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ABSTRACT / RESUMEN







Abstract

In the chemical industry, the optimal management of processes has
become a topic of great interest in recent years since it enables to operate
and makes decisions efficiently with respect to economic, environmental
criteria or product qualities. Within the process industry, this management
is usually performed at a top layer in the hierarchical control structure called
Real Time Optimization (RTO), which is based on process models and uses
optimization methods to provide the optimal operation of the process.

However, optimal operation is not guaranteed since the process models
used by RTO are always inaccurate, so the optimum computed from the
model may not be the same as the optimum of the process. In addition, the
layers of control structure use different models for making decisions, RTO
typically involves nonlinear first-principles models that describe the steady-
state behaviour of the plant, whereas MPC is usually based on dynamic
linear models, creating inconsistencies between them that affect the final
result.

The Modifier Adaptation methodology (MA) was developed to deal with
these problems. This technique uses the process measurements to estimate
the gradients of the process and, with this information, computes certain
corrective terms that are added to the cost function and constraints of the
optimization problem to lead the process to its optimum operating point
despite the presence of structural uncertainty between the model used in
the RTOlayer and the process.

Nevertheless, this methodology has some limitations. One of the main
drawbacks is related to the dimension of the problem with respect to the
number of decision variables and constraints, which increase significantly
the number of required modifiers, thus slowing down the convergence of
the method considerably, making the implementation of MA in this type of
problems infeasible. To try to solve this issue, in examples with many
operational constraints, this thesis presents an alternative MA formulation
that makes the number of modifiers depend solely on the number of
process inputs, reducing the dimension of the problem. In addition, this
formulation is implemented following the Nested Modifier Adaptation
methodology (NMA), which does not require the calculation of gradients to
obtain the modifiers, thus making the implementation of the algorithm
easier and speeding up the convergence towards the plant optimum.



Another important limitation of the MA methodology is the necessity of
waiting for the steady state of the process to update the modifiers at each
iteration of the algorithm. In many real applications, for example the
operation of distillation columns, this steady-state can be achieved after
several hours of operation, which means that the convergence of the
method is very slow and the optimum operating point is reached after
several days of operation. This problem makes the implementation of this
methodology ineffective in real processes, especially in those that have a
long settling time. Therefore, this thesis has worked on the use of transient
measurements to estimate the plant gradients and compute the modifiers
during the transient, running the RTO layer with a higher frequency, without
waiting for the steady-state of the plant, so the convergence rate to the
optimum is sped up.

Furthermore, after reviewing the existing literature on MA, it can be seen
that there are not many large scale applications or realistic problems with a
hierarchical control structure. For this reason, this thesis also focuses on
showing the potential of this tool and the great benefits that could be
obtained from applying it in the process industry. The considered case
studies are very realistic, large-scale problems, such as the transport of
natural gas through gas networks and the operation of a depropanizer
distillation column present in any refinery.



Resumen

La gestidon o6ptima de procesos dentro de la industria quimica se ha
convertido en un tema de gran interés a lo largo de los ultimos afios, ya que
permite operar y tomar decisiones de forma eficiente con respecto a
criterios econdmicos, medioambientales o de calidades de producto. Dentro
de la industria de procesos, esta gestion suele realizarse en una capa
superior dentro de la estructura jerdrquica de control denominada
Optimizacion en tiempo real (RTO), que en base a modelos del proceso y
utilizando métodos de optimizacion proporciona las directrices éptimas de
operacién del proceso.

Sin embargo, los modelos utilizados nunca reflejan fielmente la realidad
por lo que el éptimo calculado en base a estos modelos puede no
corresponder al éptimo real del proceso. Ademas, las diferentes capas de la
estructura de control usan modelos distintos, mientras que la capa RTO estd
basada en modelos estacionarios no lineales, la capa MPC utiliza modelos
dindmicos lineales, de modo que podria existir una falta de coherencia entre
los mismos que afecte al resultado final.

Para tratar esta problematica surge la metodologia de adaptacion de
modificadores (MA) que utiliza las medidas del proceso para estimar los
gradientes del proceso y con esta informacion calcular ciertos términos
correctores que se afiaden a la funcién de coste y a las restricciones del
problema de optimizacién para conducir el proceso a su punto 6ptimo de
operacién a pesar de la presencia de incertidumbre estructural entre el
modelo utilizado en la capa RTOvy el proceso real.

Sin embargo, dicha metodologia presenta ciertas limitaciones. Una de
sus principales desventajas estd relacionada con la dimension del problema
con respecto al numero de variables de decision y de restricciones que
aumentan considerablemente el nimero de modificadores necesarios
ralentizando mucho la convergencia del método, llegando a hacer inviable la
aplicacién de MA. Para tratar de resolver este problema en el caso de que
existan numerosas restricciones operacionales, la presente tesis presenta
una formulaciéon alternativa de MA que hace que el nimero de
modificadores dependa Unicamente del nimero de entradas del proceso
reduciendo asi la dimensidon del problema. Ademas, esta formulacion se
implementa siguiendo la metodologia de adaptacion de modificadores
anidados (NMA) que evita el calculo explicito de gradientes para la



obtencién de los modificadores facilitando aun mas la implementacion del
algoritmoy acelerando la convergencia hacia el éptimo de la planta.

Otra importante limitacién de la metodologia MA es la necesidad de
esperar al estado estacionario del proceso para actualizar los modificadores
en cada iteracién del algoritmo. En muchas aplicaciones reales, por ejemplo,
la operacién de columnas de destilacidn, dicho estado estacionario puede
alcanzarse después de varias horas de operacion lo que supone que la
convergencia del método sea muy lenta y el punto éptimo de operacion se
alcance después de varios dias de operacién. Este problema hace que la
implementacién de esta metodologia en procesos reales, especialmente en
aquellos que presentan largos tiempos de asentamiento, no sea eficaz. Por
ello, en esta tesis se ha trabajado en el uso de medidas transitorias del
proceso para estimar los gradientes de la planta y estimar los modificadores
durante el transitorio, ejecutando la capa RTO con una frecuencia mayor, sin
esperar al estado estacionario de la planta, de modo que la velocidad de
convergencia al dptimo se vea acelerada.

Ademas, después de revisar la literatura existente sobre la metodologia
MA uno puede darse cuenta que no existen muchas aplicaciones en
problemas con un considerable nimero de variables o sobre ejemplos
realistas que cuenten con una estructura jerarquica de control. Por ello esta
tesis también estd enfocada en demostrar el gran potencial que tiene esta
metodologia y los enormes beneficios que se podrian obtener si fuera
aplicada en la industria de procesos. Los casos de estudio sobre los que se
ha trabajado son ejemplos realistas y de gran escala como, el transporte de
gas natural o la operacién de una columna de destilacion despropanizadora
presente en todas las refinerias.









1 INTRODUCTION

This chapter introduces the key role that process optimization plays in the
chemical industry, the basic ideas to formulate optimization problems and the way
to carry out the optimal operation in practice through Real Time Optimization. The
issue of model uncertainty to manage processes efficiently is also addressed,
describing the current methods to solve it and providing the motivation of this thesis
to contribute to the research and development of new methods in this field. Finally,
the chapter concludes with the main contributions of the present thesis and its
organization.
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1.1 Process Optimization

The growing competition in the chemical industry has led to try to a
determination to find the optimal way to operate processes so as to reduce
costs, increase benefits, maximize process efficiency and improve the
quality of the obtained products. For this reason, process optimization has
evolved from a methodology of academic interest into a technology with a
significant impact in engineering practice.

In the chemical industry, optimal operation is typically addressed by a
hierarchical structure, as shown in Figure 1.1.

“What to make”

Planning 777 LP optimization problems
| : (Months - Weeks)
v |
Scheduling -—- When to make
I LP optimization problems
v | (Weeks - Days)
]

Real Time

Optimization
A

Optimization of Set Points

\ 4

Multivariable control
MPC (Minutes)

A

v
Distributed Basic control
"| Control System (Seconds)

K

Figure 1.1.Hierarchical control structure.

This control structure is formed by several layers with different
objectives that are defined as follows:

e Planning: the aim of planning is to answer the question “what to
make”, that is, decide what feedstock to purchase, which products to
make, and how much of them. In almost all large scale chemical
plants, a linear program (LP), or successive LPs, are used for planning
and are based on economics, typically an overall plant profit objective
function, as well as forecasts of some aspects such as price variations
or future demands.
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e Scheduling: this is a decision-making process to determine “when”.
Given a plan in a specific time horizon, scheduling addresses the
timing of the necessary actions and events to execute that plan,
optimizing work and workloads in the production process.

e Real Time Optimization (RTO): this provides the bridge between plant
scheduling and process control. At this level, medium-term decisions
are made, typically on a time scale of hours, by explicitly considering
economics in operations decisions. This step relies on a real-time
optimizer that determines the optimal operating point under
changing conditions, such as changes in raw material quality or in the
operating conditions. The operating point computed by this layer is
characterized by set points for a set of controlled variables that are
passed on to the lower-level controllers. RTO typically involves
nonlinear first-principle models describing the steady-state behaviour
of the real process. These models are often relatively large, and the
model-based optimization may require substantial computing time
(Marlin & Hrymak, 1997).

e Multivariable predictive control (MPC): this provides multivariable
dynamic control of the plant, giving some amount of optimization
capability. The associated time scale is usually in the order of minutes.

e Distributed control system (DCS): at the lowest level, measurements
made by sensors are collected from the plant, and basic flow,
pressure and temperature control is implemented on a time scale of
seconds. The DCS layer is typically the main operator interface for
monitoring and controlling the plant, including generating alarms for
abnormal situations. Also implemented in this layer are advanced
regulatory controls, such as cascade, ratio and constraint controllers,
as well as sequencing controls.

The multilevel structure leads to a vertical decomposition of the
automation tasks. However, this has some drawbacks. The main limitation is
that sampling and optimization have to be delayed until the controlled plant
has settled to a new steady state (Engell, 2007). This delay occurs at each
RTO step after a change in the input variables, and worse, after the
occurrence of disturbances, so the adaptation of the operating conditions
can be slow. Inconsistencies may also arise from the use of different models
at the different levels. For instance, RTO typically involves nonlinear first-
principles models that describe the steady-state behaviour of the plant,
whereas MPC is usually based on dynamic linear models obtained
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empirically. So, there might be inconsistencies between them that affect the
final result.

Furthermore, RTO presents important challenges that have to be
addressed, such as proposing algorithms that manage the existing model
uncertainty, handling the interaction between the RTO and MPC layers, or
speeding up the execution rate of RTO to adapt the operating conditions
faster. These issues, and some others, will be explained in more detail
throughout this thesis.

1.1.1 Real Time Optimization

RTO emerged in the seventies together with model predictive control
(MPC), at the time when on-line computer control of chemical plants
became available. Since then, RTO has been widely applied in the process
industry. The applications go far beyond the chemical and petrochemical
industries, and include food production or biological processes, among
many other applications. These plants are made up of a large number of
interconnected units, so achieving an optimal management is not a trivial
task because of the inherent difficulties of the process itself, as well as the
uncertainties and disturbances that continuously modify the operating
conditions. Therefore, the development of a systematic mechanism, such as
RTO, to achieve optimal operation has been most useful for the process
industry. Thanks to RTO, important economic payoffs can be obtained since
RTO aims to reduce costs and improve profitability. Its success has meant
that many companies have developed RTO solutions and related software,
whose use is increasing due to the highly competitive market.

RTO consists of solving an optimization problem by considering economic
objectives through the explicit use of models for making decisions in real
time that are passed to lower level controllers. One of the main challenges
in RTO systems comes from the fact that models are simplified
representations of reality and are thus subject to uncertainty. The most
intuitive way to deal with this problem is to use process measurements to
update the process model in order to give a better prediction of the plant
outputs. This is the classical “two-step” approach, which consists of a
parameter estimation step followed by an economic optimization step to
compute the new operating point to be applied to the process in an iterative
scheme until no further improvements in the cost function are observed
(Behrens, et al., 2014).
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However, in the presence of structural plant-model mismatch and
unmeasured disturbances, the solution provided by the “two-step”
approach might result in suboptimal, or even infeasible, plant operation.
Even in the presence of parametric uncertainty, this methodology does not
always provide correct results, since it is not straightforward to decide
which model parameters to adapt by means of parameter estimation and
which ones to keep at fixed values. In addition, these parameters should be
identifiable from the available measurements, but this is not always the case
(Yip & Marlin, 2002).

Hence, there is a clear interest in devising and studying RTO
methodologies that are tailored to enforcing feasibility and optimality, while
alleviating model accuracy and updating requirements. With this in mind,
this thesis describes the main advances in RTO and develops new techniques
to improve its applicability in the process industry.

1.1.2 Problem formulation

From a practical point of view, the optimization task consists of finding
the best operating point that satisfies process specifications and constraints
on many variables. To carry out this task a mathematical optimization
problem that contains the following elements must be formulated (Biegler,
2010):

e Objective function: a quantitative performance measure to be
minimized or maximized. This can for instance be operational costs,
yield or profit.

e Model: set of equations that describe the behaviour of the process.
For the optimization problem, this translates into a set of equations
and inequalities named constraints which comprise a feasible region
that defines the performance limits for the system.

e Decision variables: these are degrees of freedom in the process, that
is, variables that can be adjusted to satisfy the constraints and find
the optimal value for the objective function.

e Operating constraints: the limitations on the values of some variables
that can be divided mainly into four groups: equipment constraints
(valve position, compressor speed ...), safety constraints (explosive
limit, critical pressure...), quality constraints (reaction yield, purity...)
and environmental constraints (pollutant emissions).
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RTO typically uses an approximate nonlinear steady-state model of the
process to make decisions:

Fx,u,B) =0, y=h(x,u) (1.1)

where F and heR"™* are vectors of nonlinear functions, §eR"* the
model parameters, ueR"! the decision variables, yeR™"! the outputs
predicted by the model and xeR"! accounts for some internal model
variables.

Then, RTO involves solving a constrained, steady-state optimization
problem whose general formulation is given by (1.3) where ¢ is the cost

function to be minimized and g;represents the inequality constraints (i =
1,.., ng) which can be approximated from the knowledge of u andy as (1.1)

shows . h is the set of nj, equality constraints given by the model, B R

the model parameters, and ueR™** the decision variables which present
lower and upper limits u*and u".

min  $lu, y(u, B)

st g;(u, yu,B) <0 i=1,.,n, (1.2)
h(u, y(u,B)) =0
ut <u<u’

For simplicity, notation ¢(u, B) will stand for ¢(u, y(u, B))in the rest of the
thesis with no loss of generality.

min  $(u,B)
s.t g:(up)<o0 i=1,.,n
h(u,B) =0

ut <u<u’

g (1.3)

Assume ¢ and g; are twice continuously differentiable in a
neighbourhood of u’, the gradients of the active constraints g; (u’, B) are
linearly independent, and that u” is a local minimizer. The first-order
necessary conditions of optimality for the problem (1.3), also known as the
Karush-Kuhn Tucker (KKT) conditions, must be hold at u’, where u”is a local
optimum of problem (1.3) and they are defined as follows:

9,<0 u <uc<u (1.4)
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9; =0 ZUT(U—UU)z 0 (LT (uL —u): 0 (1.5)
=0 =0 T =0 (1.6)
oL a¢ < 7 agi U L (1.7)
~ == 7 ; +0 -T =0
au 8u le /u, au z z
where the LagrangianLis defined as:
(1.8)

L(U, Y, B, (U/ZL) =+ %M‘gi + (UT (“ - “U) + ZLT (uL - u)

where p eR", ¢, ' eR™ are the Lagrange multiplier vectors.

The necessary conditions of optimality can be divided into: (1.4), the
primal feasibility conditions; (1.5), the complementary slackness conditions;
and (1.6), (1.7) that are referred to as the dual feasibility conditions. Any
point u” for which there exist Lagrange multipliers pu*, 7°", 2", such that, (u’,
p', 7V, 1) satisfies the KKT conditions is called a KKT point.

These conditions are necessary conditions that must hold at each local
minimum; however, they may be satisfied by a point that is not a local
minimum. Sufficient conditions must be satisfied for a KKT point to be a
strict local optimum.

In order to assure that the solution given by the first order KKT
conditions is a minimum, and not a maximum or a saddle point of the
LagrangianLin (u’, p°), the second order conditions are formulated.

Second order conditions provide sufficient optimality conditions for the
solution and are given by the following expression involving the Hessian

ViL:

z(u' ) vizu')> o (1.9)
So, the Hessian of L with respect to u is positive definite in relation to all
vectors Z orthogonal to the gradients of the active constraints atu’.

Although, RTO is traditionally based on solving nonlinear steady-state
problems, it is important to note that there are many other classes of
optimization problems, depending on several factors, such as the kind of
functions and variables involved in the problem or the dependence of these
functions on time. A possible classification is shown in Figure 1.2.
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-

( Optimization Problems >

YES

NO
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unction™
inearit

‘ Linear ‘ ‘ Nonlinear ‘ ‘ Linear ‘ ‘ Nonlinear
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variable variable
l \ 4 l l \ 4 l
‘ Continuous ‘ ‘ Mixed ‘ ‘ Integer ‘ ‘ Continuous ‘ ‘ Mixed ‘ ‘ Integer ‘

Figure 1.2. Classes of optimization problems.

The first separation in the classification considers whether model
equations depend on time or not, distinguishing between dynamic and static
problems. The linearity of the equations divides the optimization problems
into two groups: linear (all the functions involved are linear) or nonlinear
(any of the functions are nonlinear).

If the variables involved in the problem are continuous, there is a
continuous problem; if all of them are discrete, the problem is called
integer, and finally, if there are both types of variables, the problem is
mixed. The discrete variables are often restricted to taking 0 or 1 values to
define logical or discrete decisions, such as the assignment of equipment
and sequencing of tasks.

There are other classes of optimization problems that have not been
shown in Figure 1.2, such as deterministic or stochastic problems. In
deterministic problems, the input data for the given problem is known
accurately, whereas stochastic problems are solved under uncertainty,
involving random variables. There is also multiobjective optimization, which
involves minimizing or maximizing multiple objective functions subject to a
set of constraints.
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There is an important distinction in whether they are convex or
nonconvex. A problem is considered convex if the following conditions are
satisfied:

o A set SeR™is convex if and only if all points on the straight line
connecting any two points in this set are also within this set. For all
ae(0,1)and uy, u; € S, this can be statedas:

ul@)=au, +(1-au, € S (1.10)
e Afunction ¢(u, ) is convex if its domain U is convex and
ap(uy)+(1-a)p(u,)2 plu(e)) (1.11)
holds for alla(0,1)and uy, u, € X

e Convex feasible regions require g; (u, B) to be convex functions and
h(u, B)to be linear.

e Afunction ¢@is concaveif -@is convex.

If (1.3)isa convex problem, any local solution, that is, a feasible solution
that cannot be improved within a neighbourhood around this one, is
guaranteed to be a global solution to (1.3), i.e., a better solution cannot be
found. However, nonconvex problems may have multiple local solutions.

Other important kind of optimization problems are the dynamic ones
which play an important role in disciplines such as chemical industry or
aerospace applications. A dynamic optimization problem (DAE) is
formulated as follows:

min  (u,B) = j I'(x,u,B)

(1.12)
St d7x = f(x’ u/ B)I x(to) — Xg
dt
g,‘(x/u/B)SO i=1,...,ng
h(x,u,B) =0
u' <u<u’

where x(t) eR™ are the state variables, which are functions of time,
t 20, u(t) eR™* are the decision variables and p e:R""* are parameters that
are independent of time. The main characteristics of this optimization
problem are that some of the equations are given as differential equations
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like f, equality constraints h, inequality constraints g and decisions variables
are made over time.

A wide variety of approaches have been developed to address the
solution of (1.12). These strategies can be loosely classified as “Optimize
then discretized” and “Discretized then optimize” (Biegler, 2010). A
schematic of the different optimization strategiesis shown in Figure 1.3.

DAE optimization problem Indirect approach
Discretize
controls
Direct NLP approach Sequential approach
T
|
Discretize all :
variables |
Provide initial |
states in periods. 4
Discretize
Simultaneous approach controls Multiple shooting

Figure 1.3. Schematic of DAE solver methods.

Indirect methods: indirect methods attempt to solve optimal control
problems by seeking a solution to the necessary conditions of
optimality, such as those presented earlier in (1.4)-(1.7). Many
indirect methods use iterative procedures based on successive
linearization to find a solution to the system of NCO. A nominal
solution is chosen that satisfies part of the NCOs, then this nominal
solution is modified by successive linearization so as to meet the
remaining NCOs. Popular indirect methods for optimal control include
guasi-linearization methods, gradient methods such as control vector
iteration, and indirect shooting methods (see (Bryson & Ho, 1975)).

Direct methods: Nonlinear programming solvers NLP are a kind of
optimization tool based on the availability of nonlinear models and
first and second derivatives. As seen in Figure 1.3, methods which
apply NLP solvers can be classified into two groups, the sequential
and the simultaneous approaches.
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Sequential approach: In the sequential methods, the control variables
are discretized with control vector parameterization (CVP) methods,
generating an equivalent problem that can be solved as one NLP,
where the cost function and the constraints are obtained by
integrating the system. For more information see

Examples of control profile of various degrees and continuity orders
are shown in Figure 1.4 represented as piecewise polynomials.

piecewise constant piecewise linear without continuity

“(t) / piecewise linear with continuity

.

piecewise quadratic with continuity

to ty tg tn,—1 tn, = tr

Figure 1.4. Examples of control variable profiles.

Simultaneous approach: In this case, a full discretization of the state
and control profiles, is performed, generating an algebraic set of
equations, so that, the dynamic optimization can be solved as a large
NLP one. For more information see

Multiple shooting approach: Optimization with multiple shooting
serves as a bridge between sequential and direct transcription and
was developed to deal with unstable DAE systems. In this approach,
the time domain is divided into smaller time elements and the DAE
models are integrated separately in each element. In addition, the
initial values of the state variables at every interval x; are incorporated
as new decision variables. For an extended review of multiple
shooting, (Bock & Plitt, 1984) and (Leineweber, 1999) are
recommended.
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1.2 Handling uncertaintiesin process optimization

Process optimization typically involves significant uncertainty due to
imprecise knowledge of the plant operation, transforming deterministic
problems into stochastic ones, the solution of which undoubtedly remains
challenging and with a great practical importance. The uncertainties in
process optimization can arise from two sources: those due to the random
behaviour of the process variables and those due to the presence of plant-
model mismatch, which can be divided into structural mismatch arising from
the approximation of the underlying process mechanisms, parametric
mismatch that stems from uncertain process parameters and process
disturbances.

To deal with uncertainty, several approaches have been developed such
as stochastic programming or robust optimization. Other approaches focus
on modifying the model or the optimization problem from process
measurements to cope with modelling errors.

There are basically three groups of methods for dealing with uncertainty
depending on the use of process measurements. The first approach, the
most intuitive, consists of using the process measurements to update the
model parameters and then using this corrected model to carry out the
economic optimization (Chen & Joseph, 1987). This formulation, the “two-
step” approach, is solved iteratively until the algorithm converges to an
optimal solution, i.e. once a steady-state of the process is achieved, both
problems are solved (parameter estimation and economic optimization).
However, the presence of significant structural uncertainty about the model
and the real process means the described methodology is not able to
achieve the plant optimum. A second technique uses the process
measurements to estimate the gradients of the objective function of the
process with respect to the decision variables. It does so in order to
compute some modifiers for the cost function and the constraints of the
optimization problem to enforce the necessary optimality conditions (N CO)
of the modified optimization problem, matching them to the ones for the
real process. In this way, the algorithm will converge to the plant optimum.
This method is named ISOPE (Integrated System Optimization and
Parameter Estimation) (Roberts, 1979) and represents the base for the
Modifier Adaptation methodology (MA). The MA technique uses the process
measurements to estimate the plant gradients and compute some corrector
terms for the cost function and the constraints of the optimization problem
without updating the model parameters. Instead of updating the model or



32 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY

considering all the possible values of the uncertain parameters, MA changes
the optimization problem, incorporating information from process
measurements, so that the solution of the modified problem coincides with
the solution obtained with a perfect model. The main advantage of MA is
the capacity to converge to the plant optimum despite the presence of
structural plant-model mismatch. The third group of methods incorporate
the plant information so as to directly update the process inputs, replacing
the optimization problem by a feedback control problem which tries to
satisfy the process optimality conditions. Some examples are Extremum-
Seeking Control (ESC) (Krstic & Wang, 2000) and Neighboring-Extremal
Control (NEC) (Francois, et al., 2005).

1.2.1 Stochastic programming

In process optimization, an important source of uncertainty is the
random behaviour of some parameters. When the parameters, or significant
disturbances, are known only within certain bounds, one approach to
tackling such problems is to take decisions that cover the different
realizations of the uncertainty. In this case, the goal is to find a solution
which is feasible and optimal for all such data in some sense. Stochastic
programming models take advantage of the fact that the random variables
present expected bounds and belong to a probability space with a given
probability distribution function (PDF). The goal here is to find some policy
that is feasible for all (or almost all) the possible data instances and
maximizes the expectation of some function of the decisions and the
random variables.

The first works concerning linear stochastic programming date back to
the mid-1950s (Dantzig, 1955), (Beale, 1955). From then on, a huge amount
of works have followed this research, making stochastic programming a very
active field with applications in many different disciplines, such as
operations research, finances and engineering.

One important formulation of stochastic programming considers a two-
or multi-stage problem based on different scenarios of the uncertainty
(Birge, 1997) as will be explained below. First, it is important to understand
a general concept for stochastic programming called recourse. This concept
refers to the fact that the decision-maker can adapt future decisions to
future observations, which is usually illustrated in the separation of the
decisions between here-and-now decisions that have to be fixed at a certain
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time instant and the wait-and-see decisions, which can be adapted
according to future observations.

1.2.1.1 Two-stage programming

The most widely applied and studied stochastic programming models are
two-stage (linear) programs. Here the decision-maker takes some action in
the first stage, after which a random event occurs affecting the outcome of
the first-stage decision. A recourse decision can then be made in the second
stage that compensates for any bad effects that might have been
experienced as a result of the first-stage decision. The optimal policy from
such a model is a single first-stage decision and a collection of recourse
decisions (a decision rule) defining which second-stage action should be
taken in response to each random outcome. Its formulation involves the
assumption that the second-stage uncertain data can be modelled as a
random vector with a known probability distribution (Shapiro & Philpott,
2007).

1.2.1.2 Multi-stage programming

The stochastic programming model discussed before is static in the sense
that a decision (supposedly optimal) is made at one point in time, while
accounting for possible recourse actions after all uncertainty has been
resolved. But there are many problems where decisions should be made
sequentially, at certain periods of time based on information available at
each time period. Such multi-stage stochastic programming problems can be
viewed as an extension of two-stage programming to a multi-stage setting.
In each stage, decisions must be taken considering the previous ones and
the probability distribution function of the random variable in the future,
which is called a multi-stage recursion problem. It is assumed that, after a
certain number of time periods or stages (robust horizon), it is possible to
have information on the uncertainties, so the corresponding actions to be
carried out at that time can be computed, assuming a known value of the
uncertainty (Marti, 2015).

Quite often, multi-stage stochastic optimization is performed where, in
the first stage, the uncertain variable (with robust horizon equal to one) can
have any value, but in the second stage, they can be considered to be
known. Notice that, in the first stage, a single decision must be taken in spite
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of the different realizations of the uncertainty; while different decisions can
be taken for every value of the uncertaintyvariables in the second stage.

In terms of the probability distribution function of the random variables,
the most widely used method considers a scenario representation of the
random space as a finite-dimensional approximation of the original
problem, transforming the original stochastic optimization problem into a
large scale deterministic equivalent (Dupacova, 1995).

The model uncertainty is taken into account by considering a tree of
discrete scenarios for each possible value of the uncertainty, as depicted in
Figure 1.5, where x/ represents the state-vector at stage k in the position j,
u; the vector of control inputs, and d] are the disturbances. The formulation
of a scenario tree makes it possible to take into account, explicitly, the fact

that future decisions can depend on new information (measurements) that
will become available in the future.

141 1 141
u d, X3 uz ds )(41
> 1
» >

2 42
2 2 2 2
u; dz ‘Xg us d3 X‘L
> >
3,3 3 343 3
u;” d; X3 us” ds Xa
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Figure 1.5.Scenario tree presentation of the uncertainty evolutionfor multi-stage
programming.

In this way, the future control inputs are adapted according to the future
realizations of the uncertainty and the conservativeness of this approach is
reduced in comparison to other robust methods that search for a single
sequence of control inputs to satisfy the constraints for all the possible
values of the uncertainty.
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1.2.2 Robust optimization

Robust optimization is an approach to optimization under uncertainty, in
which the uncertainty model is not stochastic, but rather deterministic and
set-based. Instead of seeking to immunize the solution in some probabilistic
sense to stochastic uncertainty, here the decision-maker constructs a
solution that is optimal for any realization of the uncertainty in a given set
(Bertsimas, et al., 2011). In the early seventies, Soyster (Soyster, 1973) was
one of the first researchers to investigate explicit approaches to Robust
Optimization. The general formulation for Robust Optimization is described
by (1.13).

min  ¢(u,s;)

, (1.13)
s.t g;(u,s,)<0 Vs, eS;,, i=1..,n

h(u,s;)=0

u' <u<u'

g

Here s; eR"s are disturbance vectors or parameter uncertainties, and
S;cNR"s are uncertainty sets, which will always be closed. The objective of
(1.13) is to find the decision variables that minimize the cost function among
all the solutions which are feasible for all realizations of the disturbances s;
within S;. This problem offers some measure of feasibility protection for
optimization problems containing parameters which are not known exactly,
since the solutions are computed to ensure feasibility when the problem
parametersvary within the prescribed uncertainty set.

While this technique achieves the desired effect of immunizing the
problem against parameter uncertainty, it is overly conservative for practical
implementation (Bertsimas & Thiele, 2006). This issue was addressed by
Ben-Tal and Nemirovski (Ben-Tal & Nemirovski, 1998), (Ben-Tal &
Nemirovski., 1999) and El-Ghaoui and Lebret (El Ghaoui & Lebret, 1997), (El
Ghaoui, et al., 1998) who proposed restricting the uncertain parameters to
belong to ellipsoidal uncertainty sets, which removes the most unlikely
outcomes from consideration and vyields tractable mathematical
programming problems. Other ways for modelling the uncertainty have also
been proposed, for example, the use of polyhedral uncertainty sets
(Bertsimas & Sim., 2004), or uncertainty sets described by more general
norms (Bertsimas, et al., 2004).
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1.2.3 Model Parameter Adaptation

Model parameter adaptation updates the parameters of the process
model and repeats the optimization. It refers to the standard way of
implementing RTO, called the “two-stage” approach (Chen & Joseph, 1987),
also referred toin the literature as repeated identification and optimization.
In the first step, the values of the adjustable model parameters f are
estimated using the process output measurements. This is typically done by
minimizing the lack of closure in the steady-state model equations, such as
the weighted sum of squared errors between the measured outputs yp and
the predicted outputs y from the model. In order to implement this method,
one has to select the set of model parameters to be adjusted, as these
parameters should represent actual changes in the process and contribute
to approaching the process optimum. Clearly, the smaller the subset of
parameters, the better the confidence in the parameter estimates, and the
lower the required excitation. However, too few adjustable parameters can
lead to completely erroneous models, and thereby to a false optimum.

