxide (CO2) 
and hydrogen sulfide (H2S). The model yields an accurate prediction, since 
all these components are considered. To know this composition is very 
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important to compute important variables, such as the calorific power of 
natural gas that determines its economic value (Rodríguez, et al., 2013). 

Mass balances 

The global mass balance for the gas pipeline described by (6.20) is 
formed by an accumulation term and a convection term. The natural gas 
mass m (kg) and the velocity v (m/s) depend on both the time t (s) and the 
longitudinal coordinate of the pipeline x (m): 

0
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t
m

=
∂

∂
+

∂
∂  

(6.20) 

The individual mass balance for each component is given by (6.21), 
which takes into account the accumulation and convection terms for all 
components i = 1,….M-1, except one (normally the one with a high 
concentration, in this case, methane) whose composition is computed by 
(6.22): 
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where M is the total number of components and yi (o/1) is the mass  
fraction of each component i . 

Energy balance 

The total energy balance is given by (6.23) (internal, kinetic and potential 
energy), assuming that the temperature loss is due to the conduction 
between the pipe wall and the gas along the pipeline together with the 
conduction between soil and pipe wall. In addition, heat transmission by 
convection along the pipeline is also considered. 
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where ρ (kg/m3) is the gas density, P (Pa) the gas pressure, T (oC) the gas 

temperature, Tsoil (oC) the soil temperature, Cv (J/kg oC) the gas heat capacity 
at constant volume, k (W/m oC) the thermal conductivity of the natural gas, 
Uground (W/m2 oC) the heat transfer coefficient through the pipe wall, A (m2) 
the heat transmission surface, h (m) the altitude difference between 
pipeline ends, V (m3) the volume of the pipeline and g (m/s2) is the gravity.  

Momentum balance 

The momentum balance is described by (6.24), which takes into account 
the accumulation term, convection, head loss due to the pressure, head loss 
due to the friction (Froz) and head loss due to the slope of the pipeline (Fgrav). 
All these forces are represented in Figure 6.8. 
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where d (m) is the inside diameter, L (m) is the length of the pipeline and 
φ is the friction factor computed by using the Chen equation defined by 
(6.25). 
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where Re is the Reynolds number computed by (6.26) and rg (m) the pipe 
roughness.  

µ
ρdvRe =  

(6.26) 

 

where μ (kg/m s) is the gas viscosity.  

 
Figure 6.8. Scheme of forces in the pipeline. 
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Equation of state for real gases 

Natural gas is a compressible fluid with a non-ideal behavior described by 
the equation of state for real gases defined by (6.27): 

ZnRTPV =  (6.27) 

where Z is the compressibility factor, which in this case is computed 
using the Sarem method (Pitzer, 1955), n (mol) is the number of moles and 
R(J/K mol) is the universal gas constant. 

Spatial discretization. Finite volume method 

To solve the partial differential equations it is necessary to use an 
integration method. In this case, the finite volume method has been chosen.  
This technique integrates the original differential equations on a finite 
volume obtaining a balance for each of the discrete zones into which the 
pipeline is divided, called nodes (Baliga & Patankar, 1983). 

 When applying this method for the discretization, it has been supposed 
that the volumetric flow circulating through each node takes the value of 
the steady-state flow given by (6.28), the fundamental gas flow equation at 
steady state (Schroeder, 2001), since the considered volumes are sufficiently 
small to make this assumption. Thus, the momentum balance is replaced by 
(6.28), simplifying the use of the model because of ignoring the complex 
partial differential equation (6.24). The mass and energy balances described 
above are applied over each control volume. 
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C: constant; 0.011493 (metric units) 
e: pipeline efficiency  
G: specific gravity 
d: inside diameter (mm) 
L: pipeline length (km) 
Pbase: base pressure (kPa) 
Pin: inlet gas pressure (kPa) 
Pout: outlet gas pressure pipeline (kPa) 
Q: volumetric flow (m3/day, in standard conditions) 
Ta: average temperature (K) (geometric mean between the inlet and outlet 
temperatures) 



204 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 
 

Tbase: base temperature (K) 
Za: average compressibility factor (computed from Ta and Pa) 
 
Pipes are not usually horizontal (inlet height H1 ≠ outlet height H2). So long 
as the slope is not too great, a correction for the static head of fluid Hc is 
incorporated and determined as follows: 
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2
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=  (6.29) 

 
Figure 6.9. Pipeline dividing the spatial domain into finite volumes. 

