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Abstract Current HPC clusters are composed by several machines with dif-
ferent computation capabilities and different kinds and families of accelerators.
Programming efficiently for these heterogeneous systems has become an im-
portant challenge. There are many proposals to simplify the programming and
management of accelerator devices, and the hybrid programming, mixing ac-
celerators and CPU cores. However, the portability compromises in many cases
the efficiency on different devices, and there are details about the coordination
of different types of devices that should be still tackled by the programmer.

In this work we introduce the Multi-Controler (MCtrl), an abstract entity
implemented in a library, that coordinates the management of heterogeneous
devices, including accelerators with different capabilities and sets of CPU-
cores. Our proposal improves state-of-the-art solutions, simplifying the data
partition, mapping, and transparent deployment of both, simple generic ker-
nels portable across different device types, and specialized implementations
defined and optimized using specific native or vendor programming models
(such as CUDA for NVIDIA’s GPUs, or OpenMP for CPU-cores). The run-
time system automatically selects and deploys the most appropriate imple-
mentation of each kernel for each device, managing the data movements, and
hiding the launching details. Results of an experimental study with five study
cases indicates that our abstraction allows the development of flexible and
high efficient programs, that adapt to the heterogeneous environment.
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1 Introduction

Current HPC clusters are composed by several machines with different compu-
tation capabilities and accelerators, such as Graphics Processing Units (GPUs)
or XeonPhi coprocessors [20]. It has been proved that the use of these heteroge-
neous systems improves the performance in many applications [18]. However,
programming efficiently for these heterogeneous systems has become an im-
portant challenge. The different computational units (CPUs, GPUs, XeonPhi,
..) that can form a cluster, typically have different programming requirements
and constraints to achieve the best performance. Thus, different programming
models are used for each kind of device. For example, CUDA programming
model achieves the best performance in NVIDIA GPUs [8], and OpenMP has
been shown to be an efficient programming model for multi-cores in shared-
memory systems or XeonPhi coprocessors.

There are many proposals to simplify the programming and management
of accelerator devices, and the hybrid programming mixing accelerators and
CPU cores. However, the portability compromises in many cases the efficiency
on different devices. Depending on the proposal, some details about the co-
ordination of different types of devices are still tackled by the programmer,
such as computation partition and balance, data mapping and locality, or data
movement coordination across different memory hierarchies.

In this work we introduce the Multi-Controler (MCtrl), an abstract entity
implemented in a library, that coordinates the management of heterogeneous
devices, including accelerators with different capabilities and sets of CPU-
cores. It helps the programmer to handle the computation partition, mapping,
and transparent execution of complex tasks in such hybrid and heterogeneous
environment, independently of the target devices selected at run-time. Our
proposal allows the exploitation of simple generic kernels that can fit in any
device, very specialized kernels defined and optimized by the programmer for
each architecture, and even wrappers to call third-party predefined libraries
(such as e.g. cuBLAS [14]). This allows the exploitation of native or vendor
specific programming models, in a highly efficient way. The most appropriate
kernels for each target device are automatically selected by the entity during
the program execution.

Our work is developed on the concept of Controller presented in [1,12].
While the Controller transparently manages the data movements and the
launching of series of kernels on a given target device, the Multi-Controller
coordinates several Controllers associated to different devices or groups of
CPU-cores. It is implemented as an extensible library, and it can use the best
programming models, tools, and compilers for each potential device.

We present an experimental study with five case studies. We show that
our approach is highly flexible, with minimum programming effort for chang-
ing the target devices. The results of a performance study comparing our
approach with optimized reference codes show that our implementation does
not introduce significant performance penalties.
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The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces the libraries used to build our proposal. Section 4
explains the proposed model. Section 5 shows the experimental study, and
finally Sect. 6 exposes the conclusions and future work.

2 Related work

In this section we analyse different works proposed in the literature that tar-
get the simplification of parallel programming on heterogeneous systems, com-
posed by different computational devices, including accelerators. These pro-
posals avoid the need for using a manual combination of the specific pro-
gramming models for each computation device. They introduce unified pro-
gramming models or tool abstractions to manage the architectural differences
between computational units of different nature or capabilities.

A widespread programming framework to deal with heterogeneous devices
is OpenCL [19]. The OpenCL context abstraction allows the management of
multiple devices of the same nature (using the same platform in OpenCL
notation). However, the coordination of devices of different natures, and the
management of data sharing or partitioning, computation mapping, load bal-
ancing, and communication across them are tricky, and should be manually
solved and coded by the programmer. Moreover, the abstractions introduced
by OpenCL derive in many cases in not reaching the best possible perfor-
mance (see e.g. [8]). Many libraries of higher level of abstraction, that rely
on OpenCL as execution layer, typically inherit some of these problems (see
e.g. [19]). An interesting example of abstraction built on top of OpenCL is
the Maat library [16]. It provides a unified context with an abstract view re-
gardless of the number and nature of devices, for GPU and CPU platforms.
The main differences with our proposal are related to our choice of internally
using native or vendor low-level programming models. We propose the possi-
bility of declaring both unified and specialized/optimized kernels for different
architectures, which are selected at run-time for each particular device. Our
proposal allows the exploitation of features of the native programming models,
or specialized third-party libraries optimized for the device. We introduce more
flexibility to select the desired devices associated to a multicontroller, applying
techniques such as grouping CPU-cores as a single device, to exploit native
multi-threaded parallelism inside a kernel. The performance results presented
for the Maat library are only compared with other OpenCL implementations.
It has not been stated yet the performance effects comparing with using more
specific programming models such as combinations of CUDA for GPUs, and
OpenMP for multicore CPUs.