In the second step, the updated model is used to determine a new
operating point by solving an economic optimization problem.

The interaction between the model-parameter adaptation and
reoptimization steps must be considered carefully for the two-step
approach to be able to achieve optimality. This is due to the fact that the
objective of the parameter adaptation might be inconsistent with the
economic optimization problem, since minimizing the mean-square error in
y may not help to find feasibility and optimality.

The convergence of this methodology has been addressed by several
authors (Forbes & Marlin, 1994), (Biegler, et al., 1985); showing that optimal
operation may be reached if model adaptation leads to matched Karush-
Kuhn-Tucker (KKT) conditions for the model and the plant, which is not
possible if the model presents structural uncertainty.

1.2.4 Direct Input Adaptation

Direct input adaptation turns the optimization problem into a feedback
control problem and implements optimality via tracking of the necessary
conditions of optimality.

The aim of this feedback control is to compute the set points for the
manipulated variables while trying to maintain certain measures of
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optimality fixed. The challenge is to find the optimality functions calculated
from the measured variables that must be fixed by changing the decision
variables to enforce the NCO of the plant. In other words, the goal of the
control structure is to achieve a similar steady-state performance as would
be realized by a fictitious, on-line optimizing controller.

In self-optimizing control (Skogestad, 2000), the idea is to use a process
model to select linear combinations of the output variables, the tracking of
which results in good performance. However, tracking linear combinations
of the output variables, although very convenient, hardly provides any
guarantee that a plant optimum is reached upon convergence. To
circumvent this difficulty, a rather natural idea is to choose the controlled
variables as the NCO components with the corresponding set points equal to
0, thereby enforcing the plant NCO. Two classes of approaches fall within
this category: extremum-seeking control (Guay & Zhang, 2003), and NCO
tracking (Francois, et al., 2005). Tracking the NCO of the plant consists of
three steps: (i) determining the active set (positivity condition on Lagrange
multipliers), (i) enforcing the active constraints, and (iii) pushing the
sensitivity to zero (Chachuat, et al., 2009). These techniques are briefly
described below:

e Extremum seeking (Guay & Zhang, 2003): this is based on the
assumption that the input (decision variable) to output (objective
function) map is static. Under this assumption, one possibility to
attain an extremum is to first estimate the gradient of the input—
output map and then design a control law to keep it as close to zero
as possible. This extremum-seeking controller is derived from the
NCO. A popular strategy for estimating the process gradients consists
of exciting the plant with a sinusoidal input in order to extract the
information to compute the required gradients.

e NCO tracking (Francois, et al., 2005): this is a general framework that
turns a (dynamic or static) optimization problem into a control
problem. It uses the fact that, at the optimal operating point, the first
order necessary optimality conditions must hold. Basically, the NCO
are the controlled variables and the NCO tracking procedure adapts
the inputs at given sample times. Instead of controlling “normal”
measurements, the gradient is measured (or estimated), and used as
a controlled variable. When a disturbance enters the process, the
NCO tracking control scheme adapts the inputs iteratively such that
the NCO are satisfied after some iterations.
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1.2.5 Modifier Adaptation methodology

Modifier Adaptation methodology is one of the most used for real-time
optimization of uncertain processes. MA modifies the cost and constraints
of the economic optimization problem by adding some extra terms called
modifiers and then repeating the optimization so that the KKT conditions of
the model and the plant can match. These modifiers are computed using
plant data and can be divided into three groups: constraint bias terms, cost-
gradient modifiers and constraint-gradient modifiers.

The idea of adding a gradient modifier to the cost function of the
optimization problem dates back to the work of Roberts in the late 1970s.
Note that it was originally proposed in the framework of two-step methods
to better integrate the model update and optimization sub-problems, which
led to the so-called ISOPE approach (Roberts, 1979).

Gao and Engell (Gao & Engell., 2005) proposed adding first-order
modifiers to the process-dependent constraints, in addition to the
constraint bias terms. This modification allows, not only the values of the
constraints, but also their gradientsto be matched.

The adaptation methodology was finally formalized by Marchetti and co-
workers, who presented the Modifier Adaptation Methodology (Marchetti,
et al., 2009). The authors analyzed the convergence to the real optimum
when the adaptation in the economic optimization is performed by
correcting the gradients of the objective function and the constraints, from
the point of view of the KKT matching between the model and the real
process.

The modified optimization problem to be solved in the RTO layer is
formulated as follows:

muin By = (U, B)+ Ay (u— uZ—l)

st gy, =g;(u,B)+vilu—u,_)+¢&,<0

h(u,B)=0

u <u<u’

(1.14)

i=1,...,ng

where ¢y and gy are the modified cost function and constraints; U, is
the input applied in the previous steady state, that is, the optimal solution of
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the previous RTO; and the modifiers A, y and ¢ are computed from the
following equations:

AZ = Vu¢P‘ - vu¢‘u;71 VZ = VugP‘uL1 - Vug‘

« «
U U

ik = gP,i(u;—l) _gi(uz—l) (1.15)

where the subscript P indicates that the cost function and constraint
gradients, as well as the output variables, are all evaluated from process
measurements.

This methodology will be explained in more detailin chapter two.

1.3 Motivation

The optimization of an operating process is not a trivial task, since the
processes are very complex and there are a lot of disturbances that can
affect the process operation. In addition, these processes are not perfectly
known, so the presence of uncertainty is inherent to process optimization.
Hence, the existence of a tool like RTO makes sense, since it is able to find
the optimal operating point, despite uncertainties, using plant
measurements; thus increasing the added value of a given process.

RTO is based on steady-state plant models which are generally simplified
representations of reality and are thus subject to uncertainty. Therefore, the
optimum computed from the model may not be the same as the optimum
of the process. For this reason, the study and development of RTO methods
able to overcome this mismatch is an important area for research in order to
better deal with the uncertainties that affect process optimization,
overcoming the partial knowledge of the process.

This thesis focuses on the use of the Modifier Adaptation methodology
to deal with uncertainty in RTO. MA has become a very useful tool and
several applications have shown the effectiveness of this methodology.
Important features of MA are the fact that it uses a fixed model in the RTO
layer and its ability to deal with structural uncertainty. However, it is subject
to some limitations. More specifically, after the study of the different MA
approaches, it has been concluded that the main disadvantages of this
technique are three:

e It requires the gradients of the plant cost and constraints to be
estimated with respect to the decision variables.
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e When dealing with problems with many operational constraints and
decision variables, the number of modifiers increases and therefore
makes the computational task more complicated.

¢ The necessity of waiting for the steady state of the process to update
the modifiers in each RTO iteration, since this optimization layer is
based on stationary models.

These two problems slow down the convergence rate of this
methodology, making its implementation in large-scale, real processes
inviable. To overcome these issues, this thesis tries to speed up the
convergence of MA in three different ways:

e Reducing the number of required modifiers.
e Using transient measurementsto estimate plant gradients.

e Improving the applicability of methods that do not require the
computation of plant gradients like Nested-Modifier Adaptation
(NMA) in order to speed up the convergence.

Furthermore, after reviewing the existing literature about MA, it is clear
that there are not many large scale applications or realistic problems with a
hierarchical control structure that could really be useful to show the
potential of this tool. One of the objectives of this thesis, therefore, is to test
MA in realistic case studies to show how powerful it is, as well as the
enormous benefits it can bring to the chemical industry.

1.4 Objectives and working plan

The general objective of this thesis is to contribute to the development
of MA by proposing methods that facilitate its applicability in real processes,
speeding up the convergence rate to the optimum operating point.
Moreover, the applicability of MA in large scale systems is demonstrated
with examples of the implementation of the developed methods in such
simulated systems as; the transportation of natural gas through a gas
pipeline network, or the operation of a depropanizer distillation column of a
petrol refinery. In addition, an experimental flotation column has also been
used to test the new methods.

To reach this general objective, the following particular objectives have
been considered:
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e The study and implementation of different MA approaches found in
the literature.

e Building large scale dynamic models, based on first principles, to be
considered as real processes in simulation for the natural gas network
and the depropanizer distillation column.

e Applying the existing MA techniques in large scale problems with a
hierarchical control structure.

e Model reduction to be used in the RTO layer.

e The study of the reduction in the number of modifiers in MA,
formulating an alternative way to compute the modifiers using
Lagrangian functions.

e The study of different plant gradients estimation techniques
proposing a method based on transient information to speed up the
convergence rate of the Modifier Adaptation.

e Testing the proposed approaches in realistic problems, such as the
operation of a depropanizer distillation column and the
transportation of natural gas through gas networks. A well-known
benchmark, the Otto-Williams reactor, hasalso been considered.

e Testing the proposed approach based on transient information in real
applications, such as a laboratory-scale flotation column for copper
concentration.

1.5 Organization of the thesis

The thesis is organized as follows: chapter two reviews the existing MA
approaches, describing how to apply them to real processes and analysing
the implementation issues. Chapter three explains a new methodology to
handle operational constraints in MA and its application to the Otto
Williams reactor. In chapter four, different MA techniques based on
transient information are described and implemented in the Otto Williams
reactor and in a laboratory-scale flotation column. These approaches are the
following:

e Modifier Adaptation computing plant gradients from neighbouring
extremal control.



42 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY

e Modifier Adaptation approach using Recursive Extended Least
Squares to compute process gradients.

e A combination of transient and steady-state measurements.

The considered case studies are described in chapter five and chapter six
showing the results obtained after the implementation of the presented MA
approaches. Two case studies have been used that corresponds to the
transport of natural gas through gas pipelines and the operation of a
depropanizer distillation column of a petrol refinery. The complete models
to simulate the real processes and the reduced ones to be used in the RTO
layer are described. Finally, conclusions and future work are presented in
chapter seven.
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2 MODIFIER ADAPTATION METHODOLOGY
FORRTO

Modifier Adaptation methodology has become a powerful tool for RTO of
uncertain processes. This chapter presents an overview of the different approaches
that have been developed in this field and the way to implement them. Then, a
summary of applications is made followed by the explanation of some
implementation issues that remain challenging within this methodology.
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2.1 State of the art: Modifier Adaptation
methodology

RTO comprises a set of optimization methods that incorporate plant
measurements in the optimization framework to drive a real process to the
optimum operating point, while guaranteeing constraint satisfaction.
Process optimization is typically carried out by following a sequence of steps
that include, firstly, process modelling, secondly, numerical optimization
using the process model, and lastly, the application of optimal inputs to the
plant (Marchetti, etal., 2016).

RTO typically involves solving a constrained, steady-state optimization
problem whose general formulation is given by (2.1), where ¢ is the cost
function to be minimized, g;represents the inequality constraints (i = 1,...,
ng), h the set of n, equality constraints given by the model, BeR"F* the
model parameters, and ueR"™*! the decision variables which present lower
and upper limits u*and u".

min  ¢(u,B)

s.t g;,(u,B)<0 i=1,.,n, (2.1)
h(u,p) =0

ut <u<u'

However, the model optimum obtained by solving (2.1) may not be the
same as the plant optimum unless the model is a perfect representation of
the process and the value of all disturbances is known. This often results in
suboptimal plant operation and even in constraint violation.

RTO has emerged over the past forty years and uses diverse strategies to
overcome the difficulties associated with plant-model mismatch by
incorporating process measurements in the optimization framework to
combat the adverse effect of uncertainty. This uncertainty can have three
main sources; namely, parametric uncertainty, when the values of the
model parameters do not correspond to the reality of the process; structural
plant-model mismatch, when the structure of the model is not perfectly
known; and the third type, process disturbances.

The most intuitive strategy to combat the uncertainty is to use process
measurements to update the model. This is the main idea behind the “two-
stage” approach (Chen & Joseph, 1987), (Darby, et al, 2011). Here,
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deviations between predicted and measured outputs are used to update the
model parameters, and new inputs are computed on the basis of the
updated model. This iterative process is repeated until convergence is
reached. However, the “two-stage” scheme works well only when the plant-
model mismatch is parametric and the operating conditions provide
sufficient excitationto efficiently estimate the model parameters.

This difficulty of converging to the plant optimum has motivated the
development of a modified “two-stage” approach, known as Integrated
System Optimization and Parameter Estimation (ISOPE) (Roberts, 1979) and
(Roberts, 1995), that will be explained in the following subsection. ISOPE
requires both output measurements and estimates of the gradients of the
plant outputs with respect to inputs. These gradients will be used to modify
the cost function of the optimization problem in order to enforce NCO
matching between the model and the process.

MA has its origins in this technique, but differs in the definition of the
modifiers and in the fact that no parameter estimation is required. MA uses
measurements of the plant constraints, measurement of the objective
function and estimates of the plant gradients to modify the cost and
constraint functions in the model-based optimization problem without
updating the model parameters (Marchetti, et al., 2009) to match the first-
order NCO upon convergence. As will be explained later, the main
advantage of MA is that it is able to reach plant optimality upon
convergence despite the presence of structural plant-model mismatch.

MA has evolved from its beginnings in the seventies, with numerous
schemes emerging, some of which will be described hereafter. Its
implementation in several case studies, such as the Otto-Williams reactor
(Marchetti, et al., 2010), (Navia, et al, 2013), or the operation of a
depropanizer distillation column (Rodriguez-Blanco, et al., 2015), has shown
that MA is a great tool for optimizing the process operation in the presence
of a high degree of uncertainty. A review of the fundamentals of MA and the
principle approaches developed in this field is made in this section,
describing the main features and how to implement them.

2.1.1 Integrated System Optimization and Parameter
Estimation (ISOPE)

To take into account the plant-model mismatch in RTO, a two-stage
algorithm emerged called ISOPE. This technique adds a parameter to the
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cost function of the economic optimization problem solved in the RTO layer
that makes the model gradient match the process gradients in such a way
that the KKT conditions (defined in equations (1.2)-(1.5)) of the modified
problem match those of the real plant. The following steps, described in
Algorithm 2.1, have to be followed to implement this methodology. For
simplicity, an unconstrained economic optimization problem has been
considered, although ISOPE has also been developed and implemented in
the presence of operational constraints (Brdys, et al., 1986).

ALGORITHM 2.1: ISOPE (Roberts, 1979)

Step 1: Once the steady state of the process is reached, the k execution
of the RTO is carried out. The inputs applied to the plant being u,.1, and
measuring the output variables yp(u,.1), @ parameter estimation problem is
solved to update the uncertain model parameters B,, whose lower and
upper limits are defined by B*and BY, respectively. This problem (2.2) is
solved under the condition that the outputs computed from the model

match those measured from the process y(uy.1 Bi) =yp(ur1) €R"Y, obtaining
the optimal solution for the uncertain parameters B, , where h €™ are the
set of equality constraints given by the model.

min (Yo —¥) (vo—v)
st h(uk71,V(Uk71,B)) =0
B*<p<p’

Step 2: Assuming that the output plant gradient Vuyp\u is available,

(2.2)

the first order modifier A, €™ is computed from steady state information
of the process by applying (2.3).

T
Ak :Vy¢

(uk_l,v(uk_l,BZ))[Vuyp‘um _vuy‘(“k—l'ﬁl)] (2.3)

Step 3: Once the model has been updated and the modifier has been
computed, the modified economic optimization problem (2.4) of the RTO
layer is solved, where ¢,,is the modified cost function, in order to obtain the
new inputs u,that will be applied to the process until the next RTO
iteration, which will be carried out when the process reaches a new steady
state.
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min gy =§lu,y(u B,))+A, u

st h{u,y(uB,)=0

ut <u<u'

(2.4)

In this way, the gradient of the modified cost function will coincide with
the plant gradient at u,, so that the qualification condition of the model
described in the literature of the ISOPE method (Brdys & Roberts, 1987) is
satisfied; i.e, at the optimum, the KKT conditions of the modified problem
are equal to those of the process. These KKT conditions have already been
defined in chapter one, equations (1.2)-(1.5) and (1.7).

Step 4 (optional): Smooth input changes and improve the convergence
to the optimum by filtering the inputs obtained by (2.4) by means of a first
order exponential filter (2.5), where K eR""u is a diagonal matrix of
damping factors whose eigenvalues vary from 0 to 1. The filtered inputs are
applied tothe plant.

uk:uk_l-l-K(u; -u, ) (2.5)

Step 5: Check that the convergence criterion is satisfied. This criterion

can be defined as‘uk—uk_l‘Stol, i.e., there are no changes in the RTO

decision variables higher than a fixed tolerance. If this is satisfied, stop the
algorithm, otherwise, k = k + 1, and return to step 1 when the next steady
stateis reached.

Thus, by applying this methodology, each RTO execution corresponds to
a steady state of the process.

2.1.2 Modifier Adaptation methodology

In 2002, Tatjewski proved that the convergence to the optimum of the
ISOPE method does not depend on the estimation of the uncertain
parameters, but on the equality between the process and model outputs in
each RTO execution (Tatjewski, 2002). For this reason, he introduced a new
modifier, b, e R", that takes into account the difference between the
process and model outputs ensuring that, upon convergence, these values
will be the same. The resultant optimization problem solved in the RTO layer
is described by (2.6), where ¢y, is the modified cost function, U, isthe input
applied in the previous steady state, i.e., the optimal solution of the
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previous RTO, h represents the set of equality constraints imposed by the
model, and the subscript P indicates that the cost function gradient and the
output variables are evaluated from process measurements.

min ¢, =4y +b,,u,p)+Au
st h(y+b,,u,B)=0 (2.6)

u <u<u'
where
A =VU¢P‘uL,1 _VU¢‘uL,1 b, =vypu*_;,B)—ylu*_,,B) (2.7)

One extension of this method was developed by Gao and Engell, who
defined new modifiers for the process constraints (Gao & Engell., 2005). The
main contribution of this work is the way they correct the process
constraints. In addition to the bias corrector added to the constraints g, that
results from the difference between the value of the process and model
constraints (Forbes & Marlin, 1994), they add correction terms to the
constraint gradients. These modifiers, y, , e R" ", are computed as the

difference between the constraint gradients estimated from the model and
those from the real plant. In this way, upon convergence, the finding of an
operating point that satisfies the NCO of the process is guaranteed. In this
case, gy, are the modified constraints and gp;are the process constraints.

min ¢M=¢(v+bk/U,B)+7\;U
st h(y+b,,upB)=0

, 2.8
9m,i =g,;(u,B) + V:'T,k(u —u* )+ €,x=0 i=1..,n, 28)
ut <u<u
where
(2.9)

v =09p,;U,B) —gilu_;,B) b =y,(u*_,,B)—yu*_,,B)

The MA methodology was developed from the equality of the KKT
conditions (defined in equations (1.2)-(1.5)) of both the process and the
model. This technique was presented by Chachuat in 2009 (Chachuat, et al.,
2009) and formalized by Marchetti (Marchetti, et al., 2009). The authors
removed the modifier b,, with the justification that by using the rest of the
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modifiers, upon convergence, the KKT conditions of the modified
optimization problem would match those of the process. The problem (2.10)
is iteratively solved by implementing the optimal inputs u, to the process
and updating the modifiers when a steady state has been reached, as shown
in Figure 2.1:

min gy, = $lu,B) + AL (u - u; )

st gy; =9,u,B)+ v,T'k(u — sz;l) +¢&,<0

h(u,B)=0
ut <u<u’

(2.10)

i=1,.., ng
where the modifiers are computed as shown in (2.9). In this formulation,
the number of modifiers (noq4) is given by (2.11), where it can be observed
that it depends on both the number of decision variables (n,) and the

number of constraints (n,):
Nmog =Ny + 1, (N, +1) (2.11)

By using these modifiers, if (u’, ') is a KKT point of the modified problem
it will be a KKT point of the process as it can be seen in the following
expressions. Under convergence u =u,=u,; andthereforeuy - ug; =0:

* * 2.12
aLl\fza(%‘"HTag"f:(3(1?«+7\T+MT(ag*+yTj:0 ( )
ou ou ou ou

Wg, =nT(g+e)=0, nT>0 (2.13)
gy =8+€=<0 (2.14)

Replacing the first- and zeroth-order modifiers given by (2.9) in equations
(2.12), (2.13) and (2.14):

oLy _ ¢ +(a¢P a¢)+uT[ og +(8g,, o8 D_ L, (2.15)

ou’  ou ou’ - ou’ ou’ B E

o ou”

*T

gy =n"(g+(g -8)=n"g, n' 20 (2.16)

g, =8+(8 —8)=¢g, (2.17)
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Figure 2.1. General formulation of MA methodology.

A graphical interpretation of the modifiers for the constraint g;is shown
in Figure 2.2. The modifier &, corresponds to the gap between the plant gy,
and the predicted constraint values g; at u,, whereas y, , represents the

difference between the slopes of gp ;and g;at uy.

gi

Y k,iT(Uk'Uk-l)

»
>

u

Figure 2.2. Modification of the constraint g, at u,.
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This algorithm has the advantage that it is not necessary to know a priori
the set of active constraints, adding as many y, , modifiers as operational

constraints, at the expense of slowing down the convergence of the
method. Furthermore, the method achieves the process optimum, even in
the presence of structural uncertainty. The main disadvantage is that,
although the method converges to an operating point that satisfies the NCO
of the process, it may do so following an infeasible way, since there is no
guarantee of feasibility in the intermediate iterations. Therein lies the
importance of using first order exponential filters for the modifiers, as those
shown in (2.18), to smooth changes and to try to follow a feasible path to
the optimum.

A =(=K)A; +K, (Vu¢P‘u;71 - Vu¢‘uzfl)

(2.18)
Vie ==K,y s + Kv(VugP‘u;A - Vug‘u;,l)

e, = (1-KJe, , +K, (g5, (U} ) —g,u; ,))

where Ky, K, y K., are diagonal matrixes whose eigenvalues are within
the interval (0,1].

The model used for RTO must satisfy certain adequacy conditions for MA,
which guarantees that the real optimum u.. can be found. These conditions
are the following.

First, a process model is said to be adequate for use in an RTO scheme if
it is capable of producing a local minimum for the RTO problem and a fixed
point for the RTO algorithm at the plant optimum u... In other words, u..
must be a local minimum of the RTO problem when the RTO algorithm is
applied at u... The plant optimum u.. is an operating point that satisfies the
first-and second-order NCO of the plant.

The adequacy criterion requires that u.. must also satisfy the first- and
second-order NCO for the modified optimization (2.10), with the modifiers
(2.18) evaluated at u... As MA matches the first-order KKT elements of the
plant (defined in equations (1.2)-(1.5)), only the second-order NCO remains
to be satisfied. That is, the reduced Hessian of the Lagrangian V2, Ly(u.)
must be positive definite at u.(1.7), then the process model is adequate for
use in the MA scheme (Marchetti, et al., 2016). This positive-definiteness
requirement is independent of the modifier values themselves.

In general, the MA can be implemented by following the next steps:
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ALGORITHM 2.2: Modifier Adaptation (Marchetti, et al., 2009)

Step 1.Initialize k= 0 and theinitial value for the modifiers Ay, yoand .

Step 2: Once the process has achieved the steady state, the process cost

function ¢p4.; and the constraints gp;; are measured. Compute the zercth
order modifier €;, from (2.9) for each constraint.

Step 3: Estimate the process gradients required to compute the first
order modifiers. This step will be different in each of the described
methodologies since each one considers a different estimation method, as
will be seen laterin this chapter.

Step 4 (optional): Filter the modifiers given by the upper optimization
layer using (2.18).

Step 5: Compute the new decision variable uy that will be applied to the
process until the next steady state by solving the modified optimization
problem (2.10).

Step 6: Check if the convergence criterion is satisfied, for instance,

‘uz —u,,| < tol, thatis, thereare no changesin the RTO decision variables

higher than a fixed tolerance. Another stop criteria can be considered, for
example, there are no changes in the process cost function higher than a

specified value ‘¢;,k —¢;Ik_1‘£tol. If any of these criteria is satisfied, stop

the algorithm, otherwise, k = k + 1, and return to step 2 when the next
steady state is reached.

As can be seen in Figure 2.1, this methodology requires the computation
of model and experimental gradients. Whereas there are tools to compute
the model gradients accurately, the plant gradients are more difficult to
estimate. Because of the necessity of estimating the process gradients,
several approaches have emerged to compute them properly, implemented
in step 3, which are combined with the general MA methodology described
by the Algorithm 2.2. The most intuitive method consists in estimating the
plant gradients by forcing an increase in each manipulated variable, waiting
for the steady state and computing each gradient by finite differences.
However, this requires a high number of intermediate experiments to
estimate all the gradients (n, experiments) before each RTO execution,
which makes this type of estimationimpractical.
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2.1.3 Dual Modifier Adaptation

The Dual Modifier Adaptation method (DMA), initially proposed by Brdys
and Tatjewski (Brdy$ & Tatjewski, 1994), (Brdys & Tatjewski, 2005) and
named Dual ISOPE, is an MA approach where an extra constraint is added to
the RTO problem (dual constraint) to guarantee that the actions applied in
the past will have generated enough excitation to accurately estimate the
plant gradients. These experimental gradients are estimated from past
operating points generated by the previous RTO iterations using the
definition of directional derivative. Assuming that there is a collection of
ny+1 points ug, Uga,..., Ugny applied in the past RTO iterations, the vectors of
differences with respect to previous points s, ; are defined by (2.19).

S, = U, —U, Vi=1,.,n, (2.19)

Supposing that the vectors s; are linearly independent, it is possible to
formulate a nonsingular square matrix Sy € R(n, x n,) whose condition
number will give the degree of excitation of the process:

Skz[sk,, skl,,u]T (2.20)

The process gradients are obtained from the definition of directional
derivative as shown in (2.21), where the variable z would represent either
the process cost function ¢p or the constraints gp;.

Z(uk )_'z(uk—l)
)2l )

To ensure that gradients are obtained accurately, a new constraint
(x1(Si) = a) is added to the optimization problem, where x represents the

6z~dz_S 1

ve 2 2.21
ou du ( )

condition number ( x(S, ) = HS;lH |s,| for any consistent norm) of S, which is

the matrix formed by the vectors of the differences of the decision variables
with respect to n, samples before, as shown in (2.20), and the parameter a
indicates the minimum degree of excitation (Gao, et al., 2016). This
constraint represents the dual characteristic of the method: while the rest of
the optimization aims to converge to the optimum of the modified model
(primal objective), the dual constraint ensures that, in the next RTO
iteration, the system will have enough excitation to estimate the process
gradient adequately (dual objective). The introduction of this constraint
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reduces the feasible region, which may imply a loss of optimality with
respect to solving the original modified optimization problem (2.10), but
increases the quality of the process gradient estimation. Following the
described methodology, the modified optimization problem to be solved in
the RTO layer is given by (2.22).

min gy = §u,B) + AL (u - ;)

st gy =9;uB)+ty,,(u- szl) +6,50

ut <u<u'

(2.22)

i = 1,...,ng
k(S,) > a

The implementation of DMA is carried out following Algorithm 2.2, in
which steps 1, 3 and 5 have been replaced by the ones described below in
Algorithm 2.3:

ALGORITHM 2.3: Dual Modifier Adaptation (Brdys & Tatjewski, 2005)

Step 1: Execute n, + 1 steady states to acquire enough information to
initialize the computation of plant gradients and, therefore, the initial value
for the modifiers Ag, ;o and &. Initialize k = 0.

Step 3: Estimate the plant gradients from (2.21).

Step 5: Choose the tuning parameter a and compute the new decision
variables u, by solving the modified optimization problem (2.22). These
inputs will be applied to the process until the next steady state.

The main advantage of this algorithm is that the process gradients are
computed from information taken in the previous RTO executions, so extra
excitation is not required, as in the case of estimating the gradients by using
finite differences. However, the evolution of the algorithm is very sensitive
to the value of parameter a, whose optimal value is not easily known a
priori. This tuning parameter must be carefully chosen since a high value
implies a high process excitation and this may drive the process to an
operating point that satisfies the NCO of the process, but following an
infeasible way. On the other hand, a small value may cause the gradients to
be inaccurately estimated.
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2.1.4 Iterative gradient-modification optimization
combined with derivative free optimization

One of the major challenges of MA in practice is the estimation of the
plant gradients from noisy measurement data. The iterative gradient-
modification method (IGMO) explores the inherent smoothness of the plant
mapping to enable an efficient and reliable optimization, even if the data is
subject to a high level of noise. The idea behind this approach is to combine
the quadratic approximation approach used in derivative-free optimization
techniques with the iterative gradient-modification optimization scheme.

The IGMO scheme computes plant gradients based on the data collected
at the previous operating points, in the same way as DMA does from the
expression (2.21) . In this method, the dual constraint defined in (2.22) was
used to decide whether to perturb the process additionally. The
perturbation u® is optimized by maximizing the inverse of the condition
number of S,?subject to the adapted process constraints.

-1iga

max k- (Sk)
, . , 2.23
st gM,i(uaddl):gi(uadd’)"' VI,k(uadd’ —u ) +é, <0 223

where

i T 2.24

§¢ = [lu, —u™)...u, —uy ) (2.24)

To provide reliable convergence in the presence of measurement noise,

IGMO extracts the gradients from quadratic approximations. In this way, this
scheme is complemented by the following elements (Gao, et al., 2016):

e Selecting points from the collected data set for a well-poised
regression set.

e Introducing a constrained search space for the next move based on a
covariance analysis of the regression set.

e Tracking the prediction accuracies of the adapted model-based

mappings (@ee(u) and gge(u)) and the approximating quadratic
functions, and also switching between model-based and data-based

optimizations according to the observed accuracies.
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How to choose the regression set and the evaluation of the search space
arediscussed in detailin (Gao, et al., 2016).

Let Uy and B, represent the regression set and the search space at the k
iteration. pmx and p, are the prediction accuracies of the adapted model-
based mappings and the quadratic functions (see (Gao, et al., 2016) to know
how to compute these values). ¢, and gq,are the regressed objective and
constraint functions from the quadratic approximation. The implementation
of this method is carried out by following the steps set out below:

ALGORITHM 2.4: Iterative gradient-modification optimization (Gao, et al.,
2016)

Step 1: Choose an initial operating point uy and apply that point and
Up +C e, to the plant, where c is a suitable step size and e; e R™ (i=1, ... n,) are
mutually orthogonal unit vectors. Compute the gradients at ug by applying
the finite difference approach and run IGMO until (n,+1) (n,+2)/2 set points
have been generated. Run the screening algorithm (see (Gao, et al., 2016))
to obtain the regression set U,. Initialize pm = pgx =0.

Step 2: Compute the quadratic functions ¢, and g,, and determine the
search space By.

Step 3: Extract the gradients from the quadratic functions. Adapt the
model-based optimization problem and determine @y as follows:

a) If pmi < Pqk, run the adapted model-based optimization (2.10) under
the constraint u € B,.

b) Otherwise, perform an optimization based on the quadratic
approximation.

min ¢, ,(u)
st; 9,40 (2.25)
ueB,

Step 4: If [a, —u,[<Au, where Au is the parameter used by the
screening algorithm to handle the influence of measurement noise, and
there is at least one point u; € U such that Huj—ukH>2Au, set

0y = (us+u,)/2. This step is used to improve the quadratic approximation.

