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Abstract
Nowadays the use of hardware accelerators, such as the Graphics
Processing Units (GPUs) or XeonPhi coprocessors, is key to solve
computationally costly problems that require High Performance
Computing (HPC). However, programming solutions for an effi-
cient deployment in this kind of devices is a very complex task that
relies on the manual management of memory transfers and config-
uration parameters. The programmer has to carry out a deep study
of the particular data needed to be computed in each moment at the
different computing platforms considering architectural details.

We introduce the communicator concept as an abstract entity
that allows the programmer to easily manage the communications
and kernel launching details on hardware accelerators or multi-core
devices in a transparent way. Furthermore, this model also gives
the possibility to the programmer of launching CPU kernels in the
multi-core processors with the same abstraction and methodology
used for the accelerators. In this way, the burden of coding two
different codes for managing the different computational devices is
alleviated.

Additionally, this entity allows the programmer to simplify the
proper selection of values for kernel-launching configuration pa-
rameters. This is done through a simple characterization process of
the kernel code to be executed. A programming model involving
the communicator entity is described in this article.

Finally, we also present a prototype library that implements the
communicator model, together with its application in several study
cases. Its use has led to reductions in the development costs with
significantly low overheads in the execution times when compared
to manually programmed and optimized solutions using CUDA and
OpenMP directly.

Categories and Subject Descriptors D.3.2 Programming Lan-
guages [Language Classifications]: Concurrent, distributed, and
parallel languages

General Terms Parallel programming, Software

Keywords Communicators, CUDA, GPUs, Kernel characteriza-
tion, Memory transfers, Optimizations
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1. Introduction
Currently, the systems used for High Performance Computing
(HPC) include accelerator devices. This trend is noticeable from
personal computers to classical supercomputers. Examples of these
HPC heterogeneous environments can be seen in the first positions
of the top 500 list of current supercomputers [15].

When developing solutions to be deployed in heterogeneous
systems we can: (1) Use a single programming model responsi-
ble of managing the architectural and conceptual differences be-
tween the different computational devices, e.g. OpenACC [1]; or
(2) Use a combination of different programming models specific
for each kind of computational devices, e.g. MPI [9] together with
CUDA [8] or OpenCL [13], and OpenMP [3], as in the works [2, 7].

One of the main drawbacks of the first approach is the difficult
to represent irregular programs with non-trivial communications or
synchronizations. Besides, the final generated code resulting from
programming with this kind of models is not usually optimized as
the original code. Moreover, the possible optimizations a program-
mer can obtain, by selecting proper values for kernel-launching
configuration parameters, are not considered in the OpenAcc stan-
dard.

On the other hand, implementing solutions following the second
approach requires the programmer to have a deeper knowledge of
the different parallel programming models involved. Additionally,
she is the final responsible of properly managing the data transfer
among the different memory spaces of the computational devices,
at the most appropriate times, and to choose proper values for
kernel-launching configuration parameters. However, this gives to
the programmer the possibility to optimize the use of the particular
resources of each specific device.

There are many libraries of specific functions for particular
fields, or devices, that include small abstractions to ease the man-
agement between the accelerator and the host (e.g. MCUDA [14]
or hiCUDA [6]), but without considering guided optimizations.

In this article is presented the concept of communicator as an
abstract entity that allows the programmer to transparently man-
age the launching of series of tasks on accelerator devices, and/or
multi-core CPU processors. This entity uses the most appropriate
programming models (CUDA, OpenMP, ...) to control the com-
putational resources of the accelerators and hosts machines. The
communicator model includes two features: (1) An optimization
system to select proper values for kernel-launching configuration
parameters, guided by simple code characterizations provided by
the programmer; (2) a transparent mechanism of memory manage-
ment, including optimized communications of the data structures
between the host and the corresponding images in the accelerators;
and (3) an abstraction for indexed data structures that allows to cod-
ify simple kernels that can be used for different kinds of devices



(such as GPUs, or multi-threaded vectorial CPU cores) with none
or minimal changes.