More general approaches propose complete integrated frameworks that ex-
ploit lower-level specific programming models. Some examples include OM-
PICUDA [9], Cashemere [6], StarPU [7] or the skeleton programming frame-
work based on it, SkePU [2]. PACXX [4] is a transformation system integrated
into the LLVM compiler framework. It generates code for different kinds of
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devices, and it transforms explicit parallel constructions that use the concept
of kernel and launching in an abstract an elegant form. Scogland et al [17]
also proposes a mixed approach by adapting OpenMP pragmas to heteroge-
neous systems. In general all these approaches hide the coordination details to
the programmer, to the point of constraining the potential optimizations that
could be achieved manually. Techniques to select launching parameters like the
threadblock size are for example tackled in SkePU using trial-and-error, with
no possibility to extrapolate the results to other kernel codes or architectures.

Unlike previous approaches, our library proposes a flexible tool, that allows
the programming with generic and portable kernels, and at the same time the
integration of higher levels of optimization using the native or vendor provided
programming models, tools, or libraries, for higher efficiency and performance.
The flexibility in terms of programmer control of the device selection and
coordination at run-time also improves previous techniques.

3 Background

The Multi-Controller library we are presenting in this paper is built on top of
two previous tools. The first one, named Hitmap [3], is a library to manage
the partition and mapping of data structures. It is used in our model to man-
age the data distribution across devices, and to provide a common interface
to implement data management inside generic portable kernels. The second
one, named Controller [1,12], is a library that defines an abstract entity to
transparently manage the data movements and kernel launching for a single
device. Our proposal combines them with a new layer of abstraction to co-
ordinate the use of several devices of different architectures or natures. This
section introduces the reader to both previous tools, before describing the new
abstraction proposed.

3.1 Hitmap library

Hitmap is a library designed for hierarchical tiling and mapping of dense and
sparse arrays, or graphs. Hitmap is based on a distributed SPMD programming
model, using abstractions to declare data structures with a global view. It
automatizes the partition, mapping, and communication of hierarchies of tiles,
while still delivering good performance [3].

An object HitShape represents a subspace of domain indexes. For dense
arrays, it is defined as an n-dimensional rectangular parallelotope. The limits
on each dimension are represented with a HitSig object, containing the range
limits. Each HitSig object is a tuple of three integer numbers S = (b, e, s)
(begin, end, and stride), representing the indexes in one of the axis of the
domain. Begin and stride members of a Signature represent the coefficients of
a linear function fS(x) = sx + b.

Hitmap defines the HitTile structure, an abstract entity for n-dimensional
arrays and tiles. A HitTile structure is a handler to store array meta-data,
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1 /* Kernel characterizations */

2 KERNEL_CHAR(MatAdd,1,full,low,low)

3

4 /* Generic kernel codes for any device */

5 KERNEL(MatAdd, 3, OUT, HitTile_float, C, IN, HitTile_float, A,

6 IN, HitTile_float, B ) {

7 int x = thread.x;

8 int y = thread.y;

9 hit_tileElem( C, 2, x, y ) =

10 hit_tileElem( A, 2, x, y ) + hit_tileElem( B, 2, x, y );

11 }

Fig. 1 Kernel definition and configuration of a matrix addition using the Controller library.

along with the pointer to the actual memory space of the data. A HitTile
maps actual data elements to the index subspace defined by a shape. There
are only four functions of Hitmap needed to work with our Multi-Controller
library. First, hit tileDomain and hit tileDomainAlloc are used to declare the
index domains of a tile array. The second one also allocates the memory for
the data. The function hit tileFree is used to free the data memory and clean
the handler. The function hit tileElem is used in host or kernels code to access
the elements of a tile. It receives a tile name, a number of dimensions, and
the indexes values of the desired element. The data are accessed in row major
order in all cases, independently of the implementation.

Hitmap library includes many other functionalities. For example, the man-
agement of hierarchical subselections of parts of the tiles, and the transparent
management of distributed-arrays, with abstract partition and communica-
tion functionalities that internally use a message-passing paradigm (exploit-
ing MPI). Hitmap has been extended with a much smaller handler (HitKTile),
with the minimum information needed for data accesses to multidimensional
arrays through a data pointer, that is useful to transparently port the data
structures to accelerators in a more efficient form.

3.2 Controllers library

The second abstraction upon we have built our proposal is implemented in the
Controllers library. It introduces an abstract entity that allows the transparent
launching of series of tasks on a single accelerator device, also considering a
group of CPU cores as a many-core device. The Controller model presents sev-
eral important features: (1) A mechanism to define common kernels reusable
across different types of devices, or specialized kernels for specific device kinds;
(2) A transparent mechanism of memory management, including optimized
communications of the data structures between the host and the correspond-
ing images in the accelerators; (3) An optimization system to select proper
values for kernel-launching configuration parameters (such as the threadblock
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geometry), guided by simple qualitative code characterization provided by the
programmer.

