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Abstract 

A new determination of the molar gas constant was performed from measurements of the speed 

of sound in argon at the triple point of water and extrapolation to zero pressure. A new resonant 

cavity was used. This is a triaxial ellipsoid whose walls are gold-coated steel and which is 

divided into two identical halves that are bolted and sealed with an O-ring. Microwave and 

electroacoustic traducers are located in the northern and southern parts of the cavity, 

respectively, so that measurements of microwave and acoustic frequencies are carried out in the 

same experiment. Measurements were taken at pressures from 600 kPa to 60 kPa and at 273.16 

K. The internal equivalent radius of the cavity was accurately determined by microwave 

measurements and the first four radial symmetric acoustic modes were simultaneously measured 

and used to calculate the speed of sound. The improvements made using the new cavity have 

reduced by half the main contributions to the uncertainty due to the radius determination using 

microwave measurements which amounts to 4.7 parts in 106 and the acoustic measurements, 4.4 

parts in 106, where the main contribution (3.7 parts in 106) is the relative excess half-widths 

associated with the limit of our acoustic model, compared with our previous measurements. As 

a result of all the improvements with the new cavity and the measurements performed, we 

determined the molar gas constant R = (8.314449  0.000056) J·K-1·mol-1 which corresponds to 

a relative standard uncertainty of 6.7 parts in 106. The value reported in this paper lies -1.3 parts 
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in 106 below the recommended value of CODATA 2014, although still within the range 

consistent with it. 
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1. Introduction. 

The important request of the General Conference on Weights and Measures (CGPM) and the 

International Committee for Weights and Measures (CIPM) to the Committee on Data for 

Science and Technology (CODATA) of a special adjustment to determine recommended values 

of universal constants for the revised definition of the International System of Units (SI) [1] has 

motivated the present work. This paper provides an update of the determination of the molar gas 

constant R previously reported by our group [2] through the extrapolation to zero pressure of 

speed of sound measurements in argon at the temperature of the triple point of water, TTPW = 

273.16 K. In our previous report [2], the greatest contribution to the relative standard 

uncertainty of 16 parts in 106 in the molar gas constant R arose from the microwave cavity 

radius determination. To overcome this limitation, a new acoustic resonance cavity was 

acquired based on a stainless steel triaxial ellipsoid coated in gold, instead of the misaligned 

bare stainless steel sphere used before. Also, some new contributions to the resonance frequency 

corrections in our acoustic model have been considered, following the data reduction and fitting 

process of [3]- [4]. The experimental details are described in section 2 and the results of the 

experiments are shown in section 3 along with a discussion of our new estimate for R and its 

uncertainty. 

 

2. Experimental set-up. 

2.1 Quasi spherical cavity description and geometrical characterization. 
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The new resonance cavity has been designed according to the instructions given in [5] and made 

by the mechanical department of DG-Technology Service s.r.l. in austenitic stainless steel 

creep-free of grade 316L. It is coated internally, with a 15 μm film of gold using a plasma 

treatment unit as part of a vacuum coater system. Its geometrical shape, described by equation 1, 

is that of a triaxial ellipsoid with axes of length a, a·(1+ε1); a·(1+ε2): 

 𝑥2

𝑎2
+

𝑦2

𝑎2(1 + 𝜀1)
2
+

𝑧2

𝑎2(1 + 𝜀2)
2
= 1 (1) 

where a = 40 mm, ε1 = 0.002, ε2 = 0.001 are the nominal internal radius, and eccentricities 

specified to the manufacture. A schematic diagram of the cavity is displayed in figure 1. It is 

made from two quasi-hemispheres bolted together with 12 M6 bolts tightened to 10 Nm and 

sealed with an O-ring of perfluoroelastomer (Kalrez). Two similar acoustic transducers, source 

and detector, are placed in the southern hemisphere at the south pole (θs) = 0 and (θd, ϕd) = (cos-1 

(√3/5), π/4), with their diaphragm flush with the inner surface of the shell (the co-ordinate 

system is indicated in figure 1). They are non-commercial capacitance type microphones based 

on Professor J.P.M. Trusler’s designs. Details of their construction are shown elsewhere [6] and 

a sketch of our units is shown in [7]. The northern hemisphere is provided with two antennas at 

positions (θs, ϕs) = (π/4, π/4) and (θd, ϕd) = (π/4, 5π/4). They are made of a welded oxygen-free 

high conductivity copper cable with triple-loop shape nearly 1 mm of diameter to couple to both 

transverse magnetic, TM, and transverse electric, TE, microwave modes [7]. The loop cable is 

flush with the inner surface of the shell in order to contribute as little as possible to the acoustic 

half-width and epoxy resin fills the plugs to provide a pressure-tight shell. 