A prototype that implements the concept of this entity is also
described in this article. This prototype is designed for exploiting
NVIDIA GPUs using the CUDA parallel programming model, or
the multi-core CPUs using OpenMP. Together with the description
of the prototype, it is presented an experimental study based on
three study cases (matrix addition, matrix multiplication, and a
simple Jacobi stencil program). The study shows how the use of
the prototype implies a reduction of the programming effort needed
when writing these applications, compared to creating them using
the specific parallel programming models. Besides, the use of the
prototype does not introduce significant overheads.

The structure of the article is as follows. Section 2 presents
the communicator model. Section 3 explains the interface of our
library, and its usage to develop a program. Section 4 poses the
experimental setup which results are presented in Sect. 5. Finally,
Sect. 6 describes the conclusions of this work and the directions
that can be addressed in future iterations.

2. Communicator Model
The communicator model introduces a simplified way to program
applications that can exploit heterogeneous computational plat-
forms including accelerators or/and multi-core CPUs. Communica-
tors coordinate the execution of series of kernels. These kernels are
specific functions, that are managed by the communicator entities.
Communicators automatically manage the:

• Kernel launching, that is the deployment/execution of se-
quences of function kernels in the computational platform. The
communicators can include policies to exploit concurrent ker-
nel techniques, interleave computations with communications,
or reorder the sequence of kernels.

• Configuration, that is the layout of certain computational plat-
form variables and configuration parameters in order to obtain
a particular execution behavior.

• Communications, that are the data transfers carried out among
the memories of the host and the accelerators. Note that this
offloading is only required when the model launches executions
in accelerator devices.

2.1 Kernel launching
Kernel launching is an operation that enqueues in a communicator
the order to execute a kernel, with given real parameters, when the
associated device (accelerator or CPU cores) is available. This is
done through a launching primitive. The communicator internally
ensures that the input data has been transferred and previous kernels
have ended before proceeding to do the real launch. The commu-
nicator execution policy could reorder the kernels in the queue to
maximize the execution efficiency as far as the input/output depen-
dencies across kernels are not violated.

2.2 Configuration of kernels for execution
Our model considers two main kinds of information that are needed
at the communicator internals to choose proper kernel-launching
parameters, and manage the device memory:

(a) Kernel code characterization in terms of parameters related to
global memory access patterns, computational load ratio, and
data sharing across block ratio.

(b) The input/output role of the kernel parameters. With this in-
formation the communicator can control which data transfers
among different memories are needed.

2.3 Communications
Accelerators may have their own memory spaces, forcing to trans-
fer the data to be processed, and the obtained results, between the
memory of the host platform and the memory of the device accel-
erator. The manual management of this transferring is cumbersome
and error-prone. Moreover, it is difficult to predict in advance when
asynchronous data transfers are possible, or when data should stay
in the accelerator device memory, as this depends on the exact se-
quence of kernel launching. A communicator is associated, in the
moment of its creation, with a particular accelerator, and it trans-
parently manages the variable images of the memory space of the
device.

The communicator can decide when and how these transfers
should be carried out, depending on their use inside their cor-
responding kernels and the kernels enqueued for launching. The
model also allows the programmer to use the original names of the
variables instead of defining their corresponding images in the ac-
celerator device.

Depending on the features of the used variables inside these
contexts we can distinguish two types: Binded variables and in-
ternal variables.

Binded variables
Binded variables are host variables that have an image in the mem-
ory space of the accelerator. The model allows to bind on a host
variable to the communicator. Since then, it becomes binded, and
its data should not be modified by the program at the host side until
an unbinding operation is applied on it.

The first kernel requiring the use of a binded variable as an input
(IN role) will force the communicator to transparently ensure that
its data have been transferred. Applying an unbinding operation
to a binded variable will force the transfer of its data from the
accelerator to the host if it is an output variable (OUT role). The
main program waits for the end of the kernels using the variable
and transmission of the data.