In our proposal we use the Controller entity to manage each device inside
the new Multi-controller that coordinates them. In the Controller library, a
kernel is declared by using the primitive KERNEL <type>. Where type may be
empty to indicate a kernel usable on any kind of device, or a specific value for
a specialized code for a given type of device. This is useful when different opti-
mizations on the kernel code are required for different devices. Currently, the
library supports the specific declarations KERNEL GPU for CUDA code target-
ing NVIDIA’s GPUs, KERNEL CPU for host machine code targeting sets of CPU
cores, and KERNEL GPU WRAPPER, KERNEL CPU WRAPPER, for host machine code
which includes calls to specialized GPU or CPU libraries, such as cuBLAS or
MKL routines. Moreover, the work presented in [11] extended the Controller
library to support the Xeon Phi co-processor.

The kernel-definition primitives declare in brackets the number of param-
eters of the kernel, with a tuple of information for each parameter. The pa-
rameter information includes its type, name, and input/output role:

– IN: for input HitTile parameters, whose elements are only read.
– OUT: for output HitTile parameters, whose elements are only written.
– IO: for input and output HitTile parameters, with elements can be both

read and written.
– INVAL: for input parameters of any type passed by value.

The programmer can also provide a kernel characterization, in terms of
code features, that helps to automatically determine proper kernel launching
parameters. In the current prototype, the CPU threads granularity is deter-
mined by a simple regular blocking policy, that does not require a specific
kernel characterization. For GPU kernels, the library integrates the model
presented in [15,21]. This model allows the determination of configuration pa-
rameters (grid, threadblock, and L1 cache memory sizes), for NVIDIA’s GPUs.
The primitive KERNEL CHAR receives the kernel name, the number of dimensions
of the thread space (1, 2, or 3), and descriptive values for the characterization
model. These values are a qualitative description of characteristics of the ker-
nel code provided by the programmer. They are related to: (a) The coalescing
property of the global memory access patterns (full, medium, scatter); (b) The
ratio of arithmetic/logic operations per global memory access (high, medium,
low); and (c) The ratio of data sharing accesses in a block per global memory
access (high, medium, low).

Figure 1 shows an example of the kernel for a matrix addition computation.
We see a kernel characterization in line 2 and a kernel definition in lines 5 and 6.

4 Multiple-Device Controller (MCtrl) library

The Multiple-Device Controller (MCtrl) library provides a simplified way to
program applications targeting heterogeneous systems with different kinds of
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Fig. 2 Diagram of the Multiple-Device Controller library (MCtrl).

computational units. In this paper, we define computational unit/target device
as an accelerators (GPU, Xeon Phi, etc.) or a group of CPU-cores considered
as a single independent device. The goal of this library is: (1) to automatize the
data partition and data transfer between the host and multiple target devices,
as well as (2) to transparently coordinate the division and execution of the
computation among different computational units, independently of the kind
of target device exploited (GPUs, group of CPU-cores, etc).

The library has an object-oriented design, despite the fact that it is mainly
developed in C language. The classes are implemented as C structures with
associated functions. The Multi-Controller model architecture is presented in
the Fig. 2.

The Multi-Controller object provides functions to manage:

– Multi-device coordination: The Multi-Controller is associated with a
set of different devices at construction. It internally creates Controller ob-
jects to interact with each device. The Multi-Controller provides an ab-
stract interface that enables to manage it as a single computational device,
independently of the internally associated devices.

– Data structures: The Multi-Controller abstraction creates an unified
memory context for all of the associated devices, where internal data struc-
tures can be created, or data structures from the main host thread can be
attached. Data structures can be replicated or partitioned and distributed
across the devices as the programmer requires. In the current prototype,
a simple static partitioning method has been included. It parts the struc-
tures in as many irregular parts as number of devices were selected in
the Multi-Controller construction. The size of each part is calculated pro-
portionally to a list of weights. Data movements across different device
memory hierarchies are transparently managed by the internal Controller
objects associated to each device.

– Kernel definition and launching: The Multi-Controller model inte-
grates the Controllers idea of multi-version kernel definition. Thus, kernel
launching in a Multi-Controller simply uses a kernel name. The internal
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Controllers selects, at run-time, the most appropriate kernel version or
implementation for the associated device, among those provided by the
programmer. The Multi-Controller internally divides the computation as-
sociated to a kernel launching among the different devices. The kernel exe-
cution on a device is performed asynchronously with respect to the kernels
execution in the rest of devices. Synchronizations are required only by data
requests on the main host thread.

4.1 Multi-Controller construction

A Multi-Controller object is constructed to manage a specific collection of
devices. Its construction functionality receives an ordered list of devices spec-
ifications. Each device specification is used to internally create a Controller
object associated to the computational resource. In the current prototype we
support device specifications that include: (1) NVIDIA’s GPUs, specifying
their CUDA device number, and (2) Groups of main host CPU-cores, speci-
fying a range of core identifiers, according to their internal numbering in the
CPU information provided by the operating system.