By applying the finite volume method, the model variables can be divided 
into two groups. The variables that are computed at the borders of the 
volume N, x[j] (j = 1,…, N+1), and those that are calculated at the centre of 
the finite volume x[k] (k= 1,…, N).  

In this way, the mass balance described in (6.20) is replaced by (6.30), 
which is applied to each finite volume and represents the mass 
accumulation dm[k] /dt resulting from the difference between the inlet  
mass flow W [j]  (kg/s) and the outlet mass flow W [j+1]. 

[ ] [ ] [ ]1+−= jWjW
dt

kdm  (6.30) 

The individual mass balance, given by (6.21), is replaced by the solution 
of (6.31) at each volume, where yci[k] is the composition of each component 
i (i=1,…, M) at each volume, and ycbi[k] is the composition at the volume 
border. 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]11 ++−=+⋅ jycbjWjycbjW
dt

kdyc
kmkyc

dt
kdm

ii
i

i  (6.31) 

The individual mass balance (6.31) is applied for each component i at  
each volume, except for the component of highest composition, which is 
computed by (6.32) 
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[ ]∑=
M

1
i kyc1  (6.32) 

The modelled gas pipelines allow the inverse flow that can happen in 
some situations. Because of this issue, the variables at the border ycb, Tb (oC) 
are included. These variables can take one or other value, depending on the 
flow direction. 

If the flow direction is positive, that is, the flow goes from volume 1 to N 
(W[j] > 0), then: 

[ ] [ ]1−= kycjycb ii  (6.33) 

If the flow direction is negative, that is, the flow goes from volume N to 1 
(W[j] < 0), then: 

[ ] [ ]kycjycb ii =  (6.34) 

To sum up, the variables at the volume border take the value of the 
previous volume, and this volume is chosen as a function of the flow 
direction, as shown in Figure 6.10 and Figure 6.11. This also happens for the 
temperature Tb[j] and the gas density ρb[j] (kg/m3). 

 

 
Figure 6.10. Value election when the flow direction is positive. 

 

Figure 6.11. Value election when the flow direction is negative. 

A certain dynamic, (6.35) and (6.36), is added to smooth the changes in 
the average values xb[j] when a change of flow direction happens. The time 



206 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY 
 

constant ζ corresponds to the inverse of the absolute value of the gas 
velocity v[j] (m/s). 

[ ] [ ] [ ] [ ]jxkx
dt

jdxjW b−−=> 1      0 ζ  (6.35) 

[ ] [ ] [ ] [ ]jxkx
dt

jdxjW b−=< ζ      0  (6.36) 

The mass flow passing through each volume is computed using the 
fundamental gas flow equation at steady state (6.28), which is applied to 
each volume in the following form: 
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The energy balance described by (6.23) results in (6.38) after 
discretization: 
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This library has been used to simulate real gas networks in the simulation 
software EcosimPro. These networks are constructed by adding the different 
components (compressors, gas pipelines, valves,…) linked by ports in a 
schematic. The characteristics of the gas networks, such as length, diameter 
or roughness and feed gas composition can be fixed into the schematic 
whereas the boundary conditions required to simulate the gas behavior 
through the gas pipelines are defined in the experiment. 
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6.4 Implementation of MA in Reganosa network 
As natural gas pipeline systems have grown larger and more complex, the 

importance of the optimal operation and planning of these facilities has 
increased. The investment costs and operation expenses of pipeline 
networks are so large that even small improvements in system utilization 
can involve substantial amounts of money (Borraz-Sánchez & Mercado, 
2015). For this reason, the implementation of MA in this field would bring 
important benefits. 

In a gas transmission network, the overall operating cost of the system is 
highly dependent upon the operating cost of the compressor stations in a 
network. This operating cost is generally measured by the fuel consumed at 
the compressor station. According to (Luongo, et al., 1989), the operating 
cost of running the compressor stations represents between 25% and 50% 
of the total operating budget of the company. Hence, the objective for a 
transmission network is to minimize the total fuel consumption of the 
compressor stations, while satisfying specified delivery flow rates. 