Internal variables
Internal variables are variables whose scope is delimited to the
code executed in the accelerator. They are only handled inside the
memory space of the device, and they will not have allocation in the
host memory space. Thus, the data are not going to be transferred
to the host memory.

They are created in the communicator through an operation ap-
plied to the host variable. The programmer declares a data structure
without allocating it in the host. This is done just to clone the type,
size, and structure in the communicator memory space. Since this
moment, the image of this variable could be used by the kernels
launched in this communicator. To destroy an internal variable it is
needed to apply another operation using the reference name of the
host variable.

3. Communicator Library Interface
We have designed a library implementation of the communicator
model. In our implementation, a kernel is a function coded for a
computational device with particular input/output parameters. The
communicator library interface defines primitives to:



1 /* Communicator creation. */
2 Comunicator comGPU , comCPU;
3 CommCreate (&comGPU , COMM_GPU , 2);
4 CommCreate (&comCPU , COMM_CPU );
5

6 /* Tile declaration and allocation . */
7 HitTile_float matrixHost;
8 HitTile_float matrixInternal;
9 hit_tileDomainAlloc (&matrixHost , float , \

10 2, rows , columns );
11 hit_tileDomain (& matrixInternal , float , \
12 2, rows , columns );
13

14 /* Tile initialization . */
15 CommAttach (&comGPU , &matrixHost );
16 CommInternalCreate (&comGPU , &matrixInternal );
17 CommLaunch (&comGPU , copyCell , t_config , \
18 2, matrixInternal , matrixHost );
19 CommLaunch (&comGPU , updateCell , t_config , \
20 2, matrixHost , matrixInternal );
21

22 /* User code
23 * (not modifying binded variables ) */
24 ...
25

26 /* Unbinding and freeing resources . */
27 CommDetach (&comGPU , &matrixHost );
28 CommInternalDestroy (&comGPU ,& matrixInternal );
29 CommDestroy (& comGPU );
30 CommDestroy (& comCPU );

Figure 1. Example of main code using the communicators primi-
tives.

A) Create of communicators,

B) Declare the kernels,

C) Characterize the kernels,

C) Declare data structures for transparent memory management of
different devices, and

D) Launch the kernels.

3.1 Creation of communicators
A communicator is associated to a particular computational plat-
form (accelerator or CPU-cores set) at the moment of its creation,
in order to use the specific collection of functions related to the as-
signed device. This is done through the CommCreate function. This
primitive has two main parameters: The name of the communicator
variable, and the associated computing device. For heterogeneous
systems hosting more than one accelerator of a kind it is needed
the identification number. Lines 3 and 4 of Fig. 1 show examples of
creating communicators associated to the third GPU of the system,
and associated to the full set of CPU cores, respectively. After us-
ing it, the programmer can free its resources with the CommDestroy
function (see Fig. 1, lines 29 and 30).

3.2 Declaration and configuration of kernels
A kernel is declared by using the primitive KERNEL <type>. Where
type may be empty to indicate a kernel usable on any kind of
device, or a specific value for a given type of device. This is
useful when different optimizations on the kernel code are required
for different devices. Currently, the library supports the specific
primitives KERNEL GPU and KERNEL CPU for NVIDIA GPUs and
sets of CPU cores.

1 /* Structured type definition :
2 * HitTile_float */
3 hit_tileNewType( float );
4

5

6 /* Kernel characterizations */
7

8 KERNEL_CHAR(copyCell ,1,def ,def ,def)
9 KERNEL_CHAR(updateCell ,1,full ,low ,high)

10

11

12 /* Kernel codes */
13

14 KERNEL(copyCell , 2, \
15 OUT , HitTile_float*, var_dst , \
16 IN, HitTile_float*, var_src ){
17

18 /* code of copyCell kernel */
19 }
20

21 KERNEL(updateCell , 2, \
22 OUT , HitTile_float*, var_dst ,
23 IN, HitTile_float*, var_src ){
24

25 /* code of updateCell kernel */
26 }

Figure 2. Examples of kernel characterizations (KERNEL CHAR
primitives), and role assignment of the kernel parameters (KERNEL
primitives).