Step 5: Evaluate the process at u,to obtain ¢ and gp,. The next iteration
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is defined depending on the following conditions:

a) Successful iteration. If¢3p « <&y, where ﬁp « =0 (Ok), define Q1 = uy
and run the screening algorithm to define the next regression Uy,;.

b) Update the quality indices pmi1 and pgia. Check the termination
criterion, if it is not satisfied, set k = k+1 and go to step 2.

Unsuccessful iteration. Ifd, , >¢, ,, run the screening algorithm to
update the regression set for u,with the value G,in the collected data. Due
to the screening algorithm, G, will be included in the regression set to
achieve an improved quadratic approximation around G,. Return tostep 2.

Compared to the finite-difference calculation of the plant gradients, the
guadratic approximation method decreases the influence of noise by
capturing the curvature information from more distant points to provide a
smooth mapping. These points are chosen by the screening algorithm based
on the collected data. However, the previously collected data might be
invalid in the presence of varying disturbances. This issue was discussed by
Wenzel (Wenzel, et al.,, 2015), studying the effect of considering only
recently collected data in the regression set for quadratic approximations.

2.1.5 Nested Modifier Adaptation

Although the MA techniques based on the computation of experimental
gradients guarantee an operating point that satisfies the process NCO,
regardless of the method used to estimate the gradients, the fact is that, it
might be a problem in real applications; either because it is expensive, for
instance, in the case of interconnected processes where the disturbances
needed for the computation affect other units, or because this estimation is
not accurate enough, as happens in the presence of measurement noise. To
avoid the calculation of gradients, a new formulation was developed, Nested
Modifier Adaptation (NMA) (Navia, et al., 2015). This method uses nested
optimization architecture with a gradient-free optimization algorithm, for
example, the Nelder-Mead algorithm, to directly update the modifiers, using
them to iterate over the modified optimization until the process optimum is
found. In this way, the process gradient estimation is replaced by another
method that takes into account the minimization of the Lagrangian function
measured directly from the process. The steps that have to be followed to
implement NMA are shown in Algorithm 2.2, replacing step 3 with the one
described below in Algorithm 2.5. In this formulation, it has been supposed
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that the gradient-free algorithm implemented in the upper layer is the
Nelder-Mead, but other direct search methods can be considered. This
algorithm has been chosen because it is particularly parsimonious in
function evaluations per iteration. This is because, in practice, it typically
requires only one or two function evaluations to create a new iteration,
whereas other direct search methods require n, or more function
evaluations to build a new simplex (Griffiths & Watson, 1995). This property
is very important, as each function evaluation implies a change in the
operating point of the plant (Navia, et al., 2015). The Nelder-Mead algorithm
tries to find the process optimum by exploring the cost surface by means of
a geometric figure with n, + n, + 1 vertices, the simplex, where n, + nyis the
number of first-order modifiers. Each vertex corresponds to a set of values
of the decision variables and is associated with its corresponding value of
the measured cost function. Then, with four basic operations: reflection,
expansion, contraction and shrinking, the algorithm iterates with the set of
decision variables, looking for the optimum, as shown in Figure 2.3 for the
case of two decision variables, where p,;, is the point with the lowest cost
function, pnax is the point with the highest cost function, p, is the reflected
point, p. is the expanded point and pc is the contracted point.

Mear Y i, B, k3 reflect

Figure 2.3. Nelder-Mead optimization.

The implementation of NMA is graphically shown in Figure 2.4.
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Figure 2.4. Implementation of Nested Modifier Adaptation.

ALGORITHM 2.5: Nested Modifier Adaptation (Navia, etal., 2015)

Add to Step 1: The initialization of the Nelder-Mead algorithm requires

information about n, + n; + 1 previous steady states to construct the initial
simplex, whose vertices correspond to different values for the first order
modifiers obtained from the initial Ag,yo.

Step 3: The upper unconstrained optimization updates the value of the
first order modifiers A, ,y;xwith the objective of minimizing the measured
Lagrangian by solving (2.26), as its stationary point corresponds to the KKT

conditions of the process. The corresponding multiplier p.z_l associated
with the modified optimization problem solved in the previous RTO.

min Ly, =@, 1+ uz—1gp,k—1 (2.26)

ko Yk

The main advantage of NMA is that it does not require the calculation of
experimental gradients that can be quite complicated in practice; in
addition, it is less sensitive to noise than other methods such as DMA,
because, as has already been said, it does not need the computation of
gradients. However, this algorithm needs a good initial estimation of the
modifiers; if it does not have this, then the way to the optimum might be
infeasible and not very direct. Furthermore, the use of Nelder-Mead in the
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upper optimization layer presents certain drawbacks, such as the proper
choice of many tuning parameters that may affect the convergence to the
optimum, or the fact that each iteration can require several steady-states. In
addition, the unconstrained optimization layer works well if the uncertainty
remains constant, which is difficult to guarantee if it takes several steady-
states to converge, if not, the optimal modifiers will not be found. Finally,
when there are a high number of modifiers due to the presence of many
decision variables or operational constraints, the convergence to the
optimum may be very slow, since the number of decision variables in the
upper optimization layer increases considerably and its convergence is
slowed down. To solve this problem, a new NMA formulation for dealing
with a high number of operational constraints, described in chapter three,
has been developed in this thesis. Since NMA measures the process
Lagrangian, whose value incorporates the measurement of the plant
constraints, this alternative approach consists of using the NMA
methodology but reducing the number of required modifiers since both,
cost function and constraints are taking into account in the measurement of
the Lagrangian. In this way, it is necessary only to add one modifier for each
process input in the cost function, independently of the number of
constraints. These modifiers are obtained by the upper optimization layer
with the objective of minimizing the value of the process Lagrangian
function.

2.1.6 Directional Modifier Adaptation

One of the main disadvantages of the previously described methods is
related to the problem size, since the number of required modifiers depends
on both the number of decision variables and the number of operational
constraints, as canbe seenin (2.11).

The estimation of experimental gradients is the most difficult task in the
application of MA. This experimental work increases with the number of
decision variables, with the implementation of MA becoming impossible in
processes with many inputs. For instance, applying DMA, a high number of
decision variables implies a great number of previous steady states to
initialize the algorithm, making the convergence rate of the method slower.
In addition, all the changes applied to the process inputs in previous sample
times must be linearly independent, that is, all the possible directionsin the
process inputs space must be explored so DMA cannot drive the process
directly to the optimum but will converge slowly exciting all the process
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inputs. A new formulation called Directional MA (D-MA) was developed to
solve this problem. This method obtains the plant derivatives only in certain
privileged directions.

D-MA has been developed for dealing with problems that present many
input variables. This methodology overcomes the limitation of standard MA
in these cases by estimating the experimental gradients only in n, < n,
privileged directions. In this way, the convergence to an operating point that
satisfies the NCO of the process is speeded up, since fewer experiments are
required to estimate the plant gradients in each RTO iteration. D-MA defines
U, = [6u;...0u,] asa matrix (n,xn,) whose columns contain the n, privileged
directions in the input space, in which the directional derivative is estimated
for the cost function and the constraints at the operating point u, [38]. The
directional derivative is considered a partial gradient that contains
information about how a function varies (locally) in certain directions r of
the input space and is given by (2.27).

- Op(u +Ur)

Vi i

uJp- or Jo € p+9p,1,9p,25+Gp,n, } (2.27)

r=0

where reR"™. The plant gradients are approximated by the following
expressions (2.28):

Vol = L, ~UU, )+ Yy Y,

ag,; 2.28
Vgpl.(uk)z(a—(i‘(uk)(l,7u ~UU,")+V,g,U," (2.28)

/=1...ng

where the superscript (.)" represents the Moore-Penrose pseudoinverse
and I, is the identity matrix of size n,xn,. By applying D-MA, the gradients of
the process cost function and the constraints needed to estimate the
modifiers by (2.9) are replaced by the approximations given by (2.28) for
each value of uy.

Costello describes, in (Costello, et al., 2016), how to select the privileged
directions for the case with parametric uncertainty. This choice is carried out
by a sensitivity analysis of the gradient of the Lagrangian function with
respect to the uncertain model parameters . The main idea is that if the
parameter variations significantly affect the gradient of the Lagrangian
function in only a few directions of the input space, it is enough to estimate
the plant gradientsin these directions.
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D-MA is easy to implement and has important theoretical properties
which allow a fast convergence rate and guarantee that the plant optimum
is achieved.

The D-MA algorithm is described below in Algorithm 2.6. The
methodology to be followed is the same as presented in Algorithm 2.2,
adding new variables to initialize and replacing the computation of
experimental gradients by the estimation of the directional derivatives:

ALGORITHM 2.6: Directional Modifier Adaptation (Costello, et al., 2016)

Add to Step 1: Choose a matrix of privileged directions in the input space
U,, in which the plant gradients are estimated. To know how to obtain this
matrix, see (Costello, et al., 2016). Therefore, to start the algorithm, it is
necessary to collect the information about n, previous operating points.

Step 3: Estimate the directional derivative of the process cost function
Vu #»(u,) and the constraints V,, g, ,(u,)from (2.27) and then compute
the plant gradientsVg,(u,) and vg, (u,)from (2.28). These derivatives

must be estimated using the measurements collected in at least n,
successive operating points near to uy.

The main advantage of this method is that if the number of selected
privileged directions is much smaller than the number of decision variables,
the task of estimating experimental gradients is drastically reduced;
however, thereis the drawback of choosing these directions properly.

2.1.7 Summary of MA applications in literature

MA has many useful features and a high potential that make it very
interesting for investigation and application. The methods previously
described have been successfully implemented in numerous applications in
realistic simulations, but few of them have reached the industrial stage. The
Otto-Williams reactor (Roberts, 1979) has been the principal benchmark
problem for testing MA approaches in the literature. This problem is quite
challenging due to the presence of significant structural plant-model
mismatch, as the plant is simulated as a 3-reaction system, whereas the
model includes only two reactions with adjustable kinetic parameters. The
different MA variants such as ISOPE (Roberts, 1979), DMA (Marchetti, et al,,
2010) and NMA (Navia, et al., 2013), have been applied to this example and
it will be used to test the different approaches developed in this thesis. All
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these methods can achieve an operating point that satisfies the process
NCO.

A more realistic application will also be used in this thesis that considers
the operation of a depropanizer distillation column with a model predictive
control layer (Rodriguez-Blanco, et al., 2015). This problem presents two
types of uncertainty; the first is due to the use of an erroneous steady state
model in the RTO layer, and the other is originates from the presence of
different kinds of models in the control structure (RTO is based on nonlinear
steady state models, whereas MPC uses dynamic linear models). This case
study can be considered as a large scale problem from the point of view of
the model size, since the dynamic model used to represent the process very
precisely is formed by 2152 variables (1976 explicit, 129 derivative, 40
algebraic and 7 boundaries) and 2145 equations (129 differential equations
and 2023 algebraic equations). However, the RTO layer uses a simplified
steady state model with only 32 algebraic equations and 39 variables (29
explicit, 3 algebraic and 7 boundaries), which supposes a great structural
plant-model mismatch. This case study will be explained in more detail in
chapter five, since the approaches developed during this thesis have been
implemented on this example. For comparison, static methodologies like
DMA and NMA have been implemented on this example (Rodriguez-Blanco,
et al,, 2015), observing that the optimum is achieved after 60 hours, which
implies 10 steady states. To speed up the convergence to the plant
optimum, new methods based on transient measurements developed
during this thesis were implemented, (Rodriguez-Blanco, et al.,, 2016),
(Rodriguez-Blanco, et al., 2017), achieving plant optimum in only one steady
state, after approximately 8 hours of operation.

Additionally, D-MA was applied to the challenging problem of optimizing
the flight path of a power-generating kite (Costello, et al., 2016). This
problem deals with 40 decision variables, which makes the implementation
of standard MA infeasible. In the presence of parametric and structural
uncertainty, D-MA is able to find the optimal path, estimating the gradients
in two directions (n, = 2) after only 10 iterations. The performance
comparison was made considering a greater number of directions (n, = 4),
concluding that the convergence is much slower in this case, since gradients
are estimated in more directions than necessary.

Other interesting case studies where this methodology has been
implemented are: semi-batch reactors (lia, et al, 2016), batch
chromatography (Gao & Engell., 2005), chromatographic separation
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(Behrens, et al., 2014), sugar and ethanol plant (Serralunga, et al., 2013),
solid-oxide fuel cell (Bunin, et al., 2012), leaching process (Zhang, et al,
2015), parallel compressors (Milosavljevic, et al., 2016) and experimental
flotation columns (Navia, et al., 2016) .

This latter will be used to test the methodology experimentally, based on
transient measurements developed in this thesis (Navia, et al.,, 2017). The
results obtained and the process description are explained in chapter four.

2.2 Implementation issues

This chapter has summarized the main MA approaches that have been
developed within this methodology. However, these techniques present
some drawbacks for its implementation. One of them is the application of
MA in problems with many operational constraints or many input variables.
As has been shown in (2.11), the bigger the number of constraints, the
bigger the number of modifiers that have to be estimated. A high number of
modifiers require the computation of more experimental gradients, which
requires more excitation to estimate them or more previous operating
points to start the estimation, depending on the applied methodology. D-
MA has been developed to solve problems with many inputs, but handling
many operational constraints is still an open issue. To overcome this
problem, chapter three describes a modification of the NMA approach to
deal with operational constraints. This NMA approach is based on the
minimization of the Lagrangian function that includes, in only one modifier,
the correction in the cost function and the constraints. Therefore, this new
method requires only one modifier to be added to the RTO cost function for
each input, independently of the number of constraints.

Another issue is the convergence rate of MA. As has been noted, MA
proceeds by iteratively adjusting the optimization problem with first and
zeroth order corrections, calculated from steady state information at each
RTO execution. This fact implies that each correction in the RTO has to wait
until a new steady-state has been reached, which implies a long
convergence time. To solve this problem, chapter four presents several MA
approaches based on the computation of plant gradients from transient
measurements to speed up the convergence to an operating point that
satisfies the process NCO.

However, there are some remaining problems that have not been dealt
with in this thesis. For instance, MA does not guarantee the feasibility of the
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successive RTO iterates. So, an open issue is to guarantee the feasibility to
the process optimum without slowing down the convergence rate.

The Sufficient Conditions for Feasibility and Optimality (SCFO) have been
used, combined with RTO, to enforce plant feasibility (Bunin, et al., 2013).
However, SCFO fails to enforce sufficiently fast convergence because of the
necessity to upper bound uncertain plant constraints using Lipschitz
constants. Feasibility in DMA has also been studied in (Navia, et al., 2012),
where the authors propose the use of a Pl controller that is only activated
when the measurements show a violation in the constraints. The use of
convex upper-bounding functions to guarantee feasibility has also been
discussed in (Marchetti, et al.,, 2017). Despite the existence of numerous
studies in this field, there is still a trade-off between the convergence rate
and plant feasibility which means that guaranteeing feasibility in MA is still
an open issue that requires further investigation.

One possibility for dealing with this problem is to apply MA in Dynamic
RTO. In this way, path and terminal constraints are considered in the
resolution of the optimization problem, so MA would ensure convergence
following a feasible path. In addition, inconsistencies between control layers
would be reduced, since both the MPC and the RTO would use dynamic
models. The main difficulty of this approach would be to obtain the
modifiers from the NCO formulated for dynamic optimization problems.

The robustness of MA to gradient uncertainty is another open issue,
since the estimated gradients have inherent errors. The extent to which MA
is robust for this type of uncertainty should therefore be defined. Several
works in this field point out that MA is quite robust for this uncertainty
(Marchetti, et al., 2009), (Marchetti, et al., 2010), but in reality, it has to be
assumed that gradient uncertaintyis additive and bounded.

Taking into account the important benefits that may be obtained by
applying MA in the industry and the fact that there remain several open
issues, MA has become an interesting topic on which further research
should be done.









3 HANDLING OPERATIONAL CONSTRAINTS
IN MODIFIER ADAPTATION

MA has been successfully implemented in several applications; however, the size
of the problem with respect to the number of decision variables and the number of
constraints is still an open issue, as it increases the number of modifiers and the time
required to estimate them, slowing down convergence to the optimum. For dealing
with process-dependent constraints without increasing the number of modifiers, an
alternative MA methodology aan be implemented. This consists in estimating the
modifiers from information provided by the Lagrangian function, adding only one
gradient modifier for each process input to the cost function. These modifiers are
used in the NMA technique, which does not require the computation of experimental
gradients, thus makingits implementation in practice easier.
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3.1 Introduction

Although the MA techniques presented in the previous chapters have
been successfully implemented in several applications, the size of the
problem with respect to the number of decision variables (n,) and the
number of constraints (ng) is still an open issue, since it increases the
number of modifiers (n,.q) and therefore the number of experimental
gradients that must be estimated, as shown in (3.1), making the
convergence of the MA to the real optimum slower.

Nnog =Ny +1,(n; +1) (3.1)

In particular, DMA requires n, + 1 operating points to make the first
estimation of the plant gradients and initialize the algorithm. Moreover, the
greater the number of constraints, the larger the number of experimental
gradients that have to be estimated, thus increasing the computational
work. In the case of NMA, the influence of the problem size is more direct,
as the main drawback of this methodology is that it requires n,.q +1
previous operating points to construct the initial simplex and initialize the
algorithm. In this way, the greater the number of constraints, the larger the
number of required initial operating points and, therefore, the slower the
convergence to the optimum, since the number of decision variables of the
unconstrained optimization layer increases.

This chapter proposes an alternative MA methodology for dealing with
process-dependent constraints without increasing the number of modifiers.
The key feature consists in computing the modifiers from the gradient of the
Lagrangian function, thereby requiring a single gradient modifier per process
input. In this way, the first-order modifiers that are usually included in the
inequality constraints are not necessary because these corrections are
included in the expression for the gradient of the Lagrangian.

In the context of NMA, this feature represents a great advantage as it
reduces the number of decision variables in the outer optimization that
directly affect the convergence speed. To overcome this problem, this thesis
presents a new NMA approach to deal with problems with many operational
constraints so as to get a faster convergence and make the implementation
of this technique easier in practice.

The performance of the proposed methodology is illustrated through a
case study corresponding to the operation of the Otto-Williams reactor, in
the presence of both parametric andstructural plant-model mismatch.
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In addition, another two case studies will be considered, as will be shown
in chapters five and six: the operation of an industrial depropanizer
distillation column of a petrol refinery and the transport of natural gas
through gas pipeline networks.

3.2 Alternative MA using the Lagrangian gradients

In order to deal with process-dependent constraints, Brdy$ proposed
using a modifier for the gradient of the Lagrangian function in the context of
the ISOPE method (Brdys, et al., 1986). An equivalent approach can be
applied in MA. The following equation shows the alternative modified
optimization problem, correcting the Lagrangian gradients, described by
(3.2), which canbe comparedto the original problem given by (2.10):

mlf” P :¢(UIB)+}‘ilTuk

st gy =8u,pB)+e, <0
u' <u<ut

(3.2)

where ¢, and gueR" are the modified cost function and constraints,
gcR"® are the zero-order constraint modifiers, and A, €R™ is the
Lagrangian gradient modifier which represents the difference between the
Lagrangian gradients of the plant and the model, as shown in (3.3). The
subscript “P” indicates that the variable is evaluated from the process
measurements.
ALT = VuLP‘uH,uH _VUL‘uk,I,uH 53)
g, =8plu,,)—8lu, )

where the plant and model Lagrangians, Lp and L are computed as
follows, and p, eR"¢are the Lagrange multipliers of the modified problem
given by (3.2):

L, =y + iy, L=¢+mng (3-4)
If the MA algorithm converges, the Lagrangian gradient of the modified
problem (3.2) matches the Lagrangian gradient for the plant, as can be seen

next. The modifier A;T is obtained from the equality of the first order NCO
at k = oo of the process and the modified problem (3.2) as shown by
equations (3.5) to (3.8), where L, defined by (3.5), is the Lagrangian of the



HANDLING OPERATIONAL CONSTRAINTS IN MODIFIER ADAPTATION 77

modified problem. U” =(u;(/\oo),u;(l\w)) is the solution of the problem
defined by (3.2) with modifiers A] = [A;T], where u; is the value of the

Lagrange multipliers for gy and A’ is the value of the modifiers at this
point:

Ly =@ + W8 (3.5)

Vil (u,, 1) =Vl (u,, 1., A,) (3.6)

Vol B) AL +uIV, gl B)= V. (o )+ nLV,e (0 3.7)
AT =V, )-V.olul B)+u (V,e0 (Ul )- v elu.,B))= (3.8)

VuLP (uocfu'oo )_ VuL/vl (uoo/uooll\oc)

If the scheme converges, then, under the following assumptions, it will

do so to a KKT point of the plant. It is assumed that functions ¢(u,B) and
g(u,B) are twice continuously differentiable with respect to (u, ) in a

neighbourhood of U’ , the Lagrangian function LP(u,u)=¢P(u)+|.tng(u)is

continuously differentiable with respect to (u, u) in a neighbourhood of U’ ,
and (u'(),n’()) are continuously differentiable with respect to A in a

neighbourhood of A’ . The following conditions for the model-based
problem have to be satisfied:

1. u; is a regular point for the active constraints. This means that the

gradient vectors of the active constraints VugM/act(u;) are linearly
independent.

2. The strict complementary slackness for problem (3.2) holds at u;
(p';gM(u:o/B)z 0)
3.1,20, g,lul)<o

4. The gradient of the Lagrangian is equal to zero V L,, (UOTo Aw)z 0 and
the Hessian of L, VﬁLM (UOTO, l\w)is positive definite.

Then is a KKT point associated with the plant corresponding to a local
optimum. For more details see (Navia, et al., 2015).
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As usual in MA methodology, the modifiers can be applied after using a
first-order exponential filter, as shown in (3.9) where K, and K, are diagonal
matrices with eigenvalues in the interval (0, 1], in order to smooth changes
in the decision variables and to ensure convergence.

AL =(-K A, +KA(VULP\UHM71 —VUL‘UHMH) .
& :(I_Ks)ek—l +Ks(gp(uk—1)_g(uk—1))

The Lagrange multipliers canalso be adjusted as follows:
Hi =max{0, Hik +bi(ﬂik _/ui,k—l)}/ i=1,..,n, (3.10

where y,-,k* are the optimal values of the Lagrange multipliers of the
modified problem (3.2) and b;is the gain of the first order filter.

The number of required modifiers is drastically reduced by using the
corrections computed by (3.9), as shown in equation (3.11), compared to
the number of modifiers for the standard version given by (3.1).

Moy =Ny +1, (3.11)

m

Compared to traditional gradient based MA techniques, this approach
has the advantage that it only requires one gradient modifier A, for each
process input; but it has the disadvantage that the modified cost and
constraint functions do not provide first-order approximations of the plant
constraint at each RTO iteration, that is, the slope of the modelled
constraint is not being adjusting by first-order modifiers that are required to
achieve matched first-order optimality conditions. This fact may make the
convergence rate slower if gradient-based MA techniques are applied
(Marchetti, et al.,, 2016). In addition, during the intermediate iterations,
constraints may be violated as they are not being properly corrected. This
problem, however, is common to all the MA approaches, despite the
introduction of first-order corrections in the constraints. Nevertheless, it will
converge to the optimum because the KKT point will be satisfied
(VULP =V, L, =0) Ly, being the Lagrangian of the modified problem given by
(3.2), as has been demonstrated before.
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3.3 Efficient Nested Modifier Adaptation for
dealing with operational constraints

This section shows the use of the previously defined Lagrangian gradient
corrections in NMA. For this methodology, the use of these corrections
implies a clear advantage, since it is directly affected by the size of the
problem. The larger the number of modifiers, the bigger the number of
decision variables of the upper optimization layer, which may imply a slow
convergence to the optimum. Figure 3.1 describes the alternative NMA
method that considers the minimization of the Lagrangian function
measured from the process and only one modifier for the cost function:

Lpk1 8pk1
v |
One step of k=k+1
unconstrained
optimization o~

L </\C:onvergenc§§>—> YES —» STOP
AL ~—

\ 4

Filtering
| Moo
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Economic Optimization - PROCESS
| Ui, Kk —

Figure 3.1. Schematic alternative NMA.

As stated in chapter 2, the key point of NMA is to avoid the calculation of
experimental gradients by using a gradient-free optimization algorithm to
directly update the modifiers. In this case, the optimization problem solved
in the upper layer takes into account the minimization of the process
Lagrangian as shown in (3.12), with the idea of reducing the number of
required modifiers:

min Ly (U, i) =6, (u) + g (1) (3.12)

The alternative NMA approach can be implemented as shown in
Algorithm 3.1:
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ALGORITHM 3.1: Efficient NMA for dealing with operational constraints
(Rodriguez-Blanco, et al., 2017)

Step 1. Set k = 0 and initialize o', Mo, Uo and &. If the Nelder-Mead
algorithm is used in the upper optimization layer, it is necessary to take
information from n,,,; + 1 previous operating points to construct the initial
simplex. These points will be generated by solving nmod RTOs, where the
value of the modifiers is changed from those Ao  initially given.

Step 2: Given Uga and pk_l*, apply U to the process and wait for a
steady state to be achieved to measure g, .1 and @, 1. Estimate the process
Lagrangian via Lp(Uk_l*,u.k_l*) = ¢p(uk_1*)+ uk_ngp(uk_l*) and the zeroth order
modifier g.

Step 3: Perform one step of the upper optimization problem described
by (3.12) to update the modifiers A, in order to minimize Lp.

Step 4: Solve the modified optimization problem described by (3.2) to
obtain u,*and p.k*. uk* is given by the optimizer at uk*.Compare Ue Withug,
and if the convergence criterion is satisfied, that is, |uk*— uk_l*ls tol, then
stop. Otherwise, set k=k + 1 and go to step 2.

3.4 Implementation in the Otto-Williams reactor

The effectiveness of the proposed methodology is illustrated through a
case study corresponding to a simulated Otto-Williams reactor presented in
Figure 3.2. It is a continuous stirred-tank reactor (CSTR) that has been widely
used in the literature to study the performance of different RTO approaches
with modelling mismatch (Williams & Otto, 1960), (Roberts, 1979), (Navia,
et al., 2013) and (Marchetti, et al., 2010). It will also be used in this thesis to
study the performance of the developed MA methods. The obtained results
are compared to those obtained by applying the traditional DMA and NMA
techniques.

3.4.1 Process description

The system consists of a CSTR that is fed with two sources of raw
material, A and B, by means of the streams F, (kg/s) and Fz (kg/s),
respectively. Inside the vessel, three parallel reactions take place forming 4
new compounds: C, G, E and P, as (3.13) shows.
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3.13
A+B—Y5c, B+C—Ltp+E, C+P—5G (3.13)
These compounds, along with the unused reactive, leave the reactor
from the bottom of the vessel in a single stream Fz. X; represents the mass
fraction of the i compound (i=A, B, C, E, G, P) inside the reactor and T (°C)
is the reactor temperature.

Fa Fe

Xa, Xg, Xc, T Heating/
Y iy ok R | Cooling

Figure 3.2. Diagram of the Otto-Williams reactor.

The system can be described using a first principles model, where the
mass balance for each compound in the reactoris defined as follows:

dXx
Ve — 2 =F, —F X, —V,r, (3.14)
dt
dx M
V, — L =F, —F Xy —Ver,—2—V.r, (3.15)
dt M,
dX M M
Vo —C=—F X, +Vor,—S —Vior,—S =V, 3.16
R dt R C RlMA R2MB R"3 ( )
VdXE—FX +VrME (3.17)
R dt R E R"2 MB .
dX M
V,—S =—FX.+V,r,—S 3.18
R dt R'G R3MC ( )
dx M M
V, P =—FX,+V.r, 2 —V,r,—% 3.19
R dt R*P RZMB R3MC ( )
F,=F, +F, (3.20)

where M; represents the molecular weight of the compound i, and r; is
the molecular reaction rate of the chemical reaction j defined with respect
to its limiting reactive. V; is the volume expressed as kg, since density is
considered a constant in the reactor. As we are dealing with pseudo-
compounds it is necessary to define the relation between their molecular
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weights. This can be obtained by assuming that M, = Mz = M. Under this
consideration the ratios from (3.15)-(3.19) are:

%21 %:%:%:2 %:1_5 %:0_5 (3.21)
My My Mg My M, M.
Regarding the reaction rate, it can be calculated as follows:
1=k XX (3.22)
r, =k, XgXc (3.23)
rs =k;XcXp (3.24)

where k; is the kinetic constant of the reaction j that can be obtained
using an Arrhenius expression, and E,; is the activation energy from reaction

J.

(
k —kOe\ T (3.25)

J J ’

j=1,23

3.4.2 Steady-state RTO model

The mass fraction of the product C is one order of magnitude below the
rest of the compounds. Therefore, a common choice in a gross
representation of the process is to consider only the other five species, with
the corresponding modelling mismatch. Then, only two parallel reactions
inside the reactor are considered:

A+2B—55piE, A+B+P—5G+E (3.26)

with this source of modelling mismatch, the steady state model to be
used in the RTO layer is the following:

Fp— FeXp — VP — Vil =0 (3.27)
Fg — FeXg — 2Vih — Vi, =0 (3.28)
—F X, +2V,% =0 (3.29)
—F X+ 3V, =0 (3.30)
—F. X, + VP V%, =0 (3.31)

F.=F, +F, (3.32)
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4 :/?JXA(XB)Z (3.33)
7 =KX, XX, (3.34)
[i] (3.35)
T 0o\ Tr P
kj =kj e , j=1,2

where the tilde represents the parameters used in the model that
includes mismatch.

3.4.3 Optimization problem

The optimization objective, as described in the benchmark (Williams &
Otto, 1960), is to maximize the operating profit expressed as the cost
difference between the product and reactant flowrates, so the process cost
function is defined by (3.36):

¢:FR(XPPP+XEPE)_FAXACA_FBXBCB (3.36)

where P, and P: are the prices for the products P and E, respectively, and
C, and Gz the cost of the reactants A and B. The flowrate of reactant A (F,) is
fixed at 1.8275 kg/s. The flowrate of reactant B (Fz) and the reactor
temperature (Tz) are the decision variables, thus u = [Fg Tg].

So, the model based optimization can be summarized as: finding the
decision variables Fz and T that maximize the profit, subject to a model that
only takes into account five compounds and two chemical reactions,
corresponding to the simulated modelling mismatch. In addition, for the
implementation of the alternative NMA method described in this chapter,
two operational constraints have been added to the original benchmark.
These constraints fix the upper limits for the composition of compounds A
and G (X,” = 0.085, X;“ = 0.105):

max ¢
u:[FB/TR]

s.t
steady —state model  with  mismatch  (3.27) —(3.35) (3.37)

X, =X <0 X,-X{<0

Fi<F<F Ti<T,<T/
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The optimal steady-state solution for the plant (simulated reality) is
presented in Table 3.1. The mass fractions obtained at the optimal solution
aregivenin Table 3.2.

Table 3.1. Process Optimum.

Fs (kg/s) Te (°C) ¢ ($/s)

4.899 89.985 191.017

Table 3.2. Mass Fractions at the Optimum.

