... manuscript No.
(will be inserted by the editor)

Automatic Runtime Calculation of Communications
for Data-Parallel Expressions with Periodic
Conditions

Ana Moreton-Fernandez - Arturo
Gonzalez-Escribano

Received: date / Accepted: date

Abstract Many real-world applications feature data accesses on periodic do-
mains. Manually implementing the synchronizations and communications as-
sociated to the data dependences on each case, is cumbersome and error-prone.
It is increasingly interesting to support these applications in high-level parallel
programming languages or parallelizing compilers. In this paper we present a
technique that, for distributed-memory systems, calculates the specific com-
munication patterns derived from data-parallel codes with or without peri-
odic boundary conditions on affine access expressions. It makes transparent to
the programmer the management of aggregated communications for the cho-
sen data partition. Our technique moves to runtime part of the compile-time
analysis typically used to generate communication code for affine expressions,
introducing a complete new technique that also supports the periodic bound-
ary conditions. We present an experimental study to evaluate our proposal
using several study cases. Our experimental results show that our approach
can automatically obtain communication codes as efficient as those found in
MPIT reference codes, reducing the development effort.

Keywords Distributed memory - Periodic boundary condition - Communi-
cation patterns - Parallel programming

1 Introduction

Many real-world applications feature data accesses on periodic domains; do-
mains on which at least one dimension is toroidal, and a walk through the

A. Moreton-Fernandez - A. Gonzalez-Escribano
Departamento de Informatica, Universidad de Valladolid, Valladolid, Spain

A. Moreton-Fernandez E-mail: ana@infor.uva.es
A. Gonzalez-Escribano E-mail: arturoQinfor.uva.es

2 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

dimension becomes an infinite tour on which the same elements of the do-
main are periodically traversed once and again. When this kind of domains
are discretized and represented by a set of indexes, advancing past the last
index in the periodic dimension, instead of getting out of the domain, means
arriving at the first index. For example, physical phenomena can be modelled
using spherical grids with periodic boundary conditions [25], using a stencil
program over a periodic domain. Manually implementing the synchronizations
and communications associated to the data dependences for each specific ap-
plication, is cumbersome and error-prone. Thus, it is increasingly interesting
to support these applications in high-level parallel programming languages or
parallelizing compilers.

Current state-of-the art compilers focus on the transformation of high-
level parallel programs (e.g. [10]), or sequential codes (e.g. [6]), to low-level
parallel programs. Typically, they target static-control programs with affine
expressions, using compile-time automatic techniques [11,4,17]. These tech-
niques abstract many issues related to the execution platform, while they still
deliver good performance. However, they produce a generic code that does not
take into account some specific details of the execution machine. For example,
the most sophisticated code generators for distributed memory [4], that only
support affine expressions, reduce the volume of communicated data and are
parametric in the number of processes and problem sizes. Nevertheless, they
still need to fix a single tile size at compile time, even if the system has nodes
with different capabilities. Moreover, the application of these techniques to
periodic domains is more complicated. In general, they need to compute a
transitive closure of dependencies, which is typically a very hard problem at
compile time.

In this paper we present a technique that, automatically calculates at run-
time the coarse-grained communication patterns ! that are needed for a correct
and efficient execution of SPMD (Single Program Multiple Data) programs de-
rived from data-parallel codes with periodic affine expressions in data accesses.
It makes transparent to the programmer the management of aggregated com-
munications for the chosen data partition. This technique has been recently
announced to the community [20]. It moves to runtime part of the compile-time
analysis needed to generate the communication code. It produces programs
more adaptable to different execution environments, allowing, for example,
the use of different tile sizes at the same hierarchical level, a good approach
for clusters that include machines with different architectures [19].

To show the applicability of our approach, we develop the technique in the
Trasgo parallel programming system proposed in [12]. Our implementation au-
tomatically generates MPI programs from abstract data-parallel expressions.
We test six benchmarks with periodic access expressions: An illustrative exam-
ple based on the rotate routine of the STL library [28], the periodic versions of

1 Communication patterns: Abstract structures determining which data should be moved
across each pair of processes at a given program point. For example, in the MPI message-
passing interface a specific instance of an MPI_Alltoallv function call can be represented as
a communication pattern.

Title Suppressed Due to Excessive Length 3

Heat 1-D, 2-D and 3-D applications [5], a matrix multiplication program us-
ing Cannon’s algorithm [8] and a multi-grid V-cycle 3D-stencil application, the
NAS MG benchmark [1]. Our experimental results, comparing pure MPI ref-
erence codes and the programs automatically generated, in both distributed-
and shared-memory environments, show that the use of our approach can au-
tomatically obtain efficient codes while reducing the development effort. For
example, the use of our solution leads to a reduction of 44.42% in the number
of code lines and a reduction of 65.71% in the McCabe Cyclomatic Complexity
for the NAS MG Benchmark.

2 Related Work

Many task-oriented programming approaches (like StarSs, OmpSs [7,24]) are
based on iterators to generate pools of tasks with explicit input and output
working sets. The working sets analysis allows dependence graphs to be built.
However, due to the task execution model based on dynamic scheduling with
task-queues, synchronizations, and dynamic mapping information, these mod-
els cannot derive aggregated communication calculations for groups of tasks.
Moreover, the use of these task-oriented approaches in distributed memory
leads to performance penalties in the general case, due to the task creation and
destruction, the management of distributed queues, the synchronization and
load balancing mechanisms, and the data communications due to dynamic task
scheduling and/or migration. Our approach minimizes synchronization over-
heads, by generating programs with static-scheduled processes that perform
coarse-grained computation and communication phases.