The Multi-Controller internally creates a queue to temporarily store the
requests for kernel launchings, before dividing the computation and mapping
it to the queues of the internal device Controllers. The synchronization and
coordination operations of each Controller are executed on its own task, which
makes asynchronous the use of a host thread only when activity is needed, for
minimal interference with other host threads. In the current prototype, the
internal device Controllers are implemented using OpenMP tasks.

4.2 Data structures and domains

One of the objectives of the Multi-controller library is to provide an homo-
geneous interface to work with data structures in different device types, pre-
serving the coalescing or vectorization properties of the code due to the data
accesses order. The previous Controllers library uses Hitmap to provide such
interface.

For Multi-Controller we propose to exploit and extent Hitmap functional-
ities to provide a transparent abstraction for the partition, subselection, and
mapping of parts of the data structures to the different devices associated
to a Multi-Controller. The Multi-Controller model proposes a single memory
context for the whole set of associated heterogeneous devices. Data structures
from the main host thread can be attached to the Multi-Controller context,
and they should not be manipulated on the main host thread until they are
detached from the Multi-Controller. The Multi-Controller can decide when
the real data movements should be done, synchronously or asynchronously, to
the actual devices, depending on the kernels enqueued for execution, and their
data dependencies.
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To avoid redundant data movements across memory hierarchies, the model
provides the programmer with a flexible attachment functionality. The current
proposal is focused on applications where: (1) No data transfers between de-
vices are needed across several kernel executions; and (2) any part of the com-
putation needs either, a whole data structure, or a subset of the data structure
that does not overlap with other subparts. Thus, data structures should be
assigned as a whole to all the devices, or partitioned in non-overlapping parts,
assigning one for each device.

To support this model, we have extended the HitTile objects in the Hitmap
library with the capability to part itself in several sub-selections, and store the
information about the partition inside the object. Internally, when a HitTile
is attached to a Multi-Controller, it performs the following steps:

1. First, it checks that the HitTile is not already attached to any Multi-
Controller. If that particular HitTile object is already attached, the pro-
gram raises an error, as a second attachment could lead to race conditions
due to the concurrent execution of kernels in different Multi-Controllers.

2. If it is an attachment without the partition option, the whole space of
indexes of the data structure are mapped to each device. If it is an attach-
ment with the partition option activated, the Multi-Controller parts the
index space of the HitTile data structure in a number of parts equal to the
number of devices defined in the Multi-Controller. The partition policies
introduced in Hitmap are responsible for dividing the data structure with
no-overlapped domains. The partition size corresponding to each device is
proportional to the weights provided in an array of floating point numbers,
one for each device. More sophisticated partition policies can be easily
added in the future thanks to the modular plug-ins system in the Hitmap
library. The information about the mapping is stored in the HitTile object
for further reference.

3. Finally, the Multi-Controller creates a HitTile structure for the space or
sub-space of indexes mapped for each device, and proceeds to do the data
transfers to the assigned device when needed. Transfers are not needed
for groups of CPU-cores of the host, or accelerators that can share the
host memory space. The transfer policies inside the Multi-Controller can
take decisions about when and how make the transfers. For example, the
current Multi-Controller prototype implement both, immediate and lazy
transfers. The implementation of asynchronous transfers is currently an
on-going work.

When the data structure is detached, the Multi-Controller object ensures
the consistency of the whole data structure in the main host thread. This may
imply data transfers from some or all of the associated devices. The information
stored in the objects about the index space mapped to each device is used for
the transfers, and eliminated at the end of the detachment procedure. The
semantic of this operation makes it synchronous. The main host thread should
block until its state is consolidated.
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Fig. 3 Calculating the domains to compute for each device.

Inherited from the Controllers library, the Multi-Controller model also al-
lows the attachment of HitTile structures that have a defined index space, but
no memory allocated in the main host thread. This creates partitioned internal
memory buffers (replicated or partitioned) inside the devices space, that are
transparently treated inside the kernel functions as any other data structure.
The detachment of these structures simply frees the corresponding subparts
and internal resources in the devices.

In the case of partitioned data structures, the actual parameters used in
the execution invocations of the Multi-Controller are substituted by the the
HitTiles created by subselecting the mapped portion of the index spaces for
each device. Inside the kernel functions, they are transparently used as normal
whole HitTile data-structures. The kernel launching interface will transpar-
ently transform the HitTile handlers for the real parameters handlers to an
internal HitKTile type, substituting the data pointer with its equivalent in the
device memory space when needed. The data access primitives used inside the
kernels code are transparently rewritten to use the pointer contained on these
objects, along with a minimum number of arithmetic operations, to access
the data. The resulting code exposes the arithmetic expressions to the native
compiler to open the possibility of further optimizations. The result obtains
as good performance as direct array accesses in static codes.

4.3 Kernel launching

The Multi-Controller model proposes a unified space of indexes for logical
threads across the whole set of associated heterogeneous devices. One instance
of the kernel function is executed by each logical thread. This model directly
fits with the threads grid abstraction in current GPUs programming models
such as CUDA or OpenCL. In the case of groups of CPU-cores, the internal
Controller objects are responsible for executing the kernel invocations of a
grid of many logical threads inside a limited set of coarse threads (e.g. one
OpenMP thread per core) for efficiency.