As described in [8], [9] the internal equivalent radius aeq of a perfect spherical cavity with the 

same volume as our quasi-spherical cavity is given by: 

 𝑎𝑒𝑞 = 𝑎[(1 + 𝜀1)(1 + 𝜀2)]
1
3 (2) 

The equivalent radius could be accurately determined by microwave measurement of the 

components of the triply-degenerate TE1n and TM1n modes due to the different ellipsoid axes 

length as: 
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 〈𝑓1𝑛〉 =
1

3
(𝑓𝑥 + 𝑓𝑦 + 𝑓𝑧) =

𝑧1𝑛𝑐

2𝜋𝑎𝑒𝑞
 (3) 

Here fm with m = x, y, z are three components of the triplets, <f1n> is the average resonance 

frequency, c is the speed of light and z1n are the eigenvalues of the Helmholtz equation that can 

be numerically calculated from the zeros of the spherical Bessel function jl for TE modes and 

the zeros of [jl(z)+zjl’(z)] for TM modes. We have performed the geometrical characterization 

by means of the first three TM1n modes and the first three TE1n modes, getting three well-

resolved components in all the cases thanks to the high electrical conductivity of the gold 

coating. This significantly reduces the resonance half-widths, compared with the broad 

microwave doublets previously measured with the misaligned cavity [2]. An Agilent Network 

Analyzer VNA N5230C, calibrated with an Agilent Calibration Kit 8510, is configured to 

measure the complex scattering coefficient S21 through the cavity and connected to the antennas 

with GoldPt SMB r/a plg-plg RG316 waveguides. The timebase of the VNA is linked to a 

rubidium standard frequency to improve the accuracy and the thermal stability of microwave 

frequency measurements. LabVIEW software originally programmed by Professor Eric May 

controls the microwave system. The network analyser was set to sweep through 201 discreet 

frequencies; they are the average of five scans with a frequency bandwidth IFBW (Intermediate 

Frequency Band Width) of 10 Hz, made while measuring simultaneously with the acoustic 

determinations. The software fits the real u and imaginary v signal by an iterated procedure 

depending on the sum of three Lorentzian functions: 

 𝑢 + 𝑖𝑣 = ∑
2𝑖𝑓𝑔1𝑛

𝑚 𝐴1𝑛
𝑚

𝐹1𝑛
𝑚 − 𝑓2

𝑚=𝑥,𝑦,𝑧

+ 𝐵 + 𝐶(𝐹1𝑛
𝑚 − 𝑓) (4) 

where A, B, and C are complex constants and FN = fN + igN are the complex resonance 

frequencies. The data are first corrected by the skin effect [8], that takes into account the finite 

electrical conductivity of the boundary wall layer of gold, using our experimental half-widths 

and then, the electrical conductivity (σexp) was obtained using equation (5):  

 (
∆𝑓𝑠𝑘𝑖𝑛+𝑖𝑔

𝑓
)
1𝑛
=

𝛿

2𝑎
(−1 + 𝑖)      for TE modes (5) 
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(
∆𝑓𝑠𝑘𝑖𝑛+𝑖𝑔

𝑓
)
1𝑛
=

𝛿

2𝑎
(−1 + 𝑖)

𝑧1𝑛
2

𝑧1𝑛
2−2

    for TM modes 

where the skin depth δ = (πμσf)-1/2, μ (p,T) is the magnetic permeability (in our case, μ(p,T) = μ0 

= 4π·10-7 N/A2 in vacuum) and σ is the electrical conductivity of the wall material. The 

electrical conductivity was estimated from the component gz for TE12 mode because it has a 

smaller value of (g/f)microwaves than the other two components of the same triplet. A value of σexp 

= 7.4 106 S m-1 was obtained. References [4] and [10] show that the component of each 

microwave triplet that has currents crossing the junction between halves of the resonator has a 

larger value of excess half-widths. 

The electrical conductivity σexp = 7.4 106 S m-1 is 6.6 smaller than the value found in the 

literature σlit = 4.88 107 S m-1 [11] for pure gold at TTPW. This difference possibly comes out 

from the discontinuities in the wall due to the gap at the equatorial junction between the 

hemispheres and the slits around the transducer and antenna plugs. The skin depths, evaluated 

using the experimental electrical conductivity, range from 1.6·10-6 m for TE13 mode to 2.5·10-6 

m for TE11 mode and allow to estimate gcalc and therefore the excess half-widths.  

In figure 2, the microwave excess half-widths are plotted for the three components of the five 

triplets, these values are independent of the pressure.  

The average resonance frequency of the triplet is corrected by the geometrical perturbation due 

to the gas inlet duct [12] of radius r = 0.5 mm. This correction is independent of the hole 

position on the wall and also on the duct length for long tubes: 

 
〈
∆𝑓𝑑𝑢𝑐𝑡

𝑓
〉1𝑛 = −

𝑟3

4𝜋𝑎3
0.950𝑧1𝑛

2−1.152

𝑧1𝑛
2−2

      for TM modes 

〈
∆𝑓𝑑𝑢𝑐𝑡

𝑓
〉1𝑛 = −

𝑟3

4𝜋𝑎3
0.950         for TE modes 

(6) 