PGAS (Partitioned Global Address Space) models present an abstraction
to work with mixed distributed- and shared-memory environments similar
to Trasgo. The PGAS language that is more closely related to our work is
Chapel [9]. It proposes a separation of domain and mapping modules to gener-
ate distributed arrays. However, the best communication aggregation methods
presented so far for Chapel abstractions are restricted to specific operations,
or domain mapping properties. For example, the work in [26] is restricted to
global array assignments with block or cyclic distributions. The work in [27]
presents a symbolic substitution of mapping attributes in affine access expres-
sions with the same inspiration as our approach. However, the Chapel runtime
cannot aggregate several expressions across different loops to generate the full
task footprint. Also, it needs to rely on non-aggregate communications when
the whole set of data accessed by an expression is not fully allocated in the
same remote processor. It only works for cyclic or block-cyclic distributions.

Fortran-D compiler techniques for calculating communication in SPMD
programs [15] use domain calculations to generate, at compile time, different
communication code depending on the data partition selected. This constrain
avoids to change data partition features at runtime. However, performing a
data partition based on the details of the target machines is key to achieve a

4 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

good performance and a balanced workload, especially in distributed-memory
systems that include machines with different architectures.

The polyhedral model provides a formal framework to develop automatic
transformation techniques at the source code level to generate low-level code
for shared- or distributed-memory systems [4,2,31,16]. Using the current dis-
tributed-memory approaches, communications cannot be calculated across dif-
ferent affine loop nests sections unless loop fusion can be done. Moreover, using
these methods there are still cases for duplicated or unnecessary data commu-
nications, that our proposal can avoid, as it will be shown in Sect. 6. The
work in [17] presents a hybrid compiler-runtime translator scheme similar to
our approach that calculates the communication pattern needed in an SPMD
programming model. However, they only support reqular and repetitive appli-
cations where the communication pattern is the same in all the iterations of
an outer serial loop that encloses the SPMD block. Our technique is applicable
to programs that change their communication structure on each iteration.

Applying the tiling technique to a set of indexes enables a medium-grained
parallelization. Some approaches have been presented to solve the problem of
tiling with periodic boundary conditions. The closest method to our approach
is a cutting-and-pasting technique. In this technique, the dependencies which
are affected by the periodic conditions are broken and displaced. It is similar to
a circular loop skewing. This approach needs a computation of the transitive
closure of dependencies to determine the set of iterations which another tile
depends on. Some libraries such as ISL [30] are capable, for some problems, of
computing at compile time the transitive closure of dependencies efficiently.
However, the transitive closure computation typically is a very hard problem
for solutions that work at compile time. Recently, another method to tile
and optimize time-iterated computations over periodic domains was presented
in [5]. This technique first splits the iteration domain, cutting close to the
mid-point what their authors call long dependences. After this cut, they apply
a separate affine transformation on each half of the space. All these approaches
target shared-memory systems. Programming for distributed-memory systems
is more challenging due to the management of the distributed data structures.
Moreover, communications among processes should be devised in terms of,
for example, message-passing operations, taking into account all the potential
combinations of proper data partitions or matrix sizes. Our technique makes
transparent all these issues.

3 Illustrative Example

This section presents an illustrative application to show an example of how
a parametrizable algorithm can be tackled with our proposed solution. We
selected an example based on the rotate routine of the STL library [28]. Refer
to the sequential algorithm in Fig. 1. The routine applies a rotation to the
vector elements while applying a function f() on each one of them. The routine
receives an integer parameter size, a vector of elements (with the size indicated

Title Suppressed Due to Excessive Length 5

** Sequential rotate algorithm

Inputs: size: Vector size
<type> M[size]: Vector with initial values
rot: Amount of positions to rotate the elements
f: function for computing each element

Outputs: <type> M2[size]: Vector with result values

1. <type> M2[sizel;
2. For i = 0 to size-1
M2[i] = £(M[(i+rot) mod size])

Fig. 1 Sequential algorithm for the illustrative example assuming a positive value of rot.

Inputs: ** Declare local part of M2

size: Vector size 1. <type> M2[L(myRank).b : L(myRank).e]
myRank: local process Id

L: mapping function Comm. ** Bring data from remote processes
<type> M[]: Distributed vector Stage fA—

rot: Amount of positions to rotate
** Local computation
Outputs: { 3. for (i=L(myRank).b ; ic=L(myRank).e; i++)
<type> M2[]: Distributed vector il M2[i] = f(M[(i+rot) mod size])

Fig. 2 Parallel algorithm for the illustrative example in a SPMD model assuming a previ-
ously distributed input array. Boxes indicate the logical steps in SPMD computations.

by the previous parameter), and another integer parameter rot. The parameter
rot is used in the access expressions to select, at runtime, the amount of
positions that the elements in the vector should be shifted.

A distributed parallel version of this algorithm is shown in Fig. 2. In this
case, the input parameters are: (1) The size of the original input vector, size;
(2) the local process identifier, myRank; (3) a mapping function L that receives
a process identifier and returns the set of indexes, in the range [0:size-1],
assigned to that process (b and e will indicate the limits of the set for this
process) ; (4) An input vector M that was previously distributed among the
different processes using the mapping function L; (5) The integer parameter
rot that is assumed to be positive in this example.

First, the local part of the distributed output vector M2 is defined, also
using the mapping function L. Thus, each process stores the same part of both
arrays, M and M2. After that, each process participates in the rotation of the
whole vector elements, and applies the function f() on its part (SPMD block).
When a process applies the access expression (i +rot) mod size to its assigned
index domain, it is possible that part of the resulted indexes are out of the
assigned domain. Hence, we insert a communication stage before the SPMD
block to ensure that every process has the necessary data to compute f().
After the communication and computation, processes will be able to update
its part of the M2 output vector. Our technique calculates automatically these
necessary communication patterns.

