
TORMENT OpenACC2016: A benchmarking tool for OpenACC compilers

Daniel Barba, Arturo Gonzalez-Escribano, Diego R. Llanos
Dpto. de Informática

Universidad de Valladolid
Valladolid, Spain

daniel@infor.uva.es, arturo@infor.uva.es, diego@infor.uva.es

Abstract—OpenACC is a parallel programming model for
hardware accelerators, such as GPUs or Xeon Phi, which
has been in development for several years by now. During
this time, different compilers have appeared, both commer-
cial and open source, which are still on development stage.
Due to the fact that both the OpenACC standard and its
implementations are relatively recent, we propose a bench-
mark suite specifically designed to check the performance of
the OpenACC features in the code generated by different
compilers on different architectures. Our benchmark suite is
named TORMENT OpenACC2016. Along with this tool we
have developed an adequate metric for the comparison of
performance among different machine-compiler pairs which
we have named TORMENT ACC2016 Score. The version 1 of
TORMENT OpenACC2016 presented in this paper, contains six
benchmarks, and is available online.

Keywords-OpenACC, compilers, benchmarking.

I. INTRODUCTION

OpenACC is an open standard which defines a number
of compilation directives or pragmas for parallel code frag-
ments execution using hardware accelerators such as GPUs
and Xeon Phi. Its objective is to ease parallelization of
sequential code using this kind of accelerators and reducing
the required time both for learning and coding [1]. The
OpenACC specification is currently on its 2.5 version [2].

At the time of writing this paper, there are several bench-
marks for OpenACC. For example, the EPCC OpenACC
Benchmark Suite [3] has been developed by the Edinburgh
Parallel Computing Centre, and consists on both a number
of microbenchmarks intended to check the compliance of
the standard and measure the overhead of different pragmas
implementation. It also measures the general performance of
OpenACC generated code for each benchmark, but several
compilers lack full support for all the features of this
tool yet. This implies that it is not straightforward to do
comparative performance analysis of different compilers. On
the other hand, there are other benchmark suites not origi-
nally designed for OpenACC. For example, Rodinia [4] for
OpenACC is a port of the original benchmarks from the suite
of the same name [5], developed by Pathscale. As it is not
specifically designed for OpenACC, most of the benchmarks
included in this suite present many compilation problems
with the state-of-the-art OpenACC compilers, and they do
not cover all of the OpenACC features in a systematic way.

It would be interesting for the community to have a bench-
mark suite that covers the main features of the OpenACC
standard and easily allows to compare the improvements
in code generation for different architectures in terms of
performance. The contribution of this work includes:

• A benchmark suite designed for OpenACC, that covers
the main features of the standard based on program-
ming patterns of different kinds of real applications.

• A proposal for a metric to provide a relative score
which allows for the comparison of the performance
obtained by the implementation of different compilers
on different platforms. The design of this metric allows
to classify the results in a global ranking. We named it
TORMENT ACC2016 Score.

• A compilation-execution wrapper, along with a system-
atic way to include in the source code conditional com-
pilation statements to adapt the OpenACC syntax and
details to the specific particularities of each compiler.
This wrapper allows to easily adapt the benchmarks
for different OpenACC compilers and platforms. It also
automatizes the generation of a final report including
the metric measure and other relevant data for the
comparisons.

We present TORMENT OpenACC2016. It is a tool that
includes the benchmarks and the wrapper that automatizes
the compilation and execution. The generated reports are
presented in a standard and easy readable way, including
information about the execution platform, the compilers,
statistics of execution times, and the final values of the
metric for each case. The report also offers statistics of
execution times for sequential and native CUDA versions of
the benchmarks for further reference. The tool, in its current
state, has been validated for three different compilers in two
different GPU platforms. The support of the used compilers
for the generation of Xeon Phi code is not yet mature enough
to extend our validation for these kind of device.

The rest of the paper is structured as follows: Section
II describes with more detail previous benchmarking tools.
Section III discusses the maturity of OpenACC compilers.
Section IV describes TORMENT OpenACC2016, including
its goals, structure of the tool, implemented benchmarks,
the proposed metric, and comments the report obtained in



the experimental validation. Finally, section V concludes the
paper.

II. EXISTING TOOLS

As it was stated in the introduction, at the time of writing
this paper there are previous performance evaluation tools
for OpenACC. In this section we will describe more thor-
oughly examples of these tools and the problems detected
to use them for the goals of this work.