No correction was applied for the perturbation of the antennas because no complete theory to 

model loop antennas is available in the literature. In any case, the improvement in the agreement 

between modes using the theory of straight antennas [12] results in negligible perturbations in 

our case. The eccentricities are determined from the first-order perturbation theory predictions 

of the fractional frequency shifting of the triplet components [5] due to the non-sphericity of the 

cavity: 
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𝑓𝑚−𝑓0

𝑓0
=

2

15
(−

1

2
−

3

𝑧1𝑛
2−2
){

(−2𝜀1 + 𝜀2) 𝑚 = 𝑥
(𝜀1 + 𝜀2) 𝑚 = 𝑦
(𝜀1 − 2𝜀2) 𝑚 = 𝑧

for TM modes 

𝑓𝑚−𝑓0

𝑓0
=

2

15
(−

1

2
){

(−2𝜀1 + 𝜀2) 𝑚 = 𝑥
(𝜀1 + 𝜀2) 𝑚 = 𝑦
(𝜀1 − 2𝜀2) 𝑚 = 𝑧

for TE modes 

(7) 

where f0 = <f1n> = (fx+ fy+ fz)/3 is the average triplet frequency. The experimental average values 

of ε1 and ε2 determined from all modes of our microwave measurements are ε1 = 0.00215 and ε2 

= 0.00119, with an experimental standard deviation of the mean, (𝜀)̅=±0.00003, and close to 

those specified to the manufacturer ε1 = 0.002 and ε2 = 0.001. These results are used to correct 

the average microwave frequency for the second-order shape perturbation [13], [14]: 

 

〈
𝑓𝑚

2−𝑓0
2

𝑓0
2 〉1𝑛 =

2(33𝑧1𝑛
8−245𝑧1𝑛

6+714𝑧1𝑛
4−1152𝑧1𝑛

2+160)

1125(𝑧1𝑛
2−2)3

(𝜀1
2 − 𝜀1𝜀2 + 𝜀1

2) for 

TM modes 

〈
𝑓𝑚

2−𝑓0
2

𝑓0
2 〉1𝑛 = (

22𝑧1𝑛
2

375
−

2

225
) (𝜀1

2 − 𝜀1𝜀2 + 𝜀1
2) for TE modes  

(8) 

Using the values of the relative electrical permittivity εr(p,T) for argon from REFPROP 9.1 

(updated to the last version at June 10, 2014) [15] the corrected resonance frequencies are set to 

the equivalent values of the triple point of water and average pressure through all repetitions by: 

 〈𝑓1𝑛(𝑇TPW, 𝑝avg)〉 = 〈𝑓1𝑛(𝑇exp, 𝑝)〉(1 + 𝛼𝑇(𝑇 − 𝑇TPW)) (1 +
𝜅𝑇
3
(𝑝 − 𝑝avg)) (9) 

where κT [16] and αT [17] are the isothermal compressibility and thermal expansion coefficient 

of stainless steel of grade 316L, respectively and Texp is close to the temperature of the triple 

point of water. The equivalent internal radius of the quasi-spherical cavity is then calculated by: 

 𝑎𝑒𝑞 =
𝑧1𝑛𝑐

2𝜋(〈𝑓1𝑛〉 − ∆𝑓)
 (10) 

where Δf = Δfskin + Δfduct + Δfshape and c = 1/( μ(p,T) εr(p,T))1/2 , μ(p,T) = μ0 = 4π·10-7 N/A2 in 

vacuum. Table 1 shows the measured radius at each pressure simultaneously with the acoustic 

measurements at TTPW. The TM11 mode is discarded from the average of the radius because of 

its value is not in agreement with the other modes [2]. As can be seen in table 1, the radius 

increases with pressure. The values obtained for the equivalent internal radius at zero pressure 

of the different modes are shown in Table 2. The scatter of the zero pressure radius values for 

the different modes is used to estimate one of the contributions of the radius uncertainty to the 
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molar gas constant R, the experimental standard deviation of the mean of the zero pressure 

radius is 8.65·10-8 m, which means a relative standard uncertainty of radius of 2.1 parts in 106, 

which amounts to 4.3 parts in 106 to R. There is a second term in the uncertainty of the radius 

which arises from the difference between the theoretical and experimental half-widths. The 

mean of the excess half-widths is 1.0 parts in 106, and it is included in the uncertainty budget 

contributing a relative standard uncertainty of 2.0 parts in 106 to R.  

Additionally, from a linear fit of radius versus pressure an experimental value of the isothermal 

compressibility of the shell κT,exp = 2.60·10-11 Pa-1 was calculated, which is one order of 

magnitude higher than the value of the literature κT,lit = 5.60·10-12 Pa-1 for 316 L stainless steel 

[16]. We explain this deviation of nearly one order of magnitude due to our configuration, in 

which the pressure is only changing inside the cavity against a high vacuum in the outside and 

the radius is increased with the pressure. We have estimated a uncertainty contribution due to 

this linear fit of 0.2 parts in 106 to R.  

 

2.2 Pressure and temperature measurement. 

The pressure and temperature measurement system have been extensively described in our 

previous papers [18], [19], so this section contains only a summary. Pressure is determined with 

a piezoelectric Digiquartz 2300A-101 transducer thermally isolated at the top of the gas inlet 

tube. The effect of the hydrostatic column of gas is added to the pressure measurement. The 

pressure gauge has been calibrated up to 2 MPa prior the experiment in our facilities with a dead 

weight tester (DH 5213) with load masses calibrated with international traceability in the 

Spanish National Institute (Centro Español de Metrología -CEM) laboratories. The standard 

uncertainty in pressure is u(p) = 3.75·10-5 (p/Pa) + 100 Pa. This contribution of calibration is 

0.14 parts in 106 to R, when extrapolating to the zero pressure speed of sound. The repeatability 

during the experiment is better than this value but we have assigned the same amount, therefore, 

the pressure measurement gives a contribution to the relative uncertainty of R of 0.2 parts in 106. 