We illustrate the communication calculation for this example in Fig. 3. In
the left of the figure, we see in Stage 1 the set of indexes assigned by the
mapping function L to each process. In Stage 2, we see the set of indexes

6 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

1 Proc: 1 ' Proc:2 1 Proc:3t1 Proc:4 ! Sfage 1) lllustrative example:
! =[b,:e,:1
p - Ep
Stage 1)
Stage 2) Applying Expr: l+mt
b, enih, enb; euby e ge 2) Applying Expr: [(i+rotlk
: : *‘**I O\ : SN W ‘”(QLwt) f :_[gz+7'(7l,::%2+7'(1/,:1]
Stage 2) a e e . ;m
\ ! ! 1 1 WMHRU, Lyrot) = { §°=[ba+rot:eq: 1]
| : 1 st=lea+1lies+rot:1]
AR AR A * * * Stage 3) Applying Expr: [mod size]:
Stage 3} M U(s)=
TWMHM2, Lorot)) = § 5° = [ba+ 70t 2 ea + 70t 2 1]
sue p(sh) =
P(s7) =0
WM’”4L70t $° = [by+roteq: 1]
o(s)=10:0+rot—1:1]

Fig. 3 Communication structures calculation. Using the read data-access expression inside
the parallel computation of the illustrative example to build the functions that calculate the
working input indexes set (W) for M for the processes 2 and 4. This example uses contiguous
rectangular shapes, an irregular data partition policy, and considers the particular case of
rot = 3, for a domain with |My| = 25.

resulted by applying the expression (i + rot) to the indexes assigned to the
processes 2 and 4. In our example, the domain accessed by process 2 overlaps
with the domain owned by process 3. Thus, in order to compute, process 2
needs to receive those data from process 3. For process 4 we obtain two sets
of indexes: (a) A set located into the original array domain (it will be named
s°), and (b) a set located outside of the original array domain. This set is
represented in white and it will be named st. Notice that st is a set of
indexes higher than the end of the array domain, due to the positive value of
rot in the example. If the value of rot had been negative, we would have had
a set of indexes lower than the start of the array domain, named s~

The application of the periodic boundary condition (mod size) over the
set of indexes resulted of applying i + rot in process 4, transform them to the
set of indexes shown in Stage 3. The white region on Stage 2 corresponds to
the stripped region that belongs to process 1 at Stage 3. We will need an extra
communication to receive the stripped region from process 1 in process 4.

4 Aggregated-Communication Model

In this section, we present a generic model that calculates at runtime the
necessary communication patterns to compute SPMD blocks, that contain
affine access expressions on the indexes of the parallel loops (SPMD blocks)
with optional periodic boundary conditions. In this paper we assume an owner-
computes paradigm, with the result of a runtime mapping function indicating
the ownership. We describe the model to calculate communication patterns to
move data from owner processes to the processes where these data are accessed
to execute computation. The same model can be applied to move computed
data to destination positions, in the case of write accesses which are generic
expressions that transform the domain indexes.

Title Suppressed Due to Excessive Length 7

In this section, first, we present the notation used in this paper. After

that, a simplified one-dimensional overview of the communication calculation
is presented. Finally, the generic multi-dimensional model is described.

4.1 Definitions

In this section, we define the terms used during the model description.

Number of elements (N): number of elements in an array M.
Number of dimensions (n): number of dimensions of an array M.
Cardinality (|M,]|): number of indexes of the array M in the z-th dimen-
sion.
Signature (S(b, e, z)): is a triplet of three integer numbers begin (b), end
(e), and stride (z). A signature defines a subset of integer one-dimensional
indexes from the begin to the end, using the stride as step. We will use the
classical Fortran90 notation [b: e : z] for simplicity in our discussion. The
set of all possible signatures is S*.
Domain (D,,): An n-dimensional domain formed by the Cartesian product
of n signatures (a hyperrectangle). The set of all possible domains in n
dimensions is denoted as D;,.
Computation indexes (—z>) The set of indexes where a parallel compu-
tation will be performed.
Affine expression (p,(¢)): In our technique we consider affine expres-
sions on the x-th dimension with the form:

pe(1) =g Xig+ ... + p_1 Xip_1+ 0
where the coefficients «, 8 are invariant in the body of the SPMD block.
We can also apply an affine expression to a whole set of indexes described
by a signature (p(s)).
Periodic expression (cyc(p.(i))): It denotes periodic boundary condi-
tions on the result of an affine expression.
Mapping function (L(p)): It is a function that receives the index of a
process and returns the domain representing the set of indexes mapped to
that process.
Access expression (Mcyc(po()]...[cyc(pn,l(T))]): An expression in
the code that accesses the data in a data structure M. A periodic boundary
condition is applied on each dimension of the data structure.
Set of affine expressions ((;5(7)) The set of affine expressions (one for
each dimension) of a single access expression.

)

4.2 Model for Calculating Communication Patterns in 1-D Applications

In this section we present an overview of the proposed technique to calculate
the communication patterns for only one-dimensional index domains. Recall

8 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

the parallel algorithm presented in Fig. 1, that performs the rotation of the
elements of a vector also applying a function f(). A communication phase
is needed before the SPMD block to reallocate some data across processes,
ensuring that each process has the necessary data to compute.

The following analysis is done independently for each data structure, and
for each SPMD block. The Input Working Set of Indexes (WlA’k(p, L, ?)) isa
function built based on the access expressions on a SPMD block. It returns the
set of indexes of the data structure A, read by a given processor p, during the
k-th SPMD block in the code (remind Stage 2 of Fig. 3). The parameters of
the function are: The processor identifier p, a mapping function L that returns
the set of indexes mapped to any processor, and ¢ , the values of the symbolic
parameters that appear in the expressions. The function applies at runtime
the affine expressions (¢) found in read accesses to A inside the k-th SPMD
block, one by one, to the indexes set returned by the mapping function (L(p)).
See a calculation example in Stage 2 of Fig. 3.