This primitive declares in brackets the number of parameters the
kernel needs and a tuple of information for each parameter with:

• Its corresponding role:

IN: for input parameters,

OUT: for output parameters, and

IO: for input and output parameters;
• The type of the variable; and
• The name of the variable.

This configuration allows the communicators to determine if it
is necessary to carry out data transfers with the main memory of
the host, for the case of accelerator devices with separated memory
spaces.

The primitive is followed by a structured block with the kernel
code. Thus, it resembles a C function header. Lines 14 and 21 of
Fig. 2 show some examples of the use of this primitive.

3.3 Kernel characterization
The kernel characterization is a process that obtains parameterized
values for special code features following a particular model. The
prototype library uses the model presented in the works of [11, 16].
This characterization allows the communicator to automatically de-
cide which are proper values for the GPU configuration parameters
(grid, threadblock and L1 cache memory sizes), and CPU threads
granularity, in order to improve performance.

The primitive KERNEL CHAR, taken from [12], is used to provide
to the communicator the characterization of the kernels following
the cited model. The corresponding parameters of the primitive are
the following:



a) Kernel name,

b) Number of dimensions of the threads set for the kernel. The
values can be 1, 2, or 3.

c) Memory access pattern: Denotes the way the threads will access
to memory. The values can be full (-coalesced), medium (-
coalesced), or scatter.

d) Computational load ratio: Number of arithmetic/logic operation
vs. number of global memory accesses. The values can be high,
medium, or low.

e) Data sharing across blocks: ratio of data sharing compared to
the number of memory accesses per thread. The values can be
high, medium, or low.

For the case that the programmer is not able to perform the char-
acterization of code parameters (c, d, and e), we have added the
possibility to use the token def , that will assign a default config-
uration. The particular values for the default configuration, taken
from the default configuration of [12], (256 threads per block, aug-
mented L1 cache size for NVIDIA GPUs) are expected to properly
work for the general case. Lines 8 and 9 of Fig. 2 show some exam-
ples of using this primitive, with the default configuration and with
a particular kernel characterization, respectively.

3.4 Data structures
Regarding the data structures that the model handles, we have de-
cided to use the HitTile structure, an abstract entity for arrays and
tiles. This structure is defined in Hitmap [5], an efficient library
for hierarchical tiling and mapping of arrays. The HitTiles, in the
Hitmap library, are data structures similar to n-dimensional arrays
that allow an advanced binding and partitioning, to create subtiles
from another tile, to clone tiles, etc. When creating a HitTile vari-
able, we can specify its domain by a selection of a subspace of
array indexes, also known as shape (see Appendix A for a quick
overview of the Hitmap library).

Hitmap also allows to perform communications between com-
puting machines in an easy way through an abstract interface that
internally uses a message passing paradigm (exploiting MPI). The
access to the elements of these data structures is done using Hitmap
access functions. They are designed for maximum efficiency, and
are used transparently in the host, or in the accelerators, indepen-
dently of the internal data layout [5]. Thus, it provides an homoge-
neous interface to manage data structures in both, host and acceler-
ator device kernels.

Binding variables
In the proposed interface, the function CommAttach binds a tile
defined in the code of the host with a communicator. After this
binding the host should not manipulate the tile until it is unlinked
by the function CommDetach.

The purpose of avoiding the host to modify the tile is to delegate
the responsibility of keeping the data coherence between the host
variable and its corresponding image on the accelerator to the
communicator. In this way, the programmer can write programs
without being the responsible of the transfers. For the particular
case of communicators associated to CPU processors there is no
need of transferring these data because they are already there. The
communicator associated to the CPU processor is able to notice this
fact and avoids to duplicate the data.

Both the attach and detach functions have two parameters: The
communicator, and the pointer to the tile variable to be binded/un-
binded. Lines 15 and 27 of Fig. 1 show examples of the creation of
a link between a variable and a communicator, and the correspond-
ing unbinding, respectively.