Temperature is determined as the mean of two readings from Inconel X-750 capsule-type 

standard platinum resistance thermometers CSPRT Rosemount 162D of 25.5 Ω. These are 
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located in the north and south quasi-hemispheres and plugged in four-wire configuration to an 

Automatic Systems Laboratories ASL F18 ac bridge, which is referenced to a 25 Ω 

thermostated resistance Tinsley 5685A. A maximum difference of 0.5 mK has been observed 

between north and south probes in this work. The external standard resistance has been 

calibrated in CEM laboratories but its calibration uncertainty does not affect the uncertainty of 

temperature measurement because it is used for both calibration and measurement. The bridge 

has been configured to get the maximum accuracy in temperature measurement: source 

impedance set to 10 Ω; 1mA carrier at 75 Hz; in-phase detector gain to 104; and bandwidth to 

0.1 Hz in automatic balance mode. The CSPRTs have been calibrated again before this 

experiment at TTPW by using a triple point of water cell previously compared with the group of 

cells which maintain the Spanish national standards following the procedure of the triple point 

of water fixed-point realization reported in [19]. The self-heating effect has been taken into 

account using the procedure described in [7] using the same measurement bridge, reference 

resistance and connection cables as later. A drift of 0.1 mK has been observed after the 

calibration of the CSPRTs, in agreement with the histogram of these probes. We have obtained 

a standard uncertainty in temperature due to calibration of 0.1 mK. The thermal stability is 

achieved through three stages of thermostatic control consisting of an exterior aluminium shell 

and an interior steel jacket, inside the acoustic cavity where all the connection cables are 

located. Radiation heat loss is minimized by surrounding the jacket by aluminium over 

fiberglass foils. Convection is eliminate by evacuating the jacket with a centrifugal and a 

turbomolecular pump in series. Temperatures are stabilised by PID controlled resistors attached 

to the copper block that suspends the acoustic cavity inside and which are also positioned along 

the side and base of the jacket (see [19] for a detailed description). The stability of temperature 

through all repetitions amounts to a maximum of 0.6 mK. A detailed study of the behaviour of 

these thermometers was described in [7], and all these contributions give an estimated relative 

standard uncertainty of 0.9 parts in 106 on R. 

 

2.3 Gas sample details. 
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The gas sample handling system consists of a cylinder of Air Liquide Alphagaz 2 argon of 

molar purity xAr = 0.999999 that flows the gas through two oxygen and moisture Agilent Gas 

Clean Filter designed for gas chromatography, plus an Agilent Big Universal Trap specific for 

argon purification, before entering the resonance cavity. This system is similar to our previous 

Boltzmann constant work [2], the only difference is the inclusion of a bigger capacity universal 

trap. Thus, the uncertainty due to the impurities which changes the mean molar mass of the 

sample is the same as in our previous experiment. The supplier states for an argon research 

grade gas source the following bounds in purity of molar fraction x using their filters: x(O2) ⩽ 

5·10−8, x(H2O) ⩽ 2·10−7, x(N2) ⩽ 1·10−7, x(CO2) ⩽ 1·10−7, x(CO) ⩽ 1·10−7, x(CmHn) ⩽ 1·10−7, 

x(H2) ⩽ 2·10−7. Based on this, the amount of non-noble gases and moisture of our gas should be 

not significant after passing through all the filters. Moreover, we have not observed any effect 

of progressive contamination as assessed by repeatability tests, despite the non-flow condition 

of our setup. Noble gases cannot be filtered out with this configuration so in the absence of a 

chemical analysis, we have taken an upper bound of the effect of impurities based on the 

thorough studies of the chemical composition of argon performed by other authors with the 

same gas supplier [3], [4]. In the worst case scenario there might be amount fractions x = 2·10-6 

mol·mol-1 of helium and x = 2·10-6 mol·mol-1 of neon, with negligible krypton and xenon, may 

result in a change of the mean molar mass of argon MAr of 2.80 parts in 106. We assume that the 

probability of having impurities is the same in all the range (0 to 2.8 ppm), this rectangular 

probability distribution gives a relative standard uncertainty of R of 0.8 parts in 106. 

Determination of the isotopic ratios of the three stable isotopes of argon in our sample has not 

been possible. However, considering that argon is made by an air liquefaction process a 

representative value MAr = 0.039947798 kg·mol-1 has been assumed from standard isotope 

abundances 40Ar, 38Ar, and 36Ar in atmospheric air determined in table 7 in reference [20] and 

atomic weights M40, M38, and M36 given in table 2 in reference [21]. To calculate the isotopic 

uncertainty in our value of the molar mass, two contributions have been considered: one from 

the uncertainties of the isotopic ratios stated in [20] and another from the variability of these 
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ratios based on the studies reported in the literature. The theoretical uncertainty due to the 

isotopic ratio determination of argon is given by: 

 
𝑢(𝑀Ar)

2 =
1

(1 + (
Ar36

Ar40 ) + (
Ar38

Ar40 ))