6.4.1 Reganosa network 

The case study considered in this thesis involves a transmission gas 
network where there are consumers that need a certain amount of gas at a 
specified quality and pressure. There are also gas sources where the fluid is 
supplied at a determined pressure; in addition, there are two compressors 
operating.   

Figure 6.12 shows the natural gas network whose operation will be 
optimized to reduce the costs due to gas consumption in the compressor 
stations. This example is based on a real gas network managed by Reganosa 
S. A., situated in the north of Spain, with a total length of 130 km and four 
measurement stations (Reganosa S.A., 2013). It has one source and six 
demand points; two compressor stations have been included, one of them 
at the supply point. They are the controllable units to get the normalized 
flow demanded by every consumer while minimizing the transport cost. 
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Figure 6.12. Reganosa gas network topology. 

The main characteristics of the Reganosa network are shown in Table 6.1. 

Table 6.1. Dimensions of the Reganosa gas network. 

Pipe name L (m) d (m) rg (m) H2-H1 (m) 
P_0 10000 0.7620 4.6⋅10-5 250 
P_2 6650 0.6604 4.6⋅10-5 240 
P_4 15650 0.6604 4.6⋅10-5 10 
P_6 150 0.5080 4.6⋅10-5 0 
P_7 9500 0.6604 4.6⋅10-5 -210 
P_9 19700 0.6604 4.6⋅10-5 40 
P_11 50 0.5080 4.6⋅10-5 30 
P_12 14900 0.4064 4.6⋅10-5 320 
P_14 26250 0.4064 4.6⋅10-5 -300 
P_17 18000 0.5080 4.6⋅10-5 120 
P_18 50 0.6604 4.6⋅10-5 0 
P_19 50 0.6604 4.6⋅10-5 0 
P_21 4600 0.2540 4.6⋅10-5 0 
P_22 1550 0.4064 4.6⋅10-5 -10 
P_23 5650 0.4064 4.6⋅10-5 10 
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6.4.2 Simplified RTO model 

The model described in the previous section is too complex to be used 
for optimization. For this reason, the rigorous model for the gas pipelines 
has been simplified for use in the RTO layer.  

A steady-state model has been considered for the gas pipelines, so this 
model only considers one finite volume, that is, only the value of the 
variables at the inlet and outlet are taking into account, without considering 
the dynamic of the variables along the pipe.  

Since the computation of the compressibility factor using the Sarem 
method slows down the simulation considerably, the RTO model assumes 
that an ideal gas is transported, so the compressibility factor is equal to one. 

The model for the compressor stations has also been simplified, since the 
control structure of the installation has been omitted. Antisurge control and 
discharge pressure control are omitted in the RTO model, so the input of the 
model is the signal to the valve of the combustion gases entering the turbine 
whose value, in the real process, is controlled by a PID controller. The 
opening for the recycle valve is determined as a function of the difference 
between the gas flow passing through the compressor and the minimum 
flow determined by the antisurge line. In this way, the degree of freedom of 
the RTO model is the opening of the valve of the combustion gases entering 
the turbine in each compressor. 

In addition, a different value of the pipe efficiency e has been considered 
in both models. This constant value directly affects the computation of the 
gas flow (6.28). Its value in the rigorous model is 0.42, whereas the value of 
e in the RTO model is 0.48. 

The size comparison between the rigorous model and the simplified 
model used in the RTO layer is presented in Table 6.2. 

Table 6.2. Size comparison between the rigorous and the reduced model. 

 Rigorous model RTO model 
Number of equations 11744 2391 

Number of explicit variables 7694 2276 
Number of derivative variables 4050 115 

Number of boundaries 22 22 

As can be seen in Table 6.2, the model size is reduced by approximately 5 
times.  
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The boundary variables for both models are: inlet gas composition (12), 

inlet temperature (1), inlet pressure (1) and the pressure at each outlet (6). 

The rigorous model requires two more boundaries, the set point for the 
discharge pressure controller at each compressor station (2); whereas, since 
the control layer has been omitted, the reduced model requires two more 
boundaries corresponding to the opening signal of the combustion gas 
valves (2). 

6.4.3 RTO problem formulation 

The optimization objective of the RTO layer is to minimize the fuel gas 
consumed by the compressor stations. A small portion of natural gas from 
the pipeline is burned to power the turbine, so compressor stations 
consume about 2 % of the natural gas running through them.  