Creating internal variables
The function CommInternalCreate creates an internal device
variable and associates it to a specific communicator. On the other
hand, the function CommInternalDestroy is used to free the
memory space in the assigned computational device.

Both functions receive two parameters: The communicator, and
the pointer of a defined tile variable. For the case of communicators
associated to accelerators, this kind of variables does not need
to have allocated memory in the host side. The communicator
will be the responsible of reserving the space in the memory of
the corresponding computing device. Lines 16 and 28 of Fig. 1
show examples of the association of an internal variable with a
communicator, and the corresponding liberation, respectively.

3.5 Kernel launching
The function CommLaunch is used to launch a kernel to the com-
putational device of a communicator. The launched kernel will be
enqueued, and eventually executed with the corresponding configu-
ration derived from the information provided by the primitives pre-
viously explained in Sect. 3.2.

The function has the following parameters:

• The communicator,
• the name of the kernel,
• the index space of the thread set,
• the number of parameters required by the kernel, and
• the real parameters for the kernel execution.

These parameters should be variables associated to a communi-
cator: Internal or binded. Lines 17 and 19 of Fig. 1 show examples
of the launch of two different kernels.

4. Experimental Setup
This section describes the experiments we have carried out to
check the functionality and evaluate potential performance issues
introduced by the communicator prototype through the evaluation
of the implemented prototype. We also evaluate the development
effort of using the communicator prototype when compared to
directly using common native programming models (CUDA or
OpenMP).

4.1 Target architectures
The host machine used for the experimental evaluation is an In-
tel(R) Xeon E5-2620@2.1GHz, with 24 CPU cores and a global
memory of 32GB DDR3 running a Centos 7 OS (Chimera). The
hosted accelerator device is a NVIDIA GeForce GTX Titan Black,
with a Kepler GK110B architecture. The experiments have been
carried out using GCC 4.8.3, with the O3 flag, and the CUDA
toolkit 7.5, with the corresponding architectural flag arch=sm 35.
We use also a pure shared-memory machine (Heracles), a Dell
PowerEdge R815 server, with 4 AMD Opteron 6376 processors at
2.3 GHz, with 16 cores each, and 64 cores in total.

4.2 Case studies
We have programmed solutions for the following three problems:
Matrix addition (MA), Matrix multiplication (MM), and the Jacobi
PDE solver (JS). Figure 3 shows the implementation of the kernels
used for the implemented solutions and Fig. 4 shows their charac-
terization.

Matrix addition
The Matrix addition consists on the sum of two different matrices,
that storing the result in a third one: C = A+B. The computation



1 /* **** Matrix addition , same kernel for CPU and GPU *********************************** */
2 KERNEL(k_ma , 3, IN, HitTile_int*, a, IN, HitTile_int*, b, OUT , HitTile_int*, c){
3 for(int k=0;k<100;k++){
4 hit_tileElemAt (*c, 2, thread.x,thread.y) += hit_tileElemAt (*a, 2, thread.x,thread.y) + \
5 hit_tileElemAt (*b, 2, thread.x,thread.y);
6 }
7 }
8

9 /* **** Matrix multiplication , same kernels for CPU and GPU ***************************** */
10

11 KERNEL_GPU(k_mm , 3, IN , HitTile_int*, a, IN, HitTile_int*, b, OUT , HitTile_int*, c){
12 for(int k = 0; k < hit_tileDimCard (*c, 0); k++){
13 hit_tileElemAt (*c, 2, thread.x, thread.y) += hit_tileElemAt (*a, 2, thread.x, k) * \
14 hit_tileElemAt (*b, 2, k, thread.y);
15 } }
16

17 /* **** Jacobi PDE solver , same kernels for CPU and GPU ******************************** */
18 KERNEL(k_copy , 2, OUT , HitTile_float*, dst , IN, HitTile_float*, src){
19 hit_tileElemAt (*dst , 2, thread.x, thread.y) = hit_tileElemAt (*src , 2, thread.x, thread.y);
20 }
21