A. EPCC OpenACC Benchmark Suite

This benchmark suite developed by the EPCC has been
designed specifically for OpenACC. It is composed of three
different parts, named Level 0, Level 1 y Application Level.

Level 0 contains several microbenchmarks whose goal is
measuring the overhead caused by the implementation of
the different pragmas. These microbenchmarks offer a result
calculated as the difference between the execution times of
two different versions of the use of the OpenACC pragmas.
For #pragma acc data directive it simply measures the
required time for data transfers.

Level 1 contains a set of BLAS type benchmarks based
on Polybench and Polybench/GPU [6]. The results offered
by these benchmarks are the execution time of the different
code fragments. This means they are a good performance
indicator of the OpenACC generated code. However, in the
current state of development of the different compilers some
of the benchmarks use unsupported pragmas. Due to this,
these benchmarks present compilation or runtime problems
with a number of compilers.

Application Level contains three benchmarks of a bigger
complexity than those from the previous section. These
benchmarks also offer as their results the execution time
of the generated code.

The EPCC OpenACC Benchmark Suite is well planned
and designed. However, the results obtained from the mi-
crobenchmarks are not adequate enough for a relative per-
formance analysis. The other benchmarks from Level 1
and Application Level could be adequate. However, since
they are not specifically designed to test OpenACC features
supported by all of the available compilers, they present
problems. In some cases they couldn’t be compiled with
some compilers, and sometimes they produced runtime
errors.

B. Rodinia for OpenACC

Pathscale Inc. has developed an OpenACC version [4] of
the Rodinia benchmark suite [5], [7]. The current version at
the time of writing this paper has been published on GitHub
(April, 24th 2014). The suite is composed of benchmarks
that return as their result the execution time. This means that
they are a good starting point for a performance analysis.
The main issues are the low maturity level of the OpenACC
use in the code, and the lack of compatibility with the

available compilers. These issues make it impossible to
establish a fair performance comparison.

III. OPENACC COMPILERS

There is a number of choices among compilers with
support for OpenACC, both commercial and free. In this
work we focus on those compilers which are available
for free or with academic or trial licenses. In general, the
OpenACC compilers have currently very limited support for
any platform other than GPUs. The compilers considered
are:

A. PGI Compiler

The PGI compiler[8], developed by The Portland Group
and Nvidia, is, at the time of writing, the compiler with the
highest maturity level. In our studies, the PGI compiler has
shown to be the most stable and the highest maturity level
among the used compilers. It has a proper implementation
of most of the OpenACC specification.

B. OpenUH

OpenUH compiler, developed by the University of Hous-
ton, is an open source project. According to our tests and
compared to the PGI compiler, its maturity and robustness
are lower and it lacks several functionalities.

C. accULL

The accULL compiler [9] has been developed by Uni-
versidad de La Laguna, Spain, and it is an open source
compiler like OpenUH. Our tests show that compared to the
previous compilers, this is the one with a lower robustness,
leading to several issues during source to source translation,
not supporting several C characteristics, like function point-
ers. Several OpenACC functionalities are also lacking, like
several types of reduction.

IV. TORMENT OPENACC2016

Our proposal is implemented as a tool called TORMENT
OpenACC2016, an acronym for Trasgo perfORMance and
EvaluatioN Tool for OpenACC. The project was born to
give response to the need of performance analysis and
comparison for OpenACC code generated by the various
compilers implementing the standard.

A. Goals

The main goal of TORMENT OpenACC2016 is to allow
a performance analysis of OpenACC code generated by
different compilers in an easy way, generating a result
summary that can be easily analyzed and which offers the
TORMENT ACC2016 Score metrics. This metric is useful to
compare machine-compiler pairs in terms of performance.

Our proposal intends to offer a tool specifically prepared
for OpenACC, developed taking into account the early
development stage of the available compilers. Thus, we try to
ensure that compilation or runtime problems are avoided for



the compilers considered, unlike in the previous benchmark
suites available. TORMENT OpenACC2016 is prepared to
be compiled and executed with minimum intervention from
the user. The scripts accompanying the suite get information
from the benchmarking process and finally offer a HTML
report with the most relevant data.

Moreover, TORMENT OpenACC2016 makes use of the
GCC and NVCC compilers in order to obtain data from
sequential and CUDA-based code executions. With this data,
our proposal can offer to the user information about the
speedup compared with sequential and CUDA code executed
in the same machine.

