
A RUNTIME ANALYSIS FOR
COMMUNICATION CALCULATION

INTRODUCTION
• Several automatic code generation ap-

proaches transform sequential or high-
level parallel codes, to low-level parallel
programs for distributed-memory clus-
ters.

• They abstract many issues related to the
execution platform, while also deliver
good performance.

• However, they generate a generic code
that cannot take into account some spe-
cific details about the execution ma-
chine.

RELATED WORK
• Task-oriented approaches imply

performance penalties in distributed-
memory systems because of: Man-
agement of distributed queues, syn-
chronization and load balancing
mechanisms, or data communications
due to dynamic task scheduling and/or
migration.

• Static-scheduled approaches: They are
compile-time solutions with their cor-
responding constraints: Compile-time
choices, or compiler scalability prob-
lems.

REFERENCES

[1] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D.R. Llanos. An ex-
tensible system for multilevel automatic data partition and mapping.
IEEE TPDS, 25(5):1145–1154, 2013. (doi:10.1109/TPDS.2013.83).

[2] Uday Bondhugula. Compiling affine loop nests for distributed-
memory parallel architectures. In 2013 SC-International Conference
for High Performance Computing, Networking, Storage and Analysis (SC),
pages 1–12. IEEE, 2013.

[3] Martin Kong, Louis-Noël Pouchet, P Sadayappan, and Vivek Sarkar.
Pipes: a language and compiler for task-based programming on
distributed-memory clusters. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
page 39. IEEE Press, 2016.

ANA MORETON-FERNANDEZ, ARTURO GONZALEZ-ESCRIBANO AND DIEGO R. LLANOS
UNIVERSIDAD DE VALLADOLID, SPAIN

{ana|arturo|diego}@infor.uva.es

PROPOSAL

Proposal:
We propose to move to runtime, part of the compile-time analysis needed to generate
the communication code for distributed-memory systems, in order to better exploit the
capacilities of the execution platforms.

Problems:
• Could we efficiently represent and manage polyhedra at runtime?
• Could we efficiently perform part of the compile-time analysis needed to generate

communication code for distribute-memory systems at runtime?

Distibuted-memory
Analysis/Transformation

Code
Gen

Source
program

Polyhedral
scan

Data-dependence
-related

Annotations

Executable
Source

program
Polyhedral

scan

Code
Gen Executable

Typical
approach:

Proposal:
Runtime
AnalysisDistibuted-memory

Analysis/Transformation

How do we solve the problems?
• Representation: Using a distributed-memory-specialized Hierarchical Tiling Array

library, named Hitmap [1], to manage hyperrectangular shapes at runtime. It pro-
vides:

1. Domain index set operations such us intersections, or unions.
2. Functionalities to determine the data mapped to any process at run-time, with

no control data communication.
3. Functionalities to store and reuse data communication patterns in an object.

• Analysis: Our approach calculates communication patterns by intersecting at run-
time the index space read or written by a remote process, with the index space writ-
ten or read by the local process. Communication patterns are added to an object.

Benefits:
• Exact communications:

1. No control data exchange is needed among processes. At runtime, every pro-
cess can determine the data space assigned, read, or written by the others.

2. No redundant data communications. Replicated instances on the same index
space can be purged when they are added to the communication object.

• Coarse-grained communications:
1. Only one communication operation between each pair of processes is done.
2. Choices such as the tile size, or the data partition method, can be decided at

runtime. The communications patterns are adapted at construction.

RESULTS
The time spent by our runtime calculation
is several orders of magnitude smaller
than the computation and the communi-
cation execution times for the tested cases.
The technique currently supports affine
and periodic expressions.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processes

Periodic Heat-2d: Communication and Computation times

Computation
Comm. Execution

Comm. Calculation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

1 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processes

Periodic Heat-3d: Communication and Computation times

Computation
Comm. Execution

Comm. Calculation

Figure 1: Execution times for the periodic Heat-
2d (Size=8000x8000, iter=500), and Heat-3d ex-
amples (Size=500x500x500, iter=100).

CONCLUSION
We present a compiler/run-time ap-

proach to calculate communications for
distributed-memory systems, that is able
to adapt the program to the execution
platform at runtime, delivering good per-
formance.

This research has been partially supported by MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS). By the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.