The Multi-Controller kernel launching function receives as parameters the
name of the kernel, the real parameters for the kernel (whole data structures
attached to the Multi-controller, or single typed values), and a definition of
the index space for the logical threads.
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Fig. 4 Typical programming stages using the MCtrl library. The data-structures attach-
ment/detachment, and kernel launching stages can be repeated and interleaved as desired.

Internally, the Multi-Controller performs at runtime the intersection be-
tween the indexes subset defined by grid, or domain of threads, specified by the
programmer, and the data structures domains or sub-selections performed by
the attachment procedure. The result points out the domain of logical threads
where each device should perform the computation. With this method, the
computation is transparently divided as a function of the data partitions pre-
viously performed. Figure 3 shows a graphical representation of an example
of this procedure. Stage 1 of the Fig. 3 shows an example of the partition of
a data-structure domain. Stage 2 overlaps the domain (grid of threads) where
computation is required. Stage 3 shows the domains of logical threads that
should be executed on each device.

With the information about how the computation is divided, the Multi-
Controller object deploys the kernel launches on the internal Controller objects
with a non-empty sub-space of threads mapped. Thus, the global computation
launching is subdivided in sub-kernels that are enqueued for execution in their
corresponding device queues.

The information provided by the programmer in the characterization prim-
itives of the kernel declarations is internally used to determine launching pa-
rameters for the appropriate devices, such as thread-block geometries.

4.4 Programming methodology and example

In this section we discuss, using an example, how a program is developed us-
ing our proposal. The proposed methodology derives in clearly structured pro-
grams, using simple development guidelines. Figure 4 shows the typical stages
of an application programmed using the Multi-Controller library. After the
creation of the Multi-Controller object, data structures declared in the main
host thread can be attached to the object. Computations are started defining
the threads space and invocating kernel launchings in the Multi-Controller
object. The detachments consolidate the state of the whole data structures in
the main host thread.
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1 // Multi-Device Controller (MCtrl)
2 // creation
3 CALMCtrl cntrlMult;
4 // Two devices: a 10 CPU-core group,
5 // and a GPU
6 CAL_MCtrlCreate2(cntrlMult,
7 CAL_CNTRL_CPU,
8 RANGE(0,9),
9 CAL_CNTRL_GPU, 0 );

10

11 // Specifying the weights
12 // corresponding to each device
13 float percents[2] = {10, 90};
14

15 // Define whole data structures
16 HitTile_float A, B, C;
17 HitShape domain;
18 domain =hit_shapeStd2(SIZE, SIZE);
19 hit_tileDomainAlloc(A, 2, float,
20 domain);
21 hit_tileDomainAlloc(B, 2, float,
22 domain);
23 hit_tileDomainAlloc(C, 2, float,
24 domain);
25

26 // Attach the data structures to
27 // a MDC, determining the weights
28 // for each device
29 CAL_MCtrlAttach(A, cntrlMult,
30 percents);
31 CAL_MCtrlAttach(B, cntrlMult,
32 percents);
33 CAL_MCtrlAttach(C, cntrlMult,
34 percents);
35

36 // Determine the threads to launch.
37 HitShape threads;
38 threads = hit_shapeStd2(SIZE, SIZE);
39

40 // Perform the commputation
41 CAL_MCtrlLaunch(cntrlMult, threads,
42 MatAdd, 3,
43 hit_CM(&C),
44 hit_CM(&A),
45 hit_CM(&B) );
46

47 // Copy result from MDC memory
48 // to host memory
49 CAL_MCtrlDetach(A, cntrlMult);
50 CAL_MCtrlDetach(B, cntrlMult);
51 CAL_MCtrlDetach(C, cntrlMult);
52

53 // Destroy MCtrl
54 CAL_MCtrlDestroy2(cntrlMult);
55

56 //Free CHitTiles
57 hit_Free(A);
58 hit_Free(B);
59 hit_Free(C);

1 // Multi-Device Controller (MCtrl)
2 // creation
3 CALMCtrl cntrlMult;
4 // Two devices: two GPUs
5

6 CAL_MCtrlCreate2(cntrlMult,
7 CAL_CNTRL_GPU, 0,
8

9 CAL_CNTRL_GPU, 1 );
10

11 // Specifying the weights
12 // corresponding to each device
13 float percents[2] = {50, 50};
14

15 // Define whole data structures
16 HitTile_float A, B, C;
17 HitShape domain;
18 domain =hit_shapeStd2(SIZE, SIZE);
19 hit_tileDomainAlloc(A, 2, float,
20 domain);
21 hit_tileDomainAlloc(B, 2, float,
22 domain);
23 hit_tileDomainAlloc(C, 2, float,
24 domain);
25

26 // Attach the data structures to
27 // a MDC, determining the weights
28 // for each device
29 CAL_MCtrlAttach(A, cntrlMult,
30 percents);
31 CAL_MCtrlAttach(B, cntrlMult,
32 percents);
33 CAL_MCtrlAttach(C, cntrlMult,
34 percents);
35

36 // Determine the threads to launch.
37 HitShape threads;
38 threads = hit_shapeStd2(SIZE, SIZE);
39

40 // Perform the commputation
41 CAL_MCtrlLaunch(cntrlMult, threads,
42 MatAdd, 3,
43 hit_CM(&C),
44 hit_CM(&A),
45 hit_CM(&B) );
46