B. Structure of our tool

TORMENT OpenACC2016 is composed of a number of
shell scripts which are in charge of the compilation, exe-
cution and results gathering processes, removing the burden
from the user. Each benchmark has been chosen to represent
a relevant class of problems, and has been implemented to be
as simple as possible, in order to avoid compilation issues.

The benchmarks are launched ten times, with an extra
invocation at the beginning whose results are discarded. The
values that correspond to the best of the executions and
the arithmetic mean of all of them are recorded to later
calculate the proposed metric. These values are named peak
and average respectively.

C. Features Coverage

In order to make a selection of benchmarks for our suite
we have analyzed the development status of the different
compilers. We have studied their capabilities and their
completeness of the OpenACC standard. Our conclussion
is that the existing benchmarks, based on Polybench and
Rodinia, often require pragmas that are not implemented yet
on one of the compilers at least. To achieve full compatibility
among the different compilers we need to use only the set of
directives available for all of them at the time of developing
this version of TORMENT OpenACC.

We list below a number of GPU characteristics that we
argue are important to be tested for the current status of
compilers’ maturity:

• Use of shared memory
• Intensive and non-balanced computation
• Computation without memory access
• Data transfers
• Non-perfectly coalescent memory access
These are important characteristics that play a pivotal role

in the resulting code of manually written CUDA kernels.
The code generated by the OpenACC compilers will also
be affected by these characteristics, thus the performance of
these generated codes could be measured and compared.

As most of the well-known benchmarks require the use of
non-supported directives for one compiler at least, we have
decided to follow a bottom-up approach for developing a

working suite of benchmarks, trying to cover the character-
istics listed above. This decision leaves us with a set of very
simple benchmarks, useful for a comparative analysis of the
performance of OpenACC generated code using different
compilers, but not for a thorough analysis of completeness,
robustness and performance for a single compiler. Our work
aims to obtain a tool capable of generating a comparative
analysis report for a wide number of compilers.

As the support for OpenACC directives improves, this
design decision should also be reviewed and adapted in order
to use benchmarks of a higher complexity as the ones pro-
vided in suites like Polybench (used in the EPCC OpenACC
benchmark suite), Rodinia, and the CUDA Toolkit.

D. Implemented Benchmarks

Version 1 of TORMENT OpenACC2016, contains a set of
six benchmarks. These benchmarks try to cover the different
characteristics enumerated in the previous section, as it is
shown in Table I.

1) T MonteCarloPi: This is an embarrassingly parallel,
without dependencies, perfectly regular, well balanced with
a static partition, and computational bound example. This
benchmark consists on an approximation of Pi using the
Monte Carlo method. This method is based on the random
generation of coordinates in a unit square. For each coordi-
nate, it is checked whether or not that coordinate is located
inside a quarter circle and, if that condition is satisfied, then
the coordinate is accumulated. Finally, the following formula
is applied:

π ≈ 4∗P
T

Where P is the number of coordinates inside the quarter
circle and T is the total of generated coordinates.

T MonteCarloPi is a benchmark that contains no memory
transfers and a very simple computation. However, it can be
optimized if each thread computes several coordinates and
if the shared memory in the thread blocks is used in order
to avoid global memory access.

The function used for random number generation can be
problematic. OpenACC code should use functions that can
be offloaded to the GPU and at the same time can be used
on the host machine. Thus, we cannot use native CUDA
functions like the ones included in the curand library. Our
solution has been to replicate the implementation of the
srand function in the standard C library.

2) T StringMatch: This example is coalesced with low
memory bandwidth and irregular data-dependant loads per
thread. The T StringMatch benchmark is a string matching
program. This algorithm is interesting because it combines
data transfer with the need of efficient use of the memory,
specially the shared memory. It consists on the search of
the first occurrence of a small string in a larger one, using
a naive algorithm. In this benchmark, the large string has a



Shared
Memory

Intensive
Computation

Computation without
memory access

Data
Transfer

Non-perfectly coalescent
Memory Access

T MonteCarloPi X X
T StringMatch X X
T 3DStencil X
T Mandelbrot X
T MatrixMult X X
T ReverseArray X X X

Table I
GPU CHARACTERISTICS TESTED BY THE BENCHMARKS

size of 10 million characters, that is, approximately 10MB.
We search four small strings of 1000 characters.