¥ ¥ ¥ ¥ ¥ 3

Xa Xs Xc Xe Xs Xp

0.085 0.397 0.015 0.288 0.105 0.110

The values of the parameters used from (3.14) to (3.35) are summarized
in Table 3.3.

Table 3.3. Value of the Model Parameters.

Parameter Value Parameter Value
Fa(kg/s) 1.8725 £,.(°C) -8077.6
Vi (kg) 2105 £,(°C) -12438.5
k;° 1.6599x10° Fs'(kg/s) 3
k,° 7.2177x10° FsY(kg/s) 6
ks° 2.6745x10"* T2 (°C) 70
EA(°C) -6666.7 7Y (°C) 100
Ex(°C) -8333.3 Py (S/kg) 1143.38
Exs(°C) -11111 Pe($/kg) 25.92
k0 2.611x10"? Ca(S/kg) 76.23
ko 1.655x108 Cs(S/kg) 114.34

By applying traditional MA, the modified optimization problem solved at
each RTO iteration is described by (3.38), where ¢, is the modified cost
function and gy 1, gu» are the modified constraints:
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max]¢,v, =¢+N(u-u, )

u=[FB/TR
s.t

steady —state model with  mismatch  (3.27)—(3.35)

(3.38)
1 = Xa — Xi\j + VI,k(u —u,)+é&, <0

TR
Iu, =Xe —Xg tVy(u—u, ;) +&, <0

Fi<F,<F’ Ti<T,<T/

where the first order modifiers A, y, are computed as the difference
between the model and experimental gradients as shown in (3.3), obtained
from past operating points using DMA, or given by the upper optimization
layer when NMA is applied. In this problem, according to (3.1), the number
of modifiers is eight, two first-order modifiers for the cost function, another
two for each constraint plus the zeroth-order modifiers for both constraints.

However, if the alternative MA technique described previously is applied,
the modified optimization problem will be formulated as (3.39), with only
two Lagrangian modifiers A, one for each decision variable, and two zeroth-
order modifiers g;,, one for each constraint. These modifiers are given by
solving the unconstrained optimization problem (3.12), taking into account
the minimization of the process Lagrangian.

max ¢, = ¢+7\i T(u—uk_l)

u:[FB/TR
st

steady —state  model with  mismatch  (3.27)—(3.35) (3.39)

U

Ous =Xa =X, +6,, <0
U

Ou, =Xg —Xg +6,, =0

Fr<F,<F’ Ti<T,<T/

3.4.4 Results

The results obtained, as a function of the iteration number, are shown in
the following figures, where NMA indicates the results of applying NMA with
the traditional modifiers (correcting the cost and constraint gradients)
solving (3.38). NMALag shows the results obtained by correcting the
Lagrangian gradients, solving (3.39), and DMA shows the results given by the
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implementation of the Dual Modifier Adaptation (section 2.1.3). RTO is
solved every hour, the time required for the process to achieve a new
steady-state. Modifiers are filtered with a gain of 0.3 for the first order
modifiers and 1 for the zero order modifiers.

As explained in the previous chapter, the DMA methodology requires the
addition of a new constraint on the optimization problem, (k*(S4) = a), which
takes into account the grade of excitation of the process, so as to ensure
sufficient information in the measurements to guarantee gradient accuracy.
This is equivalent to choosing the parameter a (lower limit of k*(Sy)), whose
selected value in this case is 0. 10.

Both, the simulation and optimization have been carried out in the
modelling and simulation software EcosimPro (Int, 2013), using an external
library for the optimization called SNOPT (Gill, et al., 2008), a software
package for solving large-scale optimization problems.

The following graphs, in particular Figure 3.3, show that the three
approaches are able to reach the real optimum. For the case of NMA, the
use of the Lagrangian based modifier reduces the number of required
iterations by four times, since the number of modifiers is smaller; so the
upper layer optimization has fewer decision variables, which makes it easier
to achieve the optimum. In addition, the time required to achieve the plant
optimum is also considerably reduced, making the implementation of NMA
in real applications easier.

191.1
oy —o—4% R R R R R AR A nn
190.9 @
— 190.8
X
& 190.7
S-1906
¢ NMALag
190.5 Real optimum
190.4 ¢ o NMA
A DMA
190.3
1 3 5 7 9 11 13

Number of iterations

Figure 3.3. Evolution of the process cost function ¢.
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Figure 3.5. Evolution of the decision variable T.
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Figure 3.6. Evolution of the process constraint on composition of component A.
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Figure 3.7. Evolution of the process constraint on composition of component G.

Fixing a tolerance band of 0.5% with respect to the optimal value of the
cost function, the obtained results can be summarized in Table 3.5. The
differences between the process optimum, the nominal solution and the
model optimum that is, the results obtained by applying the nominal
solution (solution of the RTO without modifiers) to the process are shown in
Table 3.4. For the DMA approach, the number of steady-states needed was
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9, the first three to initialize the computation of the process gradients (n,
+1= 3) and 6 related to RTO solutions. NMA requires 46 steady-states: first,
3 initial steady-states to estimate plant gradients for the computation of
initial modifiers, then 7 to construct the first simplex corresponding to the
number of first-order modifiers plus 1, and finally 36 RTO executions. The
alternative NMA formulation only requires 11 steady-states: 3 for the initial
estimation of the modifiers, another 3 to construct the simplex and, finally,
5 RTO executions to converge to the optimum.

Table 3.4. Model and process optimum.

Process optimum Modeloptimum Nominal solution

Fs (kg/s) 4.899 5.349 5.349
Tz (°C) 89.985 86.648 86.648
X, 0.085 0.086 0.085
Xs 0.105 0.079 0.090
é ($/s) 191.017 176.678 199.141

Table 3.5. Summary Results.

NMA NMALag DMA
Decision variables 2 2 2
Constraints 2 2 2
Number of Modifiers 8 3 8
First-order modifiers 6 2 6
Iterations 14 4 6
Steady state points 46 11 9

As can be seen in Table 3.5, the use of the corrections based on the
Lagrangian gradients makes the results obtained from NMA very similar to
the ones obtained after applying DMA. This fact supposes an important
advantage since, traditionally, DMA drives the process to the optimum in a
faster and more direct way than NMA, as it deals with the information of the
plant and process gradients. This formulation allows the performance of
both approaches to be comparable and even NMA will be faster as the
number of constraints increases.
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3.4.5 Conclusions

This chapter has proposed an alternative MA formulation, whereby the
traditional modifiers that correct the cost and constraint gradients are
replaced by modifiers for a single Lagrangian gradient. As with all other MA
schemes, this formulation also guarantees that a point which satisfies the
first-order optimality conditions of the plant will be reached upon

convergence, since the KKT conditions will be satisfied, (VLP‘u :VLM‘u :O).

The main advantage of this approach is that the number of required
modifiers is reduced, which significantly speeds up convergence.

In the context of NMA, this feature represents a major advantage since it
is directly affected by the size of the problem. The larger the number of
modifiers, the bigger the number of decision variables of the upper
optimization layer, which may imply a slow convergence to the optimum. In
this chapter, the alternative method has been implemented in the Otto-
Williams reactor, but other applications will be shown in chapters five and
six. Realistic case studies have been considered corresponding to a
depropanizer distillation column of a petrol refinery and the transport of
natural gas through the gas pipelines. It can be concluded that, using the
described formulation, the number of iterations is considerably reduced,
compared to standard MA formulations, and therefore the time required to
achieve the real optimum, which makes the implementation of NMA in real
applications easier.

The use of these modifiers allows NMA to achieve the plant optimum
with a similar convergence rate to DMA. Using the traditional modifiers,
DMA drives the process to the optimum in a faster and more direct way
than NMA, since it deals with the information of the model and process
gradients. However, using the Lagrangian gradients, the convergence rates
of both methods, NMA and DMA, are very similar, NMA can be even faster if
it is applied in a case study with a large number of operational constraints,
since the benefits of the proposed approach will be larger, the greater the
number of process-dependent constraints.









4 MODIFIER ADAPTATION USING TRANSIENT
MEASUREMENTS

Traditionally, MA proceeds by iteratively adjusting the optimization problem with
modifiers calculated from steady-state information at each RTO execution. This
implies a long convergence time. This chapter presents several approaches to speed
up the convergence to the optimum by using transient information of the process.
Among them, a new method is described that is based on a recursive identification
algorithm to estimate process gradients from transient measurements, achieving
the plantoptimum fasterthan traditional MA techniques.
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4.1 Introduction

MA is normally applied based on static information, as happens in the
gradient based method called DMA (Brdys & Tatjewski, 1994) or the
gradient free method, NMA (Navia, et al, 2015). However, the
implementation of these methods is sometimes impractical, especially in
processes with a long settling time, as the process needs to reach the
steady-state at each RTO execution to estimate the process gradients. Over
these long periods of time, the operating conditions or differences between
process and model may change and the method may not converge to the
real optimum, that is, an operating point that satisfies the NCO of the
process. This issue makes the application of this methodology impractical in
these cases. Besides, and not less important, this kind of method does not
guarantee a feasible path during convergence to the real optimum, only
when this point is achieved are all the process constraints satisfied. So, the
longer it takes to achieve the optimal operation, the bigger the probability
of violating operational constraints, which may lead to the loss of benefits or
to the violation of safety and environmental constraints that may result in a
dangerous operation.

In order to speed up the convergence of the MA methodology for slow
dynamic processes and reduce the risk of process constraint violations,
several researchers have suggested the use of transient measurements to
estimate the variables required by the steady-state optimization solved in
the RTO layer. This idea was pursued by Zhang and Roberts in 1990 (Zhang &
Roberts., 1990), who combined the ISOPE scheme with a linear dynamic
model identification to compute process gradients for the steady-state
optimization of nonlinear constrained processes with slow dynamics.
However, this work did not address the problem of shortening the gradient
estimation time. In contrast, in 2014, Francgois and Bonvin (Frangois, et al.,
2014) proposed an approach that uses transient measurements to compute
process gradients by the neighbouring extremal method, NE, which relies on
the accuracy of the linearization resulting from a variational analysis of the
nominal model (see section 4.2). However, none of these techniques work
well in the presence of strong structural plant-model mismatch.

Two approaches are developed in this thesis to overcome this problem.
The first combines the NE-based gradient estimation during the transient
with the estimation of gradients based on stationary data. In this way, it is
possible to deal with both parametric and structural plant-model mismatch
(see section 4.3).
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The second aims to extend the idea of using transient measurements to
speed up convergence to the optimum of the MA methodology by
estimating the process cost and constraint gradients directly using a
recursive identification method. Thus, waiting for the steady-state at each
RTO iteration is no longer necessary (see section 4.4). This identification
method does not require any assumption about the type of uncertainty of
the model, parametric or structural, or the knowledge of the parameter
responsible for the plant-model mismatch. For this reason, it is able to deal
with both parametric and structural uncertainties. The key here is to
estimate the plant gradients at the steady-state from process
measurements taken during the transient. The estimated gradients are then
used to update the value of the modifiers and solve the modified economic
optimization problem every sample time during the transient, so as to drive
the plant operation to a point that satisfies the NCO of the plant faster than
traditional MA, as can be observed in the results obtained from the
implementation of this technique on the Otto-Williams reactor and a
laboratory-scale flotation column (see sections 4.4.2 and 4.4.3).

4.2 Modifier = Adaptation computing plant
gradients from neighbouring extremal control

The idea of speeding up the convergence of MA was pursued by Francois
and co-workers (Frangois & Bonvin, 2014), who developed an MA scheme
that, under certain assumptions, satisfies this aim. The philosophy behind
this framework is inspired from Neighbouring-Extremal techniques (NEC),
which use transient information for steady-state optimization. The main
difference is that the control update is not obtained by computing a control
law, but rather by solving a modified optimization problem.

NEC aims to maintain process optimality in the presence of disturbances
by implementing a control law that forces the satisfaction of the process
NCO. It relies on linear approximations around the nominal optimum,
namely the first-order variations of the necessary optimality conditions, to
estimate the variation of the parametric uncertainty, 68, from the changes
in the output measurements, 8y, and the inputs, du. For this reason, one
condition that must be satisfied is n,> ng, that is, there are at least as many
output measurementsy as there are uncertain parameters .
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Consider the following static optimization problem:
min  ¢(u,p)
u

st g;(uB)<0 i=1,.,n, (4.1)

where ¢ is a smooth function that represents the cost depending on the
unknown parameters B and the decision variables represented by u and g;
are the inequality constraints. Moreover, the model includes the output
equation (4.2):

y =H(u,B) (4.2)

Here, u and y represent the inputs and outputs, respectively, at steady-
state.

From the variational analysis of the first-order variations of the NCO,
considering the parametric variations, 68, around the nominal values of the
parameters, Pnom @ first-order approximation to the cost gradient can be
expressed as (4.3)

Ve =Adu+BP (4.3)
with A being the Hessian matrix (nu ><nu) and B the (nu xnﬁ)matrix
given by (4.4)

A=V g B=V’pd (4.4)

Output variables can be linearized with respect to u and :
=Qou+PP (4.5)
with the (ny xnu) matrix Q and the (ny xnﬂ) matrix P computed by (4.6)
Q=V,y P=V,y (4.6)

Let us assume n, > ng that is, there are at least as many output
measurements as there are uncertain parameters. Using (4.5), the
parametric variations 68 can be inferred from 8y and du as follows:

OB =D(dy —Qdu) (4.7)

where Dis an (nﬁ xny) pseudoinverse of P.
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Equation (4.3) provides a first-order approximation of the cost gradient,
which can be estimated from &y and éu, using (4.7) to eliminate &8,
obtaining (4.8).

V.$=G,+G,du (4.8)

with
G, =BD=V2pg(V,y)' (4.9)
Gu =A- BDQ: vzuu¢ _ Vzuﬁ¢(vl3y)+vuy (4 10)

The first-order RTO modifiers A can be expressed by the following
equations, where yp(t) and y are the vector of output measurements from
the process (measured during the transient) and the model, up and u the
vector of inputs applied to the process and the model, and finally, Ynom the
vector of model outputs for the nominal solution u,.m, that is, the solution
of RTO without modifiers. The parametric uncertainty causes the optimal
inputs and outputs, as well as the gradient, to deviate from their nominal
values. For this reason, the plant gradients are estimated using the
approximation shown in (4.8), but adding the deviation in the process inputs
and outputs with respect to the nominal values to extract information about
the effect of the uncertain parameters on the estimated gradients. Since this
method considers that there is only parametric plant-model mismatch, G,
and G, will be equal for the RTO model and the plant.

A=V, —V.$=G,d, +G,, —(G,dy+G,ou) = (4.11)
G, (85 — )+ G, -(du, — &)

where,
He =Yp(t) = Yoom (4.12)
& =Y~ Ynom (4.13)
and
S, =u, —u,_ (4.14)
u=u—u,,., (4.15)

The same estimation procedure is followed to compute the constraint
modifiers y;, formulating (4.8) as the estimation of constraint gradients and
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computing Gy and G as a function of the constraint value instead of the cost
value.

Vi =G, ;& +G, ;éu i=1..,n, (4.16)

G,, =BD, = Vzuﬁgi(vﬂy)+ (4.17)

G,, = A, ~B,D,Q,= Vg, — VZug,(Vey) Vv (4.18)

v, = V.9 — Vg, =G, &, + G, &, — (G, & + G, o) = (4.19)

Gy - (¥p — )+ G, - (du, —u)

The main advantage of this method is that the process cost gradient is
only estimated by using the model offline, through the expression for G, and
G, and Gy; and G,;, whereas dy,is measured from the process during the
transient. Nevertheless, this method also presents strong limitations, such
as:

e The method works well only if there is parametric uncertainty or little
structural plant model mismatch.

e The user has to know what the uncertain parameters are, although
their exact values are unknown.

e There have to be at least as many available output measurements as
uncertain parameters(n, > nﬁ).

This methodology has been implemented by the developers of the
method for the optimization of a simulated continuously stirred tank reactor
(CSTR) (Francois & Bonvin, 2014), (Francois, et al., 2014), where the goal is
to maximize the productivity of the most value-added reaction product at
steady-state. By applying this methodology, the authors conclude that the
time needed for convergence to the plant optimum varies from about two-
thirds to twice the plant settling time, i.e., a factor of 2-6 reduction
compared to static MA under the same uncertainty. However, this example
only considers parametric plant-model mismatch. In this thesis, the
application of this method in the presence of structural uncertainty has
been studied (Rodriguez-Blanco, et al., 2016) through the optimization of a
simulated depropanizer distillation column. The presence of parametric and
structural uncertainty led to the development of two extensions of the
previous method that will be presented in sections 4.3 and 4.4. The first one
combines transient and steady-state measurements. The second uses
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identification algorithms to estimate the process gradients, also using
transient information. Both approaches will be explained below and the
results obtained by its implementation in the distillation column will be
shown in chapter five.

4.3 Combination of transient and steady-state
measurements

Using the method described in the last section, waiting for the steady
state at each iteration is not necessary since the modifiers are updated
every RTO sample time during the transient. In this way the convergence of
the MA approach is sped up. Nevertheless, this method also presents strong
limitations that have been mentioned in the previous section. The main
drawback is the fact that it does not work well in the presence of structural
plant-model mismatch.

To overcome this limitation, a first extension is presented in this section
that combines MA based on transient measurements with the traditional
methodology which estimates process gradients from steady-state
information. In that way, both parametric and structural plant-model
mismatch can be dealt with.

This methodology consists of two steps:

1. First, MA is applied by using transient measurements, as explained in
section 4.2, to overcome the parametric plant-model mismatch
between the process and the model used in the model-based
optimization layer.

2. Once the steady-state is achieved, the method based on transient
measurements will not be able to find a better operating point, so
static MA is applied at the end of the transient to deal with the
structural plant-model mismatch, computing the process gradients
from steady-state information, applying a traditional static MA
technique, for instance the DMA methodology.

An example of the application of this methodology, which considers the
optimal operation of a depropanizer distillation column in the presence of
parametric and structural uncertainty, will be shown in chapter five. The use
of this approach reduces the time required to achieve the process optimum
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by 60% compared to traditional MA techniques based on steady-state
information.
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Figure 4.1. Schematic of MA based on transient and steady-state data.

4.4 Modifier Adaptation approach using Recursive
Extended Least Squares to compute process
gradients

The second alternative approach that has been developed is also based
on the use of transient measurements. This technique considers that
process gradients can be estimated from input-output data during the
transient using adaptive estimation techniques. The proposed method uses
transient measurements to estimate the plant gradients, and therefore the
value of the modifiers, thus allowing faster convergence to the steady-state
plant optimum than traditional MA, being valid in the presence of both
parametricand structural uncertainty.

To estimate the process gradients, it is necessary to suppose an
approximation for the variation of the process cost function A@p =@ p «- P
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In this thesis, it is proposed to approximate this variation at time k as a
guadratic Taylor polynomial that depends on the input applied until the
present sample time u,; and the one applied in the previous sample instant
Uy, (see Figure 4.3). Other simpler functions can be supposed, for example a
first-order approximation. However, this approximation would be realistic
only for linear systems, which are rarely metin practice.

This estimator for the variation of the cost function is given by (4.20)
where the hat “*” indicates that the variable is estimated from the process
measurements. Auy is the column vector of the moves of the input variables
(decision variables of the RTO problem) and the index k represents the RTO
execution which, in transient methods, does not coincide with the steady-
state number, as happens in static MA. 8,_,is the column vector of the
estimated parameters, which contains the required process gradients to
compute the modifiers as the first element of this vector, i.e., the gradients
of the process cost function with respect to the decision variablesuy.; .

Aoy = Pi10,1 =V, PBul, + V2, $1/20u, Bul, (4.20)
of  =[Bu,_," 1/2Bu,_,Au] ] (4.21)
i1 =V 8 Vi w4l (4.22)

The gradients contained in 6, are estimated by using the recursive

extended least squares algorithm (RELS) with forgetting factor a. The
concept of forgetting means that older data are gradually discarded in
favour of more recent information (Vahidi, et al., 2005).

This algorithm is based on the difference between the current input u,,
and the previous ones and the difference between the measured Agp, and
the predicted Aéplk change in the cost function for the gradient estimation

(Guay, 2014). Hence, the parameter estimation update approach is given as
follows:

L. B 1 B -
0, =0, + (zk—l) 1(Pk—1(1+a¢;—1(zk—1) 1(Pk—1) (ek) (4.23)

where the terms involved in (4.23) are defined as follows:
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5,= 11 (4.24)

a
Au, , =u,_,—u._, (4.25)
Adp = 910,y (4.26)
e = Ay — Adp (4.27)

_ 1 _ - ., (4.28)
2 (zk—1) 1¢k—1(1+a¢;—1(zk—1) 1¢k_1) ¢/I—1(zk—1) '

where Z is the covariance matrix of the estimated error, whose initial
value is X, e, is the output prediction error, and uy is the solution of the
modified RTO problem for each sampling instant k during the transient. On
the other hand, Agpy - @ pi- @ pia is the difference between the current
process cost function and the cost function measured one sampling time
before.

An important drawback of using passive identification with transient
measurements is the degree of excitation that the system must have to
estimate the gradients accurately. For this reason, a dual constraint is added
to the RTO problem (Brdys & Tatjewski, 1994), (Marchetti, et al., 2010), (x~
1(Sy) 2 a), which is described by (2.13) and (2.14). This constraint represents
the dual characteristic of the method: while the rest of the optimization
aims to converge to the optimum of the modified model (primal objective),
the dual constraint ensures that, in the next RTO iteration, the system will
have enough excitation to estimate the process gradient again (dual
objective). However, this technique also identifies second order terms
included in 6, from second order data included in ¢, whose excitation is
not guaranteed by the dual constraint. For this reason, the persistent
excitation condition (4.29), based on the theory of system identification,
must be checked in order to guarantee that all the plant gradients (included
the second-order terms) have been properly estimated (Goodwin & Sin,
1984), (Ljung, 1987). This condition, given by (4.29), indicates that the
square matrix ¥, ¥’ must be positive definite in order to guarantee that
there is enough process excitation. c; (a positive constant) fixes a lower limit
for the excitationand W is defined by (4.30).
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1 iwkuﬂ > ¢l (4.29)
k k=1

W, =[Au,’ Bu, ," Bu, ,"... Au, ' 1/2Bu,Du] (4.30)
1/28u, ,Au; , 1/2Bu, ,Au; ,.. 1/2Au, Au, ]

This condition can be satisfied if there are at least as many data sets
measured from the process as estimated parameters, thatis, k> /=size[ 6, ].

The persistent excitation condition can be checked after the end of the
algorithm, once the steady-state of the process has been achieved, or by
adding a constraint to the RTO problem at the k™ execution, where k = size|
6,1, in order to guarantee that there is enough excitation. If this constraint
is satisfied at the k™ iteration, this condition will be satisfied during the
whole experiment since the more information we get, the better the
estimation of the plant gradients.

This constraint would be formulated as shown in (4.29), where ¥,
includes the decision variables of the RTO (Au, =u, —u, ,). In this way,
the optimizer will decide the next inputs to be applied, u, forcing the
process to be sufficiently excited.

On the other hand, taking into account the fact that, sometimes, the
inputs of the model are not the same as the inputs of the process, for
example, when there is an intermediate control layer that is not considered
in the RTO model, or the fact that applying RTO during the transient implies
that the input variable may not be able to reach the fixed set points; then
the plant gradients must be estimated with respect to the set points of the
process. Therefore, the variable uy that represents the solution of the RTO
problem would indicate the set points computed for the input variables. This
issue will be shown in the case study described in chapter five, which
consists of a depropanizer distillation column with a MPC layer that
determines the set points for the PID controllers. In this case, the decision
variables in the RTO do not correspond to those of the process due to an
intermediate MPC layer that is not considered in the RTO model.

One advantage of this technique, compared to that described in
subsection 4.2, is that the new formulation does not require any assumption
about the type of uncertainty of the model, parametric or structural, or the
knowledge of the parameter responsible for the plant-model mismatch.
Consequently, the proposed method can be applied to problems with both
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parametric and structural uncertainty, without modifying the RTO model or
identifying what the uncertain parametersare.

If enough measurements are taken during the transient, and therefore,
the estimated gradients have been sufficiently corrected during this time, the
true value will be achieved at the steady-state. This implies that an operating
point that satisfies the NCO of the process may be reached in only one
steady-state. However, this steady-state will be extended over time because
the process inputs are very frequently manipulated, every sample time
during the transient.

AéP,k AgPi,k

A A

Process Gradient
Estimation (RELS) A¢Pk Adp iy

k=k+1 STOP
V¢p | uk-1 va,il uk-1 |:| T
A4

Modifiers N YES

computation T T
<Convergence? >

7\k, Yik Eik
A

A
Modified Economic
Optimization

Figure 4.2. Schematic of MA based on the direct estimation of process gradients
over the transient.

The steps needed to implement the previously described method are
given next:

ALGORITHM 4.1: Modifier Adaptation using RELS (Rodriguez-Blanco, et al.,
2017)

Step 1: Set k=0 and initialize the vector of estimated para meterséo, the
value of the estimation error e, and the covariance matrix Z,, whose
initial value is given by (4.24). Then, choose the tuning parameters a (the
forgetting factor), the lower limit a for the dual constraint, and the lower
limit for the persistent excitation c;. To start the algorithm, it is necessary
to apply two operating points, u,; and u,,,to make the first estimation
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for the process gradients. Only two previous points are necessary to
estimate the first gradient, regardless of the number of decision
variables.

Step 2: At the sample instant k, the process cost function ¢ and the
constraints gp; are measured or calculated directly through other
measurements. From these measurements, and those taken in the
previous sample time k-1, the variation terms Agp, and Agp are
computed and the data vector is formed by:

Ap k= ok = Do k1
AGpik = 9pik ~ Ipi k-1 i=1..,n, (4.31)

Bup ; =up g —Uy,

Figure 4.3 shows how the time domain is divided into several sample
periods, which are the time intervals between two consecutive RTO
executions. The yellow points indicate the time instants when the
measurement was taken and the blue points the instants when the new
inputs obtained by solving the RTO are applied.

Uk-2
Unom Auk—l Uk Uk
grlk1 gk
grlk-2
gp.nom ¢P, -1 ¢ - {
oplk-2 Pk
{b > nom
0 k-2 k-1 k k+1

Figure 4.3. Sample periods for the estimation of plant gradients.

Step 3: The estimation error for the variation of the process cost function
ey and the constraints ey« is computed as follows:
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.
€sk = Adp, — ¢k—1é¢,k—1

(4.32)
ik =A9p;  — §0/I—1ég,k—1

and

Up k-1

Step 4: Estimate the process cost and constraint gradients, V ¢,

Ny .. contained in é¢,k and @,, using the RELS algorithm

described by (4.24)-(4.28).

Step 5: Compute the modifiers A, v« and gy for the RTO problem by
applying the following expressions:

hk :VU¢P‘up,k4 _Vu¢‘ -

U1

. i=1,..,n

Ug_q 9

(4.33)

Vii =Vudp, . —V.ug,

€k =0pi(Up,1)-9; (uZ—l)

Step 6: Solve the RTO modified optimization problem (4.34) to obtain uz,
which is applied tothe process until the next RTO execution at k+1.

min b = P, 0)+ A (u—up ;)

s.t =g.(u,0)+y (u-u +& <0 i=1,.,n
gM,I gl( ) vl,k( P,k—l) ik g (434)
ut <u<u

K’l(Sk)Za

Step 7: Check wheter the convergence criterion is satisfied, for instance,
‘uz —uz_l‘ <tol, that is, there are no changes in the RTO decision variables

higher than a fixed tolerance. Other stop criteria can be considered, for
example, there are no changes in the process cost function higher than a

specified value ‘¢;k — & k_l‘ <tol. If any of these criteria is satisfied, stop the

algorithm, otherwise, k = kK + 1 and return to step two when the next
sampling time is reached.

4.4.1 BIBO stability of the closed-loop system

The gradients estimated during the transient using RELS will be equal to
the steady-state gradients only when the system converges to a steady
state. This fact, together with the manipulation of the control set points



108 MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY

during the transient, could make the closed-loop system (controlled plant +
RTO) become unstable. However, according to the small gain theorem (SGT)
for nonlinear systems (Haddad & Chellaboina, 2008), (Khalil, 1996), the
following derivations can be made to ensure closed-loop bounded-input,
bounded-output (BIBO) stability. Figure 4.4 shows the basic scheme
concerning the interconnection of two systems, in this case, the controlled

plant (input u, output @) and the RTO (input @p, output u).

u CONTROLLED Do
PLANT (G)
RTO (H) - |

Figure 4.4. Closed-loop setup.

The condition provided by the SGT, to ensure the BIBO stability of the
closed-loop system GxH, is given by (4.35) for any norm of the involved
signals:

6| |H|<1 (4.35)

In order to fulfil (4.35) for the induced L.~ L..norm (denoted by the L;
system norm below), the following assumptions are made.

Assumption 1:

According to (4.34), u is assumed bounded, sofu| <o, wheres >0 .
Therefore, the modified optimization problem described by H is BIBO stable,
thatis, HH1 <.

Assumption 2:

The controlled plant, represented by G, is properly designed, stable and
well posed, such that the system is BIBO stable with |g,| < y|u

_,for some

1>y>0.So,

G|, <1.Then, twopossible scenarios appear:

1. The output of the modified RTO problem, i.e. u, is not on the
. that is, its

value may vary between (0, =), so the overall closed-loop system

constraints. Then, nothing can be concluded about HH
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behaviour may be unstable (¢ increases as u does). If this worst case
happens, then we will enter scenario 2.

2. u is on the constraints. Then,

ul_ <o independently of how large ¢,

is. Therefore,

H|, <1applies for largegs, since|u| <&lg,| , with

0<&<1. In this case, considering Assumption 2, the closed loop
system is BIBO stable by the SGT.

Remark 1:

The behaviour of the closed-loop system may lie on the stability limit in
the worst case (|G|-|H|=1), i.e., the system may be continuously jumping

between scenario 1 and 2, but without becoming unstable in the BIBO
sense.

Remark2:
Note that assumption 2 about |G| <1is strong, but it can indeed be

relaxed to be HGH1<§’1and still fulfil (4.35). Furthermore, the filter

parameters and the sampling time of the MA algorithm can act as tuning
parametersto smooth the system response, thus reducing |H| .

Nevertheless, it is important to note that the closed-loop operation does
not normally present any stability problems, since the upper-level control
layers, such as the MPC layer, provides the required system stability. In
addition, the first-order modifier filters are applied after filtering to smooth
changes in the plant and prevent it from becoming unstable. Note also that
the SGT is very conservative (the worst case may appear at a high sampling
frequency, worst modelling errors and system conditions which excite the
nonlinearities), so many closed-loop systems whose induced L..~> L..norms
do not strictly satisfy (4.35) will, in practice, be stable.

4.4.2 Implementation in the Otto-Williams reactor

The simulated Otto-Williams reactor described in chapter three, section
3.4, is used again to show the performance of the new MA approach based
on RELS to estimate the plant gradients. The obtained results have been
compared to those obtained by applying traditional static MA, in particular,
DMA is applied to this example (see section 2.1.3). In this implementation,
the original problem without operational constraints formulated in the
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original benchmark (Williams & Otto, 1960) has been considered. Only the
limits in the decision variables are considered as the original benchmark was
presented. As explained in chapter three, this example presents a high
degree of structural plant-model mismatch.