22 KERNEL(k_update , 2, OUT , HitTile_float*, dst , IN , HitTile_float*, src){
23 hit_tileElemAt (*dst ,2,thread.x+1,thread.y+1) = (hit_tileElemAt (*src ,2,thread.x+1,thread.y) + \
24 hit_tileElemAt (*src ,2,thread.x+1,thread.y+2) + \
25 hit_tileElemAt (*src ,2,thread.x,thread.y+1) + \
26 hit_tileElemAt (*src ,2,thread.x+2,thread.y+1)) / 4;
27 }

Figure 3. Communicator kernel implementation of the solutions for the three case studies.

of each cell does not imply any kind of dependencies with the
computation of another one.

The GPU solution to the problem involves just one kernel with a
bidimensional grid and bidimensional threadblocks. Depending of
the size of the grid and the matrices, each block of threads computes
the result values of several blocks of the matrix iteratively, follow-
ing the implementation of the examples presented by the CUDA
community in the programming guide [10]. On each iteration the
accesses to global memory are fully coalesced. The CPU solution
is similar to the GPU version.

Matrix multiplication
The Matrix multiplication consists on the product of two different
matrices storing the result in a third one: C = A∗B. The computa-
tion of each cell of the resulting matrix is not dependent on another
computation. Nevertheless, different cells used elements of A or B
that are also read by other cell computations.

The coprocessors solution to this problem involves just one
kernel with a bidimensional grid and bidimensional threadblocks.
Each GPU thread ti,j is responsible of computing the product
operation (

∑n−1
k=0 A[i][k] ∗ B[k][j]) in of one position of the C

matrix. Our program does not exploit any optimization related to
the use of the shared memory to enforce a mixed coalesced and
not coalesced global memory access patterns (to matrix A, and B
respectively). The CPU solution is similar to the GPU version.

Jacobi PDE solver
This program computes the stability point of a Partial Differential
Equation (PDE). In this case the Poisson equation to compute the
Heat Transfer on a 2-dimensional surface. It uses an iterative Jacobi
method to solve the equation system generated when representing
the space as a 2D grid of points with the same distances and
boundary conditions. On each iteration each cell of a matrix is
updated depending on the values of its four neighbors (horizontal
and vertical). When all the cell values are computed then a new
iteration is started until a finishing criterion is fulfilled. Note that an

1 /* Characterization for MA kernel */
2 KERNEL_CHAR(k_ma , 2, full , low , low)
3

4 /* Characterization for MM kernel */
5 KERNEL_CHAR(k_mm , 2, medium , medium , high)
6

7 /* Characterization for JS kernels */
8 KERNEL_CHAR(k_copy , 2, full , low , low)
9 KERNEL_CHAR(k_update ,2,medium ,medium ,medium)

Figure 4. Characterizations of the kernels implemented in the so-
lutions of the three case studies.

auxiliary matrix is required to store the new value of a cell without
race conditions with the neighbor cells. The pointers of the original
matrix and the auxiliary one are rotated on each iteration. Figure 5
shows the pseudo code of the sequential variant of this method.

Coprocessors solution consist on two kernels. The first is the
kernel update, that is the responsible of computing the new values
and store them in the auxiliary matrix. The second is a kernel copy,
that is the responsible of copying the new data from the auxiliary
matrix to the original one of the last iteration if the number of
iterations is odd.

4.3 Measures: Development effort and performance
overhead

The first part of our experimental study evaluates how the use of
our proposed model affects the development effort when compared
with using the native programming models, for the two types of
devices considered in the current version of the prototype: CUDA
for GPUs, and OpenMP for multi-core CPUs.