3) T 3DStencil: This is a regular, well balanced example
with dependencies that lead to iterative neighbour synchro-
nization, and low load per thread on each iteration. The
T 3DStencil benchmark consists on a 6 point 3D stencil.
Each point of a 3D matrix is updated with the arithmetic
mean of its neighbours. This benchmark is interesting be-
cause, traditionally, stencil programs can be very efficient
when executed on a GPU. It includes memory transfers only
at the beginning and end of the computation.

4) T Mandelbrot: This example is embarrassingly par-
allel without dependencies with non-balanced load. The
T Mandelbrot implements the most famous of the fractal
sets. The implemented algorithm is the escape-time algo-
rithm. This is an embarrassingly parallel problem and there
are no dependencies among the computations. Therefore,
there is no need to use the shared memory. Global memory
access is also negligible. On the other hand, the computation
is very intensive, depending on the maximum number of
iterations. This benchmark should scale very well on GPU.

5) T MatrixMult: This example has perfectly regular
loads with coalesced memory access if shared memory is
properly used. Matrix multiplication is widely used in many
domains. It has a large margin for optimizations. When
using a GPU, the most important optimization is the correct
use of the shared memory, which requires a correct thread
block geometry. As this benchmark has three nested loops,
it presents certain complexity for the OpenACC compilers.
They need to make choices at the different levels of paral-
lelism, including also the geometry of the thread blocks.

6) T ReverseArray: This last example has a regular load,
but a direct implementation for non-aligned array sizes de-
rives in coalesced reads but non-perfectly coalesced writes.
The last of the benchmarks implemented in TORMENT
OpenACC2016 consists on a very simple operation; revers-
ing an integer array. Although this seems to be a trivial
operation, running it on a GPU presents a relevant problem.
Reversing an array on a GPU can be very inefficient because
of non-coalescent global memory access. The correct solu-
tion involves using the shared memory as an intermediate
buffer where a partial reverse is done. This allows for
coalescent global memory access.

E. Proposed Metric

For the selection of the metric named
TORMENT ACC2016 Score, we use the same methodology
as SPEC [10] (Standard Performance Evaluation
Corporation). It is a widely known reference in terms
of benchmarking and performance analysis. One of its
strengths is to acknowledge that benchmarks get older as
time passes and, in consequence, they must be updated.

SPEC uses the following methodology. First, the program
returns its execution time. Then the SPECratio is calculated,
which consists on the ratio obtained from dividing the refer-
ence execution time (supplied by SPEC) and the execution
time obtained by the benchmark. Finally, the geometric mean
of all the SPECratios is calculated [11].

Our proposal follows a similar idea but with several
changes. First, the execution of the benchmarks contained
in TORMENT OpenACC2016 return three values. Peak Time
is the best execution time obtained, measured in seconds.
Average Time is the arithmetic mean of all the executions of
the same benchmark, also in seconds. Finally, the Standard
Deviation of the set of times obtained gives an idea of the
variability among the several executions of the benchmarks.
With the peak and average times, a ratio is calculated divid-
ing the reference times provided by the tool, which are the
execution times of the sequential version of the benchmarks
in a reference machine. The characteristics of this reference
machine are shown in https://torment.infor.uva.es. Finally, it
computes the harmonic mean of all the ratios, both for peak
time as average time. These values are the TORMENT ACC
Peak Score and TORMENT ACC Average Score.

The main difference between TORMENT OpenACC2016
and SPEC metrics, apart from the time measurement
methodology, consists on the use of the harmonic mean
instead of the geometric mean. For the goals of TORMENT
OpenACC2016, the harmonic mean is more adequate than
the geometric mean. First, even if the geometric mean
always produces a consistent ordering, it’s not necessarily
the correct ordering [11]. This is because this mean is not
inversely proportional to the execution time. In contrast, the
harmonic mean is inversely proportional to the execution
time, which makes it an adequate mean for ratios (see e.g.
[12]). TORMENT ACC2016 Score is a HB (Higher is Better)
metric.



An example of usage can be found on
https://torment.infor.uva.es. The TORMENT Report
Example link shows a report generated for one of our
machines. The first part of the report consists on system
information. After that section, the result tables for
sequential and CUDA code are found. These results
are merely informative, and they are not used in the
TORMENT ACC2016 Score. However, these results allow
the user to compare the performance of the OpenACC
code with sequential and CUDA versions executed in the
same machine. After the sequential and CUDA results,
the OpenACC results are shown for each compiler used.
These results consist on the tables, with the execution
time statistics, the TORMENT ACC2016 Score, and the
speedup values using as reference the sequential and CUDA
executions.