Therefore, the RTO optimization problem which maximizes the operating
profit is described by (4.36)

max]¢ = Fo(XpPo + XeP:) — FX,C — Fg XG4

u=[FB/TR
st
steady —state model with mismatch (3.27)—(3.35)

Fy <F<Fle Ti<T,<T/

(4.36)

By applying MA, the modified optimization problem is given by (4.37)

uggﬁ@w=¢+hﬂu—w4)

st (4.37)
steady —state model with mismatch  (3.27)—(3.35)

Fr<F,<F e Ti<T,<T/

where the first-order modifiers A, are computed as the difference
between experimental gradients (obtained from past operating points using
DMA and estimated by RELS using the MA approach based on transient
information) , and the model gradientsas (4.38) shows:

—V¢‘

Over the simulated Otto-Williams reactor, a traditional static method,
DMA, and the recently developed technique based on RELS, in future TMA,
have been applied. Both approaches are implemented with a value of a
(lower bound of the dual constraint that appears in (4.34)) and ¢, (lower
bound of the persistent excitation constraint (4.29)) equal to 0.10. For DMA,
RTO is executed every hour, the time required for the process to achieve a
new steady-state. However, TMA has been implemented with an RTO
sample time of 600 seconds, which is one sixth of the process stabilization
time. The forgetting factor a, considered for the estimation of the process
gradientshas been 0.90.

AL =V, (4.38)

U1 U1

The obtained results are represented graphically in Figure 4.5, which
shows the evolution of the process cost function and Figure 4.6 and Figure



MODIFIER ADAPTATION USING TRANSIENT MEASUREMENTS 111

4.7, which show the evolution of the RTO decision variables as a function of
time:

205 A DMA
—— Real Optimum
200 TMA
195 —— Model Optimum
- ARk kA
E 190 A A A
ﬂm 185
BN A
180
s e
175
170 A
165
0 5 10
Time (h)
Figure 4.5. Evolution of the process cost function ¢.
5.6
54 A DMA
—— Real Optimum
5.2 T™MA
— —— Model Optimum
» 5
% A
=48 Ak
A
A A
4.6 A
A A A A
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4.4
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0 5 10

Time (h)

Figure 4.6. Evolution of the decision variable F.
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Figure 4.7. Evolution of the decision variable T;.

For the implementation of DMA, n, +1 measurements are required to
initialize the estimation of the experimental gradients. In this case, we have
information of any n, operating points and then the nominal solution, i.e.,
the optimal solution for the stationary model with uncertainty is applied at
time three in order to have enough information to make the first gradient
estimation.

For the identification of plant gradients using RELS, the first operating
point is the nominal solution and then, in the second sample period, a
change in the input variables is imposed to obtain the measurements at a
different operating point. In this way, data from two operating points are
obtained and the algorihm has the required information to start the
estimation of the gradients at the third sample period during the transient.

Fixing a tolerance band of 0.5% with respect to the optimal value of the
cost function, the graphs (in particular, Figure 4.5) show that the optimum
of the process is achieved after approximately 46800 seconds using static
MA (13 hours). This involves 13 steady states, 11 RTO executions, plus n,
initial steady-states required to estimate the gradients, where n, is the
number of decision variables. For this long period of time, operating
conditions and plant-model mismatch could change, resulting in a loss of
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optimality since the MA method would not converge to the process
optimum.

By applying the new approach, updating the modifiers during the
transient and fixing the same tolerance band, the optimum operating point
is achieved after 12000 seconds, approximately 3.5 hours, which means a
considerable time reduction when compared to the 46800 seconds of the
static MA approach. It involves 20 RTO solutions executed during the
transient.

A comparison of the performance of the two implemented approaches is
shown in Table4.1.

Table 4.1.Summary Results.

DMA TMA
Convergence time (h) 13 3.3
RTO sampling time (s) 3600 600
RTOs executed (#) 11 20

In view of the results, it can be concluded that the new method developed
to speed up the convergence of RTO-MA to an operating point that satisfies
the plant NCO is able to effectively perform the optimization in the presence
of structural plant-model mismatch, considerably reducing, by a factor of 4
(about 25% of the time required for DMA) in this example, the time required
to achieve the process optimum as compared with standard static MA
techniques, such as DMA.

4.4.3 Implementation in a laboratory-scale flotation
column

The MA approach based on the direct estimation of the process
gradients using RELS has also been implemented in a laboratory-scale
flotation column developed and operated at the department of Ingenieria
guimica y ambiental, at the San Joaquin campus of the Universidad Técnica
Federico Santa Maria (Chile). In this real-life set-up, the obtained results
show that the use of transient measurements results in a time saving of
around 64% when compared to the application of static MA techniques. The
process implementation of the RTO and the experimental results are shown
next.
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4.4.3.1 Process description

Most of the copper is found in sulphide ores in copper mines, with an
average concentration of approximately 0.9% by weight. The copper is
obtained from these ores through a process that mainly involves three
stages: comminution, concentration and refination. In the comminution
stage, copper is extracted from sulphide ores using size reduction methods.
Then, copper minerals are separated from the remaining materials in froth
flotation circuits because of the selective hydrophobicity produced by the
chemical reagents (collectors). Finally, the copper enriched solution is
refined through smelting and electrochemical processes.

The application considered in this thesis focuses on the flotation units
used in the concentration stage. The flotation columnis a multivariable
process whose main control objective is to guarantee the metallurgical yield
set for the process operation, expressed by the recovery of the valuable
mineral in the concentrate (Navia, et al., 2016). For this task, a supervisory
layer is added to the process to find the optimal decision variables.

Figure 4.8 shows a diagram of a flotation column. The flotation column is
divided into two zones: the collection zone and the froth or cleaning zone.
The pulp feed enters below the froth—pulp interface and descends against a
rising group of bubbles generated by the injection of air through a bubbler.
Hydrophobic particles of the mineral copper collide and adhere to the
bubbles, moving upwards in the collection zone (Finch & Dobby, 1990). At
the top, the froth is formed because of the addition of chemical reagents.
The froth is stabilized by the addition of wash water passing through a
shower. The wash water plays an important role in eliminating fine particles
entering from the concentrate. The column has two outflows: concentrate
and tail. Concentrate is the stream enriched in floatable minerals (copper
sulphides in this case) that goes to the refination process or to other
cleaning stages with the final purpose of being refined. In contrast, the tail is
used in scavenger concentration units to recover part of the remaining
floatable minerals. The metallurgical yield of the column can be defined by
two indicators, recovery and law  (4.39). Recovery (R) is the percentage of
copper from the feed that is recovered in the concentrate, whereas the law
of copper (L) represents its concentration in the concentrate.

R — FCCEU
F.c&
F“F

, L=c (4.39)
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where Frand Fcare the feed and concentrate flows, respectively, and cX
and G are the concentration of copper in the concentrate and the feed
streams, respectively.

Wash
Water, Fy

Cleaning X KXk oncentrate, Fc
Zone ¢

Feed, Fe T

Collection
Zone

Air, Fo

Tails, Fr
Figure 4.8. Diagram of a flotation column.

The operation of the flotation column has three typical controlled
variables: bias, air hold-up and froth depth. Bias (B) is defined as the net
flow of water passing through the interface froth-pulp. It is calculated as
shown in (4.40)

B=F.—F (4.40)

The hold-up (&5) corresponds to the air fraction inside the column. This
variable depends on the air flow, the diameter of the bubbles produced in
the bubbler, the pulp density and the concentration of chemical reagents.
For an air—water system with a constant density, the hold-up can be
estimated as shown in (4.41) (Finch & Dobby, 1990).

AP (4.41)
PsBL

where AP is the pressure difference across the collection zone, AL is the
distance betweenthe pressure sensors and pg, is the pulp density.

& =1-

Finally, the third decision variable is the froth depth Hy, that is, the height
of the froth measuredfrom the froth-pulp interface to the top of the foam.
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The manipulated variables are the wash water, air and tail flows. Each of
these flows affects the metallurgical objectives of the system as follows:

e Wash water: it is added to drag the entering hydrophilic gangue to the
bottoms to increase L. However, this action also removes part of the
floatable mineral due to the mechanical action of water, thus
reducing R.

e Air: the addition of air increases R because of the availability of
bubbles, but it also produces a decrease in L due to the fluid dynamics
in the collection zone.

e Tail: this variable is related to the residence time of both zones in the
column. An increase in this flow reduces the volume of the collection
zone and increases the froth depth, producing a reduction in R and an
increase in L (Navia, et al., 2016).

Other variables that affects the operation of the column are: the
characteristics of the feed and the concentration of flotation reagents.
However, these variables have not been considered in this work.

4.4.3.2 Experimental set-up

A supervisory layer to optimize the process operation has been
implemented in the laboratory-scale flotation column shown in Figure 4.9.
The column is made up of an acrylic cylinder with an internal diameter of 9.2
cm and a height of 3.27 m, with a system to collect the froth at the top by
overflow. The feed and wash water are pumped using peristaltic pumps,
whereas the compressed air is injected at the bottom of the column using a
porous diffuser. Both the air and tail flows are manipulated using globe
valves. The column has two differential pressure sensors, one located in the
collection zone, a volumetric flowmeter for the tail, and a mass flowmeter
for the air. The P&ID described in Figure 4.9 shows the control loops that
follow the typical pairing for this type of unit: B—wash water (FYC), g—air
(DYC) and Hgtail (LYC). The optimal decisions made in the supervisory layer
are passed to the regulatory layer that consists of Pl controllers. For
simplicity, the experimental set-up follows a hybrid approach (Bergh, 2007),
(Bergh, 2012). The main concept behind this approach is that the essential
phenomena of a process can be divided into two aspects: hydrodynamics
and physicochemical mechanisms.
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Figure 4.9. Experimental set-up and P&ID of the column.

The hydrodynamics of the flotation column can be represented in a
proper manner for a laboratory-scale unit considering an air—water system
(Bergh, 2012). However, the physicochemical mechanisms involved in the
flotation process require the use of expensive instrumentation, such as
sensors or actuators, and also high maintenance costs, making the
experimentation infeasible. For this reason, a hybrid experimental set-up
was developed that, in addition to the physical components above
mentioned, includes a virtual part with a first-principles model that has been
developed to emulate the phenomenology of the flotation of copper sulphur
minerals. The system takes into account two types of degrees of freedom:
physical and virtual. The physical degrees of freedom are the variables
measured from the experimental air-water set-up and the design
parameters of the column, whereas the virtual ones are the properties of an
emulated feed pulp, that is, law of copper, slurry density, solid percentage
and particle size, together with the kinetic relations necessary to calculate
the recovery and law of copper (Bergh, 2007), (Bergh, 2012). Figure 4.9
shows that the tail flow is produced due to the pulp level, as there is no
pump in the outflow of the bottom. The dynamic of the discharge is in the
order of minutes. Gas enters at the bottom and is discharged to the
atmosphere at the top of the column with a dynamic on the order of a few
seconds. This means that the dominant time constant is related to H; and
the tail flow. Because the tail flow affects the net flow of water, the bias is
also affected. Therefore, the dynamic of B also has important effects on the
transient, as the control loop modifies the wash water, thus affecting Hy.
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This interaction can produce important drawbacks in a system with an RTO-
based supervisory layer related to the time needed to reach the next steady
state. For this reason, it would be desirable to reduce the number of steady
states needed to find the NCO of the process. For this task, MA based on
transient information has been applied to speed up convergence to the
optimum.

4.4.3.3 Metallurgical model

A first-principles model has been implemented to represent the
phenomenology of flotation (Bergh, et al., 1998). This model considers that
flotation can be described as an elementary reaction between the floatable
particles and the bubbles. Considering that the concentration of bubbles
should be larger than the mineral, the kinetic rate of flotation can be
approximated with a pseudo-first-order expression (Polat & Chande, 2000).
The recovery in the cleaning (Rr) and collection zones (R¢;) is given by (4.42)
and (4.43), respectively. In these equations, N, is the vessel dispersion
number, Tsis the residence time of the solid which is a function of J,, defined
as the superficial velocity of the bias. In the same manner, J; and J, are the
superficial velocities of the air and wash water, respectively. k¢; represents
the kinetic expression of species .

~0.0144H,(1+3-J,))
R: =0.95exp 3 (4.42)
JQ
4aiexp{2llvj
R, =1- d (4.43)
a; —a.
1+a, ) ex L 1—(1+a, ) ex !
(raPess| 2 |-tra Poo| 5
where the constant a;is computed as follows:
a; =1+ (4kc 75(J, J6ON, ) (4.44)

The kinetic expressions that represent the probability of reactant
collisions, in this case air flow and floatable particles with a diameter D,
equal to 40 um, are described by (4.45), where the parameters A; and A,
have been estimated using operational data from a column located in the
cleaning zone of a concentrationcircuit (Bergh, et al., 1998).
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ke, =AJ27(0.5+1.5D, +1.102)

' . (4.45)
ke, = AJ07(2.5+5D, +6D2)

4.4.3.4 RTO model and optimization problem

The uncertainty in the model-based optimization has two sources. One is
the experimental uncertainty related to the precision of the instruments and
the behaviour of the Pl controllers. Another is the plant-model mismatch
due to the use of a simplified and uncertain RTO model.

To emulate this modelling mismatch, the dependencies from (4.45) have
been neglected in the model-based optimization, assuming that k¢ is
constant.

The model-based optimization problem, solved in the RTO layer, is
formulated by (4.46), where the decision variables are Hy, s and B, that is,
uT=[ Hfr &G, B]

uz[g:)igﬁ](zﬁ =C,+C, +Cr -1
s.t : first —principles stationary model (4.46)
g <g<g’,u" <u<u?

The economic objective function has four terms: C; is the energy cost of
pumping the slurry and compressing the air, C, is the cost of the
metallurgical losses in the scavenger stage (proportional to the copper that
cannot be recuperated in this stage), C; is the cost associated to the
regrinding process, and / represents the incomes of the process related to
the specific selling price of concentrate and the amount produced as shown
next.

F-x.R
| = (pS’XFF]PC (x.) (4.47)
C

where p;,is the density of the pulp, x; is the w/w percentage of copper in
the feed, x¢ is the w/w percentage of copper in the concentrate, R is the
total recovery of copper, and P the specific selling price of concentrate,
which depends on the copper concentration.

The operational constraints g are related to metallurgical objectives and
limits imposed by the experimental set-up, therefore, g'= [L, R, Js, Ju, Jb].
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The limits for the decision variables and the constraints are shown in
Table 4.2.

Table 4.2. Lower and upper bounds for the optimization problem.

Variable Lower bound Upper bound
L (%w/w) 25 35
R (%) 70 100
Js (em/s) 1 3.5
Julcm/s) 0.04 0.40
Jp(cm/s) 0 0.28
Hy (cm) 80 120
&6 (%) 0.07 0.15
B(l/min) 0 0.8

The described plant-model mismatch makes that the process optimum
does not matchthe model optimum, as canbe seen in Table 4.3.

Table 4.3. Model and process optimum.

Optimum J7(USD/h) Hy (cm) g (%) B(l/min)
Process 2.74 80 11.3 0.8
Model 3.19 80 9.24 0.8

The modified optimization problem, which is solved by applying MA is
described by (4.48), where ¢, is the modified cost function and gy, and gy,
are the modified constraints. Taking into account the fact that the number
of decision variables is two (since it has been supposed that B is not updated
by the RTO layer) and the number of constraints is five, the size of the

modifier vectorsis A eR?, Vi eR™ and g, . eR.

mingy = ¢ + A (u-u,)

s.t : Uncertain  first — principles  model

8 =8 +vi,(u-u)+e <0 (4.48)
gw=8"+v,,lu-u)+g , <0

ut <u<u’
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4.4.3.5 Results

Starting from the points summarized in Table 4.4, the behaviour of TMA
(Navia, et al., 2017), (Rodriguez-Blanco, et al., 2017) has been compared
with the DMA (Brdys & Tatjewski, 1994). Because of the fact that the
flotation column presents important controllability problems, the decision
variable B has not been updated by the supervisory layer (Navia, et al.,
2016).

The RTO sample time is about 4 minutes for the implementation of DMA,
the time required for the process to achieve a new steady-state and 36
seconds when TMA is applied.

Figure 4.10 shows three experiments with the evolution of the decision
variables using TMA, while Figure 4.11 presents the same, but using the
DMA. In each figure, the dashed lines are the set-points of the controllers
proposed by the supervisory layer (u-SP), the evolution of the manipulated
variables (u) are represented by solid lines. The optimum of the process and
the model (up and uy') and the limits for the decision variables (u” and u‘)
are shown with horizontal grey dashed lines. The evolution from the three
points is represented with the following colours: black lines start from point
1, blue lines from point 2 and red lines from point 3.

Table 4.4. Starting Points.

No. of Starting Point H; (cm) & (°/1) B(l/min)
1 80 0.0924 0.8
2 80 0.07 0.8
3 90 0.07 0.8
120 “HY
0.15 el

L
80 NN :‘H, a G
. . . . - . , . .
0 20 40 60 80 H/ 100 005 20 40 60 80 100
time [min] ! time [min]

Figure 4.10. Evolution of the decision variables using TMA.
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Figure 4.11. Evolution of the decision variables using DMA.

From Figure 4.10 and Figure 4.11, it can be seen that the use of MA
allows a point to be found that satisfies the NCO of the flotation column,
despite the structural uncertainty associated with the kinetic model of the
flotation phenomenon and the ability of the regulatory layer to reach the set
point of the process. The time needed to reach the desired point depends
on the starting point for both TMA and DMA methodologies. However, TMA
reduced this time by 82%, starting from point 1, 77.5% from point 2 and
45.2% from point 3. Considering that the time needed to reach the steady
state of this laboratory equipment is about 4 min, and the average time to
reach the NCO of the process with DMA was 65 min, it can be said that on
average, TMA allowed approximately 10 steady states to be saved. As this
process interacts with side units and the quality of the feed changes
periodically, this reduction of time can be seen as an improvement from the
point of view of the applicability of MAin real processes.

4.5 Conclusions

In this chapter, different MA approaches based on transient information
have been presented. It is important to highlight the description of a new
method that supposes one of the main contributions of this thesis. The
mentioned technique obtains the process gradients directly from truncated
Taylor expansions of the process cost and gradients combined with adaptive
filtering estimation techniques.

The method has been tested in the simulated Otto-Williams and the
results obtained show that it is possible to effectively perform the
optimization of the operation of the reactor in the presence of structural
plant-model mismatch. This reduces by a factor of 4 the time required to
achieve the process optimum as compared with traditional static MA
techniques, such as DMA.
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In addition, this approach has been tested in a laboratory-scale flotation
column, reducing the time needed to detect the NCO of a real process,
converging to the optimum in only one steady-state, whereas 10 steady-
states are used by the classic MA. The implementation of this technique in
other case studies will be shown in the following chapter.

To conclude it can be said that the combination of the modifier
adaptation methodology, the least squares algorithm using transient
measurements to compute process gradients, and the use of simplified
models in the RTO layer, is a really powerful approach to achieve the
optimal operating point of processes, reducing the convergence time.






5 CASE STUDY |I: DEPROPANIZER
DISTILLATION COLUMN

The performance of the proposed MA schemes will be illustrated through the
case study of an industrial depropanizer distillation column found in petrol refineries,
and the results will be compared to those obtained with standard NMA and DMA.
This example is an industrial example, very realistic and with a high complexity. The
successful implementation of MA in large-scale simulated processes like this, shows
that MA is a powerful tool that can be implemented in real plants. We use both a
rigorous model to simulate the column and a simplified model to implement RTO,
that is, there is considerable plant-model mismatch. The case study also considers
the industrially relevant situation where the decision variables in the RTO problem
do not correspond to those in the plant. This often results from the presence of an
intermediate MPC layerthatis not considered in the RTO problem formulation.
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5.1 Modelling and simulation

The case study considers the optimal operation of a continuous
depropanizer distillation column of a petrol refinery that is used to separate
propane (CiHg) from a mixture containing butane (C;Hy) and other
components. In general terms, distillation columns use differences in
temperature and pressure conditions along the column to get the more
volatile components at the top of the column, propane in this case, and the
less volatile component at the bottom of the column.

The main equipment where separation occurs is the distillation column
and reboiler. The liquid feed usually enters the distillation column after
preheating. The liquid flows to the reboiler where steam is used as the
heating medium. The reboiler provides the initial vaporisation of the liquid
phase to create the vapour phase. Part of the liquid in the reboiler is
vaporised and the vapour is returned to the distillation column. The
remaining liquid leaves the column as bottoms and provides the heat source
to preheat the feed.

The vapour flows up the column and leaves as overhead vapour. The
overhead vapour is condensed in the condenser and collected in the
accumulator.

Part of the liquid from the overhead accumulator is withdrawn as the
distillate, and the rest is returned to the column as reflux liquid. The reflux
liquid flows down the column, combining with the feed stream in the
column, and the combined liquid continues to flow down the column.
Normally, the section of the column above the feed entry is known as the
rectifying section, and the section below the feed entry is known as the
stripping section.

Inside the column, the down-flowing liquid comes into contact with the
up-flowing vapour. The distillation column is equipped with trays and/or
packings, to facilitate the vapour-liquid contact. During this contact, the
vapour is enriched in the more volatile component and stripped of less
volatile components.

The control objective for the distillation column is to maintain the
composition of propane in the distillate stream within the desired
specifications, satisfying such operational constraints as maximum pressure
drop to prevent the column from flooding, or limits on head and bottom
temperature (Acedo Sanchez, 2003).
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Basic control includes PID loops to maintain the liquid levels in the
accumulator and the bottom of the column at their desired values. There
are also controllers to regulate the steam and reflux flows and the head
pressure. The steam flow controller manipulates the opening of the valve
located in the steam input, whereas the reflux flow controller manipulates
the valve located in the reflux input. In the considered case study, the level
in the accumulator is controlled by manipulating the distillate flow, whereas
the level at the bottom of the column is controlled by manipulating the
bottom flow. The pressure at the top of the column is controlled by
changing the outlet flow of the condenser.

Control of head and bottom composition can be difficult, both because of
a lack of reliable measurements and the multivariable nature of the process.
Because of this, in many refineries, MPC controllers are used to control
column temperatures instead of composition. In the same way, in our case
study, a DMC controller, which manipulates the references for the steam
and reflux flow controllers, tries to maintain head and bottom temperatures
close to their set points, as an indirect way of controlling distillate and
bottom compositions. An upper RTO layer improves the economic
performance of the column computing optimal set points for the DMC,
while maintaining the composition of propane in the distillate within the
desired specification. This control structure is shown in Figure 5.1, where it
can be observed that the decision variables of the RTO layer are the head
and bottom temperatures that are passed as set points to the DMC
controller.
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Figure 5.1. Control structure of a depropanizer distillation column.

The simulated depropanizer column is based on an industrial example
located in the Repsol Tarragona Refinery (Spain). The column is made up of
a total condenser, a top accumulator, a partial reboiler and 37 equilibrium
stages or trays. In the described case study, the feed mixture enters at stage
19 with a flow rate of 468 kmol/h and 330.42 K. The composition of the feed
is 45.55 mol% propane, 44.67 mol% butane and 9.77 mol% ethane. The tray
efficiency is 60%. A rigorous first-principles model was developed to
represent the process, the main equations of which are described next.
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Figure 5.2. Typical refinery distillation column.

5.1.1. Dynamic rigorous model

The dynamic rigorous model of the distillation column, developed to
simulate the process, is based on material and energy balances on each tray
and vapour-liquid equilibrium equations that define the mass transfer
between liquid and vapour stream on each tray (Rueda, 2015). The reboiler
and the condenser of the column are also modelled.

Material and energy balances:

The mass balances for each tray read (see schematic in Figure 5.3 and
nomenclature in Table 5.2):

dmol, (5.1)
L=l Hv -y, i=2,.,n-1
dt i+1 i-1
dmol (5.2)
_feed
d” = :f+ln_feed+1 +Vn_feed71 _ln_feed _vn_feed
t
dmol, (5.3)

dt :Iref+vn—1_ln_vn
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dmol 5.4
Moty =l,+v, -b (5.4)
dt

5.5
dmOIGCCMm = /accum - Iref -d-1 ( )
dt

overflow

where dmol/dt is the molar accumulation rate (kmol/h), i is the tray
number, n is the total number of trays, /, v, f stand for liquid, vapour and
feed molar flows respectively (kmol/h), s is the molar reflux flow (kmol/h),
and b and d are the molar flow of bottom and distillate streams, also in
kmol/h. Equation (5.1) presents the overall mass balance around the i" tray,
shown schematically in Figure 5.3, where the involved terms are the liquid
and the vapour leaving the tray i, /; and v, the liquid flowing down from the
upper tray, 4, and the vapour flowing up from the below tray, vi.
Equations (5.2), (5.3), (5.4) and (5.5) show the mass balances in the feed tray
(Tray n_feed), the top of the column (Tray n), the bottom (Tray 1) and the
top accumulator. In (5.5), /,cam is the flow that comes from the condenser
and lovefiow is the excess liquid that overflows from the accumulator
(Rodriguez-Blanco, et al., 2015), (Coulson & Richardson, 2002):

The mass flow rates (in kg/h) of the different streams (reflux R, distillate
D, bottom B and feed F) can be obtained from the molar flow rates as
follows, where P,, (kg/kmol) indicates the molecular weight of each stream,
computed from the stream composition x;; and the individual molecular
weight of each component M,,; as (5.6) shows:

3
Pm/ = Z:Xj,/'lwmj (56)
j=1
R=lsPr (5.7)
D=d P,, (5.8)
B=bP,, (5.9)
F=fP,, (5.10)
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The component mass balances are expressed by (5.11)-(5.15). These
balances are defined only for the two components with less composition, in
this case, butane and ethane, and the majority one, propane, is obtained by
(5.15)

dx; ; '
dt =l X Vi i — X vy i=2,.,n-1 (5.1
dx
j,n_ feed
T = ij +I,,_feed+1xj,n_feed+1 +Vn_feed—1y/,n_feed—l (5.12)
_ln_feedxj,n_feed Vi feedV jn_feed
dx; ; (5.13)
dt =lXj2 tviy 0 —bxg
de,accum _ | d / (514)
T = laccumX j,accum ~ regXj,0 =X b ~ loveriowXj,0
S S 3 (5.15)
Yz, =1 Y X =1 YXp =1
j=1 j=1 j=1
3 3 3 '
.ZXLB =1 _ij,accum =1 Zy,-,,- =1 i=1,.,n
j=1 j=1 j=1

where x;;and y;;are the composition of component j (butane, propane
and ethane) in the liquid and vapour streams through the i tray (°/1) , zjis
the feed composition, x;, is the composition of the distillate stream and x;g
the composition of the bottom stream.
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Figure 5.3. Schematic or material exchange on trays.

Due to their fast dynamics, the energy balances around the i tray can be
modelled as steady-state equations:

Hv,ivi = hl,i+1/n+1 +Hv,i—1Vi_1 _h/,;/,' i= 2,-.-,n—1 (5-16)
Hy o feedVn geea =i f 01, feedialn feeass THun feed-1Vn_ feed—1 (5.17)
_hl,n_feedln_feed
H,; =%y, h(T;) i=1,.,n (5.18)
J
h; =%x;;h(T;) i=1,..,n (5.19)
j

where H, is the vapour enthalpy (ki/kg), h; is the liquid enthalpy (kJ/kg),
and h; is the specific enthalpy of each component (ki/kg) that depends on
the tray temperature T; (K), since it is computed as the product of the
specific heat at the constant pressure of the component C,;(kl/kg K) and the
temperature T,

The key temperatures in the operation of the distillation columns are the
head temperature (The,y) and the bottom temperature (Thoiom). These
temperatures correspond to the sensitive trays of the column where the
sensors are located. In this case, the sensitive trays are the number 34 for
Theadand 4 for Tpoirom.
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Vapour-liquid equilibrium:

The concentration of vapour in contact with liquid at equilibrium y.q;;in
each trayis expressed by Raoult’slaw (5.20).

i 5.20
yeqm - Ef Kj,ixj,i i=1,.,n ( )
Puat, i (5.21)
= 5(;,],/ [:]_I. n
a2 (5.22)
P =10 Ti+C; i=1,..n

sat,j,i

where the equilibrium constant K;; is given by the ratio between the
component j vapour pressure Ps,.;(Pa) (computed by the Antoine equation
(5.22) that includes specific constant values A, B, C for each component j)
and the total pressure in the i tray P; (Pa). The parameter Ef indicates the
tray efficiency.

Along the column, there is a pressure drop that is a function of the
vapour stream passing through the tray and the pressure in the upper tray. ¢
is a constant value to compute the pressure drop through the column.
Pressure at the top of the column P, is controlled by a PID which
manipulates the outlet flow of the condenser.

P =P+l /) (5.23)
Energy balance ofthereboiler:

A staticenergy balance is considered in the reboiler:
H, v, =Q, —h, b (5.24)

Qb =5 Ah(Preboiler) (525)
where Q, (kJ/h) is the heat flow added to the reboiler, S (kg/h) the steam
flow and Ah the latent heat of vaporization (kl/kg) that depends on the

reboiler pressure P,epoier (bar).
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Energy balance ofthe condenser:

The steady-state energy balance corresponding to the condenser is
expressed by the equation (5.26).

Qc =V, |:Hv,n (Theud ) - hl,n (Thead )] (526)

where Q, is the heat removed in the condenser (kJ/h), which is computed
next:

Qc = FWCP,W(TOUt,W - Tin,w) (527)

T — Tn - (Tn - T/’n,w) (5.28)

out,w e (Ucand (1 ~%cond )Acand (FWCP,W ))

where F, (kg/s) is the flow rate of cooling water, T, (°C) and T;,,, (°C)
are the outlet and inlet water temperature respectively, Acns (M?) is the
heat exchange area of the condenser, Uy (kJ/h m? °C) is the overall heat
transfer coefficient, apny °/1 of Apng that is being used and G, (ki/kg °C) is
the specific heat capacity for water.

The nonlinear dynamic model described above has been simulated using
the software EcosimPro (EAInt, 2013), a modern object oriented simulation
environment. The model consists of 2145 equations (129 differential
equations and 2016 algebraic ones) and 2152 variables (1976 explicit, 129
derivative, 40 algebraicand 7 boundary variables).

Table 5.1. Boundary variables in the dynamic model.

Variable Meaning Units

F Feed molar flow rate kg/h
SPihead Set point for the head temperature K
SPrvottom Set point for the bottom temperature K
SPy,, Set point for the head pressure K
ZcoHe Molar fraction of C,Hg in the feed stream °/1
Zcan10 Molar fraction of C4H4oin the feed stream °/1

Tteed Feed temperature °C
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Table 5.2. Nomenclature used in the dynamic model.