47 // Copy result from MDC memory
48 // to host memory
49 CAL_MCtrlDetach(A, cntrlMult);
50 CAL_MCtrlDetach(B, cntrlMult);
51 CAL_MCtrlDetach(C, cntrlMult);
52

53 // Destroy MCtrl
54 CAL_MCtrlDestroy2(cntrlMult);
55

56 //Free CHitTiles
57 hit_Free(A);
58 hit_Free(B);
59 hit_Free(C);

Fig. 5 Matrix addition example programmed using our approach: Exploiting a group of
10 CPU-cores and a GPU for the computation (left); and exploiting two GPUs for the
computation (right).
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Figure 5 presents two codes of a matrix addition programmed using our
proposal. On the left of Fig. 5, a group of ten CPU-cores and a GPU are
exploited, assigning to them the 10% and the 90% of the computation, respec-
tively. On the other hand, in the code on the right, two GPUs are exploited for
computation. In this case each GPU performs 50% of the computation. Both
codes follow the basic structure of programming stages presented in Fig. 4.

First, the programmer creates a Multi-Controller object. The creation of
this controller includes the definition of the different kinds of devices controlled
by this object, as well as a parameter specifying their computation features.
The parameter when the device is a group of CPU-cores, corresponds to the
range of CPU-cores used. For a GPU device, this parameter indicates the GPU
identifier (see lines 7 to 9).

The second step consists of the data structures creation and allocation. Hit-
Tile objects are created and allocated using a HitShape object that represent a
domain. To do that, we have applied the function hit tileDomainAlloc(...)

(see lines 16 to 24). HitTiles are attached to the Multi-Controller using the
MCtrlAttach(..) function (see lines 29 to 34). For the attachment, it is needed
an array of floats indicating the weights used to divide the data structure
among the different target devices. The Multi-Controller is the responsible for
the actual data attachment on the final device where the computation will be
performed.

After that, the computation domain (indexes domain for logical threads)
is defined by a HitShape object (see line 38). Typically, the kernel execution is
performed for each element of a matrix, as in all the cases studied in this paper
(see Sect. 5.1). In this cases the computation domain and the data structure
domain are equal.

The kernel launching is performed in lines 41 to 45. The parameters of the
MCtrlLaunch function are: (a) The Multi-Controller object; (c) The domain
that defines the computation space index. (c) The name of the kernel; (d) The
number of parameters required by the kernel; and (e) The real parameters for
the kernel execution. It deploys the kernel executions on all the computational
devices associated to the Multi-Controller. It internally enqueues in each de-
vice Controller a copy of the kernel launching, adapting the threads indexes
domain in order to each target device performs only its corresponding part of
computation.

Finally, once the computation has finished, HitTiles are detached of the
controller, the Multi-controller is destroyed, and the data structures are free
(see lines 49 to 59).

5 Experimental study

This section presents an experimental study to show how this approach sim-
plifies the programming effort to adapt programs to different sets of heteroge-
neous devices, and the efficiency obtained by our prototype implementation of
the Multi-Controller library. First, we present several benchmarks used in the
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study, discussing their features. Second, we present some development effort
measures. Finally, we provide a comparison of performance measures obtained
by programs which use device vendor or native programming models, and
programs developed with the Multi-Controller library.

5.1 Study cases

We have used four common benchmarks as base-lines for five case studies, in
order to test our proposal.

5.1.1 Matrix addition

The Matrix addition consists on the sum of two different matrices, storing the
result in a third one: C = A+B. The computation of each cell does not imply
any kind of dependencies with the computation of another one. The solution
developed using our proposal involves just one kernel with a bidimensional
grid and bidimensional threadblocks. Depending on the size of the grid and
the matrices, each block of threads computes the result values of several blocks
of the matrix iteratively, following the example implementation presented to
the CUDA community in the programming guide [13]. The accesses to global
memory are fully coalesced. This benchmark requires a big amount of data
transfers to the accelerators used, while the computation load is really low.
Using our model, the CPU solution for this problem is similar to the GPU
version. Only one generic kernel should be defined by the programmer.

5.1.2 Matrix multiplication

The Matrix multiplication computes the product of two different square ma-
trices, storing the result in a third one: C = A ∗ B. The computation of each
cell of the resulting matrix is not dependent on another computation.

A direct simple solution to this problem involves one generic kernel, using
a bidimensional grid of threads, for both CPU and GPU. Each thread ti,j is

responsible of computing the dot product operation (
∑n−1

k=0 A[i][k] ∗ B[k][j]),
storing the result in the (i, j) position of the C matrix. Nevertheless, different
logical threads use elements of A or B that are also read by other logical
threads. Thus, data can be reused and shared across the computation of several
cells. Moreover the read patterns on A and B matrices should be studied
and adapted to exploit coalescence in GPUs, and properly exploit caches and
vectorization on CPUs. This leads to interesting optimizations in both GPU
and CPU devices. Thus, in our model we can declare different specialized
kernels for each kind of device.