The optimization problem solved in the RTO layer is defined as follows:  
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u,u

P QQmin
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+=φ  (6.39)                                                        
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(6.40)                                                         

where φP (m3/s) is the cost function to minimize, Pc_EC1 (bar) is the 
discharge pressure of the compressor, uvalv_HP (%) is the signal to open the 
valve of combustion gases entering the turbine, Qfuel (m3/s) is the natural gas 
flow consumed by compressor stations, Qj (Nm3/s) is the flow rate at each 
delivery point and Demandj (Nm3/s) is the minimum flow demanded by 
every consumer.  

The values of the boundary conditions for the Reganosa network are 
defined in Table 6.3. The differences between the real optimum, obtained 
by solving the optimization problem based on the rigorous dynamic model 
and the model optimum, i.e., the solution of the RTO problem based on the 
simplified model whose solution is applied to the process, are shown in 
Table 6.4. 
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The NLP optimization problems have been solved using a sequential 
approach with a sequential quadratic programming (SQP) algorithm 
implemented in the SNOPT library (Gill, et al., 2008) and executed in 
EcosimPro software (EAInt, 2013). 

Table 6.3. Boundary conditions. 

 Value 
Pin, P_0 (bar) 68 
Tin, P_0 (0C) 9 

Pout, P_6 (bar) 68 
Pout, P_11 (bar) 68 
Pout, P_18 (bar) 68 
Pout, P_21 (bar) 68 
Pout, P_22 (bar) 68 
Pout, P_23 (bar) 68 

yCH4 (01) 0.82 
yC2H6 (01) 0.05 
yC3H8 (01) 0.005 

yi-C4H10 (01) 0.0001 
yn-C4H10 (01) 0.0001 
yi-C5H12 (01) 0.001 
yn-C5H12 (01) 0.001 
yC6H14 (01) 0.001 

yN2 (01) 0.025 
yC7H16 (01) 0.008 
yCO2 (01) 0.033 
yH2S (01) 0.0558 
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Table 6.4. Comparison between process and model optimum. 

 Real 
Optimum 

Model 
Optimum 

Lower-Upper 
Limits 

Pc_EC_1(bar) 73.43 71.67 68-85 
Pc_EC_2 (bar) 79.85 76.32 68-85 

uvalv_HP EC_1 (%) 11.02 7.93 0-100 
uvalv_HP EC_2 (%) 27.35 10.54 0-100 

QP_6 (Nm3/s) 5.90 5.00 5 
QP_11 (Nm3/s) 43.58 40.90 10 
QP_18 (Nm3/s) 101.45 88.08 50 
QP_21 (Nm3/s) 0.21 0.18 0.20 
QP_22 (Nm3/s) 10.00 8.64 10 
QP_23 (Nm3/s) 0.25 0.22 0.20 
φ P (m3/s) 0.0471 0.0725 - 

 

The set of active constraints is not the same for both solutions, whereas 
at the nominal solution, that is the solution obtained by solving RTO without 
modifiers, the QP_21 and QP_22 are actives at the real optimum only QP_22 is an 
active constraint. 

6.4.4 Alternative NMA based on the Lagrangian function 

The new approach described in section 3.3, the alternative NMA method 
that considers the minimization of the Lagrangian function measured from 
the process, is applied to this process.  

This application is a good example to show the performance of this 
methodology, since there are many constraints, one for each output of the 
gas network, that is, one for each consumer. 

The implementation of NMA in this case study would be problematic 
since the high number of constraints (ng = 6) and the number of decisicon 
variables (nu = 2) imply the requirement of 20 modifiers, according to (6.41), 
from which 14 are first-order modifiers whose value is given by the 
unconstrained optimization layer (section 2.1.5). Therefore, the initial 
simplex would require 14 + 1 initial operating points to be constructed. 

1)( ++= gugmod nnnn  (6.41)                                                        
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So, it would take 14 steady-states of the process just to initialize the 
algorithm. Taking into account the fact that the settling time of the process 
is about 1 hour, it would therefore take 14 hours to start to work. 