For the one-dimensional case, we obtain a set of indexes that can be rep-
resented by a set of signatures. These signatures can be classified as:

— Set of signatures whose indexes are lower than the begin of the original
array domain (S).

— Set of signatures whose indexes intersect with the original domain (Sg).

— Set of signatures whose indexes are higher than the end of the original
array domain (Sg).

We generate the code of the functions that compute the set of indexes read
per each SPMD block, and each data structure (W;‘ F(p, L, ?)) These func-
tions return a set of signatures representing the set of indexes read. With these
functions, a process can calculate the input working set of a data structure,
of any process, once the parametric values are known. These functions simply
apply the access expressions to the index-space limits at runtime to calculate
the working-sets (see the implementation of these functions in Sect. 5).

Once we have the set of signatures that result of applying the affine ex-
pressions, we can apply the periodic boundary conditions, where it is required.
This relocates the indexes that after the application of the affine expression
are out of the original array domain, into the domain. See Stage 3 in Fig. 3. We
define two functions to apply the periodic conditions to signatures. Remind
that |Mpy| is the number of elements of M in the first dimension.

— For signatures in S~ we define ¢ : S* — S* where

s'.b=—((—s.b) mod |My|) + | My,
P(s) =58 :{ s'.e=—((—s.e) mod | My|) + | My|, (1)
sz=sz2
— For signatures in St we define ¢ : S* — S* where
s'.b = s.b mod | My,
o(s) =5 : ¢ §.e =s.e mod | M|, (2)
s'z=sz2

Title Suppressed Due to Excessive Length 9

ALGORITHM 1: Model to calculate the receive communication pat-
tern for a SPMD block, for a given data structure A.

Input:

P: Number of processes;

myRank: Local process id;

L(): Mapping function;

: Symbolic parameters;
|Ap|: Cardinality of the 1-D array;
WIAk() Function to compute the working input set;
(), ¢(): Periodic transforming functions
Output: Cg : Set of comm-tuples that indicates data to be received
CRr + 1]
for p: 1to P do
Ip < L(p)
for all s € T(W{**(myRank, L, 3)) do
T s Ly
s + sNlip.Sp
if s’ #0 then
tmpg + 0
if p # myRank and s € S° then
tmpg < s’
end
if s€(S™) then
tmpo < s — | Ao|
end
if s € p(ST) then
tmpo < s’ + |Ao|
end
Cgr + Cr U (p, (tmpo))
end
end
end

A function T : D} — D} transforms the working input set by applying
the two previous functions to relocate all the indexes back into the original
array domain, as it was showed in Stage 3 of Fig. 3. We can express the
transformation with the following function:

if se€ S8 =(s),
(Wi (p, L. 9)) ={if se8%s =s, (3)
if s€ ST = p(s)

An example of the application of T(WIA ’k(p, L, ?) for the illustrative ex-
ample can be seen also in Stage 3 on the right of Fig. 3.

Algorithm 1 uses a simplified one-dimensional model to calculate the data
to be received at any process. The output is a set of communication tuples
(CRr). A comm-tuple (p, D*) associates the index of the remote process p, with
the set of indexes D* of the structure whose data values should be communi-
cated. For each data structure, the local process, named myRank, calculates
the exact data to be received from a remote process p. In order to do that,

10 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

local process intersects L(p), which is the domain assigned to that remote
process by the mapping function, with the data positions needed in read ac-
cesses, which are represented by the transformed input set at the local process,
T(W{* (myRank, L, 6)). If the intersection is not empty, a receive commu-
nication should be performed. The data have to be received in the positions
accessed by the local process, so the applied boundary conditions are reverted.
The data to be sent to process p can be calculated by the opposite intersection:
The assigned domain to the local process (L(myRank)), with the transformed

input sets at the remote process (T (WIA’k(p, L, 0))). Empty intersections in-
dicate that no send or no receive operation is needed for that particular process
p. In the illustrative example of Sect. 3, the groups S~ is empty for any process
p, due to rot being positive, and simply added to the parallel loop index in
the expression. See the details in Fig. 3.

4.3 Multi-dimensional Model

As we have seen in the previous section, for the one-dimensional case, we have
three groups of signatures, depending on the access expressions (57—, 5°,57).
However, in a general case with n dimensions, the number of classes for the
transformed domains, before applying boundary conditions, is 3". For exam-
ple, let Alcyc(po(i))][cyc(p1(7))] be a two-dimensional periodic access ex-
pression. The input working set is calculated similarly as in the 1-dimensional
case, simply applying the access expressions to the index-space limits at run-
time for every dimension. As we use rectangular tiles, no over-approximation
is performed, so the calculated input working set only contains the index space
obtained by applying the access expressions on the different dimensions.

The domains that compose the 2-dimensional input working set can be
classified in 32 possible groups of domains. The classification groups are defined
as the combination of the S, S°, and ST sets of each dimension:

(S8, 59), (8§, 51, (58,51, (S5, 5%), {Sq., 57,
<SO ’Sl >’ <SO ’Sf>><80 751 >’ <SO ’Sl >

Figure 4 shows an example based on a Stencil-2D application with peri-
odic boundary conditions. For simplicity in this figure, the matrix M has been
divided in four equal parts that correspond to 4 processes. Thus, each process
computes a part of the matrix. In this example each process needs data of its
neighbors for computing. On the left of the figure, we show the domains ac-
cessed by process 3, classifying also the domains in their corresponding groups
(e.g {S5,55),(S5,S7)). The groups of domains not represented in the figure
are empty. On the right of the figure, we represent using arrows the corre-
sponding receive communication operations that should be performed on each
iteration by process 3, and which are automatically calculated by our proposal.