Variable Meaning Units
/ Liquid molar flow rate kmol/h
v Vapour molar flow rate kmol/h
f Feed molarflow rate kmol/h

dmol/dt Molar accumulation rate kmol/h

Iref Reflux molar flow rate kmol/h
locum Condenser outlet molar flow rate kmol/h
loverfiow Liquid molar flow rate overflowing from the kmol/h
accumulator
b Bottom molar flow rate kmol/h
d Distillate molar flow rate kmol/h
R Reflux mass flow rate kg/h
D Distillate mass flow rate kg/h
B Bottom mass flow rate kg/h
F Feed mass flow rate kg/h
S Steam flow to the reboiler kg/h
P, Molecular weight kg/kmol
M j Molecular weight of each component kg/kmol
Xji Molar fraction of componentjin the liquid stream °/1
leavingthe trayi
z Molar fraction of component;in the feed stream °/1
Vi Molar fraction of componentjin the vapour °n
stream leavingthe trayi
Yeqji Equilibrium concentration °/n
K i Equilibrium constant of componentjin the trayi
H, Vapour enthalpy ki/kg
h, Liquid enthalpy ki/kg
h; Specific enthalpy of component ki/kg
T; Tray temperature K
n_feed Feed tray #
Thead Head temperature K
Thottom Bottom temperature K
Psat,j Vapour pressure of component j Pa
P; Tray pressure Pa
Ef Tray efficiency °n
Q Heat flow added to the reboiler kJ/h
Q. Heat removed in the condenser ki/h
Ah Latent heat of vaporization ki/kg
Preboiler Reboiler pressure bar
Fu Flow rate of cooling water kg/s
Cow Specific heat capacity for water ki/kg °c
Tout,w Outlet water temperature °c
Tin,w Inlet water temperature °c
Ucond Overall heat transfer coefficient ki/h m*°c
Acond Heat exchange area of the condenser m*
Portion of condenser area used 0/1

Qcond
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5.1.2.Steady-staterigorous model

While the previous dynamic model will be used to represent the real
process, the RTO layer uses a steady-state model to make decisions. A
rigorous steady-state model may be developed directly by removing
derivatives from the dynamic column described above, and removing the
auxiliary equipment that does not affect the optimization problem, such as
the energy and mass balances at the accumulator (at steady-state, the inlet
flow is the same as the outlet flow and the same happens with the
temperature).

However, the resulting model has a large number of variables, equations
and algebraic loops that make the initialization and convergence of the
optimization difficult. In addition, this complexity makes the optimization
problem solved in the RTO run slowly (see Table 5.4 and Table 5.7). The
simulation of this model is shown in section 5.1.4.

For this reason, a simplified steady-state model has been developed
specifically in this thesis to be used at the RTO layer. This reduced model is
described next.

5.1.3.Steady-state simplified model

The simplified model takes into account the fact that distillation columns
can be divided into three sections: namely, the rectifying or enriching
section, the stripping section and the feeding tray, as shown in Figure 5.4.

The feeding tray is the tray where the feed is introduced. The rectifying
section consists of the trays above the feed tray and is so named because, in
this section, rising vapours are enriched in the more volatile component.
The section below the feeding tray is called the stripping section because
liquid is stripped off the more volatile component there.
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Figure 5.4.Schematic diagram of the three sections of a continuous distillation
column used in the steady-state simplified model.

In order to obtain a fairly small reduced model, the rigorous column
model has been simplified by considering only three trays and a global
efficiency. The equations that describe the simplified steady-state model for
RTO are presented next.

The overall mass balance of a distillation column is given by (5.29)

f=d+b (5.29)

where f, d and b are the feed, distillate and bottom molar flow rate

(kmol/h); whereas the mass balances on the enriching and stripping sections
are given by (5.30) and (5.31) respectively

V=1, +d (5.30)
I =vS+b (5.31)

where v and V* are the vapour molar flow rate in the enriching and
stripping sections (kmol/h), F is the liquid molar flow rate in the stripping
section (kmol/h), and /. is the reflux molar flow rate (kmol/h).
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The mass flow rates (in kg/h) of the different streams (reflux R, distillate
D, bottom B and feed F) can be obtained from the molar flow rates as shown
in (5.6)-(5.10).

The component mass balances are expressed by (5.32)-(5.34)

f Xj.n_ feed =d XD,j+b Xg,j (5.32)
x; =v'y; 5.33
I°x; =v7y; +bxy; ( )
Yi=Xp, (5.34)
S 1 Sx=1 3yi=1
it = = (5.35)
3 3 3
ZX}:]_ Zyj:l zXszl
j=1 j=1 j=1

where xsj and ysj are the composition of component j (butane, propane
and ethane) in the liquid and vapour streams through the stripping section,
and x; andy; are the same compositions for the enriching section. These
equations are applied for two components, in this case butane and ethane,
which are those present in lower concentrations; while the composition of
propane is obtained by (5.35). The feed enters the column with a
composition of x; » reeq and distillate and bottom streams leave the column
with a composition equal to xp; and xa; respectively. Assumption (5.34) is
valid since there is a total condenser, so the vapour stream leaving the
column is totally condensed and there is no accumulator considered in this
model, so the composition of the reflux stream is equal to the composition
of the vapour.

The energy balances are expressed by (5.36)-(5.38)

QC = V(HD (Thead ) - hD (Thead )) (5. 36)
Qb =S5 Ah(PreboiIer ) (537)
/ShS(Tbottom)+Qb =y HS(Tbottom)+b g (Toottom) (5.38)

where Q. is the heat removed in the condenser (kJ/h), Q, is the heat flow
added to the reboiler (ki/h), Ahis the latent heat of vaporization (kJ/kg) that
depends on the reboiler pressure Prepoier (bar), H> and h® are the enthalpies
for liquid and vapour streams in the stripping section (kJ/kmol), h; is the
enthalpy of the bottom stream (kJ/kmol), h;, is the enthalpy of the distillate
stream (kJ/kmol), Hp is the enthalpy of the inlet vapour stream to the
condenser (kJ/kmol) and S (kg/h) is the steam entering the reboiler. The
enthalpy values are functions of the corresponding temperatures (2C), Thed
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and Typouom Since they are computed as the product of the specific heat at
constant pressure of the stream C,; (kl/kg K) and the temperature T

Along the column, there is a pressure drop that is a function of the
vapour stream passing through the column and the number of trays ny,,
present in the real column. As V and V* have approximately the same value,
both of them could be used to compute this pressure drop and, therefore,
the value of the bottom pressure Puouom-The head pressure Pheyy is
mantained by a controller, while ¢ is a constant value to compute the
pressure drop through the column.

(5.39)

S 2
Pbottom :Phead +(V /C) .ntray

The concentration of vapour and liquid streams leaving each zone are at
equilibrium, expressed by Raoult’s law (5.40), which depends on the
equilibrium constants K. The parameter E; indicates the tray efficiency,
which varies from 0 to 1, which is the same as saying that it varies from 0 to
100%. At the reboiler, the efficiency is equal to 1, since it is considered an
ideal tray:

yjs = Ks (Pbottom,Tbottom )Xf (540)
(5.41)

Y; = Ef(K(Pyeag Theaa )X _yf) +yf

Due to the absence of energy balances for each tray of the column, head
and bottom temperatures were obtained from experimental data using the
ALAMO (Automated Learning of Algebraic Models for Optimization)
software for model building, (Cozad, et al., 2014), (Cozad, et al., 2015).
ALAMO generatesalgebraic models of simulations or experiments.

The ALAMO software was developed at Carnegie Mellon University with
the purpose of generating algebraic models which are accurate, simple in
functional form and generated from a minimal experimental data set. It is
based on using an iterative design of experiments to build low-complexity
surrogate models. It works following the algorithmic flowchart shown in
Figure 5.5, following a three step iterative process:

1. Initial design of experiment: define an initial training set.

2. Model building: build a low complexity surrogate model based on the
current training, solving an MILP/MINLP problem.

3. Adaptive sampling: by interrogating the system using Error
Maximization Sampling (EMS), the training set is updated with new



CASE STUDY | : DEPROPANIZER DISTILLATION COLUMN 141

points sampled where the current model breaks down. To do that,
ALAMO uses a derivative-free optimization solver called SNOBFIT.

4. Repeat steps two and three until no points can be found that violate

the model.

Initial sampling

Build surrogate model

1

Adaptive sampling

Update training data set

FALSE _— T~
== 2 >
\i\/lodel converged.///
\\\ ///

T TRUE

Figure 5.5. Algorithmic flowchart of ALAMO.

In this study, since it is assumed that the feed rate and the composition
are kept constant, the models for the head and bottom temperatures were
generated as functions of the model inputs, namely, the steam flow to the
reboiler S (kg/h) and the reflux flow R (kg/h). These expressions are obtained
from the simulation of the rigorous dynamic model of the distillation
column, where f; and f, represent second order polynomial functions. For
this task, 82 experiments at different operating points, varying steam and
reflux flows within the allowed range, were carried out to generate the data
used to fit the following second-order polynomial functions:

Thead = fl(s/ R) (542)
Tbottom = fZ(SI R) (543)

In addition, it is assumed that the light key component, ethane, is
removed completely from the column via the distillate stream, that s,

x4(C,Hg) =0 (5.44)
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The new variables included in the simplified model are presented in
Table 5.3, the rest of the variables have been previously defined in Table

5.2.

Table 5.3. Nomenclature used in the steady-state simplified model.

Variable Meaning Units
v Vapour molar flow ratein the enriching section kmol/h
v Vapour molar flowrate in the stripping section kmol/h
P Liquid molar flow rate in the stripping section kmol/h
v Vapour mass flow rate in the enriching section kg/h
v Vapour mass flow rate in the stripping section kg/h
L Liquid mass flow rate in the enriching section kg/h
r Liquid mass flow rate in the stripping section kg/h
x,-S Molar fraction of componentjin the liquid °/1

stream through the stripping section
X Molar fraction of componentjin the liquid °/1
stream through the enriching section
y,-s Molar fraction of component;in the vapour o1
stream through the stripping section
y; Molar fraction of component;in the vapour o1
stream through the enriching section
Xin feed Molarfraction of componentjin thefeed stream 71
Xo,f Molar fraction of component;in the distillate °/1
stream
Xg,J Molar fraction of component;in the bottom °/1
stream
H Enthalpy forliquidstreamin the stripping section ki/kg
h* Enthalpy for vapour stream in the stripping ki/kg
section
hg Enthalpy of the bottom stream ki/kg
hp Enthalpy of the distillate stream ki/kg
Hp Enthalpy of the input vapour stream to the ki/kg
condenser
Pyottom Bottom pressure Pa
Pread Head pressure Pa
Ntray Number of trays #

The differences in the number of variables and computation time
between the rigorous model and the simplified steady-state model are
presented in Table 5.4, where it can be seen that the model size has been
reduced by 28 times, and Table 5.7, where the reduction in the



CASE STUDY | : DEPROPANIZER DISTILLATION COLUMN 143

computation time is shown. Both models share the same boundary variables
as Table 5.5 shows.

Table 5.4. Size comparison between steady-state models, rigorous and reduced.

Rigorous Reduced
Equations 1076 39
Explicit variables 921 29
Algebraic variables 148 3
Boundary variables 7 7

5.1.4.Simulation and comparison between models

In order to test the reduced model, the same changes in the input
variables, reflux and steam flow rates have been applied to the reduced and
full models in parallel, as shown in Figure 5.6, starting from a steady-state to
check the behaviour of the output variables.

The initial steady-state corresponds to the boundary conditions shown in
Table 5.5 that include the composition, flow and temperature of the feed
stream, the steam and reflux flows and the pressure at the top of the
column.

Table 5.5. Boundary conditions for the simulation.

Rigorous

z(C,He) (°/2) 0.099
2(C4H10) (°/1) 0.446
F (kg/h) 22950

S (kg/h) 5550

R (kg/h) 8750
Tteea( °C) 57.27
Phead (ba r) 15.74

Some significant output variables have been represented in Figure 5.7,
Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11, where it can be observed
that the achieved steady-states are not the same, due to the strong
structural differences.
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Figure 5.6. Changes in the reflux and steam flows.
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Figure 5.7. Evolution of the composition of propane in the distillate.
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Figure 5.8. Evolution of the bottom flow rate.
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5.2 Basic control

The basic control for the distillation column has also been modelled in
the rigorous dynamic model. This basic control includes continuous PI
controllers to control steam and reflux flow rates, the level at the bottom of
the column, the level in the condenser and the head pressure.

The steam flow controller manipulates the opening of the valve located
in the steam inlet to the reboiler. The reflux flow controller manipulates the
opening of the valve located in the reflux inlet to the column.

The level in the accumulator is controlled by manipulating the distillate
flow, whereas the level at the bottom of the column is controlled by
manipulating the bottom flow. The pressure at the top of the column is
controlled by changing the outlet flow of the condenser.

Linear valves have been considered, that is, the flow passing through it,
F,, is proportional to the input signal to the valve, u,, and the range of the
controlled variable (Umin : Umax):

F

v

=u, (umax ~ Unin ) + Ui (545)

5.3 Model predictive control DMC

As shown in Figure 5.1, a DMC controller is responsible for maintaining
head and bottom temperatures close to the set points given by the RTO
layer. To do that, the DMC controller manipulates the references for the
steam and reflux flow controllers.

DMC uses the step response (5.47) to model the process, only taking into
account the first N terms, therefore assuming the process to be stable and
without integrators. In this case, 40 model coefficients have been

considered. As regards the disturbances (A, ), their value will be considered
to be equal to the measured value of the output (y,: minus the one
estimated by the model ( y,) (de Prada, et al., 1993) (Camacho & Bordons,

2000).
ﬁt = ym,t‘ —_ yt (5.46)

and therefore the predicted value of the output will be
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N 5.47
Ve = gjlg,Aut_, +gyUi_y + 1A, ( )
where g; are the coefficients of the step response model and Au the

input changes with respect to the inputs applied before.

The rigorous dynamic model described in section 5.1.1 served as the
basis to identify the linear dynamic model used in the DMC controller, which
consists of the step responses of the head and bottom temperatures to
changes in the set points of the reflux and steam controllers (see Figure 5.1).
No more models are required, since it is an unconstrained DMC, as in the
commercial controller from AspenTech.

In this example the linearization operating point corresponds to: Tyotwm=
93 °C, Theqa=49.5°C, S=5220 kg/h and R= 8620 kg/h.

The objective of a DMC controller is to drive the output as close to the
set point w; as possible, in a least-squares sense, with the possibility of the
inclusion of a penalty term v on the input moves. Therefore, the
manipulated variables are selected to minimize a quadratic objective J that
can consider the minimization of future error alone and can include the
control effort, in which case it presents the generic form.

= (5.48)

1

VS

(yt+r' - Wt+i)2 + ,%V(Au”"-l )Z

The tuning parameters of the DMC controller of the distillation column
are: a prediction horizon (p) equal to 40, a control horizon (m) of 3 and a
sample time of 6 minutes.

5.4 RTO problem formulation

The optimization problem solved in the RTO layer is based on the non-
linear steady-state simplified model described in the previous section that
can be considered as a grey-box model, since it combines a partial
theoretical structure with experimental data to complete the model. This
model reduction implies a strong structural plant-model mismatch; in
addition, the real process is controlled by an MPC layer (the DMC controller)
which is not considered in either the RTO or the steady-state model. So, the
inputs of the real process, DMC set points for bottom and head
temperatures, are not the same as the model inputs used by the RTO, that
is, steam and reflux flows.
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Another source of uncertainty is due to the identification of the linear
dynamic models that are required by the DMC controller. This identification
is carried out around a certain operating point. So these models could be
incorrect if the process is operated away from this point, resulting in more
uncertainty the further the decision variables are moved away from the
identification point. The presence of this strong uncertainty implies that the
optimal solution of the RTO model will not be the same as the process
optimum, making it necessary to apply MA methodology to achieve the
optimal operating point of the process.

The economic objective of RTO is to maximize the operation profit,
considering the benefits obtained from producing distillate D (kg/h) with a
given purity specification and minimizing the steam consumption S (kg/h)
for a given feed (Porru, et al., 2015). Prices Ps and P, have been fixed for
both streams, 20 €/ton for the steam consumed and 80 €/ton for propane in
distillate, assuming that it is above the com position specification. Below this
target, the price decreases as a function of the composition following the
sigmoid behaviour shown next.

9000 (5.49)
300 + e(-(XD(CSHg)-o.s)som

P, =50+

The objective function is represented by the value of ¢ (€/h) calculated
by (5.50) and the constraint over the composition of propane in the distillate
stream g is expressed by (5.51), whereasthe RTO problem is formulated as:

max ¢ = P, (x,(C3H,)) D~ P,S (5.50)
S,R
s.t

Steady - state simplified model of the process  (5.22)-(5.38) (5.51)

g = x,(C3Hg) 2 0.80

Lower and upper limits are fixed for the model inputs, that is, steam and
reflux set points.

4000 < S < 6000 (5.52)
6000 < R < 11000

It might happen that, due to plant-model mismatch, the computed set
points for the bottom and head temperatures cannot be enforced exactly.
Hence, the values of the temperatures Tjeoq and Tpomom (2C) in the RTO
problem are constrained as follows:
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40<T,,,, <60 (5.53)
80< T, om <110

Another constraint is the maximum loss of pressure AP to prevent the
flooding of the column:

AP < 0.25 (5.54)

In this example, as mentioned above, the inputs of the RTO model are
not the same as the plant inputs due to the presence of the DMC layer. The
inputs of the RTO model are (S, R), whereas the process inputs are the
references of the DMC controller (SPottom SPrmesa), @S shown in Figure 5.12.
The DMC controller manipulates the references for the steam and reflux
flow controllers to maintain head and bottom temperatures close to the set
points given by the RTO layer.

o= [s.7] _)[ RTO MODEL :)) f(ﬁ’));gf:,z sp, T

Tbottom ’

c(u ): [SPTbmm,SPrthl[ CLOSED-LOOPPLANT | s (0, ) g.(c(u,))
P pl)rYp P

(DMC+PID+PROCESS)

Figure 5.12.Comparison between plant and model inputs/outputs.

As shown previously, the reduced model presents a strong structural
plant-model mismatch, so the model optimum is not the same as the real
optimum (see Table 5.6). The real optimum has been obtained by solving
the RTO problem (5.55)-(5.56) based on the rigorous steady-state model,
assuming that this optimum is the same as the process optimum, since the
rigorous steady-state model has been obtained by directly removing the
derivative terms. The model optimum is obtained by solving the steady-
state simplified model and applying the obtained solution to the real
process.
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Table 5.6. Comparison between Process and Model Optimum.

Real Optimum Model Optimum

S (kg/h) 5558.20 5000.00

R (kg/h) 9389.67 9265.70

D (kg/h) 11179.53 9965.52
SPrheqd (2C) 50.98 42.58
SProtiom (2C) 102.02 96.33
xo(CsHs) (°/1) 0.800 0.819
b- (€/h) 783.19 714.50

Solving the nominal RTO problem without modifiers implies a decrease of
8.77 % in the profit obtained. To solve this issue, the MA schemes developed
in this thesis and the traditional MA approaches are implemented. The NLP
optimization problems have been solved using a sequential approach with a
sequential quadratic programming (SQP) algorithm implemented in the
SNOPT library (Gill, et al., 2008) and executed in EcosimPro software (EAInt,
2013).

The size reduction in the model used in the RTO layer (see Table 5.4)
implies that the optimization problem could be solved faster and more
easily than by using a more complicated one, as can be observed in Table
5.7.

Table 5.7. Time comparison between steady-state models, rigorous and simplified.

Rigorous Simplified
Optimization time (s) 7.594 0.235
Number of iterations 56 50
Time per iteration (s) 0.135 0.0047

The execution of one RTO problem is 32 times faster using the reduced
model, which allows the use of RTO in real applications, where decisions
must be implemented within a time scale of a few seconds. In this example,
the use of the rigorous model does not imply a problem with respect to the
optimization time, but it is important to note that this issue could happen
using large scale models, where the optimization time could be prohibitive
and the use of reduced models is the only way to deal with them.
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5.5 Implementation of MA in the depropanizer
distillation column

The performance of the proposed MA schemes will be illustrated through
the case study of the industrial depropanizer distillation column and the
results will be compared to those obtained with standard MA techniques,
such as, NMA and DMA.

The rigorous dynamic model (see section 5.1.1.), including the basic
control layer (see section 5.2) and the MPC layer (see section 5.3), has been
simulated in EcosimPro software (EAlInt, 2013), to be used as a substitute for
the real process, in order to study the performance of the different MA
approaches. First, static MA methods are applied to optimize the operation
of the depropanizer distillation column. Notice that this process has a long
settling time, approximately 6 hours, which makes the implementation of
static approaches impractical for industrial use, since the plant optimum is
achieved after several days of operation. This long period of time can result
in loss of optimality, since operating conditions and plant-model mismatch
could change and the method would not converge to the process optimum.
To overcome this problem, the proposed MA approaches based on transient
measurements could be applied to speed up the convergence to the real
optimum.

By applying MA, the original optimization problem formulated by (5.50)
and (5.51) is changed by adding some modifiers in the cost function and
constraints, giving rise to the modified problem (5.55). In principle, only the
constraint on the distillate composition will be modified, although other
constraints will be considered when certain techniques are applied. The
subscript “P” indicates that the variable is measured from the process and
the subscript “k-1" is the measurement takenin the previous RTOiteration:

max @y, = P,(x,(C3Hg))D — P,S + A (cu) — cup ,_,))

(5.55)
s.t
Stationary model of the process  (5.22)-(5.38)
gy = —Xp(C5Hg) +0.80 + vy (c(u) — cup ;) +&, <0

(5.56)

4000 < S <6000
6000 < R <11000
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40<T,,, <60
80 < T, eom < 110

bottom —

ead

The number of modifiers required to adapt the RTO problem ny is given
by (5.57), where n, is the number of decision variables which are head and
bottom temperatures (Thotom Theas) and ng is the number of constraints
(distillate composition); so, in our problem, n,=5:

ne=n,+n,(n, +1) (5.57)

The modifiers A, y and € are given by (5.58)-(5.60) and represent the
difference between experimental and model gradients. Several techniques
to compute process gradients have been presented in the previous sections.
However, the calculation of model gradients requires special attention in
this case because they cannot be computed directly, since Tyoromand Theq
are not considered independent variables of the RTO model. So the
modifiers are computed as follows (Costello, et al., 2013), (Rodriguez-
Blanco, et al., 2015):

AkT ZVC¢P‘C(UPJ@1) _vc¢‘c(ul,1) zv':¢P‘c(up’k,1) _vu¢(vuc)+ u (5.58)
va :vch‘C(UP,k—l) _ch‘c(uzfl) :chP‘c(uP,k,l) _Vug(vuc)Jr . (5:59)
(5.60)

e =0plclup,4))—9glu, ;)
where (*) indicates the Moore-Penrose pseudo-inverse.

The choice of evaluating the gradients at c(u,;) does not pose any
conceptual difficulty, since the set points are applied to the plant. However,
this would be problematic if the gradients were evaluated at u,,, since the
computed uy; is not applied to the plant and typically differs from the plant
inputs achieved by the controlled plant at steady-state (Frangois, et al.,
2016) (Papasavvas, etal., 2017).

As usual in MA methodology, the modifiers are applied filtered using a
first-order exponential filter, where Kj, K, and K, are diagonal matrices with
eigenvalues in the interval (0, 1], (5.61)-(5.63) to smooth changes in the
decision variables and to ensure convergence.

A =(1-K,A,_, +K,A, (5.61)

Vi =0-K,)Ve s +K, v, (5.62)
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g =(1-K,)g,_, +K. g, (5.63)

Different MA methodologies have been implemented, using different
models in the RTO layer and considering different control structures and
operational constraints.

In particular, we aim to test the proposed method based on the direct
estimation of the process gradients (section 5.5.4), comparing it with
standard DMA and NMA formulations (section 5.5.1), as well as with the one
based on NEC and transient measurements (section 5.5.4).

The developed method, based on the combination of transient and
steady-state measurements, will also be implemented in this example
(section 5.5.3).

Another considered approach to speed up the convergence of the NMA
methodology is that based on the reduction in the number of modifiers by
computing those modifiers which adapt the optimization problem and
whose solution minimizes the Lagrangian function, measured directly from
the process (section 5.5.2). In this way, the implementation of NMA is easier
and faster, allowing the use of this formulation in real processes. A summary
of the applications developed during this thesis is given in Table 5.8.
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5.5.1 Static MA

The DMA (Brdys & Tatjewski, 1994), (Marchetti, et al,, 2010) and NMA
(Navia, et al., 2015) methods have been implemented on the depropanizer
column solving the RTO optimization problem every 6 hours, the time
required for the process to achieve a new steady-state. In both approaches,
DMA and NMA, the first three iterations were used to estimate the process
gradients by finite differences; in the second approach this is necessary to
provide a good starting point for the upper optimization layer. Two initial
operating points are imposed on the real process to take data and then the
third operating point applied to the process corresponds to the nominal
solution, that is, the result obtained by solving the RTO problem without
modifiers. In this way, data from three different operating points are
obtained to make the first gradient estimation.

The DMA methodology requires the addition of the dual constraint
(K*(S¢) 2 a), which guarantees a sufficient level of excitation to estimate the
gradients accurately. The selected value in this case is 0.10. This dual
constraint is evaluated using the set point values since, as shown in (5.58)-
(5.60), the modifiers are computed as functions of these references.
Equation (5.64) shows how to compute the vectors of differences with
respect to the previous points:

Sy, = clu) —clu, ) Vi=1,.,n, (5.64)

Figure 5.13 shows the evolution of the cost function during the process
operation, whereas Figure 5.14 and Figure 5.15 show the bottom and head
temperatures. The evolution of the composition of the distillate is shown in
Figure 5.16, where it can be observed that the achieved operating point
corresponds to an active constraint represented by the dotted red line.
Figure 5.17, Figure 5.18 and Figure 5.19 represent the steam, reflux and
distillate flows, respectively.
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Fixing a tolerance band of 0.5% with respect to the optimal value of the
cost function, the graphs (in particular, Figure 5.13) show that the optimum
of the process is achieved after approximately 60 hours, using both DMA
and NMA approaches. For the DMA approach, the number of steady-states
needed was 10, the first two to initialize the computation of the process
gradients (n, = 2) and 8 related to RTO solutions. NMA also requires 10
steady-states, first, two initial steady-states (n, = 2) to estimate plant
gradients, then five to construct the first simplex corresponding to the
number of first- order modifiers plus 1, and finally 3 RTO executions.

DMA only requires one tuning parameter a, the bigger this parameter
the greater the excitation of the system, driving the process to the optimum
following a less optimal path. However, the Nelder Mead algorithm used in
NMA to estimate the modifiers has many tuning parameters, which strongly
affect the speed of convergence and the path followed to achieve the real
optimum. It is a difficult task to tune these parameters, since the effect of
each one is not really known. So, a bad choice could mean reaching the
optimum slowly, implying many steady-states. In addition, the estimation of
the initial modifiers also affects the behaviour of the method.

An overshoot is observed in Figure 5.17 and Figure 5.18; this is due to the
saturation of the valves that manipulate the reflux flow and the steam flow,
which happens because the reference given by the RTO layer to the DMC
cannot be reached by the process (see Figure 5.14 and Figure 5.15) because
the valves for the steam and the reflux flows become saturated. This
solution corresponds to the nominal one, that is, the result of solving the
RTO problem without modifiers. In spite of this unfeasible first solution, MA
is able to bring the process to the real optimum, giving feasible solutions in
the following iterations.

One important disadvantage of this kind of method is that they can work
well with few decision variables, but when the number of inputs increases,
the number of modifiers also grows, involving a bigger number of steady-
states to converge to the optimal solution, which supposes a problem,
especially for processes with long settling times like in the depropanizer
column. To deal with this problem, NMA based on the minimization of the
Lagrangian function will be implemented to reduce the number of required
modifiers and therefore, speed up the convergence rate of the method.
Results are shown in section 5.5.2.

As shown in Figure 5.13 to Figure 5.19, the convergence to the optimum
using static MA techniques takes two and a half days, which is a problem if
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the methodology is implemented in real problems. To deal with this issue,
transient measurements have been incorporated in the MA methodology to
speed up the convergence to the real optimum. The corresponding results
are shown in section 5.5.3and 5.5.4.

5.5.2 Alternative NMA for dealing with operational
constraints

For dealing with process-dependent constraints without increasing the
number of modifiers, an alternative MA methodology can be implemented.
It consists of computing the modifiers from the gradient of the Lagrangian
function which incorporates information about the constraints, and thus
only one gradient modifier for each process input is required. These
modifiers are used in the Nested Modifier Adaptation (NMA) technique
(presented in section 3.3), which has been implemented in the simulated
depropanizer distillation column. The use of these modifiers implies a clear
advantage over the NMA formulation (presented in section 2.1.5) in terms
of problem size (number of decision variables in the outer optimization
layer).

The obtained results show that the convergence rate of the alternative
NMA approach is faster than applying standard NMA and even faster than
applying DMA (presented in section 2.1.3).

To take into account more constraints, an active constraint on the
column pressure drop has been added, so, the resulting optimization
problem is given by (5.65) and (5.66):

max ¢ ="P,(x,(C3Hg)D)—P,S (5.65)
S,R

s.t

Stationary reducedmodel of the process
9, = x,(C;H,) =2 0.80 (5.66)
g, =4P <£0.25

4000 < S < 6000
6000 < R < 11000
40<T,,, <60
80< T, uom <110

bottom —

AP £0.25



CASE STUDY | : DEPROPANIZER DISTILLATION COLUMN 161

In this case, the optimum operating point for the process and the RTO
model is given by Table 5.9, where the real optimum corresponds to the

solution obtained by solving the RTO problem (5.65) and (5.66), based on
the rigorous steady-state model, whereas the model optimum is obtained

by solving the steady-state simplified model and applying the obtained
solution to the real process.

Table 5.9. Comparison between Process and Model Optimum.

Real Optimum Model Optimum

S (kg/h) 5558.20 5000.00

R (kg/h) 9389.67 9265.70

D (kg/h) 11179.53 9965.52
SPrheaq (2C) 50.98 42.58
SProttom (2C) 102.02 96.33
Xo(CsHs) (°/1) 0.800 0.822
AP(bar) 0.250 0.408
&- (€/h) 783.19 726.39

The modified problem applying the standard MA formulation is given by
(5.67) and (5.68). The subscript “P” indicates that the variable is measured

from the process and the subscript “k-1” is the measurement taken in the
previous steady state:

max ¢y, = P,(x,(C3Hg))D — P,S + A (c(u) — c(up ;) (5.67)

s.t

Stationary model of the process  (5.22)-(5.38)

gu1 = —Xp(CsHg) +0.80+ v, ,(c(u) —c(up ;) + &, <O (5.68)
Gy, = AP —0.25+y, ,(clu)—c(up , ;) + £, <O

4000 < S £ 6000

6000 < R <11000

The modifiers A, v« and g, are given by (5.61)-(5.63) and represent the
difference between experimental and model gradients.

However, if the alternative NMA technique described in chapter 3,
section 3.3 is applied, using the Llagrangian formulation, the modified
optimization problem will be formulated as follows, where the modifiers A",
& are given by (5.71) and (5.72), where the first-order modifiers are directly
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computed by the unconstrained upper optimization layer using the Nelder-
Mead algorithm:

max g, = Py (Xo(CsHg))D — P.S + AL (c(u) — clup 4 1)) (5.69)

s.t (5.70)

Stationary model of the process (5.22)-(5.38)
w1 = —Xp(C3Hg) +0.80+¢,, <0

Om, =AP—-025+¢,, <0

4000 < S <6000

6000 < R < 11000

A = VL) —v,L (5.71)
k

i
—1/Mg-1 U1 /M1

£ =0p, U ) —gilu_;) i=1..n, (5.72)

where the lagrangian for the process (Lp) and the Lagrangian for the
model (L) are defined as follows:

L, =@ + 18, L=¢+ug (5.73)

In this example, using the Lagrangian formulation, the number of
modifiers is reduced from 8 to 4, namely, two first-order modifiers
corresponding to the Lagrangian gradient with respect to the two inputs and
two zeroth-order modifiers for the two constraints.