By using the new approach, the number of modifiers is reduced from 20 
to 8 (6.42), of which only two are first-order modifiers, one for each RTO 
decision variable. Thus, the initial simplex is constructed after only 2 + 1 
steady-states. 

ugmod nnn +=  
(6.42)                                                        

So, the resulting modified optimization problem is described as follows 
where the subscript “k-1” indicates the reference applied one sample time 
before.  
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The modifiers are given by the upper unconstrained optimization layer 
which solves the following problem: 
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(6.45)                                                        

The obtained results are shown in the following figures. Figure 6.13 shows 
the evolution of the process cost function; Figure 6.14 and Figure 6.15 show 
the evolution of the discharge pressure for each compressor station. Figure 
6.16 and Figure 6.17 show the variation of the flow corresponding to the 
active constraint at the real optimum and the inlet gas flow to the gas 
network. 
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Figure 6.13. Evolution of the process cost functionφ P . 

 

Figure 6.14. Evolution of the set point for the discharge pressure of EC_1 . 
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Figure 6.15. Evolution of the set point for the discharge pressure of EC_2 . 

 

Figure 6.16. Evolution of active constraint QP_22 . 
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Figure 6.17. Evolution of the inlet volumetric flow Q P_0. 

6.5 Conclusions 
In this chapter, another successful implementation of MA has been 

shown to deal with the optimization of gas transmission networks with the 
objective of minimizing fuel gas consumption of compressor stations while 
satisfying the demands of the consumers. 

MA has been applied to a large-scale problem in the presence of 
numerous constraints showing that this methodology is a powerful tool that 
can be implemented in industrial cases. 

In particular, an easily implementable method like NMA (section 2.1.5) 
has been presented. Since it does not require the computation of plant and 
model gradients, all it needs is the measurement of the process cost  
function and the constraints. To further simplify the implementation of this 
methodology to deal with problems with many operational constraints, such 
as the example described above, the alternative NMA method developed in 
this thesis (section 3.3) has been used to reduce the number of required 
modifiers, showing that it is able to achieve an operating point  that satisfies 
the NCO of the plant faster than applying traditional NMA. 

The results show that when applying the alternative NMA formulation 
only 7 steady-states are required, which implies a considerable time 
reduction compared to applying the standard NMA which would need, at 
least, 14 steady-states to start to work. 
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7 FINAL CONCLUSIONS AND FUTURE WORK 
To sum up, some general conclusions are presented in this chapter followed by 

an analysis of the future research that could be carried out in the field of MA for 
RTO.
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7.1 Final conclusions 
This thesis has presented several contributions on the MA methodology 

oriented towards speeding up the convergence to an operating point that 
satisfies the NCO of the plant. Two different practical MA issues have been 
studied: the dimension problem with respect to the number of operational 
constraints and the slow convergence rate. A summary of the main 
contributions is given next: 

• For dealing with processes with a large number of constraints without 
increasing the number of modifiers, an alternative NMA methodology 
has been developed in this thesis. This approach consists in estimating 
the modifiers from information of the Lagrangian function, adding 
only one gradient modifier for each process input to the cost function 
(see section 3.3). This reduction in the number of modifiers speeds up 
the convergence rate of the NMA methodology and makes the 
implementation of this technique easier in practice.   

This contribution has been presented in: “T. Rodríguez-Blanco, D. 
Sarabia, D. Navia, C. de Prada. Efficient Nested Modifier Adaptation 
for RTO using Lagrangian functions. Symposium on Computer Aided 
Process Engineering-ESCAPE 27, Barcelona, Spain, 2017”.  

DMA usually drives the process to the optimum in a faster and more 
direct way than NMA, since it deals directly with the information of 
the plant and model gradients. However, using the modifiers obtained 
by minimizing the Lagrangian function, the convergence rate of both 
methods, NMA and DMA, is very similar. NMA can even be faster if it 
is applied in a case study with a large number of operational 
constraints, since the benefits of the proposed approach will be 
larger, the greater the number of process-dependent constraints. 

• The previous methodology is based on solving the RTO problem once 
a steady-state of the process is achieved which implies a slow 
convergence to the optimum of the process. To deal with this issue,  
two approaches have been developed with the aim of speeding up 
the convergence of the MA to the optimum by using transient 
information of the process. The first combines the NE-based gradient 
estimation during the transient with the estimation of gradients based 
on stationary data. Both parametric and structural plant-model 
mismatch (see section 4.3) could be dealt with in this way. The second 
aims to extend the idea of using transient measurements by 
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estimating the process cost and constraint gradients directly through 
a recursive identification method. In this way, waiting for the steady 
state at each RTO iteration is no longer necessary (see section 4.4). By 
implementing both approaches, the time to achieve the plant 
optimum is considerably reduced, as has been shown in the different 
contributions that have been made during this thesis. 