4 

· ((𝑀40 −𝑀38 −𝑀38 (
Ar36

Ar40 ) +𝑀36 (
Ar36

Ar40 ))

2

𝑢 (
Ar38

Ar40 )

2

+ (𝑀40 −𝑀36 −𝑀36 (
Ar38

Ar40 ) +𝑀38 (
Ar38

Ar40 ))

2

𝑢 (
Ar36

Ar40 )

2

) 

(11) 

with a relative standard uncertainty of 0.35 parts in 106. Our uncertainty determination from the 

variability of argon isotopic composition relies on the difference between our mean molar mass 

estimation and that determined by representative acoustic thermometry works with argon [3]- 

[4], [22]- [23]. The lastest comparisons of isotopic measurements by the Institute for Reference 

Materials and Measurements, IRMM, and Korean Research Institute of Standards and Science, 

KRISS, have been taken into account to update this value [21], [24], [25]. An upper limit of 2 

parts in 106 obtained from these differences gives a reliable value of the variability of isotopic 

composition through typical research grade bottles, considering an asymmetric rectangular 

probability distribution (because there is no negative impurity). Thus, a relative standard 

uncertainty of 1.2 parts in 106 is obtained for the isotopic composition contribution (taking into 

account the two contributions mentioned).  

This amount is added to the impurity contribution (0.8 parts in 106) in quadrature to yield a 

combined standard uncertainty of our estimate of the molar mass of 1.5 parts in 106. 

 

2.4 Acoustic resonance determination. 

The acoustic dataset consists of a total of 88 measurements taken through the isotherm at TTPW 

for 11 pressures values from p = 600 kPa to 60 kPa. The (0,2), (0,3), (0,4), (0,5) radial 

symmetric acoustical modes were measured simultaneously with the radius measurements by 

microwave resonance spectroscopy. The experimental acoustics set up is the same as used in 
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our previous work [2], but for the sake of completeness a description is given. A HP 3225B 

synthesiser drives the source transducer with a sinusoidal signal raised by an amplifier to 180 V 

RMS. The time base of the synthesiser is connected to the standard external frequency of a 

rubidium clock to reduce the relative standard uncertainty to 10-11·f. A Lock-In Amplifier SR 

850 DSP with its reference connected to the synthesiser detects the response transducer signal at 

twice the frequency, the second harmonic of the synthesiser, to avoid the crosstalk effect. The 

detector transducer is powered by a 90 V dc voltage, and plugged through a triaxial cable to an 

impedance adapter, which buffers the signal to the input of the Lock-In. With the triaxial cable 

in active guard configuration, the division of the output signal of the small transducer 

capacitance by the large capacitance of the connections cables is avoided. The system is 

controlled by a fitting software written in Agilent VEE that takes the real u and imaginary v 

parts of the signal measured by the lock-in to perform a Lorentzian fit of 44 points around the 

resonance frequency Fl=0,n = fl=0,n + gl=0,n of the (0,n) mode: 

 
𝑢 + 𝑖𝑣 =

𝑖𝑓𝐴(0,𝑛)

(𝑓2 − 𝐹(0,𝑛)
2 )

+ 𝐵 + 𝐶(𝑓 − 𝑓(0,𝑛)) (12) 

where A, B, and C are complex parameters. 

The analysis of the acoustic data to obtain a value for the molar gas constant is based in the 

acoustic corrective model in references [26] [27] and data processing in references [3], [4], and 

[28]. The necessary frequency corrections Δf, to the ideal equation of a perfectly spherical zero 

wall admittance cavity have been implemented in a similar spreadsheet to that of the previous 

work [2]: 

 𝑤 =
2𝜋𝑎𝑒𝑞

𝜈(0,𝑛)
(𝑓(0,𝑛) − Δ𝑓) (13) 

where w is the speed of sound and ν(o,n) is the zero of the first derivative of the spherical Bessel 

function of order 0 with twelve digits of precision [29].  

Below, we show a summary of the steps followed to assess the contributions to Δf and 

theoretical half-widths g.  

First, the thermal boundary layer correction has been applied with the three terms due to the 

matching of the gas and wall temperature (much bigger than the other corrections), the 
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imperfect thermal accommodation at the wall or temperature jump effect, and the penetration of 

the thermal wave in the shell: 

 

Δ𝑓𝑡ℎ
𝑓
=
−(𝛾 − 1)

2𝑎𝑒𝑞
𝛿𝑡ℎ +

(𝛾 − 1)

𝑎𝑒𝑞
𝑙𝑡ℎ +

(𝛾 − 1)

2𝑎𝑒𝑞
𝛿𝑡ℎ,𝑤

𝜅

𝜅𝑤
 

𝑔𝑡ℎ
𝑓
=
(𝛾 − 1)

2𝑎𝑒𝑞
𝛿𝑡ℎ +

(𝛾 − 1)

2𝑎𝑒𝑞
𝛿𝑡ℎ,𝑤

𝜅

𝜅𝑤
−
1

2
(𝛾 − 1)(2𝛾 − 1) (

𝛿𝑡ℎ
𝑎𝑒𝑞
)

2

 

(14) 

with: 

 𝛿𝑡ℎ = (
𝜅

𝜋𝜌𝐶𝑝𝑓
)