We measure three classical development effort metrics: CO-
COMO lines of code, number of tokens, and McCabe cyclomatic
complexity. The first two ones measure the volume of code that the
programmer should develop. The third one measures the rational



1 // Iteration loop
2 for(int i = 0; i < iteraciones; i++){
3

4 // UPDATE each matrix cell
5 // with the mean of its 4 neighbors
6 for(int j = 1; j < MatrixSide -1; j++){
7 for(int k = 1; k < MatrixSide -1; k++){
8

9 matrix[j][k] = (matrixAUX[j][k-1] +
10 + matrixAUX[j][k+1] +
11 + matrixAUX[j-1][k] +
12 + matrixAUX[j+1][k])/
13 / 4;
14 }
15 }
16

17 // SWAP of the matrices pointers
18 *matrixTMP = *matrixAUX;
19 *matrixAUX = *matrix;
20 *matrix = *matrixTMP;
21 }

Figure 5. Pseudo code for the sequential solution of the Jacobi
iterative method used to solve the PDEs.

effort needed to program it in terms of code divergences and poten-
tial casuistry that should be considered to develop, test and debug.

We measure these metrics in: the baseline versions, using the
specific programming models (OpenMP for the CPU variant, and
CUDA for the GPU variant), and the versions using our commu-
nicator library interface. For a fairly comparison both approaches
use the same kernels with the same values for the configuration pa-
rameters, that are injected manually for the baseline versions, and
through the primitives for the communicator ones.

The second part of our experimental study measures the impact
of using our communicator prototype in terms of performance. We
compare the total execution times when launching the baseline and
the communicator prototype versions of the three different study
cases with different sizes of the input set. 10 × 10, 100 × 100,
1 000 × 1 000, and 10 000 × 10 000. We test the CPU versions
using just 1 thread, and 24 threads (maximum number of CPU cores
of the machine). On each case, the final execution time is taken as
the average of 10 repetitions. The number of iterations executed for
the Jacobi PDE solver is 100.

5. Experimental Results
This section shows and describes the results obtained from our
experimental evaluations measuring the development effort metrics
and the performance overhead for the study cases.

5.1 Development effort metrics
Table 1 shows the measures of the metrics for the three study
cases. We can appreciate that the values of all the metrics for the
GPU versions are significantly reduced. On the other hand, for
CPU versions when we compare the communicator version with
direct OpenMP implementation derived from the sequential code
only is the cyclomatic complexity is reduced. However, considering
the CPU cores as another coprocessor device, as it can be done
in our model, simplifies the development effort of porting one
solution to the other device type. Column (a) of Table 2 shows
the number of tokens which should be modified to port the CUDA
GPU program to the OpenMP program, whereas Column (b) of
the same table shows the number of tokens that changes between
our communicator based programs for GPU and CPU cores. The
portability across devices in our solution is extremely reduced.

Study Version Lines #Tokens Cyclomatic
Case of Code Complexity

CUDA 68 747 5
Matrix Comm. GPU 43 389 3

add. OpenMP 32 251 4
Comm. CPU 42 387 3

CUDA 70 778 6
Matrix Comm. GPU 43 391 4
mult. OpenMP 35 269 5

Comm. CPU 45 405 5
CUDA 85 882 17

Jacobi Comm. GPU 61 617 13
solver OpenMP 61 554 17

Comm. CPU 59 615 13

Table 1. Measures of the developing effort metrics for the three
study cases. Metric values of communicator version (Comm.) lower
than baseline version are highlighted.

Study CUDA→ Comm. GPUs→
Case OpenMP Comm. CPUs

Matrix addition 130 10
Matrix multiplication 152 75

Jacobi solver 284 17
(a) (b)

Table 2. Comparison of developing effort in terms of number of
tokens when porting from native programming languages (a), and
when porting from our communicator based GPU implementation
to the communicator based CPU version. Communicator porting
results lower than native porting ones are highlighted.

5.2 Performance overhead
Figures 6 and 7 show the execution times of the three study cases
in a shared-memory system. The communicator should perform
insertions in the memory map when variables are binded, and
searching in the memory map when it launches a kernel. Even so,
we observe that the codes that use Communicators do not introduce
noticeable overhead in any study case.

6. Conclusions and Future Work
In this paper we propose the communicator model, a parallel pro-
gramming model that eases the coding of applications for heteroge-
neous systems. It is based on the communicator concept, an abstract
entity that manages the launching of kernel sequences on coproces-
sors or sets of CPU cores.