The optimized GPU implementation in the CUDA Toolkit Samples exploits
the shared-memory for better performance. The threads on each threadblock
can use shared-memory to collectively load a square block of A and B matrices
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Fig. 6 An image of the Mandelbrot set with the limits xmin: −1.4748333, xmax:
−0.9748333, ymin: −0.1791667, ymax: 0.1958333.

in a coalesced way. Then, they can efficiently perform a block matrix multi-
plication using the elements on the shared-memory. Several iterative stages
should be applied to compute all the matrix block multiplications needed at
each threads block. Threads need to use block synchronizations on the global
memory read operations, using specific CUDA code. This code, due to the
way it uses the shared memory and it aligns the read operations, forces the
use of a specific square threadblock size (32 × 32). We have simply modified
the CUDA Toolkit Samples code to use the abstract Multi-Controller thread
indexes, and the HitTiles structures in the data accesses.

The current CPU kernel version is the generic simple implementation of
the dot product of a row of A and a column of B to compute the result for
a single output element. Further optimizations based on loop reordering and
tiling for better cache usage can be automatically applied by the native C
compiler.

5.1.3 Black-Sholes

The Black-Scholes formula is based on a mathematical model of a financial
market. The result estimates the price of European-style options. The program,
obtained from the CUDA Toolkit Samples, independently applies the formula
to a chosen number of input values stored in an array, calculating and stor-
ing their results. Thus, it is an embarrassing parallel program with perfectly
coalesced accesses on a GPU. Each thread does only one read and one write
operation to global memory. It applies several floating point operations, calcu-
lating intermediate results and storing them in registers or temporal variables.
We have explored two case studies using this benchmark: A simple execution of
the kernel (BlackScholes), and a program that iteratively launches a sequence
of 2048 executions of this kernel for the same array (BlackScholes 2028).

As in the matrix addition benchmark, the data transfers are not negligible
compared with the computation time. In our model, the same generic kernel
definition is used for both CPU and GPU.
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Table 1 Development effort measures for the four benchmarks when they are programmed
using Cuda, OpenMP, and the proposed Multi-Controller library.

Benchmark Code Lines Cyclomatic Halstead
of Code Complexity Measure

Matrix Cuda 72 7 202361
Addition OpenMP 49 11 99783

MCtrl 61 5 103528
Matrix Cuda 142 5 409862
Mult. OpenMP 45 9 81136

MCtrl 97 6 201242
Black- Cuda 211 7 742735
Scholes OpenMP 134 8 389556

MCtrl 163 6 486956
Mandel- Cuda 49 3 159481
brot OpenMP 36 5 66610

MCtrl 55 3 124212

5.1.4 Mandelbrot algorithm

The escape time algorithm is the simplest algorithm for generating a represen-
tation of fractal geometric images of the Mandelbrot set. This example presents
an irregular workload per thread. Nevertheless, the computation space can be
divided between two GPUs giving the same amount of work to each GPU,
and thus producing good results. This example will clearly show the balancing
effect of partitioning the workload among several GPUs. The application does
not need any data transfer to start the computation, only to return the results.
The parameters chosen for the experiments are: An image size of 2048× 2048,
and a limit of 60, 000 iterations per pixel. A visual representation of the chosen
area is shown in Fig. 6. The GPU threadblock size used is 32 × 32 for all the
experiments with this benchmark. In our implementation, the same generic
kernel definition is used for both GPUs and CPUs.

5.2 Development effort

In this section we compare, in terms of development effort, the use of our
library with the most common native programming models for NVIDIAS’s
GPUs and multi-core CPUs, which are CUDA and OpenMP respectively. For
this comparison, we use three classical development effort metrics: COCOMO
lines of code, McCabe’s cyclomatic complexity [10], and Halstead development
effort [5]. McCabe’s cyclomatic complexity measure is a quantitative measure
of the number of linearly independent paths through a program’s source code,
and the Halstead development effort metric is also a quantitative number based
on the number on operators and operands in the source code. Low cyclomatic
complexity and Halstead development effort results imply codes simpler to de-
velop and debug. These metrics are typically used in the assessment of software
design complexity. The metrics are applied to the parts of code that include:
kernel definitions, kernel characterizations, the coordination code in the main
host thread with the Multi-controller management, and data structures man-



Multi-Device Library: Simplifying Parallel Heterogeneous Programming 17

agement. We ignore code devoted to error or results checking, performance
instrumentation, and writing messages to the standard output.

Table 1 shows the different measures for the different codes evaluated. The
results show that our library implies less development effort for the program-
mer than using CUDA for all the study cases. On the other hand, although
the OpenMP programming model needs a less volume of lines of code, the
cyclomatic complexity of our proposed is less because our abstraction hides
some run-time decisions and checkings.

Transforming a CUDA program into an OpenMP version, or in the opposite
way, is not a trivial task. Remind the Fig. 5, where we show two codes, using the
Multi-Controller abstraction, that perform a matrix addition using different
target device combinations. When we compare both codes, we observe that the
effort required by the programmer to change the program in order to exploit
1 GPU + 10 CPU-cores, or two GPU devices, only involves 4 lines of code.
We can see these four lines highlighted on both codes in the code.

This simplification makes transparent to the programmer all the differences
on data transfers, kernel launchings, and data managements for different kind
of computational devices such as accelerators or groups of CPU-cores.

5.3 Performance results

In this section we present performance results: (1) comparing our proposal
with pure CUDA reference programs, and (2) evaluating the impact of using
in our model different computational units for the five case studies selected.
The goal of this study is to determine the potential performance penalty in-
troduced by using our approach, as well as the performance gain obtained
when exploiting a combination of heterogeneous devices with different compu-
tational capabilities.