1/2

 (15) 

 

 𝛿𝑡ℎ,𝑤 = (
𝜅𝑤

𝜋𝜌𝑤𝐶𝑝,𝑤𝑓
)

1/2

 (16) 

 

 𝑙𝑡ℎ =
𝜅

𝑝
(
𝜋𝑀𝑇

2𝑅
)
1/2 2 − ℎ

ℎ

1

𝐶𝑣/𝑅 + 1/2
 (17) 

 

where γ is the adiabatic coefficient, κ and κw are the thermal conductivity of the gas and the 

cavity wall, respectively; M is the mean molar mass, R is the gas constant, Cv is the molar 

isochoric heat capacity, Cp and Cp,w are the molar isobaric heat capacities of the gas and the 

shell wall, respectively, ρ and ρw are the densities of the gas and the wall, respectively, and h is 

the thermal accommodation coefficient. Thermodynamic and transport properties of argon have 

been taken from the polynomial fits stated in the supplements of [30] because they are the most 

accurate ab initio calculations as declared in [31]. Thermodynamic and transport properties of 

stainless steel grade 316L have been taken from references [17] and [32]. Second order 

correction in gth is applied (last term in second equation of (14)) to avoid the possibility of non-

physical negative excess half-widths at very low pressures. The effect of the gold-coated wall 

layer has been neglected in the corrective term of thermal wave penetration into the shell due to 

the fact that δth,w, estimated with the gold properties of [33], is between 4 to 6 times larger than 

the specified layer thickness given by the manufacturer of our cavity. Thermal accommodation 



13 
 

coefficient h has been obtained from the literature. The value reported for gold coated 304 SS 

without treatment and argon is h =0.92 [34]. We considered the effect of replacing this value 

with h = 0.85 [34], which is given for gold coated 304 SS with plasma treatment, in the overall 

uncertainty of the R measurement and obtained a difference in R of less than 0.7 parts in 106. 

Therefore, it had little impact and the assumption of using the value of the literature is 

acceptable. The determination of h depends upon the gas but does not depend upon the metal 

[35]. 

Correction due to the coupling of fluid and shell motion was then applied comparing the model 

from elastic theory for an isotropic spherical shell of [36] without the radiation term because our 

shell is surrounded by vacuum, versus the fitting procedure proposed in [37]. This case takes an 

expression with the same functional form as [36] but with the lower radial symmetric 

mechanical resonance of the shell (breathing mode), fbr, being an adjustable parameter. 

Minimizing the deviation between coefficients A’1 for each mode of the speed of sound 

regression: 

 
𝑤2

𝐴0
= 𝐴′2𝑝

2 + 𝐴′1𝑝 + 1 + 𝐴′−1𝑝
−1 (18) 

after correcting the frequency by shell effect: 

 

Δ𝑓𝑠ℎ
𝑓(0,𝑛)

=
𝑘𝑝

1 − (
𝑓(0,𝑛)
𝑓𝑏𝑟

)
2 

𝑘 =
5𝑎𝑒𝑞

6𝑡𝜌𝑤𝑤𝑤
2

 

(19) 

This value of k is only valid for an ideal gas with specific heat ratio of 5/3. This gives a value of 

fbr =20500 Hz which lies between the (0,6) and (0,7) mode for our quasi-sphere. ww is the speed 

of sound in the wall material [16] and t is the thickness of the cavity.  This is what was expected 

because neither (0,6) nor (0,7) modes were clearly visible in our setup during the measurement 

process. The shell motion model of [37] gives the best agreement in our case, in the sense that it 

yields least dispersion between modes. 

Additionally, corrections from the geometrical imperfection of the shell surface have been 

considered: ducts, microphones and the quasi-spherical shape. The gas inlet duct is composed of 
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two tubes in series, the first of radius r0 = 5·10-4 m and length L0 = 3.8·10-2 m drilled in the boss 

of the cavity and the second of radius r1 = 7·10-4 m and length L1 = 2 m connected to the 

manifold system and closed at the end by a valve. The model chosen to estimate the shift in 

frequency and contribution to half-width of the resonance is the electrical impedance equivalent 

“T circuits”, described in [5]: 

 

Δ𝑓0
𝑓
= 𝑅𝑒 (

𝑖𝜌𝑤

4𝜋𝑎𝑒𝑞
2 𝜈(0,𝑛)𝑍𝑖𝑛

) 

𝑔0
𝑓
= 𝐼𝑚(

𝑖𝜌𝑤

4𝜋𝑎𝑒𝑞
2 𝜈(0,𝑛)𝑍𝑖𝑛

) 

(20) 

where the equations to obtain the value of  the inlet acoustic impedance of the inlet gas duct Zin 

are shown in [5] and [38]. Zin depends on the properties of the gas inside the tube (viscous and 

thermal penetration length, density, speed of sound and adiabatic coefficient of argon), the 

dimensions of the tubes and the terminal impedance of the closed-end duct Zt → ∞. 