The combination of NE-based gradient estimation with the traditional 
stationary MA methodology has been presented in: “T. Rodríguez-
Blanco, D. Sarabia, C. de Prada. Modifier-Adaptation approach to deal 
with structural and parametric uncertainty. DYCOPS-CAB 2016. June 4-
9, 2016. Trondheim (Norway)”. 

The method based on the direct estimation of process gradients over 
the transient has been presented in the paper: “T. Rodríguez-Blanco, 
D. Sarabia, C. de Prada. Modifier Adaptation methodology based on 
transient and static measurements for RTO to cope with structural 
uncertainty. Computers & Chemical Engineering, 2017” and also in the 
FOCAPO conference: “T. Rodríguez-Blanco, D. Sarabia, C. de Prada.  
Modifier-Adaptation approach using RELS to compute process 
gradients. FOCAPO-CPC 2017. January 8-12, 2017. Tucson (Arizona), 
United States”. Its implementation in a laboratory-scale flotation 
column was presented in: “D. Navia, A. Puen, L. Bergh, T. Rodríguez-
Blanco, D. Sarabia, C. de Prada. Modifier-Adaptation based on 
transient measurements applied to a laboratory-scale flotation 
column. Symposium on Computer Aided Process Engineering-ESCAPE 
27, Barcelona, Spain, 2017”. 

• This thesis has also tested the performance of MA in realistic 
problems, such as the operation of a depropanizer distillation column 
and the transportation of natural gas through gas networks (see 
chapter six). The obtained results have shown that MA is a powerful 
tool that enables large-scale processes to be operated in an optimal 
way, maximizing the benefits obtained. 

The implementation of several MA approaches on the depropanizer 
distillation column was presented in: “T. Rodríguez-Blanco, D. Sarabia, 
C. de Prada. Modifier-Adaptation methodology for RTO applied to 
distillation columns. ADCHEM 2015. June 7-11, 2015. British Columbia 
(Canada)” and “T. Rodríguez-Blanco, D. Sarabia, C. de Prada. Modifier 
Adaptation methodology based on transient and static measurements 
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for RTO to cope with structural uncertainty. Computers & Chemical 
Engineering, 2017” 

• An exhaustive review of the fundamentals of MA and the different 
techniques developed until now, analyzing their features and the 
way to implement them, has been made during this thesis.  

From this study a review paper was presented in: “T. Rodríguez-
Blanco, D. Sarabia, C. de Prada. Optimización en Tiempo Real 
utilizando la Metodología de Adaptación de Modificadores. RIAI: 
Revista Iberoamericana de Automática e Informática industrial, 
2017”. 

7.2 Future work 
In the near future, we plan to continue the work developed during this 

thesis on MA in different ways, as this methodology still presents some 
limitations that require further research. Among them, we aim to 
investigate the following: 

• Ensure feasibility for all the intermediate RTO iterations. A possible 
solution could be to apply Dynamic MA. It is necessary to formulate 
the computation of modifiers for dynamic optimization problems that  
will be solved in the dynamic RTO.  

• The implementation of MA in batch processes, whose optimization 
typically involves solving a dynamic optimization problem for which 
the solution consists of time-varying input profiles. Dynamic 
optimization problems have two types of constraints: the path 
constraints limit the inputs and states during the batch, while the 
terminal constraints limit the outcome of the batch at final time.  
Hence, the path constraints are modified using time-varying 
modifiers, while the terminal constraints are modified using terminal 
modifiers. The analysis of this approach could be the subject of future 
work. 

• The MA family of methods is relatively well developed from a 
theoretical perspective. At this point, it is necessary to apply the 
methodology on an industrial scale. On the one hand, this will reveal 
where the real challenges lie and provide motivation for further 
improving the method. On the other hand, industrial practitioners will 
be more likely to adopt these methods if they have already been 
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shown to work on real systems. We plan to test our methodologies in 
an oil refinery. 
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