The experiments have been executed on a host machine named Hydra, with
two CPUs Intel Xeon E5-2609 v3 @1.90GHz, 64Gb DDR3 main memory, and
two GPUs: an NVIDIA’s GeForce Titan Z (named GPU-0) and a Titan Black
X (named GPU-1). We exploit the two GPU devices, and multiple CPU-cores
organized in a single virtual device in our model. For this test, we have decided
to avoid performance effects derived from oversuscription or hyperthreading.
As our Multi-Controller library uses one host thread for each device to be
controlled, the number of CPU-cores we use to compute and execute kernels
is 10.

The programs have been compiled using the CUDA Toolkit 8.0, and GCC
4.8.3. We have used the flags, -O3, and -fopenmp to exploit parallelism when
using a group of CPU-cores as a computational unit. We have executed all the
experiments ten times, registering the lowest total execution times. We have
also measured separately the times spent in copying data forth to and back
from the target devices, and the computation time of the kernels. We include
the time spent by our queue system inside the computation times.

We have tested three kinds of codes:
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Fig. 7 Performance results (in seconds) for experiments on Hydra using a group of 10 CPU-
cores and a GPU. The right-most columns show the result of the reference CUDA programs
run on the same GPU.

– A native CUDA implementation of the different benchmarks tested. We
present measures obtained in one or both GPUs in our target system de-
pending on the study. See the right-most and/or the left-most columns in
the charts discussed bellow. Cuda Ref : Measures in NVIDIA’s GeForce
Titan Black Z. Cuda Ref-2: Measures in NVIDIA’s GeForce Titan Black
X.

– CPU+GPU: This code, programmed using the MCtrl library, executes
the programmed application on two devices, a group of 10 CPU-cores, and
an NVIDIA’s GeForce Titan Black Z. Different mappings have been tested,
determined by the percentage of data and computation assigned to each
device.

– GPU+GPU: This code, programmed using the MCtrl library, executes
the application on the two GPUs available in the target system. Again,
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Fig. 8 Performance results (in seconds) for experiments on Hydra using two different GPUs.
The left- and right-most columns show the results of the reference CUDA programs run on
each of the two GPUs considered in the study.

different mappings have been tested, determined by the percentage of data
and computation assigned to each device.

Figure 7 shows the performance results obtained by our proposal when
the data, and thus the computation, is divided among the group of CPU-
cores and a GPU, the NVIDIA’s GeForce Titan Black Z. In the applications
where data transfers dominate the total time (Matrix Addition and Black-
Scholes benchmarks) we can achieve a better performance by giving part of
the computation to the group of CPU-cores. Despite the computational power
of the GPU accelerator, the computation division improves performance by
reducing the time spent in data transfers to/from the GPU.

When the computational load is high, such as in the matrix multiplication,
and Black-Scholes 2048, the best performance is obtained doing the whole
computation in the GPU. This is typical for this kind of programs that re-
ally suit the GPU computational model. For the Mandelbrot benchmark, we
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observe that the partition of the computation obtains marginally better per-
formance results than the CUDA reference codes. This particular behaviour is
because of the irregular workload of this benchmark.

Figure 8 shows the performance results obtained when we divide the com-
putation between the two GPUs. When the computation load is really low and
there are multiple kernel launchings, the time spent in the queue managements
(remind that these times are taken into account in the computation time) can
be noticeable, such in the BlackScholes 2048 case (it takes approximately 0.04
seconds).

In our first prototype of the library, data transfers for several GPUs are
still sequentialized. Thus, in those applications where data transfers lead the
execution time, the best performance is obtained when the application is exe-
cuted only in the most powerful GPU. However, when the computation time
is much higher than the communication times, a division of the computation
among the GPUs, proportional to their relative computation power for this
problem, improves the performance. For example in our study, without taking
into account the data transfers, the kernel execution times are reduced the
34%, 25%, and 41% compared to the best CUDA reference codes which use a
single device, for the matrix multiplication, Black-Scholes 2048 and Mandel-
brot benchmarks respectively. This behaviour is shown in the experimentation
results.

6 Conclusion

In this paper we present the Multi-Controller (MCtrl), an abstract entity im-
plemented in a library, that coordinates the management of heterogeneous de-
vices, including accelerators with different capabilities and sets of CPU-cores.
This entity offers a global view of the computation, transparently managing the
coordination, data partition, mapping, and execution of whole computations
on their associated devices. Our solution allows the use of simple generic ker-
nels (portable across different device types), or specialized implementations de-
fined and optimized using specific native or vendor programming models (such
as CUDA for NVIDIA’s GPUs, or OpenMP for CPU-cores). The run-time sys-
tem automatically selects and deploys the most appropriate implementation
of each kernel for each device, managing the data movements, and hiding the
launching details. Results of an experimental study with five study cases indi-
cate that our abstraction allows the development of flexible and high efficient
programs, that adapt to the heterogeneous environment. On-going and future
work includes the study of the effect of more sophisticated techniques for data
movement which overlap communication and computation, and a new exper-
imental study including irregular benchmarks whose data should be divided
using more complex mechanisms.
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