It provides mechanisms: (1) to associate communicators to de-
vices, (2) to define portable kernels that can be reused across dif-
ferent types of devices, (3) to select proper values for launching
parameters on different devices through the characterization of the
kernels, and (4) to automatically deal with different memory spaces
of the host and the devices when needed. This model homogenizes
the kernel programming and management, bringing closer the ac-
celerator and multi-threaded programming, taking into account the
architectural differences of the accelerator platforms to obtain good
performance.

Our experimental study shows the advantages of using this
approach in terms of development effort metrics, and the efficiency
of our prototype implementation for computational cost scenarios.

Our future work includes the extension of the prototype in or-
der to support the management of other types of accelerators, such
as XeonPhi coprocessors, other techniques that exploit the mod-
ern features of some accelerators, such as asyncronous comuni-
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Figure 6. Execution times (seconds) of the baseline (Base.) and communicator (Comm.) versions of the three study cases in Heracles.
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Figure 7. Execution times (seconds) of the baseline (Base.) and communicator (Comm.) versions of the three study cases in Chimera.

cations, communication-computation overlapping, efficiency im-
provements of our prototype implementation, and kernel launching
policies.

A. Hitmap Library and other definitions
Hitmap [5] is a library for the management and run-time mapping
of hierarchical tiling arrays. It is based on an SPMD model, and
the message-passing paradigm. Hitmap has three main functional-
ity modules: (a) Domain and tile management; (b) Mapping mod-
ules; and (c) Communication patterns. Hitmap defines objects to
declare and manipulate multidimensional index domains and dif-
ferent types of indexed data structures [4]. Hitmap defines a plug-
in system to include new mapping modules: Virtual topology con-
structors and mapping functions named Layouts. The modules gen-
erate objects that can be queried at run-time to obtain information
about the result of the mapping. Finally, it contains functionali-
ties to build reusable communication patterns for tiles or subtiles
across virtual processes. These functions internally use the MPI
standard, exploiting efficient techniques like derived data types and
asynchronous communications.

A.1 Definitions and notation
In this work, we focus on arrays with regular dense and strided
domains. Their index Domain is a subspace of Zn. Rectangular n-
dimensional parallelotope domains, dense or strided, can be repre-
sented by a tuple of n Signatures. A Signature is a triplet of integer
numbers S〈b, e, s〉 (meaning begin, end, and stride). The set of in-
dexes expressed by a signature is S〈b, e, s〉 = {b ≤ i ≤ e : (i− b)
mod s = 0}.

A data structure or Tile (T : D → type) is an object that asso-
ciates data elements of a given type to index elements of a domain.
Array tiles associate one data element to each domain element. The
domain of a tile is denoted as D(T ). Hierarchical tiling is a tech-
nique that allows new Tile structures to be hierarchically declared
with a subset of the domain of another Tile. The subtile maps the

index elements of its subdomain to the same data elements of the
root tile r(T ) (the ancestor of the subtiling chain). The Selection
function, s : T × D? → T , is used to declare a new subtile:
s(t, d) = t′ : r(t) = r(t′), D(t′) = D(t) ∩ d.

A.2 Interface
Hitmap provides, among others, with the following basic function-
alities for dense data structures management.

HitSig

• HitSig hit sig(begin, end, stride ):
Creates a structure of type Signature.

HitShape
• HitShape hit shape(dims, sig [, sig] ... ):

Creates a structure of type Shape to represent a domain.

Tile
• void hit tileNewType(newType ):

Defines a new type of tile structure with the indicated
data type newType .

• void hit tileDomainShape(tile, tile dataType, shape ):
Creates a tile using a domain defined by a Shape structure.

• void hit tileAlloc(tile ):
Reserves memory for the tile.

• void hit tileFree(tile ):
Frees the memory of the tile.

• type hit tileElemAt(tile, dims, ...):
Access to a particular element of a tile.

• void hit tileSelect(newTile, oldTile, shape ):
Creates a subtile.
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