The multidimensional model uses an extension of the Alg. 1. In this case,

the computation of the transformed input working set (T(WIA F(p, L, ?)))7 and

Title Suppressed Due to Excessive Length 11

M M
22 B oy
Proc 0 Proc 1 Y4 /
<S54° S;*> e
B <5° 51> B (|J—"_—|\1:|
a <50+r S1> s H I F N
+ + N oA SN
B <50", 51> proc 2 Proc 3| N :’ E~ N
\ { N
N S N A
2 B Ny A

Fig. 4 Stencil-2D application: Input matrix has been divided among four processes. Left:
Set of signatures accessed by process 3 and their classification. Right: Communications
needed, to enable the computation at process 3, represented by arrows.

1 /* Function to rotate one element */

2 void rotateElem(in double m, out double m2) { m2=f(m); }
3

4 /* Rotate: Parallel function */

5 coordination void rotate(in tile double M[], in int rot,
6 in int size, in Map L, out tile double M2[]) {
7 ArrayMap(M2, L);

8 parallel(i in [0 :size-11){

9 rotateElem(M[cyc(i+rot)], M2[i]);

10 }

11}

Fig. 5 Trasgo input code for the illustrative example.

the reversion of the resulting domains are done by applying the transforming
functions (¢ and ¢) independently on each dimension.

5 Implementation on a Parallel Programming Framework

In this section we briefly describe the programming tool-chain where we im-
plemented our proposal, the Trasgo system proposed in [12].

The frontend of the Trasgo framework receives as input a high-level code
developed in an explicit parallel language that simplifies the data dependencies
extraction [22]. Figure 5 shows a simplified example of how to program in
this parallel language the illustrative example presented in Sect. 3. First, we
define the sequential function to apply to each data element, specifying the
output or input role of the parameters (line 2). The parallel function is defined
using the coordination modifier, and also specifying the role of the parameters
(lines 5 to 6). In its body, the function ArrayMap() distributively allocates
the array M2 in terms of the results of the mapping policy L, that is also a
parameter (line 7). After the distribution, the code updates each element of
M2 in parallel invoking, inside the parallel statement, the sequential function
previously defined (lines 8-9).

We implemented the proposed technique on top of the Hitmap library,
that works in Trasgo as a runtime system [13]. Hitmap is a library for the

12 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

/** Calculate W_I for M in SPMD */
HitDomain calculateWI_1_M(HitRank p, HitLayout lay, HitTile Tilel, int rot){
// L(p)
HitShape remote = hitLayOtherShape(lay, p);
// 1xbegin+rot, lxend+rot, 1*stride
HitDomain inWS = hitShapeAffinel(remote, 1,+rot);
//Apply boundary conditions
hitApplyBoundary (inWS, lay, Tilel);
return inWS;

(SIS BN VR O

[

Fig. 6 Excerpt of the generated function that applies the input-code affine access expres-
sions and periodic conditions to compute T(WIA‘k(p, L,rot)) for the illustrative example.

management and runtime mapping of hierarchically distributed tiled arrays.
It defines objects to declare and manipulate indexes sets as multidimensional
parallelotopes, and provides a plug-in system that can be queried at runtime
to obtain information about the result of a mapping, for both local and remote
processes. Hitmap also contains functionalities to build reusable communica-
tion patterns for tiles, or subtiles, across virtual processes. They are internally
implemented as collections of asynchronous MPI send/receive operations that
also exploit derived data types for efficient marshalling/unmarshalling.

Mapping functions are represented in Hitmap as HitLayout objects; The
signatures by HitSig objects; The hyperrectangular domains by HitShape ob-
jects; And the sets of domains by HitDomain objects. The handlers containing
pointers to the actual data structures are expressed by HitTile objects.

We implemented the multidimensional model of the proposed technique on
Trasgo, using the Hitmap features, and pre-implementing some new functions
in the Hitmap library for efficient domain set operations on hyperrectangular
shape structures such as intersection N, union U, and subtraction \.

Figures 6 to 7 present an example of the functions automatically gener-
ated following the proposed technique to calculate the receive communication
pattern (Cg) for the illustrative example, and the lines to be inserted in the
main code to invoke these functions.

The function named calculate WI_1_M (see Fig. 6) is generated at compile
time by Trasgo. It uses three new Hitmap functions: (1) hitLayOtherShape re-
turns the domain assigned to a given remote process; (2) hitShapeAffinel ap-
plies an affine access expressions of the form (ag X i) to the index-space limits
of the first dimension at runtime. (It performs the computation of Stage 2 of
Fig. 3); (3) hitApplyBoundary applies the boundary conditions, and returns
a set of signature domains bounded to the original array domain. It performs
the transformation of Stage 3 of Fig. 3.

We implement the algorithm presented in section 4 into the Hitmap library
as a function. It receives as parameters the mapping function used to part the
data structure (a HitLayout object), and the generated for the specific piece

of code to calculate the transformed input working set (T(WIA’k(p,L,?))).
The result of the new function calcComms, is a HitPattern object where the

Title Suppressed Due to Excessive Length 13

/% Building comm. pattern */

HitPattern _TT_comA = calcComms(M, calculateWI_1_M, M.Layout, rot);
/* Communication, execute pattern *x/

hit_patternDo(_TT_comA);

AW N e

Fig. 7 Calling both the communication calculation and execution functions in the target
program of the illustrative example.

calculated comm-tuples have been inserted. Figure 7 shows how both the com-
munication calculation and the execution functions are called in the target
main program. A similar piece of code is automatically inserted before the
execution of each SPMD block.

6 Discussion: Analyzing the Technique

Communication optimality: For a given input working set, our technique
calculates the corresponding exact data communication. In the current pro-
totype frontend, the construction of the exact input working sets is limited
for some kind of programs. Future work includes the integration of polyhedral
frameworks, which use more sophisticated representations [29], to extend the
application range of our implementation.