In the Report Example available online, the PGI compiler
obtains the best results, obtaining a 64% of the performance
achieved with CUDA implementations. OpenUH gets a
second position, with a 41% of the performance achieved
with the optimized CUDA implementations. Finally, the
accULL compiler get the third position, with 16% of the
performance achieved with CUDA.

The TORMENT ACC2016 Score also allows for a com-
parison among compiler-machine pairs. For example, the
Hydra System in the Report Example available online
has Titan Black GPUs, and we also ran the benchmark
suit in a laptop which has a Nvidia GTX 850M. The
TORMENT ACC2016 Peak Score in Hydra is 28.69, while
in the laptop is 8.45. On the other hand the accULL compiler
obtains 7.26 in Hydra and 4.98 in the laptop. This indicates
the important differences of performance introduced by the
code generation and optimization techniques used by both
compilers.

V. CONCLUSIONS AND FUTURE WORK

TORMENT OpenACC2016 is a performance analysis and
comparison tool for OpenACC generated code, taking into
consideration the maturity level of the support of OpenACC
in different compilers. TORMENT OpenACC2016 contains
a suite of benchmarks specifically designed for OpenACC
and maintaining the maximum portability.

The results offered by TORMENT OpenACC2016 include
the so called TORMENT ACC2016 Score, designed for the
comparison of machine-compiler pairs. Moreover, it offers a
result report of the benchmarks, including a table with exe-
cution times statistics (both for peak and average values) and
the standard deviation, and also including execution results
from sequential and CUDA code generated by GCC and
NVCC compilers. This offers the user a comparative analysis
of the OpenACC generated code versus the sequential and
CUDA versions of the benchmarks.

Future work consists on the inclusion of new benchmarks,
specially when the supported compilers become more ma-

ture, including a richer structure with different levels (such
as BLAS and real world applications) in addition to the
existing synthetic applications. Moreover, an important part
of our future work consists on maintaining compatibility
among the supported compilers and new additions. We are
in the process of adding support for GCC, Omni (University
of Tsukuba), OpenARC (Oak Ridge National Laboratory),
and RoseACC (University of Delaware).

ACKNOWLEDGMENTS

This research has been partially supported by MICINN
(Spain) and ERDF program of the European Union:
HomProg-HetSys project (TIN2014-58876-P), and COST
Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS).

REFERENCES

[1] OpenACC-standard.org. About OpenACC. [Online]. Avail-
able: http://www.openacc.org/about-openacc

[2] ——. (2015, oct) OpenACC 2.5 draft for public comment.
[Online]. Available: http://www.openacc.org/content/openacc-
25-draft-public-comment

[3] EPCC. (2013, sep) Epcc OpenACC benchmark suite.
https://github.com/EPCCed/epcc-openacc-benchmarks.

[4] Pathscale. (2014, apr) Rodinia benchmark suite 2.1 with
OpenACC port. https://github.com/pathscale/rodinia.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A benchmark suite for het-
erogeneous computing,” in Workload Characterization, 2009.
(IISWC), 2009 IEEE International Symposium on. IEEE,
2009, pp. 44–54.

[6] L.-N. Pouchet, “Polybench: The polyhedral
benchmark suite,” URL: http://www. cs. ucla. edu/˜
pouchet/software/polybench/[cited July,], 2012.

[7] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang,
and K. Skadron, “A characterization of the Rodinia bench-
mark suite with comparison to contemporary CMP work-
loads,” in Workload Characterization (IISWC), 2010 IEEE
International Symposium on. IEEE, 2010, pp. 1–11.

[8] PGI. (2015, nov) Pgi accelerator compilers with OpenACC
directives. https://www.pgroup.com/resources/accel.htm.

[9] R. Reyes, I. López-Rodrı́guez, J. J. Fumero, and F. de Sande,
“accULL: an OpenACC implementation with CUDA and
OpenCL support,” in Euro-Par 2012 Parallel Processing.
Springer, 2012, pp. 871–882.

[10] K. M. Dixit, “The spec benchmarks,” Parallel computing,
vol. 17, no. 10, pp. 1195–1209, 1991.

[11] D. J. Lilja, Measuring computer performance: a practitioner’s
guide. Cambridge University Press, 2005.

[12] J. R. Mashey, “War of the benchmark means: time for a truce,”
ACM SIGARCH Computer Architecture News, vol. 32, no. 4,
pp. 1–14, 2004.