As has been mentioned before, the RTO layer is executed every 6 hours,
which is the time required for the process to reach steady state. In both dual
MA and standard NMA, the first three operating points (n, + 1) are used to
estimate the process gradients by finite differences; in NMA, this is
necessary to provide a good starting point for the outer optimization layer.
Note that the starting point for the algorithms corresponds to the nominal
model solution, that is, the result obtained by solving the RTO problem
without modifiers.

DMA has been applied with a lower value for the dual constraint equal to
0.10. InDMA and NMA, three previous operating points (n, + 1) are required
to initialise the estimation of the modifiers, the third operating point
corresponding to the nominal solution, that is, the result obtained by solving
the RTO problem without modifiers.
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The following figures show the obtained results as a function of the
iterations, where NMA indicates the results of applying standard NMA,
NMALag indicates those obtained by using the Lagrangian formulation, and
DMA the results for the implementation of DMA. Figure 5.20 shows the
evolution of the cost function during the process operation, whereas Figure
5.21 and Figure 5.22 show the bottom and head temperatures. The
evolution of the composition of the distillate is shown in Figure 5.23 and the
pressure drop is presented in Figure 5.24, where it can be observed that the
achieved operating point corresponds to the active constraints represented
by the dotted red line. In this case, the modifiers have been applied without
filtering, thatis, K\=K, =K. = 1.

Note that, since the model optimum violates the constraint on the
pressure drop as given in Table 5.9, the first RTO iteration is performed with
a non-zero value for the zeroth-order modifier &, so as to start the
algorithm from the feasible region.
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780 i B N = e e o e
o ®
770 i o
760 I - NMA
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= . —e—DMA
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730 Plant optimum
720
1 3 5 7 9 11 13

Number of iteration

Figure 5.20. Evolution of the process cost function g.
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Figure 5.23. Evolution of the composition of propane in the distillate x,(C;Hs).
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Figure 5.24. Evolution of the pressure drop AP.

The previous figures show that the number of iterations is drastically
reduced by using the alternative NMA method, based on the computation of
the Lagrangian gradients, compared to standard DMA and NMA, which
converges to the optimum in a similar number of iterations. However, each
NMA iteration may require several steady-states, as will be shown next.
Even so, the alternative NMA presents a faster convergence than the other
methods.

The following figures show the obtained results as a function of the RTO
solutions, that is, the steady-state points achieved by the process. The red
points are n, + 1 previous operating points used to estimate the initial plant
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gradients for both DMA and NMA. (5.24) shows the evolution of the process
cost function, whereas (5.25) and (5.26) show the bottom and head
temperatures. (5.29) shows the evolution of the composition of the distillate
and (5.30) the pressure drop in the column during the operation
corresponding to the active constraints represented by the dotted red line
at the optimum:
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Figure 5.25. Evolution of the process cost function ¢.
103
102 N G S S DS, S
SETEFEFEFEFE O OOOC
101 ;gﬁi o NMA
5100 "% —®—DMA
T 29 o~ 4 NMALag
c B8 Model optimum
g 97 7o Plant optimum
2 9% —ﬂ =
9% |/
94
93 ?
1 6 11 21
Number of RTO

Figure 5.26. Evolution of the bottom temperature T,,:om-



CASE STUDY | : DEPROPANIZER DISTILLATION COLUMN 167

52
r G E = E R B R ATMENSmERE
50 »* EE L
» &
g8 * ,I'ﬂ o NMA
3 ’ —®— DMA
£ % G-O\ g - 4— NMALag
\ Model optimum
44 o O Plant optimum
42
1 6 N umbepof RTO 16 21
Figure 5.27. Evolution of the head temperature T,....
0.82
oo
0815 | /%
os1 ‘-. ‘ 0O NMA
0. o8 —-@- DMA
x i ------ 4 NMALag
0.805 .. i\a Active Constraint
¢ .. ‘; -
08 -' ..... - ~ e _
0.795
6 11 21
Number of RTO

Figure 5.28. Evolution of the composition of propane in the distillate x,(C;Hs).
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These figures show that all three approaches are able to reach the plant
optimum. The fastest convergence is achieved with NMALag. Indeed, the
use of the Lagrangian formulation reduces the number of modifiers and thus
also the number of decision variables in the outer optimization layer. This
ultimately reduces the number of steady-states needed to reach plant
optimality. However, it is important to keep in mind that the Nelder-Mead
algorithm may require, in some cases, more than one steady-state value for
each iteration, since it may need to evaluate several operating points to
decide on the next simplex move.

The performance of each scheme to converge within 0.5% of the optimal
cost is given in Table 5.10. For the DMA approach, the number of
experiments is 16, namely, the first 3 to initialize the computation of the
plant gradients (n, + 1= 2) and 13 related to RTO iterations. NMA requires 22
experiments, namely, 3 to estimate the plant gradients used in the
computation of the initial modifiers, 6 to construct the first simplex
(corresponding to the number of first-order modifiers plus 1), and 12 RTO
iterations. The NMALag scheme requires only 11 experiments, namely, 3 for
the initial estimation of the modifiers, 3 to construct the simplex and finally
5 RTOiterations to converge to the optimum.

Table 5.10. Summary results.

DMA NMA NMALag
Number of Modifiers 8 8 4
First-order modifiers 6 6 2
RTO iterations 13 12 5
Total steady state points 16 22 11

5.5.3 MA combining transient and steady-state
measurements

To speed up the convergence of the MA method, it is possible to use
transient measurements to compute plant gradients during the transient.
However, as explained in section 4.2, the methodology based on NEC only
works if there is parametric uncertainty. For this reason, to deal with
parametric and structural plant-model mismatch, an extension is presented
in section 4.3 that combines the estimation of process gradients from the
transient using NEC-MA and steady-state information using DMA.
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In this example, the rigorous steady-state model obtained directly from
removing derivative terms in the dynamic model is used in the RTO layer.
This model has been chosen in this case because the MA method based on
NEC works well only if there is parametric uncertainty, since it is necessary
to know what the uncertain parameters are. Then structural uncertainty will
be added to this model to check that MA based on NEC is not able to find
the process optimum in the presence of structural plant-model mismatch.

The parametric modelling mismatch, which is added between the
stationary RTO model and the dynamic process, is on the tray efficiency £
(+20%) that affects the vapour-liquid equilibrium (5.20). The MPC layer is
omitted in this example so as not to introduce more plant-model mismatch.
In this case, then, the inputs of the process are the same as the inputs of the
model, the referencesfor the steam and reflux flow controllers.

Then, structural uncertainty is added by assuming that pressure is
constant along the distillation column, that is, there is no pressure drop
across the column and also, significant energy losses E,.,; (kJ/h) in each tray
are considered in the model used by the RTO layer as a function of the
difference between tray temperature T, and ambient temperature T,m,
multiplied by a global heat transfer coefficient U. This term has been
considered in the steady-state model because it is easier to modify the RTO
model than the model describing the real process. The real process is

considered to be perfectly insulated, so there are no energy losses to the
environment.

E/ost = U(T

tray

Tamb) (5.74)

The RTO problem is defined as follows:

max ¢ = P,(x,(CsHg))D — P.S (5.75)
u=[S,R]

s.t

Rigorous steady — state model of the process (5.76)

g = x,(C3Hg) = 0.80
4000 < S <6000
6000 < R < 11000

The modified RTO problem solved at each iteration is given by the
following equations:
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max @,, = Py(x,(C3Hg))D —P,S + Al(u — uplk_l)
u=[s,R] (5.77)

s.t
Rigorous steady —state model of the process
gy = —Xp(C3Hg) +0.80+y (u—u, ;) +& <0

(5.78)
4000 < S <6000

6000 <R <11000
The differences between the model optimum obtained by solving the
RTO based on the rigorous steady-state model with uncertainty and the real

optimum obtained by solving the RTO based on the rigorous model without
uncertaintyare shown in Table 5.11

Table 5.11. Comparison between Process and Model Optimum.

Real Optimum Model Optimum
S(kg/h) 5558.20 5473.42
R(kg/h) 9389.67 8549.26
Theaa (2C) 50.98 59.68
Thottom (2C) 102.02 103.29
Xo(CsHs) (°/1) 0.80 0.76
b- (€/h) 783.19 491.36

As Table 5.11 shows, if the operating point obtained by solving the RTO
without modifiers is applied to the process, the obtained distillate does not
meet the specification. Below this target, the price decreases as a function
of the composition following a sigmoid behaviour and, therefore, its value
and the obtained profit are considerably reduced, to be precise, by about 37
% in this case.

First, it has been checked that the MA methodology using transient
measurements is not useful for the case where structural uncertainty is
present. This can be observed when this approach is applied in this case
study, which presents both parametric and structural uncertainty.

In this case, RTO is executed every half an hour so the modifiers are also
updated every half an hour. Figure 5.30 shows the evolution of the process
cost function where TMA indicates the results obtained by applying
transient MA based on NEC. Figure 5.31 and Figure 5.32 show the evolution
of the decision variables, the set point of the steam and reflux flow
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controllers in this case, while the evolution of the constraint on propane
composition in the distillate streamis shown in Figure 5.33.
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Figure 5.30. Evolution of the process cost function ¢.
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Figure 5.31. Evolution of the steam flow controller set point S.
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Figure 5.32. Evolution of the reflux flow controller set point R.
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Figure 5.33. Evolution of the composition of propane in the distillate x,(C;Hs).

Comparing the values obtained before (see Table 5.12) with the ones of
the real optimum (see Table 5.11), the previous graphs show that the MA
approach using transient measurements is not able to achieve the real
optimum of the process when such a structural uncertainty has been
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considered or even satisfy the process constraint on the propane
composition (>0.80) at steady state.

Now, the approach explained in section 4.3 is implemented. MA using
transient measurements is applied until the steady-state is achieved and this
method is not able to find a better operating point, in this case 4 hours, so a
step of traditional modifier adaptation from steady state information is
implemented until the real optimum is achieved as seen in Table 5.12.

Figure 5.34 shows the evolution of the process cost function. Figure 5.35
and Figure 5.36 show the evolution of the RTO decision variables, the set
point of the steam and reflux flow controllers, with the evolution of the
constraint on propane composition in distillate stream shown in Figure 5.37.
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Figure 5.34. Evolution of the process cost function ¢.
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Figure 5.36. Evolution of the reflux flow controller set point R.
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Figure 5.37. Evolution of the composition of propane in the distillate x,(C;Hs).

The optimum operating point is achieved after 22 hours, which means a
considerable time reduction compared to the traditional static MA applied
in section 5.5.1. This period of time involves eight RTO during the transient
and only one RTO executed during the steady state. However, three steady
states are required, two to estimate process and model gradients and one
steady state that is achieved after applying the obtained RTO solution. This
approach shows a good performance, reducing the time required to achieve
the real optimum of the process by 60% compared to the implementation of
traditional static MA.

Table 5.12. Summary results.

Real Optimum TMA TMA+DMA
S(kg/h) 5558.20 5679.83 5590.26
R(kg/h) 9389.67 9753.26 9523.33
Thead (2€) 50.98 55.54 50.79
Thottom (2C) 102.02 103.34 102.03
Xo(CsHs) (°/1) 0.80 0.78 0.80

®» (€/h) 783.19 577.66 783.17
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5.5.4 MA based on transient measurements

In this section, the results obtained by applying the MA techniques based
on transient measurements to estimate process gradients are presented. In
particular, the proposed method described in section 4.4 will be compared
to the method presented in section 4.2 based on NEC. In this example, plant
measurements are taken every hour without waiting for a steady-state and
the RTO problem is updated at the same rate. This sample time corresponds
to one sixth of the settling time of the process.

First, we present the results of the proposed method based on
estimating process gradients using a recursive parameter identification
algorithm, to be precise, Recursive Extended Least Squares (RELS), with a
forgetting factor a equal to 0.99 and the lower bound for the degree of
excitation, ¢, of the system is fixed at 0.05. The lower bound for the degree
of excitation, a, of the system is fixed at 0.02. The results obtained using this
approach are shown in the figures as EstMA. In this example, the size of the
data vector and the estimated parameters, given by (5.79) and (5.80), is five,
so, after the fifth iteration, there is enough collected data to check if the
persistent excitation condition is satisfied.

T P 5
P = [BToottomk  BTheaa ik  BTottomk  BThead i  BToottom kBT head k] (5.79)
A 1
T 2
o k= [V Thottomd k ¢ \ Thead k ¢ E \% Thottom,k Thbottom k ¢ (5 . 80)

1
2 2
E \% Thead kThead k ¢ \% Toottom , kThead & ¢]

For comparison purpose, the approach described in section 4.2, based on
NEC to estimate process gradients is also applied. It needs to know where
the parametric uncertainty between process and model is located. The use
of the reduced steady-state model implies a strong structural plant model
mismatch; for this reason, this mismatch has been adjusted to the rigorous
one that represents the real process by adding some offsets that take into
account the structural mismatch. In this case, the steady-states achieved by
the dynamic process can be matched with those of the model by changing
three uncertain parameters that have been considered as parametric
uncertainty: two constants (Cheg and Cpotrom) added in the equations used to
compute head and bottom temperatures, (5.42) and (5.43) with a nominal
value of 0, being the easiest way to deal with it, but not the most efficient,
and the global efficiency (E) of the column (5.41), whose nominal value is
equal to 0.98, a value which has been adjusted from simulation results.
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However, these parameters are time variant, so the implementation of this
technique is possible and its performance is considerably improved,
although the real optimum is not achieved. This task, to translate the
structural uncertainty into parametric, could be a difficult task in some
cases, so it is a clear disadvantage of this technique:

Thead = f1 (51 R) + Chead (581)
Tbattom = fZ (5' R) + Cbottam (582)

Therefore, when the NEC-based method is applied (see section 4.2), the
vector of uncertain parameters is 8 = [Chead) Chottom Ef], the decision variables
(the model inputs) are u = [R, S] and the vector of output variablesy = [B, D,
xg(C3Hg)). It is possible to choose a different set of output variables, but the
selected ones are the most sensitive to the uncertain parameters. The
results using this method are shown in the figures as TMA.

The process starts from a certain operating point and, after one hour, the
value of the optimal manipulated variables of the nominal solution is
applied to the process, that is, the RTO solution without modifiers. Thus,
both methodologies have the same transient information when they start
working. In this example, modifiers have been applied without filtering, that
is, Kx=K, =K. =1I.

Figure 5.38 presents the evolution of the process cost function for both
methods, whereas Figure 5.43 and Figure 5.42 show the bottom and head
temperatures. The evolution of the composition of the distillate is shown in
Figure 5.41, observing that the achieved operating point corresponds to an
active constraint indicated by the dotted red line. Figure 5.42 and Figure
5.43represent the steam, reflux and distillate flows respectively.



178

MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY

Tbottom (°C)

104
102
100
98
9%
94
92
90

TMA

EstMA

°°°°°°°° Model Optimum
Real Optimum

15
Time (h)

Figure 5.38. Evolution of the process cost function g.

~-QO— 0=

Thottom EstMA
@= e SP Thottom EstMA
°°°°°°°° Model Optimum
Real Optimum
Tbottom TMA

= e SP Thottom TMA

> Time (h) 10 15

Figure 5.39. Evolution of the bottom temperature Tyo::om



CASE STUDY | : DEPROPANIZER DISTILLATION COLUMN 179
52
50
B Thead EstMA
o e e SP Thead EstMA
> 46 (| ¥ =4 e Model Optimum
© Real Optimum
2aa Thead TMA
[ @ e SP Thead TMA
42
40
0 5 10 15
Time (h)
Figure 5.40. Evolution of the head temperature T,
0.835
0.83
0.825
;:T 0.82
= 0.815 VA
z —_—
5 0.81 e EstMA
= 0.805
x
08 Acti traint
0.795 ctive constrain
0.79

10
Time (h)

15

Figure 5.41. Evolution of the composition of propane in the distillate x,(C;Hs).



180

MODIFIER ADAPTATION FOR PROCESS OPTIMIZATION WITH UNCERTAINTY

5900
=
> 5700 .
=
2 5500
o
% 5300 Steam Flow TMA (kg/h)
g Steam Flow EstMA (kg/h)
9 5100 Real Optimum
(%]
4900
5 10 15
Time (h)
Figure 5.42. Evolution of the steam flow S.
12900
= 11900
%
= 10900
2
S 9900
('8
x
2 8900
Q e Reflux Flow TMA (kg/h)
& 7900 Real Optimum
6900 e Reflux Flow EstMA (kg/h)
0 5 Time (h) 10 15
Figure 5.43. Evolution of the reflux flow R.
12000
= 11500
}D N DN T
= 11000 o
_g 10500
[T
[J]
& 10000 Distillate Flow EstMA (kg/h)
S 9500 Distillate Flow TMA (kg/h)
.g Real Optimum
9000
0 5 10 15
Time (h)

Figure 5.44. Evolution of the distillate flow D.



CASE STUDY | : DEPROPANIZER DISTILLATION COLUMN 181

Observing the previous graphs (in particular Figure 5.38), one can see
that the convergence of both methods to a region near the optimum (a
tolerance band of 0.50% with respect to the process cost function has been
considered) is faster than in the previous section, around 8 hours in both
cases, which is a clear advantage that the approaches based on transient
information present. However, notice that, due to the presence of structural
uncertainty, there is an offset with respect to the real process optimum in
the solution provided by the method based on NEC. This offset could be
removed if once the steady-state is achieved a step of static MA is applied,
as shown in section 5.5.3.

By contrast, when estimating the process gradients directly with the
proposed recursive identification algorithm, the real optimum is achieved
after one steady-state. Nevertheless, it must be pointed out that the settling
time of the process has grown, since the DMC set-points were being
changed continuously (every hour) during the transient.

By applying the RELS algorithm to update the modifiers during the
transient, the optimum operating point is achieved after 8 hours, which
involves 8 RTO solutions (one per hour), reducing by approximately 8 times
the time required to achieve the optimum as compared with traditional
static MA techniques, such as DMA or NMA.

5.5.4.1 Evaluation of the dual constraint in transient MA

A dual constraint has been added to the MA technique based on the
estimation of the process gradients using RELS to ensure that, in the next
RTO iteration, the system will have enough excitation to estimate the
process gradients again. Figure 5.45 shows the evolution of the dual
constraint in the implementation described in the section before. In this
case, the lower limit for the dual constraintis 0.02.
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Figure 5.45. Evolution of the dual constraint.

In view of the results, it can be concluded that the system has enough
excitation during the whole operation. In some iterations, the dual
constraint becomes active. This is because, the RTO solution does not
provide enough excitation, so the dual constraint acts to guarantee that the
gradientswill be properly estimatedin the next RTO.

A second example is shown below to prove the effect of the dual
constraint in a system that not is adequately excited. A very small constant
filter has been considered, Ky = K, = K. = 0.15', to force that situation, that
is, the changes in the variables proposed by the RTO do not provide enough
excitation to estimate the plant gradients accurately. In this situation, if
excitation is forced by the dual constraint, an operating point that satisfies
the NCO of the process can be achieved. In the following figures, RTO
filtered, indicates the results obtained without adding the dual constraint
and RTO dual, present the results adding the dual constraint to ensure
excitation. Figure 5.46 presents the evolution of the process cost function,
whereas Figure 5.47 and Figure 5.48 show the evolution of head and bottom
temperatures, respectively. Figure 5.49 shows the value of the dual
constraint whose lower limit has been fixed at 0.10.
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The previous results show that the addition of the dual constraint, with
an appropriate lower limit, provides enough excitation to the system. In this
way, the transient MA method presented in this paper will be able to
achieve an operating point that satisfies the NCO of the process, even if the
RTO does not induce important changesin the decision variables by itself.

It is important to note that the convergence rate is strongly affected by
the constant of the filters. In this last example, the optimum is achieved
after 60 hours; this is due to the modifiers having been strongly filtered,
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slowing down the convergence of the method compared with Figure 5.38-
Figure 5.44.

5.6 Conclusions

In this chapter, we have analysed the performance of different MA
approaches. One first conclusion is that most of them work well, but the
developed method based on RELS is able to speed up the convergence of
RTO-MA to the real plant optimum. It is based on transient information,
obtaining process gradients directly from truncated Taylor expansions of the
process cost and gradients combined with adaptive filtering estimation
techniques. The method has been tested in a realistic case study
corresponding to a depropanizer distillation column of a petrol refinery and
the results obtained show that it is possible to effectively perform the
optimization of the distillation column in the presence of structural plant-
model mismatch and the presence of an MPC layer not considered explicitly
in the RTO model. In the considered case study, the method reduces by a
factor of 8 the time required to achieve the process optimum as compared
with traditional static MA techniques, such as DMA or NMA.

This application also shows the clear advantages of using simplified
steady-state models in the RTO layer; the solution time is significantly
reduced during the optimization of the depropanizer column operation
(approximately 28 times in this case), which allows the implementation of
RTO in real, large-scale processes. In addition, the reduced model is easier to
understand and easier to update and maintain if necessary.

Therefore, the combination of modifier adaptation methodology, the
least squares algorithm to use transient measurements to compute process
gradients, and the use of simplified models in the RTO layer, is really a
powerful approach to achieve the optimal operating point of processes,
reducing the convergence time.

Another effective way of speeding up the convergence of static MA
consists of reducing the number of modifiers to be adapted at each RTO
iteration. In this sense, the new NMA approach, based on the Lagrangian
function, has been tested in this example, getting a faster convergence than
usual NMA and DMA, and making the implementation of NMA easier in
practice.






6 CASE STUDY II: NATURAL GAS NETWORKS

The second aase study considered in this thesis is the optimal transport of natural
gas through gas pipelines. The results obtained after applying MA to the RTO
optimization problem are shownin this chapter.
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6.1 Natural gas networks

Natural gas is becoming one of the most widely used sources of energy in
the world due to its environmental friendly characteristics. Usually, the
location of natural gas resources and the place where the gas is supplied to
the consumer are far apart. This transport is carried out through pipeline
network systems where the gas flows through pipes and various devices
such as regulators, valves and compressors. During transport, the pressure
of the gas is reduced mainly due to the friction with the wall of the pipe. The
gas temperature also varies due to the heat transfer between the gas and
the surroundings (Woldeyohannes & Majid, 2011).

A library of dynamic and rigorous components to simulate the behavior
of natural gas flowing through pipelines has been developed in the
simulation software EcosimPro (EAInt, 2013). The library is composed of
natural gas pipelines, compressor stations, regulation and measurement
stations, valves, turbines, etc.

This library can be used for different purposes such as: the optimal
management of gas transport, training operators, detecting instrumentation
failures, or predicting the behavior of the gas before changes in the
operating conditions. The developed models are complex, since they are
formed by partial differential equations that include variables that depend
on the time and position along the pipeline. Due to the large size of these
networks, according to the number of variables and equations needed to
simulate the behavior of the gas, a simplified model has also been
developed to be used for optimization purposes.

6.2 Gas network library’

The natural gas network library comprises the following elements:

e Gas pipelines: high-pressure gas pipelines are channels for the
transport of gas, made from carbon steel and with high levels of
elasticity, the joints of which are welded. The maximum pressure in
the pipeline is about 80 bar and the minimum 30 bar. The only
exceptions are underwater sections that have a design pressure of
220 bar.

! This library was developed at the Dpt. of Systems Engin eering and Auto matic control of the University

of Valladolid within the project: “Modelado y supervision de redes de gas natural” together with
Intergeo Tecnologia and Aplein Ingenieros.
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e Compressor stations: these are facilities located along a natural gas
pipeline which compress the gas to a specified pressure, thereby
allowing it to continue flowing along the pipeline to the intended
recipient. The compression process is normally carried out by
centrifugal compressors.

e Measurement and regulation stations: these are located at delivery
points. The pressure is reduced to 16 bar in these stations as a means
of starting the adaptation process to the final pressure used by
companies and private individuals, which can be as low as 20 millibar.
In this installation, the natural gas is filtered and heated if necessary,
to compensate the future loss of temperature due to the gas
expansion in the pressure regulator; the gas pressure is reduced in the
reducer and immediately after that, the required variables are
measured at fixed pressure and temperature conditions.

A natural gas network library has been developed in the modelling and
simulation software EcosimPro (EA Int, 2013) that includes all the elements
described above. A picture of the appearance of this library is shown in
Figure 6.1. In addition to the gas pipelines model, other essential
components for the simulation of the natural gas transport, such as the
compressor stations (Figure 6.2), used to recover the pressure loss due to
the transport through the gas networks, or the regulation and measurement
stations (Figure 6.3), located in the supply points, where the gas pressure is
reduced in order to initialize the adaptation process to the final pressure of
the gasas used by companies and individuals.
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Figure 6.1. Dynamic library of natural gas networks in EcosimPro.
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6.3 Gas network modelling

6.3.1 Compressor station modelling

One important part of the library is the modelling of the compressor
stations. As natural gas flows along a pipeline, it slows due to friction
between it and the pipeline. This results in a loss of pressure along the
pipeline. In order to make the gas flow continuously at a desired flow rate, it
is re-pressurized at suitable locations along the pipeline. This is done by
mechanically compressing the gas at sites connected to the pipeline known
as compressor stations. The location and quantity of compressor stations
required in a pipeline system is dependent on a number of factors, including
the operating pressure of the pipeline, the diameter of the pipe used,
elevation changes along the pipeline route and the desired volume of gas to
be transported.

The two main components of the compressor station are the gas turbine
and the compressor, see Figure 6.2. The compressor mechanically re-
pressurizes the gas in the pipeline using an impeller that converts the
mechanical energy into kinetic, then a diffuser converts the kinetic energy
into potential in pressure form. The energy required to drive the
compressors is provided by the gas turbines that are mechanically coupled
to the compressor impeller. The gas turbines are powered by a portion of
the natural gas that flows through the pipeline.

In this section, we focus our attention on the modelling of the centrifugal
compressor. Each compressor has a characteristic curve that is given by the
manufacturer. This curve represents the iso-efficiency and iso-speed lines
represented in the axis of the pressure difference (called height if it is
expressed in meters of column of fluid) and the flow in abscissa.

The operating point of the compressor will be given by the intersection
of the characteristic curve for a given speed of rotation, of the increase in
pressure in the compressor and the flow passing through it.

However, from a practical point of view, not all points of the
characteristic curve can be achieved. Figure 6.4 shows the operating
margins that must be respected for the proper operation of the compressor
(Mirsky, et al., 2012).

1. Surge line. Surge is the left hand boundary of the compressor map.
Operation to the left of this line represents a region of flow instability.
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It indicates the minimum load for each rotational speed. When the
flow is reduced below the surge limit, the pressure at the discharge of
the compressor exceeds the pressure-making capability of the
compressor, causing a momentary reversal of flow. When this flow
reversal occurs, the pressure of the discharge system is reduced,
allowing the compressor to resume delivering flow until the discharge
pressure again increases, and the surge cycle repeats. Surging usually
creates a clearly audible noise. Prolonged operation in this unstable
mode can cause serious mechanical damage tothe compressor.

2. Maximum speed line. This is the maximum speed at which the
compressor can work properly.

3. Minimum speed line. This is the minimum speed at which the
compressor can work properly. Continuous operation beyond
maximum and minimum speed is not allowed as mechanical strength
limits may be reached when above maximum speed and the possible,
unacceptably high levels of vibration beyond both maximum and
minimum speeds.

4. Choke line. Choking of the centrifugal compressor occurs when the
compressor is operating at low discharge pressure and very high
flowrates. These high flowrates at compressor choke point are
actuallythe maximum that the compressor can push through.

5. Maximum power line. This represents the limit above which the
turbine is not able to give more power to the compressor.
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Figure 6.4. Characteristic curve of a centrifugal compressor.
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A dynamic model has been developed for the centrifugal compressor.
This model is based on mass and energy balances and the pressure profiles.

Mass balance

It is assumed there is no mass accumulation in the compressor, so mass
balance is expressed by (6.1).

Fin = Fout =F (61)

where F, and F,,;: (kg/s) are the inlet and outlet mass flow rates of
natural gas at the compressor.

Energy balance

The compression process is considered an adiabatic transformation,
since the heat transmission process is very slow compared with the
compression process so, the energy balance does not consider any term of
heat loss to the ambient (Q,m,=0).

E 1 1 6.2
%:Qamb +P+Fin(hm +Evii +gzinj_Fout(hout +Evﬁut +gzoutj ( )

where E (kl) is the compressor energy, Q.mp (kW) is the heat exchanged
with the ambient, P (kW) is the power supplied to the compressor, h (ki/kg)
is the natural gas enthalpy, v is the gas velocity (m/s), z (m) is the height and
g (m/s?) is the gravity.

The variation of the compressor speed is computed as the difference
between the turbine () and compressor torque (z.):

JN_ L R_P (6:3)
dt ' w N

where J (kg m2) is the moment of inertia, P; is the turbine power (kW),

and w (rad/s), N (rps) are the rotational speed of the compressor expressed

in different units.

T, T,

The changes in the kinetic and potential energy are negligible, as well as
the heat loss to the environment, so the resulting energy balance is given by
(6.4).
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dE (6.4)

= =p+F(h, —h
dt + ln( in out)

Besides, the compressor energy E is a combination of mechanical and
thermal energy:

6.5
E=;Jw2+mU:27rsz2+mU (65)

where U (kJ/kg) is the internal energy of the natural gas and m (kg) is the
compressed gasmass.

Then, differentiating £ from equation (6.5) and substituting in (6.4),
equation (6.6) is obtained:

2, AN d(mU) (6.6)

dt
In addition, taking into account the definitions for the internal energy

(6.7) and the variation of enthalpy (6.8), the global energy balance of the
compressor is defined by (6.9):

4

= P+F(hin _hout)

6.7
d(mu):mcvlerdecv (6.7)
dt dt dt
h/’n - hout = CP(Tin - Tour) (68)
6.9
47rzjd—N+vad—T+mT ac, =P +F(h, —h,,) (6.9)
dt dt dt

where C, (kJ/ kmol) is the calorific capacity of the natural gas at constant
pressure, C, (kJ/ kmol) is the calorific capacity of the natural gas at constant
volume and T (K) is the gastemperature.

The power supplied to the compressor (P) is obtained from (6.10).
P=W, F (6.10)

where W, (kl/kg) is the real work of the compressor computed by

W, (6.11)
p
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where 7, is the polytropic efficiency.

The work performed by the compressor is computed from (6.12).

n-1 (6.12)

R-n-T P \n
—szzm.#. ‘e -1
M-(n-1) P

in

where W, (kl/kg) is the polytropic work absorbed by the gas, Z,, is the
average compressibility factor (explicitly computed by the Sarem method
(Pitzer, 1955)), R (J/K mol) is the ideal gas constant, M (g/mol) is the
molecular weight of the gas and n is the polytropic coefficient that normally
varies from 1.5 to 1.6 and whose value has been chosen as 1.5in this model.