In our implementation, the domains used to represent the indexes accessed
in a given piece of code should be represented as hyperrectangles (signature
domains). The representation of any other shape should be done as a union
of signature domains. The number of signature domains needed is directly
related with the runtime complexity of applying our technique. We developed
a function that, after a union of domains, eliminates the redundant elements
in the communication object. It is represented in the Alg. 1 by the U symbol.
This function will be applied at runtime before the communication execution.
The asymptotic complexity of this function is dependent on the number of
signature domains stored in the communication object, whose data will be
communicated. Using this function we avoid redundant communication. This
is one of the main advantages of our technique with respect to the previous
work. However, depending on the program, the complexity of this function
can penalize the performance of the application in some cases. A future work
will determine the best option between applying the function to eliminate the
redundant communications, or communicating extra data on each case.

Scalability on processing elements: Analyzing Alg. 1 we observe that
the time spent by the communication calculation grows linearly with the num-
ber of processes. This has been verified in the experimental study in Sect. 7.4.
This trend also appears in other previous distributed-memory approaches used
to derive communications code [23]. For scalability in target platforms with
high orders of magnitude of processing elements, these techniques should be
combined with other ones, such as hierarchical groups of processes, or the
detection and application of specific techniques for application patterns.

14 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

Table 1 Input data sizes (N) and time loop iterations (T'), for benchmarks in the experi-
mental studies.

Study 1 Sizes (N) Study 2 Sizes (N),
Bench. Bench. iterations (T)
Rotate N =3 % 107, rot=2 Heat-1d N = 2000000, T = 6000
Cannon N=7680 x 7680 Heat-2d N = 8000 x 8000, T = 500
MG Class D Heat-3d N = 500x500x500, T = 100

7 Experimental Study

We performed an experimental study to validate our approach, to verify the ef-
ficiency of the resulting codes, and to study the potential overheads introduced
by our runtime calculation. The section is divided into: (1) the experiments
design details, (2) a study of several study cases, comparing our proposal
with optimized MPI reference programs in terms of performance and code
complexity; and (3) a breakdown of the performance measures of our codes in
computation, communication calculation, and communication execution times.

7.1 Design and Setup of the Experimental Study

The experiments were executed in two platforms. The first one (CETA) is a
hybrid cluster that belongs to CETA-CIEMAT? and the Spanish government.
The cluster nodes are connected by Infiniband, and they have two Intel Xeon
5520 CPUs at 2.27 GHz, with 4 cores each. Using 8 nodes of the cluster, we
exploit up to 64 computational units. The second platform is a pure shared-
memory machine (Atlas), a Dell PowerEdge R815 server, with 4 AMD Opteron
6376 processors at 2.3 GHz, with 16 cores each, and 64 cores in total. We
compiled the codes with the GCC v6.2 compiler, using the optimization flag
-03. As MPI implementation, we use mpich8 v3.1.3, with device ch4, that
also improves communication performance on shared memory.

We use static mapping, launching one MPI process for each processing
element. The main contribution of this paper is the technique to calculate
automatically the data communications needed when an application with pe-
riodic array accesses is executed on a distributed-memory system. Thus, in
this paper we use only MPI processes for a fair comparison, without exploit-
ing threads programming. We focus on studying only the potential overheads
introduced by this calculation, and the benefits obtained due to the aggregated
communications. The foundation of how OpenMP threads can be efficiently
composed inside MPI processes when using Hitmap was presented in [21].

We executed the programs in CETA and Atlas with number of processes
P =1, 4, 8, 16, 32, and 64. We performed ten executions per each test,
taking the average time. We selected big enough input data sizes to produce
a minimum computational load that remains significant when computation is
distributed across 64 computational units. The input data sizes (N) and time

2 Extremadura Research Center for Advanced Technologies, Spain.

Title Suppressed Due to Excessive Length 15

Table 2 Study 1: Performance (in seconds) for the illustrative example, Cannon’s algo-
rithm, and the MG real-world application. Comparison of MPI references and Trasgo gen-
erated codes. Cannon’s algorithm requires a number of processes with a perfect square root.

Rotate Cannon MG

Machine | MPI | Trasgo MPI | Trasgo | MPI Trasgo
Atlas-4 1.00 1.26 | 148.42 146.13 | 512.05 519.05
Atlas-8 0.66 0.84 - — | 364.47 367.80
Atlas-16 0.35 0.43 42.43 41.69 | 208.59 214.40
Atlas-32 0.24 0.32 - — | 135.44 138.46
Atlas-64 0.09 0.11 11.95 10.66 | 105.28 100.16
CETA-/ 0.94 1.07 101.16 106.20

CETA-8 0.50 0.57 - e -
CETA-16 0.27 0.31 29.89 28.60 | 210.92 231.83
CETA-32 0.14 0.16 194.14 229.99
CETA-64 0.08 0.08 10.68 12.80 | 151.66 197.64

loop iterations (7'), for the different benchmarks in the experimental studies
are presented in Tab. 1. All the codes use a data partition policy that splits the
input data structure in as many 1D, 2D, or 3D blocks as number of processes.

7.2 Study 1: Performance comparison with MPI Reference Codes

In this section we present a performance study using: (1) The simple illustra-
tive example presented in Sect. 3; (2) The well-known Cannon’s distributed-
memory parallel algorithm for matrix multiplication [8], which is specially
devised for distributed-memory systems in order to minimize the memory
footprint; and (3) The real-world application MG of the NAS Benchamrks,
implementing a multi-grid v-cycle method for a 3D-stencil computation [1].

In this study we perform an end-to-end time measure including all program
stages where Trasgo could introduce overheads. Table 2 shows the performance
obtained when we compare Trasgo generated codes with reference MPI ver-
sions. Our programs for the illustrative example and Cannon’s algorithm scale
similarly to the optimized MPI codes.