The microphone correction is due to the presence of the two acoustic transducers. Only the 

simple frequency-corrective model given in [27] is applied, without taking into account 

contributions to half-widths: 

 
∆𝑓𝑡𝑟 

𝑓
= −

𝜌𝑤2𝑋𝑚 𝑟𝑡𝑟
2

2𝑎𝑒𝑞
3

 (21) 

where rtr = 1.5 mm is the transducer radius and Xm = 7.1·10-11 m/Pa is the compliance per unit 

area of the transducer, estimated from the technical data given in [6] and chapter 5 of [39]. 

The shape correction is a second order correction due to the triaxially ellipsoidal shape of the 

cavity and is applied to the acoustic eigenvalues adding the magnitude [40]: 

 
Δ𝜈𝑒𝑙𝑙
𝜈(0,𝑛)

=
1

2
×
8

135
(𝜖1
2 − 𝜀1𝜀2 + 𝜀2

2)𝜈(0,𝑛)
2  (22) 

where ε1 and ε2 are the geometrical parameters determined by microwave resonance and given 

above. 

Finally, the corrected acoustic resonance frequencies are referenced exactly to TTPW = 273.16 K 

by: 
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 𝑓(0,𝑛)(𝑇TPW, 𝑝) = 𝑓(0,𝑛)(𝑇exp, 𝑝) (
𝑇TPW
𝑇exp

)

1/2

(

 
 1+

𝛽(𝑇TPW)
𝑅𝑇TPW

𝑝

1 +
𝛽(𝑇exp)
𝑅𝑇exp

𝑝
)

 
 

1/2

 (23) 

where β(T) is the theoretical second acoustic virial coefficient and converted to the speed of 

sound squared by using equation (13).  

 

3. Results and discussion 

The speed of sound squared versus pressure is fitted to a virial type equation: 

 𝑤2 = 𝐴0 + 𝐴1𝑝+𝐴2𝑝
2 + 𝐴3𝑝

3 (24) 

where A3 = 1.45·10-18 m2·s-2·Pa-3 is a fixed parameter taken as the most accurate value in argon 

[27]. Table 3 shows the fitting parameters of equation (24) and their corresponding uncertainties 

which were estimated by means of a Monte Carlo approach using 105 iterations. The (0,2) 

acoustic mode has been neglected from the final fitting because the molar gas constant value 

computed from it is not in agreement with the values obtained from (0,3), (0,4) and (0,5) modes. 

The parameter A0 for mode (0,2) was 94757.29 m2∙s-2 and its excess half-widths are larger than 

the other modes. We cannot explain the physical reason why the (0,2) mode is anomalous, it 

may be affected by the duct perturbation, but the reason that modes (0,6) and higher have not 

been used in the calculations is because of the closeness to the shell breathing mode. 

Therefore, we obtained an average value of Ā0 = 94755.95 m2 s-2  (using (0,3), (0,4) and (0,5) 

modes) with an experimental standard deviation of the mean, (Ā0) = 0.13 m2 s-2, this value give 

a contribution, due to the dispersion of the modes, to the relative uncertainty of R of 1.4 parts in 

106. 

Figure 3 shows the normalized residuals for (0,3), (0,4), and (0,5) modes which are less than 1.5 

parts in 106. These residuals are smaller than the uncertainty of the parameter A0 (1.8 parts in 

106) which has been considered in the final value of the molar gas constant reported in this 

work.  
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Figure 4 shows the relative acoustic excess half-widths, i.e. measured half-width g minus the 

sum of acoustic model estimations from the thermal boundary layer gth, duct correction, g0 and 

classical viscothermal dissipation in the bulk of the fluid, gcl: 

 𝑔𝑐𝑙 = 𝑓
3
𝜋2

𝑤2
[
4

3
𝛿𝑣
2 + (𝛾 − 1)𝛿𝑡ℎ

2 ] (25) 

with: 

 𝛿𝑣 = (
𝜂

𝜋𝜌𝑓
)
1/2

 (26) 

where η is the shear viscosity of the fluid, taken for argon from supplement A of [30]. 

As a estimator of the limits of our acoustic model, we considered the zero pressure limit 

obtained by fitting the relative excess half-widths, g/f, with a quadratic function of the 

pressure, i.e. the same function which is used to interpolate the squared acoustic frequencies. 

The intercept of these fits was -0.1 ppm for mode (0,3), 1.2 ppm for mode (0,4), and 4.3 ppm 

for mode (0,5) and their contribution to the uncertainty of R, as 2g/f, amounts to 3.7 ppm.  

From the average value of A0 and using: 

 𝑅 =
𝑀𝐴0

𝛾pg𝑇TPW
 (27) 

where γpg = 5/3; TTPW = 273.16 K and argon molar mass M = 39.947798 g·mol-1 estimated as 

indicated above, the molar gas constant determined from this work is R = (8.314449 ± 

0.000056) J·K-1·mol-1. Taking the reference value of the Avogadro constant as NA = 

(6.022140857 ± 0.000000074)·1023 mol-1 from CODATA 2014 [21], the derived value of the 

Boltzmann constant kB = R/NA from this work is kB = (1.380647 ± 0.000009) 10-23 J·K-1.  