Pressure variation at the compressor

The variation in the pressure increase at the compressor is given by
(6.13). The pressure increase produced by the compressor is a function of
the compressor speed and the flow passing through the compressor. This
variation of pressure is obtained by interpolating the gas volumetric flow Q
and the speed in the characteristic map of the compressor.

4P = f(Q,N) (6.13)

Finally, the discharge pressure of the compressor P, (Pa) is defined by
(6.14) where P;, (Pa) is the suction pressure and AP the pressure increase at
the compressor.

P. =P, + AP (6.14)

c

Gas turbine modelling

The energy required to drive the compressor is provided by the gas
turbine, which is mechanically coupled to the compressor impeller. The gas
turbine is powered by a portion of the natural gas that flows through the
pipeline. A simplified model has been developed for the turbine that

includes the mass balance (6.15) and the computation of the turbine power
P, (6.16).

=F =F (6.15)

gc,out gc

F

gc,in
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Pt = FQCCP,QC (Tgc.in - Tgc.out) (6 16)

where Fyin and Fy,out (kg/s) are the inlet and outlet mass flow rates of
combustion gas at the turbine, G, (ki/kg) is the calorific capacity at
constant pressure and Tycin, Tycout (°C) are the inlet and outlet temperatures
of the combustion gases.

The gas turbines have a characteristic curve which relates the gas flow
passing through the turbine F,, the rotational speed of the compressor N;
(rpm) and the pressure difference between the inlet and the outlet AP, (Pa).
Assuming that this pressure decrease is perfectly controlled, it has been
considered a curve that relates the rotation speed as a function of the gas

consumed.
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Figure 6.5. Characteristic curve of the turbine.

The combustion between the natural gas taken from the gas pipeline and
the compressed air is carried out at the combustor. Therefore, the inlet gas
comes from the gas network and the outlet combustion gases are expanded
in the turbine.

The fraction of natural gas taken from the gas network required to make
the combustion is obtained taking into account a typical air/fuel mass ratio
whose value is 16:1. Another typical mass ratio relates the mass flow rate of
combustion gases with the mass flow rate of natural gas entering the
turbine. This ratio is supposed to be 17:1.
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Valve modelling

The equation (6.17) is used to compute the mass flow circulation through
a valve, where K, (m*/h) is the valve flow coefficient, u, (%) is the valve
opening, P,;, and P, ., (Pa) are the inlet and outlet pressure and p, (kg/m3)
is the fluid density. The volumetric flow Q, (m3/s) passing through the valve
is given by (6.18).

F, =K, (u,/ 100).Jpvlin Py (=P /P, ) (6.17)

Qv :Fv/pv (618)

There are two main valves in the compressor station, the valve located at
the inlet of the turbine which circulates the combustion gases, whose
opening is Uy, np and the recycle valve of the antisurge control, whose
opening signal is Uygiy rec.

Compressor discharge pressure control

The typical control structure for compressor stations has also been
modelled. This structure includes the control of the discharge pressure and
the antisurge control (Acedo Sdnchez, 2003).

The discharge pressure of the centrifugal compressor is controlled by
varying the rotational speed of the turbine. This speed is adjusted by
modifying the valve opening that allows the inlet of combustion gases to the
turbine (uyan _1p), as shown in Figure 6.2.

When the discharge pressure decreases, the control system will open the
valve to allow a larger flow of gas entering the turbine, increasing the
rotational speed of the turbine, also therefore increasing also the
compressor speed.

Compressor antisurge control

As mentioned above, the phenomenon of surge occurs when the flow is
reduced to below the surge limit. The compressor surge is dangerous
because it causes the compressor to vibrate and is detrimental because it
causes damage to the compressor parts. To prevent this problem,
centrifugal compressors have an antisurge controller.

Antisurge is an inferential control, so the first step in designing the
control system is to obtain the surge line equation. The equation of the line
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with slope K and independent term BO is obtained by computing the
corresponding straight line passing through two points on the map, located
near the working rotational speed, for example, 80-100% of the nominal
speed, as can be observed in Figure 6.6.
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Figure 6.6. Surge line.

The equation for the surge line is defined as follows:

Q =K-AP+B0 (6.19)

The control system detects when a process compression stage is
approaching surge and subsequently takes action to reverse the movement
of the operating point towards the surge line. This decreases the pressure
and increases the flow through the compressor, resulting in stable working
conditions. It is normally achieved by opening a control valve in a recycle
line (Figure 6.2), returning the discharge gas to the inlet of the compressor.
The resulting increase in compressor inlet volume flow moves the operating
point away from surge.

Due to inaccuracies in measurements and response times of transmitters
and valves, antisurge control achieves a surge control line parallel to the
surge limit line. The control line is offset to the right of the surge line by a
margin; typically equal to 3-10% of inlet volume flow at surge (Figure 6.7).
However, a lower margin is also desirable, as higher efficiency could be
obtained by closing the recycle valve (Ghazanfarihashemi &
Ghanbariannaeeni, 2012).
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Figure 6.7. Surge control line.

This control system comprises a PID controller, shown in Figure 6.2,
which receives the measurement of the controlled variable (gas flow
entering the compressor). This is compared to the set point (minimum inlet
flow) and sends the corresponding control signal to the recycle valve
(valv_rec) to modify its opening and recycle the required flow to guarantee
compressor safety.

6.3.2 Gas pipeline dynamic rigorous modelling

This section is focused on the modelling of gas pipelines, the main
element of natural gas transport. A rigorous gas pipeline model must include
the following mass balances, energy and momentum.

Generalassumptions

To know the dynamic of the model variables (mass, composition,
velocity, pressure and temperature) as a function of both time t and the
longitudinal coordinate of the gas pipeline x, the corresponding mass
balance, momentum and energy are considered. It is supposed that the
variables remain constant in the radial direction and that natural gas is
composed of 12 components: methane (CH,), ethane (C,Hg), propane (Cs3Hs),
i-butane (i-C4H1g), n-butane(n-C4Hy), i-pentane (i-CsH;,), n-pentane (n-
CsHyy), hexane (CgHus), nitrogen (N,), heptane (C;Hy¢), carbon dioxide (CO,)
and hydrogen sulfide (H,S). The model yields an accurate prediction, since
all these components are considered. To know this composition is very
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important to compute important variables, such as the calorific power of
natural gas that determines its economic value (Rodriguez, et al., 2013).

Mass balances

The global mass balance for the gas pipeline described by (6.20) is
formed by an accumulation term and a convection term. The natural gas
mass m (kg) and the velocity v (m/s) depend on both the time t (s) and the
longitudinal coordinate of the pipeline x (m):

om  o(mv) _ (6.20)
ot ox

The individual mass balance for each component is given by (6.21),
which takes into account the accumulation and convection terms for all
components i = 1,...M-1, except one (normally the one with a high
concentration, in this case, methane) whose composition is computed by
(6.22):

| | 6.21
omy,)  a(mvy,) _ Vi=1,.,M-1 (621
ot ox

v (6.22)

where M is the total number of components and y; (°/1) is the mass
fraction of each component j .

Energy balance

The total energy balance is given by (6.23) (internal, kinetic and potential
energy), assuming that the temperature loss is due to the conduction
between the pipe wall and the gas along the pipeline together with the
conduction between soil and pipe wall. In addition, heat transmission by
convection along the pipeline is also considered.

2 2
2 m CVT+V—+gh +i mv CVT+£+V—+gh =
ot 2 ox p 2 (6.23)

o°T
kvai + UgroundA(Tsoil - T)

XZ
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where p (kg/m?®) is the gas density, P (Pa) the gas pressure, T (°C) the gas
temperature, T;,; (°C) the soil temperature, C, (J/kg °C) the gas heat capacity
at constant volume, k (W/m °C) the thermal conductivity of the natural gas,
Uground (W/m? °C) the heat transfer coefficient through the pipe wall, A (m?)
the heat transmission surface, h (m) the altitude difference between
pipeline ends, V (m?) the volume of the pipeline and g (m/s?) is the gravity.

Momentumbalance

The momentum balance is described by (6.24), which takes into account
the accumulation term, convection, head loss due to the pressure, head loss
due to the friction (F,,) and head loss due to the slope of the pipeline (Fy/4,).
All these forces are represented in Figure 6.8.

2 vlv (6.24)
o(mv)  o(mv?) . oP V] h

=—m—4¢—mg—
ot ox 1904 2d ¢ gL

where d (m) is the inside diameter, L (m) is the length of the pipeline and
@ is the friction factor computed by using the Chen equation defined by
(6.25).

1.1096 0.8961 (625)
L _ 4l r9/d 50852 log (rg/d) . (7.149]
o 3.7065  Re 2.8257 Re

where Re is the Reynolds number computed by (6.26) and rg (m) the pipe
roughness.

_dvp (6.26)
Y7,

Re

where p (kg/m s) is the gasviscosity.

Figure 6.8. Scheme of forces in the pipeline.
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Equation of state forreal gases

Naturalgasis a compressible fluid with a non-ideal behavior described by
the equation of state for real gasesdefined by (6.27):

PV = ZnRT (6.27)

where Z is the compressibility factor, which in this case is computed
using the Sarem method (Pitzer, 1955), n (mol) is the number of moles and
R(J/K mol) is the universal gas constant.

Spatial discretization. Finite volume method

To solve the partial differential equations it is necessary to use an
integration method. In this case, the finite volume method has been chosen.
This technique integrates the original differential equations on a finite
volume obtaining a balance for each of the discrete zones into which the
pipeline is divided, called nodes (Baliga & Patankar, 1983).

When applying this method for the discretization, it has been supposed
that the volumetric flow circulating through each node takes the value of
the steady-state flow given by (6.28), the fundamental gas flow equation at
steady state (Schroeder, 2001), since the considered volumes are sufficiently
small to make this assumption. Thus, the momentum balance is replaced by
(6.28), simplifying the use of the model because of ignoring the complex
partial differential equation (6.24). The mass and energy balances described
above are applied over each control volume.

0.5
T, P2 —-pP2 —H
Q:c.;.d2'5.e.(L'"G Toufz ;J (6.28)
, GT,-Z,-

C: constant; 0.011493 (metric units)

e: pipeline efficiency

G: specific gravity

d: inside diameter (mm)

L: pipeline length (km)

Ppase: base pressure (kPa)

P;,:inlet gas pressure (kPa)

P,.:: outlet gas pressure pipeline (kPa)

Q: volumetric flow (m*/day, in standard conditions)
T,: average temperature (K) (geometric mean between the inlet and outlet
temperatures)
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Thase: base temperature (K)
Z,: average compressibility factor (computed from T,and P,)

Pipes are not usually horizontal (inlet height H, # outlet height H,). So long
as the slope is not too great, a correction for the static head of fluid H. is
incorporated and determined as follows:

0.06835g(H, — H, )P?
— g( 2 1) a (629)

N=1 N=j N=j+1 N +1

) . N o [—)

Figure 6.9. Pipeline dividing the spatial domain into finite volumes.

By applying the finite volume method, the model variables can be divided
into two groups. The variables that are computed at the borders of the
volume N, x[j] (j = 1,..., N+1), and those that are calculated at the centre of
the finite volume x[k] (k=1,..., N).

In this way, the mass balance described in (6.20) is replaced by (6.30),
which is applied to each finite volume and represents the mass
accumulation dml[k] /dt resulting from the difference between the inlet
mass flow W [j] (kg/s) and the outlet mass flow W [j+1].

dmlk . .
amlk] _ wlj]-wlj+1] (6.30)
dt

The individual mass balance, given by (6.21), is replaced by the solution
of (6.31) at each volume, where yc;[k] is the composition of each component
i (i=1,..., M) at each volume, and ycbk] is the composition at the volume
border.

dm[k] dyc,.[k] . : . .
g velklemlk] =5 = wlilyeb []-wlj + 1yeb [ +1] (6.31)

The individual mass balance (6.31) is applied for each component i at
each volume, except for the component of highest composition, which is
computed by (6.32)
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1= g ye, [k] (6.32)

The modelled gas pipelines allow the inverse flow that can happen in
some situations. Because of this issue, the variables at the border ycb, T, (°C)
are included. These variables can take one or other value, depending on the
flow direction.

If the flow direction is positive, that is, the flow goes from volume 1 to N
(W] > 0), then:

yeb,[] = ye,[k - 1] (6.33)

If the flow direction is negative, that is, the flow goes from volume Nto 1
(W)l <0), then:

yeb;[j]= ye;[k] (6.34)

To sum up, the variables at the volume border take the value of the

previous volume, and this volume is chosen as a function of the flow

direction, as shown in Figure 6.10 and Figure 6.11. This also happens for the
temperature T,[j] and the gas density py[j] (kg/m?).

j j=N+1

Figure 6.10. Value election when the flow direction is positive.

j j=N+1

_ 1 N _

Figure 6.11. Value election when the flow direction is negative.

A certain dynamic, (6.35) and (6.36), is added to smooth the changes in
the average values x,[j] when a change of flow direction happens. The time
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constant { corresponds to the inverse of the absolute value of the gas
velocity v[j] (m/s).

wig>o ¢ 1l (6.3

wi<o ¢ %Yl (6.36

The mass flow passing through each volume is computed using the
fundamental gas flow equation at steady state (6.28), which is applied to
each volume in the following form:

L/N-G-T,[j]-z,i] ¢lj]

The energy balance described by (6.23) results in (6.38) after
discretization:

m[k(dz Sl rie] e ]de[k] _

wu{ U~ c[klrk]{‘“ j ah, 11]
+(RLikalil- AL +11alj + 1) + Uypungareal (T,,; — Tlk])

~wlj+ 1(@0 [+ 1l + 1] - ¢, [k]r{k] + (Q[’;l] Az] +ghy[j + 1]}

This library has been used to simulate real gas networks in the simulation
software EcosimPro. These networks are constructed by adding the different
components (compressors, gas pipelines, valves,...) linked by ports in a
schematic. The characteristics of the gas networks, such as length, diameter
or roughness and feed gas composition can be fixed into the schematic
whereas the boundary conditions required to simulate the gas behavior
through the gas pipelines are defined in the experiment.

base

w[j] = Pm,[k]-C - P"“Se . d?* -e-( Ple—11 = PIkf" - . ] (6.37)

(6.38)
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6.4 Implementation of MA in Reganosa network

As natural gas pipeline systems have grown larger and more complex, the
importance of the optimal operation and planning of these facilities has
increased. The investment costs and operation expenses of pipeline
networks are so large that even small improvements in system utilization
can involve substantial amounts of money (Borraz-Sanchez & Mercado,
2015). For this reason, the implementation of MA in this field would bring
important benefits.

In a gas transmission network, the overall operating cost of the systemis
highly dependent upon the operating cost of the compressor stations in a
network. This operating cost is generally measured by the fuel consumed at
the compressor station. According to (Luongo, et al.,, 1989), the operating
cost of running the compressor stations represents between 25% and 50%
of the total operating budget of the company. Hence, the objective for a
transmission network is to minimize the total fuel consumption of the
compressor stations, while satisfying specified delivery flow rates.

6.4.1 Reganosa network

The case study considered in this thesis involves a transmission gas
network where there are consumers that need a certain amount of gas at a
specified quality and pressure. There are also gas sources where the fluid is
supplied at a determined pressure; in addition, there are two compressors
operating.

Figure 6.12 shows the natural gas network whose operation will be
optimized to reduce the costs due to gas consumption in the compressor
stations. This example is based on a real gas network managed by Reganosa
S. A., situated in the north of Spain, with a total length of 130 km and four
measurement stations (Reganosa S.A. 2013). It has one source and six
demand points; two compressor stations have been included, one of them
at the supply point. They are the controllable units to get the normalized
flow demanded by every consumer while minimizing the transport cost.
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Figure 6.12. Reganosa gas network topology.

The main characteristics of the Reganosa network are shown in Table 6.1.

Table 6.1. Dimensions of the Reganosa gas network.

Pipe name L (m) d(m) rg (m) H,-H, (m)
PO 10000 0.7620 4.6:10° 250
P2 6650 0.6604 4.6:10° 240
P_4 15650 0.6604 4.6:10” 10
P 6 150 0.5080 4.6-10° 0
P_7 9500 0.6604 4.6:10° -210
P9 19700 0.6604 4.6:10° 40
P_11 50 0.5080 4.6:10° 30
P_12 14900 0.4064 4.6:10° 320
P_14 26250 0.4064 4.6-10” -300
P_17 18000 0.5080 4.6:10° 120
P_18 50 0.6604 4.6:10° 0
P_19 50 0.6604 4.6:10° 0
P 21 4600 0.2540 4.6:10° 0
P_22 1550 0.4064 4.6:10° -10

P_23 5650 0.4064 4.6-10” 10
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6.4.2 Simplified RTO model

The model described in the previous section is too complex to be used
for optimization. For this reason, the rigorous model for the gas pipelines
has been simplified for use in the RTO layer.

A steady-state model has been considered for the gas pipelines, so this
model only considers one finite volume, that is, only the value of the
variables at the inlet and outlet are taking into account, without considering
the dynamic of the variables along the pipe.

Since the computation of the compressibility factor using the Sarem
method slows down the simulation considerably, the RTO model assumes
that an ideal gas is transported, so the compressibility factor is equal to one.

The model for the compressor stations has also been simplified, since the
control structure of the installation has been omitted. Antisurge control and
discharge pressure control are omitted in the RTO model, so the input of the
model is the signal to the valve of the combustion gases entering the turbine
whose value, in the real process, is controlled by a PID controller. The
opening for the recycle valve is determined as a function of the difference
between the gas flow passing through the compressor and the minimum
flow determined by the antisurge line. In this way, the degree of freedom of
the RTO model is the opening of the valve of the combustion gases entering
the turbine in each compressor.

In addition, a different value of the pipe efficiency e has been considered
in both models. This constant value directly affects the computation of the
gas flow (6.28). Its value in the rigorous model is 0.42, whereas the value of
e inthe RTO model is 0.48.

The size comparison between the rigorous model and the simplified
model used in the RTO layer is presented in Table 6.2.

Table 6.2. Size comparison between the rigorous and the reduced model.

Rigorous model RTO model
Number of equations 11744 2391
Number of explicit variables 7694 2276
Number of derivative variables 4050 115
Number of boundaries 22 22

As can be seenin Table 6.2, the model size is reduced by approximately 5
times.
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The boundary variables for both models are: inlet gas composition (12),
inlet temperature (1), inlet pressure (1) and the pressure at each outlet (6).

The rigorous model requires two more boundaries, the set point for the
discharge pressure controller at each compressor station (2); whereas, since
the control layer has been omitted, the reduced model requires two more
boundaries corresponding to the opening signal of the combustion gas

valves (2).

6.4.3 RTO problem formulation

The optimization objective of the RTO layer is to minimize the fuel gas
consumed by the compressor stations. A small portion of natural gas from
the pipeline is burned to power the turbine, so compressor stations
consume about 2 % of the naturalgas running through them.

The optimization problem solved in the RTO layer is defined as follows:

ming, = Que re1 + Quuer 2 (6.39)

Uyaty _Hp1-Yvalv _HP2

s.t.

Simplified RTO model  (see section 6.1.1.4) (6.40)
g; = Demand, -Q, <0 j e {P_6,P_11,P_18,P_21,P_22,P_23}
68<P. ., <80

c

68<P, ,, <80

c

where ¢ (m3/s) is the cost function to minimize, Pc ec1 (bar) is the
discharge pressure of the compressor, Uy, e (%) is the signal to open the
valve of combustion gases entering the turbine, que,(m3/s) is the natural gas
flow consumed by compressor stations, Q; (Nm?3/s) is the flow rate at each
delivery point and Demand; (Nm®/s) is the minimum flow demanded by
every consumer.

The values of the boundary conditions for the Reganosa network are
defined in Table 6.3. The differences between the real optimum, obtained
by solving the optimization problem based on the rigorous dynamic model
and the model optimum, i.e., the solution of the RTO problem based on the
simplified model whose solution is applied to the process, are shown in
Table 6.4.
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The NLP optimization problems have been solved using a sequential
approach with a sequential quadratic programming (SQP) algorithm
implemented in the SNOPT library (Gill, et al., 2008) and executed in
EcosimPro software (EAInt, 2013).

Table 6.3. Boundary conditions.

Value
Pin, p o (bar) 68
Tin, 0(°C) 9
Pout, P_6 (bar) 68
Pout, p_11 (bar) 68
Pout p 18 (bar) 68
Pout, P_21 (bar) 68
Pout p 22 (bar) 68
Pout, P_23 (bar) 68
YcHa (01) 0.82
Ycane (01) 0.05
Yc3ns (01) 0.005
Yi-canio (01) 0.0001
Yn-can10 (01) 0.0001
Yi-csH12 (01) 0.001
Yn-c5H12 (01) 0.001
YceH14 (01) 0.001
ynz (°1) 0.025
Yerns (1) 0.008
Yeoz (°1) 0.033

Yhzs(°1) 0.0558
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Table 6.4. Comparison between process and model optimum.

Real Model Lower-Upper

Optimum Optimum Limits

P. ¢ 4(bar) 73.43 71.67 68-85

P. ¢c 2 (bar) 79.85 76.32 68-85

Uyan, vp EC_1 (%) 11.02 7.93 0-100

Uyaty, vp EC_2 (%) 27.35 10.54 0-100
Q> 6 (Nm*/s) 5.90 5.00 5
Qp 11 (Nm?/s) 43.58 40.90 10
Qp 15 (Nm?/s) 101.45 88.08 50

Qp 21 (Nm?/s) 0.21 0.18 0.20
Qp 22 (Nm?/s) 10.00 8.64 10

Qp 23 (Nm?/s) 0.25 0.22 0.20
$p (M*/s) 0.0471 0.0725 -

The set of active constraints is not the same for both solutions, whereas
at the nominal solution, that is the solution obtained by solving RTO without
modifiers, the Qp ,;and Qp 5 are actives at the real optimum only Qp ,,is an
active constraint.

6.4.4 Alternative NMA based on the Lagrangian function

The new approach described in section 3.3, the alternative NMA method
that considers the minimization of the Lagrangian function measured from
the process, is applied to this process.

This application is a good example to show the performance of this
methodology, since there are many constraints, one for each output of the
gas network, thatis, one for each consumer.

The implementation of NMA in this case study would be problematic
since the high number of constraints (n, = 6) and the number of decisicon
variables (n, = 2) imply the requirement of 20 modifiers, according to (6.41),
from which 14 are first-order modifiers whose value is given by the
unconstrained optimization layer (section 2.1.5). Therefore, the initial
simplex would require 14 + 1 initial operating points to be constructed.

Mimog =N + N, (N +1) (6.41)
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So, it would take 14 steady-states of the process just to initialize the
algorithm. Taking into account the fact that the settling time of the process
is about 1 hour, it would therefore take 14 hours to start to work.

By using the new approach, the number of modifiers is reduced from 20
to 8 (6.42), of which only two are first-order modifiers, one for each RTO
decision variable. Thus, the initial simplex is constructed after only 2 + 1
steady-states.

Nonog = Ny + 1, (6.42)

mod

So, the resulting modified optimization problem is described as follows
where the subscript “k-1” indicates the reference applied one sample time
before.

mindy = Que ecr t Quer e (6.43)

Uyaiy _HP1 Myapy _HP2

+ %(PC_ECI - Pc_ECl,k—l)+ ﬂé(Pc_ECZ - Pc_EC2,k—1)
s.t.

Simplified RTO model  (see section 6.1.1.4) (6.44)
gy, =Demand; - Q; + ¢, <0 j=1,.6
68<P, 4, <80

c

68<P. ., <80

c

The modifiers are given by the upper unconstrained optimization layer
which solves the following problem:

min L, =@ + i “/I,igp,i (6:49)
ALA, 1

The obtained results are shown in the following figures. Figure 6.13 shows
the evolution of the process cost function; Figure 6.14 and Figure 6.15 show
the evolution of the discharge pressure for each compressor station. Figure
6.16 and Figure 6.17 show the variation of the flow corresponding to the
active constraint at the real optimum and the inlet gas flow to the gas

network.
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Figure 6.14. Evolution of the set point for the discharge pressure of EC_1.
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Figure 6.15. Evolution of the set point for the discharge pressure of EC_2 .
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Figure 6.17. Evolution of the inlet volumetric flow Q, .

6.5 Conclusions

In this chapter, another successful implementation of MA has been
shown to deal with the optimization of gas transmission networks with the
objective of minimizing fuel gas consumption of compressor stations while
satisfying the demands of the consumers.

MA has been applied to a large-scale problem in the presence of
numerous constraints showing that this methodology is a powerful tool that
can be implemented in industrial cases.

In particular, an easily implementable method like NMA (section 2.1.5)
has been presented. Since it does not require the computation of plant and
model gradients, all it needs is the measurement of the process cost
function and the constraints. To further simplify the implementation of this
methodology to deal with problems with many operational constraints, such
as the example described above, the alternative NMA method developed in
this thesis (section 3.3) has been used to reduce the number of required
modifiers, showing that it is able to achieve an operating point that satisfies
the NCO of the plant faster than applying traditional NMA.

The results show that when applying the alternative NMA formulation
only 7 steady-states are required, which implies a considerable time
reduction compared to applying the standard NMA which would need, at
least, 14 steady-states to start to work.









7 FINAL CONCLUSIONS AND FUTURE WORK

To sum up, some general conclusions are presented in this chapter followed by
an analysis of the future research that could be carried out in the field of MA for
RTO.
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7.1 Final conclusions

This thesis has presented several contributions on the MA methodology
oriented towards speeding up the convergence to an operating point that
satisfies the NCO of the plant. Two different practical MA issues have been
studied: the dimension problem with respect to the number of operational
constraints and the slow convergence rate. A summary of the main
contributions is given next:

For dealing with processes with a large number of constraints without
increasing the number of modifiers, an alternative NMA methodology
has been developed in this thesis. This approach consists in estimating
the modifiers from information of the Lagrangian function, adding
only one gradient modifier for each process input to the cost function
(see section 3.3). This reduction in the number of modifiers speeds up
the convergence rate of the NMA methodology and makes the
implementation of this technique easier in practice.

This contribution has been presented in: “T. Rodriguez-Blanco, D.
Sarabia, D. Navia, C. de Prada. Efficient Nested Modifier Adaptation
for RTO using Lagrangian functions. Symposium on Computer Aided
Process Engineering-ESCAPE 27, Barcelona, Spain, 2017" .

DMA usually drives the process to the optimum in a faster and more
direct way than NMA, since it deals directly with the information of
the plant and model gradients. However, using the modifiers obtained
by minimizing the Lagrangian function, the convergence rate of both
methods, NMA and DMA, is very similar. NMA can even be faster if it
is applied in a case study with a large number of operational
constraints, since the benefits of the proposed approach will be
larger, the greater the number of process-dependent constraints.

The previous methodology is based on solving the RTO problem once
a steady-state of the process is achieved which implies a slow
convergence to the optimum of the process. To deal with this issue,
two approaches have been developed with the aim of speeding up
the convergence of the MA to the optimum by using transient
information of the process. The first combines the NE-based gradient
estimation during the transient with the estimation of gradients based
on stationary data. Both parametric and structural plant-model
mismatch (see section 4.3) could be dealt with in this way. The second
aims to extend the idea of using transient measurements by
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estimating the process cost and constraint gradients directly through
a recursive identification method. In this way, waiting for the steady
state at each RTO iteration is no longer necessary (see section 4.4). By
implementing both approaches, the time to achieve the plant
optimum is considerably reduced, as has been shown in the different
contributions that have been made during this thesis.

The combination of NE-based gradient estimation with the traditional
stationary MA methodology has been presented in: “T. Rodriguez-
Blanco, D. Sarabia, C. de Prada. Modifier-Adaptation approach to deal
with structural and parametric uncertainty. DYCOPS-CAB 2016. June 4-
9, 2016. Trondheim (Norway)” .

The method based on the direct estimation of process gradients over
the transient has been presented in the paper: “T. Rodriguez-Blanco,
D. Sarabia, C. de Prada. Modifier Adaptation methodology based on
transient and static measurements for RTO to cope with structural
uncertainty. Computers & Chemical Engineering, 2017” and also in the
FOCAPO conference: “T. Rodriguez-Blanco, D. Sarabia, C. de Prada.
Modifier-Adaptation approach using RELS to compute process
gradients. FOCAPO-CPC 2017. January 8-12, 2017. Tucson (Arizona),
United States”. Its implementation in a laboratory-scale flotation
column was presented in: “D. Navia, A. Puen, L. Bergh, T. Rodriguez-
Blanco, D. Sarabia, C de Prada. Modifier-Adaptation based on
transient measurements applied to a laboratory-scale flotation
column. Symposium on Computer Aided Process Engineering-ESCAPE
27, Barcelona, Spain, 2017”.

This thesis has also tested the performance of MA in realistic
problems, such as the operation of a depropanizer distillation column
and the transportation of natural gas through gas networks (see
chapter six). The obtained results have shown that MA is a powerful
tool that enables large-scale processes to be operated in an optimal
way, maximizing the benefits obtained.

The implementation of several MA approaches on the depropanizer
distillation column was presented in: “T. Rodriguez-Blanco, D. Sarabia,
C. de Prada. Modifier-Adaptation methodology for RTO applied to
distillation columns. ADCHEM 2015. June 7-11, 2015. British Columbia
(Canada)” and “T. Rodriguez-Blanco, D. Sarabia, C. de Prada. Modifier
Adaptation methodology based on transient and static measurements
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for RTO to cope with structural uncertainty. Computers & Chemical
Engineering, 2017"

An exhaustive review of the fundamentals of MA and the different
techniques developed until now, analyzing their features and the
way to implement them, has been made during this thesis.

From this study a review paper was presented in: “T. Rodriguez-
Blanco, D. Sarabia, C. de Prada. Optimizacion en Tiempo Real
utilizando la Metodologia de Adaptacion de Modificadores. RIAI:
Revista Iberoamericana de Automdtica e Informdtica industrial,
2017".

7.2 Future work

In the near future, we plan to continue the work developed during this
thesis on MA in different ways, as this methodology still presents some
limitations that require further research. Among them, we aim to
investigate the following:

Ensure feasibility for all the intermediate RTO iterations. A possible
solution could be to apply Dynamic MA. It is necessary to formulate
the computation of modifiers for dynamic optimization problems that
will be solved in the dynamic RTO.

The implementation of MA in batch processes, whose optimization
typically involves solving a dynamic optimization problem for which
the solution consists of time-varying input profiles. Dynamic
optimization problems have two types of constraints: the path
constraints limit the inputs and states during the batch, while the
terminal constraints limit the outcome of the batch at final time.
Hence, the path constraints are modified using time-varying
modifiers, while the terminal constraints are modified using terminal
modifiers. The analysis of this approach could be the subject of future
work.

The MA family of methods is relatively well developed from a
theoretical perspective. At this point, it is necessary to apply the
methodology on an industrial scale. On the one hand, this will reveal
where the real challenges lie and provide motivation for further
improving the method. On the other hand, industrial practitioners will
be more likely to adopt these methods if they have already been
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shown to work on real systems. We plan to test our methodologiesin
an oil refinery.
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