The NAS MG benchmark requires further discussion. The distribution of
the data structures is key to execute this computationally-intensive applica-
tion. The MG data structures for the D input class (defined by NAS bench-
marks) need to be distributed at least among 16 processes in order to fit in the
local memories of the nodes of our distributed-memory machine, CETA. Thus,
we only present the results for 16, 32 and 64 processes on Tab. 2. The MPI
reference code of the NAS MG benchmark contains a manual optimization to
communicate data across different levels of the v-cycle. This optimization can-
not be directly derived from the access-expression analysis of the SPMD blocks
that traverse the multi-grid during the v-cycle. Our implementation issues the
extra communication stage that this optimization eliminates, incurring thus
in a performance loss up to 30% in our measures.

In summary, our technique allows the automatic calculation of communica-
tion stages for codes with affine expressions with periodic boundary conditions
at runtime efficiently. As we stated above for MG, the drawback of this kind

16 Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

Table 3 Comparison of development effort measures for three case studies.

KDSI | McCabe’s C.C. | Halstead D.E.
Trasgo 24 6 74K
Rotate C+MPI 62 21 1890K
Reduction | 61.29% 71.43% 96.08%
Trasgo 57 4 19K
Cannon’s MM | C+MPI 175 4 122K
Reduction | 67.43% 0.00% 84.43%
Trasgo 772 72 19477K
NAS MG C+MPI 1389 210 29 568K
Reduction | 44.42% 65.71% 34.13%

Heat-1d: Gommunication and computation times Heat-2d: Gommunication and computation times Heat-3d: Gommunication and computation times.

Execution time (sec.)
Execution time (sec.)

o001 0001 0001

0.0001 0.0001 0.0001
1 4 8 B s 64 1 4 s ® s e 1 4 s 6 s e

Processes. Processes Processes

Fig. 8 Computation, communication calculation, and communication execution times in
seconds for the Heat examples on the distributed-memory machine (log scale). using the
problem sizes of Tab. 1.

of approaches is that these automatic calculations do not generate certain
communication optimizations across SPMD blocks that could positively im-
pact performance. An open question is whether these particular optimizations
could be applied after the use of this kind of techniques.

7.3 Study 2: Ease of programming

Our technique avoids to the programmer the management of the communica-
tion and/or data partition codes. This leads to a reduction on the parallel pro-
gramming complexity. Table 3 shows, for our study cases, several complexity
and development effort metrics, including KDSI metric used in the COCOMO
model [3] (number of lines), McCabes cyclomatic complexity [18], and Halstead
development effort [14]. These metrics are used to compare the potential pro-
gramming effort needed when using the different alternatives considered. We
observe that the development effort needed is highly reduced when using our
approach. As can be seen in Tab. 3, the reductions for the different metrics
used range from 44% to 96% in all cases, except in the McCabe complexity
for the Cannon’s matrix multiplication, where this measure is extremely low
in both codes.

7.4 Study 3: Relative cost of calculating communications

Our technique to calculate the communication patterns is performed at run-
time. In this section we show an experimental study where we focus on the cost

Title Suppressed Due to Excessive Length 17

Heat-1d: Communication and computation times Heat-2d: Communication and computation times Heat-3d: Communication and computation times

0001 0001 0001

0.0001 0.0001 0.0001
1 4 8 w32 e 1 4 s ® w2 64 1 4 s ® s 64

Fig. 9 Computation, communication calculation, and communication execution times in
seconds for the Heat examples on the shared-memory machine (log scale) using the problem
sizes of Tab. 1.

of our calculation and synchronization times with respect to the main compu-
tation times. The experiment was executed in two different architectures, the
distributed- and the shared-memory machines, CETA and Atlas.

Figure 8 and 9 show the measures of the computation and the communica-
tion times, also separating in communication calculation and communication
execution times. We show results for the periodic versions of the Heat-1d,
Heat-2d and, Heat-3d benchmarks [5], for different number of MPI processes
launched (notice the logarithmic scale in the plots). We see that the com-
putation time decreases when the number of processes increases, except in
one situation (Heat-2D with 8 processes in the distributed-memory system).
This phenomenon is not related to the data communication that is the focus
of this study. We also observe that the time spent by our technique in the
runtime calculation of the communication patterns increases with the number
of processes, as expected. However, these times can be consider negligible, as
they are several orders of magnitude smaller than the computation and the
communication execution times.

In summary, our technique automatically and efficiently calculates at run-
time the communication patterns needed in a distributed-memory parallel
program with periodic access expressions, allowing the selection at runtime of
the partition policies, and the choice of the proper tile sizes for the current
execution platform.

8 Conclusion

This paper describes a technique that calculates at runtime exact aggregated
coarse-grained distributed-memory communications, for algorithms with affine
expressions with periodic boundary conditions. It is based on: (1) calculating
at runtime different footprints through cutting-and-pasting methods in terms
of the mapping functions chosen and, (2) intersecting at runtime the remote
and local footprints. Performance results for six cases of study, including a
real-world benchmark, indicate that using our technique, we obtain similar
efficiency to optimized MPI codes, while the development effort is reduced.
Future work includes the applicability of the proposed technique in current
polyhedral model frameworks.

18

Ana Moreton-Fernandez, Arturo Gonzalez-Escribano

Acknowledgements This research has been partially supported by MICINN (Spain) and
ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H6
Network (TIN2016-81840-REDT), and COST Program Action IC1305: Network for Sustainable
Ultrascale Computing (NESUS). By the computing facilities of Extremadura Research Centre for
Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development Fund
(ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.

References

10.

11.

12.

13.

14.

15.

16.

17.