Table 4 shows the summary of the uncertainties stated in the above sections of this paper, these 

uncertainty contributions are related to R as relative standard uncertainties obtaining a total 

amount of 6.7 parts in 106. As can be seen, the main contributions to this uncertainty are due to 

the radius determination using microwave measurements which amounts to 4.7 parts in 106 and 

the acoustic measurements, 4.4 parts in 106, where the main contribution (3.7 parts in 106) is the 

relative excess half-widths associated with the limit of our acoustic model. The uncertainty 

contribution of the molar mass to R is 1.5 parts in 106, and the contributions due to the 
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temperature and pressure measurements amounts to 0.9 parts in 106 and 0.2 parts in 106, 

respectively.  

Figure 5 plots the deviations between the R measurement of this research and the data 

considered as relevant to the 2014 CODATA adjustment, the most up to date value of R at the 

moment of writing this paper [21]. These input data are from National Physical Laboratory 

(NPL) [41], [3], [22], National Institute of Standards and Technology (NIST) [27], [42], 

Laboratoire National de Métrologie et d’Essais (LNE) [43], [4], [44], Instituto Nazionale di 

Ricerca Metrologica (INRiM) [45], [28], National Institute of Metrology (NIM) [23], [42]. Our 

uncertainty is greater than the most recent determinations of the molar gas constant and the 

value reported in this paper lies -1.3 parts in 106 below the recommended value of CODATA 

2014, although still within the range consistent with it. 
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Table 1. Internal equivalent radius and its standard uncertaintya of the triaxial ellipsoidal 

resonance cavity at TTPW and at the pressures of the acoustic measurements. The results are the 

average of the microwave TE11, TM12, TE12, TM13, TE13 modes.  

Pressure/MPa Radius/m 

1.00204 0.04003178 

0.90106 0.04003175 

0.80111 0.04003171 

0.70102 0.04003168 

0.60097 0.04003164 

0.50049 0.04003161 

0.40098 0.04003157 

0.30115 0.04003154 

0.20100 0.04003150 

0.15095 0.04003149 

0.10095 0.04003147 

0.09092 0.04003147 

0.08090 0.04003147 
a uradius(k=1) = 1.110-7 m 
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Table 2. Internal equivalent radius of the resonance cavity at TTPW extrapolated at zero pressure 

obtained for different microwave modes.  

 

Mode Radius/m 

TE11 0.04003171 

TM12 0.04003171 

TE12 0.04003148 

TM13 0.04003140 

TE13 0.04003128 
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Table 3. Parameters of the adjustment of the speed of sound to virial type equation (24) and 

their corresponding uncertainties. Average value of the parameter A0.  

Mode A0/m2 s-2 A1/m2 s-2 Pa-1 A2/m2 s-2 Pa-2 

(0,3) 94756.13 ± 0.17 2.262·10−4 ± 1.6·10−6 5.37·10−11 ± 2.5·10−12 

(0,4) 94756.03 ± 0.17 2.248·10−4 ± 1.6·10−6 5.26·10−11 ± 2.5·10−12 

(0,5) 94755.69 ± 0.17 2.169·10−4 ± 1.6·10−6 5.64·10−11 ± 2.5·10−12 

Ā0 94755.95 m2 s-2 (Ā0) 0.13 m2 s-2 
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Table 4. Uncertainty budget for the determination of the molar gas constant R. All the 

contributions are estimated as relative standard uncertainties.  

Source  Contribution to R, 

106·ur(R) 

(J·K-1)/( J·K-1) 

Total 

106·ur(R) 

 

 State-point uncertainties   

Temperature Calibration ±0.4 ±0.9 

 Drift ±0.2  

 Stability ±0.6  

 Gradient across resonator ±0.5  

Pressure Calibration ±0.14 ±0.2 

 Repeatability ±0.14  

Molar mass Isotopic composition ±1.2 ±1.5 

 Impurities ±0.8  

 Cavity radius   

Microwave radius Statistical from the intercept of a versus pressure  ±0.2 ±4.7 

 Microwave mode dispersion at p = 0 Pa, (r̅) ±4.3  

 Relative excess halfwidth ±2.0  

 Fitting and corrections to acoustic frequency   

Acoustic frecuency Frequency fitting for A0 determination ±1.8 ±4.4 

 Dispersion of modes, (Ā0) ±1.4  

 Relative excess halfwidth ±3.7  

 Thermal accomodation coefficient ±0.7  

Sum of all contributions to R  ±6.7 
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Figure 1. Plot of the triaxial ellipsoidal resonance cavity used in this work: 1. resonance cavity; 

2. antenna; 3. electroacoustic transducer; 4.copper block; 5. thermometer (CSPRT), 6. to 

vacuum, 7.inlet tube; 8.isothermal shield, 9. vacuum jacket. Picture of the quasi-hemisphere 

with the acoustic transducers. 
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Figure 2. Relative microwave excess half-widths for the modes: TE11, TM12, TE12, TM13, TE13 at 

TTPW as function of frequency. 
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Figure 3. Normalized residuals of data fitting to equation (24) for the modes: × (0,3),  (0,4), 

and ◊ (0,5).  
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Figure 4. Relative acoustic excess half-widths for the modes: (0,3), ◊ (0,4), and  (0,5),  at 

TTPW as function of pressure. 
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Figure 5. Comparison of the determination of R from this work with the values considered as 

input data in 2014 CODATA adjustment. The number to the right of each name indicates the 

year of publication of each work.  

 