Bailey, D., Harris, T., Saphir, W., van der Winjgaart, R., Woo, A., Yarrow, M.: The
NAS Parallel Benchmarks 2.0. Report RNR-95-020, NASA Advanced Supercomputing
(NAS) Division (1995)

Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarn, M.J.,
Padua, D., von Praun, C.: Programming for parallelism and locality with hierarchi-
cally tiled arrays. In: Proc. of the ACM SIGPLAN PPoPP, pp. 48-57. ACM, New
York, New York, USA (2006)

Boehm, B.W., et al.: Software engineering economics, vol. 197. Prentice-hall Englewood
Cliffs (NJ) (1981)

Bondhugula, U.: Compiling affine loop nests for distributed-memory parallel architec-
tures. In: Proc. SC’2014. ACM, Denver, CO, USA (2013)

Bondhugula, U., Bandishti, V., Cohen, A., Potron, G., Vasilache, N.: Tiling and opti-
mizing time-iterated computations on periodic domains. In: Proceedings of the 23rd
international conference on Parallel architectures and compilation, pp. 39-50. ACM
(2014)

Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic
polyhedral program optimization system. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI) (2008)

Bueno, J., Martorell, X., Badia, R., Ayguadé, E., Labarta, J.: Implementing OmpSs
support for regions of data in architectures with multiple address spaces. In: Proc.
1CS’13, pp. 359-368. ACM (2013)

Cannon, L.: A cellular computer to implement the Kalman filter algorithm. Doctoral
dissertation, Montana State University Bozeman (1969)

. Chamberlain, B., Deitz, S., Iten, D., Choi, S.E.: User-defined distributions and layouts

in Chapel: Philosophy and framework. In: 2nd USENIX Workshop on Hot Topics in
Parallelism (2010)

Chatarasi, P., Shirako, J., Sarkar, V.: Polyhedral optimizations of explicitly parallel
programs. In: 2015 International Conference on Parallel Architecture and Compilation
(PACT), pp. 213-226. IEEE (2015)

ClaBen, M., Griebl, M.: Automatic code generation for distributed memory architectures
in the polytope model. In: Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pp. 7-pp. IEEE (2006)

Gonzalez-Escribano, A., Llanos, D.: Trasgo: A nested-parallel programming system. The
Journal of Supercomputing 58(2), 226-234 (2011)

Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.: An extensible system for
multilevel automatic data partition and mapping. IEEE TPDS 25(5), 1145-1154 (2013).
(do0i:10.1109/TPDS.2013.83)

Halstead, M.H.: Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc. (1977)

Hiranandani, S., Kennedy, K., Tseng, C.W.: Compiling fortran d for mimd distributed-
memory machines. Communications of the ACM 35(8), 66-80 (1992)

Kong, M., Pouchet, L.N., Sadayappan, P., Sarkar, V.: Pipes: a language and compiler
for task-based programming on distributed-memory clusters. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, p. 39. IEEE Press (2016)

Kwon, O., Jubair, F., Eigenmann, R., Midkiff, S.: A hybrid approach of openmp for
clusters. ACM SIGPLAN Notices 47(8), 75-84 (2012)

Title Suppressed Due to Excessive Length 19

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

McCabe, T.J.: A complexity measure. Software Engineering, IEEE Transactions on 4,
308-320 (1976)

Mehta, S., Beeraka, G., Yew, P.C.: Tile size selection revisited. ACM Transactions on
Architecture and Code Optimization (TACO) 10(4), 35 (2013)

Moreton, A., Gonzalez-Escribano, A., Llanos, D.R.: A runtime analysis for communica-
tion calculation. In: Proceedings of the International Symposium on Code Generation
and Optimization (CGO) (poster, 2017)

Moreton-Fernandez, A., Gonzalez-Escribano, A., Llanos, D.: Exploiting distributed and
shared memory hierarchies with Hitmap. In: Proc. HPCS’2014, pp. 278-286. Bologna
(Ttaly) (2014)

Moreton-Fernandez, A., Gonzalez-Escribano, A., Llanos, D.R.: A new high-level parallel
portable language for hierarchical systems in Trasgo. In: Computational and Mathe-
matical Methods in Science and Engineering (CMMSE) (2015)

Moreton-Fernandez, A., Gonzalez-Escribano, A., Llanos, D.R.: On the run-time cost of
distributed-memory communications generated using the polyhedral model. In: High
Performance Computing & Simulation (HPCS), 2015 International Conference on, pp.
151-159. IEEE (2015)

Planas, J., Badia, R., Labarta, E.A.J.: Hierarchical task-based programming with
StarSs. IJHPCA 23(3), 1145-1154 (2009)

Randall, D.A., Ringler, T.D., Heikes, R.P., Jones, P., Baumgardner, J.: Climate mod-
eling with spherical geodesic grids. Computing in Science and Engineering 4(5), 32-41
(2002)

Sanz, A., Asenjo, R., Lépez, J., Larrosa, R., Navarro, A., Litvinov, V., Choi, S.E.,
Chamberlain, B.: Global data re-allocation via communication aggregation in chapel.
In: Proc. SBAC-PAD’2012. IEEE (2012)

Sharma, A., Smith, D., Ferguson, M., Koehler, J., Barua, R.: Affine loop optimization
based on modulo unrolling in chapel. In: Proc. PGAS’2014. ACM, Eugene, OR USA
(2014)

Stepanov, A., Lee, M.: The Standard Template Library. Tech. Rep. 95-11(R.1), HP
Laboratories (1995)

Upadrasta, R., Cohen, A.: Sub-polyhedral scheduling using (unit-) two-variable-per-
inequality polyhedra. ACM SIGPLAN Notices 48(1), 483-496 (2013)

Verdoolaege, S.: Isl: An integer set library for the polyhedral model. In: Mathematical
Software-ICMS 2010, pp. 299-302. Springer (2010)

Yuki, T., Rajopadhye, S.: Parametrically tiled distributed memory parallelization of
polyhedral programs. Tech. Rep. CS13-105, Colorado State University (2013)

