
Supporting the Xeon Phi coprocessor in a
Heterogeneous Programming Model

Ana Moreton-Fernandez, Eduardo Rodriguez-Gutiez, Arturo
Gonzalez-Escribano, and Diego R. Llanos

Departamento de Informática, Edif. Tecn. de la Información, Universidad de
Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.

Abstract. Supercomputers are becoming more heterogeneous. They are
composed by several machines with different computation capabilities
and different kinds and families of accelerators, such as GPUs or Intel
Xeon Phi coprocessors. Programming these machines is a hard task, that
requires a deep study of the architectural details, for exploiting efficiently
each computational unit.
In this paper, we present an extension of a heterogeneous programming
model, in order to also support Intel Xeon Phi coprocessors. This contri-
bution extends an existing heterogeneous programming library, by taking
advantage of both the GPU communication model and the CPU execu-
tion model of the original library. Our experimental results show that
using our approach, the programming effort needed for changing the tar-
get devices is highly reduced, by for example reusing the 97% of the code
between a GPU implementation and a Xeon Phi implementation for the
Mandelbrot benchmark.

1 Introduction and Background

Supporting computational accelerators such as GPUs or Xeon Phi coprocessors
in the state-of-the-art programming models is vital to exploit current Super-
computers. They are composed by several machines with different computation
capabilities and different kinds and families of accelerators, as we observe for
example in the configuration of the TOP500 supercomputers [16].

However, programming solutions for an efficient deployment in this kind of
devices is a very complex task, that relies on the manual management of memory
transfers and configuration parameters. The programmer has to carry out a deep
study of the particular data needed to be computed at each moment, in different
computing platforms, also considering architectural details to exploit efficiently
such execution systems [2].

Many works address the problem of heterogeneous systems management
(e.g. [5, 14, 4]) following two alternatives: generating specific codes, or using run-
time libraries. Using current heterogeneous code generators, the code should be
recompiled for each different execution platform in order to better exploit the
performance capabilities of the system. As for libraries, some works, for specific
kind of applications, address the portability problem using native programming

models. For example, MAGMA library [6] provides a unified programming envi-
ronment for heterogeneous systems using both CPUs and accelerators, such as
a GPU or Intel Xeon Phi, for dense linear algebra algorithms. However, most
of heterogeneous libraries rely on the OpenCL abstraction. OpenCL [15] is a
widespread programming framework to deal with heterogeneous devices. The
OpenCL context abstraction allows the management of multiple devices of the
same nature (using the same platform in OpenCL notation). The abstractions
introduced by OpenCL have been proved that prevent the obtaining of the same
efficiency as when using directly the vendor programming models, for several
common situations [10]. As a result, many state-of-the-art heterogeneous frame-
works and libraries of higher level of abstraction [9, 13, 8, 18, 3, 17], that rely on
OpenCL as execution layer, typically inherit some of these problems.

Additionally, during the last decade several high-performance accelerator pre-
defined libraries, such as cuBLAS [12] or MKL, have been developed using the
vendor specific programming models. For making the most of such works, it is
recommendable the use of such native or vendor specific programming models
and compilers for each different kind of device.

In this paper, we extend a heterogeneous programming model that is not
based on the use of OpenCL. The original proposal, named Controller [1], is a
vendor-specific, compiler-agnostic library that introduces an abstract entity to
allow the transparent launching of series of tasks on a GPU or on a CPU. It
exploits their native or vendor specific programming models, thus enabling the
potential performance obtained by them. In this work we present an extension
of this Controller heterogeneous programming model that includes the support
for Intel Xeon Phi coprocessors, known also under the name of Many Integrated
Cores (MICs). The model is based on the mix of the GPU communication model
with the CPU execution model of the Controller library. We develop a complete
runtime execution system that includes methods for task launching, data trans-
fers between the MIC accelerator and the host, and a queue system to manage
the kernel executions. It perfectly fits with the previous Controller library, thus
standardizing and abstracting to the programmer the issues related to the dif-
ferent accelerator programming.

We also present an experimental study with four study cases. We show that
our approach is highly flexible, with minimum programming effort for chang-
ing the target devices. Moreover, the performance results show that our imple-
mentation does not introduce significant performance penalties compared with
reference codes.

2 Proposal: MIC Controller model

The work presented in [1] proposed a simple heterogeneous programming model
to deal with the hybrid-computation-related issues in an abstract way to the
programmer. The model defines an object able to manage either a group of
CPU cores or a GPU accelerator (see left of Fig. 1), using internally native
programming techniques (OpenMP and CUDA respectively).

CPU

Exec.

MIC

Exec.

Comm.

GPU

Comm.

CPU

Exec.

GPU

Comm.

Old Controller
 object

MIC Controller
 object

Shared
memory

CUDA

Shared
memory

CUDA

Fig. 1. Left: Previous controller model, only supporting CPU and GPU. Right: The
MIC proposed model, mixing the GPU-CPU model features.

In our proposal, we distinguish two parts in the internal model, supporting
each kind of computational device: Execution and communication models. As
the CPU-core group devices share the memory space with the host, the controller
object only has to provide an execution model. On the other hand, for GPUs,
CUDA programming model provides a execution system to enqueue and launch
kernels with the proper granularity level that is used in the Controller model.
The GPU implementation of the execution model is straightforward, but it pro-
vides an internal mechanism to implement policies and techniques for dealing
memory communication operations across different memory spaces on host and
accelerators (see left of Fig. 1).

In this work we propose to integrate MIC coprocessors in the Controller
model distinguishing two aspects: The execution model and the memory model.
In terms of execution, the Controller model proposed for groups of CPU core,
that blends blocks of fine grained kernels into coarse CPU tasks, is appropriated
for Xeon Phi coprocessors. In terms of memory management, the abstract model
for data communications needed for the MIC coprocessors is equivalent to the
Controller model for the GPU. Thus, supporting new kind of accelerators, as the
Xeon Phi, can be done by combining existing models for execution, and memory
communications across different spaces, independently.

The application of this idea leads to a homogeneous programming model
for heterogeneous systems with MIC coprocessors, where the issues related to
the different accelerator programming are transparent for the programmer. In
this work we show the implementation of this idea in the Controller, to support
computational devices such as MIC coprocessors, GPUs, and groups of CPU-
cores, without redesigning or changing the programming model.

3 Background: Controller model

In this section we describe the Controller model [1], the approach upon we build
our MIC execution system. We also describe Hitmap [7], the library used for the
data-structures managing.

1 /* Generic kernel codes for any device */
2 KERNEL(MatAdd, 3,
3 OUT, HitTile_float, C, IN, HitTile_float, A, IN, HitTile_float, B){
4 int x = thread.x; int y = thread.y;
5 hit_tileElem(C, 2, x, y) = hit_tileElem(A, 2, x, y) +
6 hit_tileElem(B, 2, x, y);
7 }
8 /* Host program using the Controller library */
9 int main(){

10 int SIZE = 10000;
11 /* Stage 1: Controller creation */
12 Cntrl comm;
13 CntrlCreate(&comm, CNTRL_GPU, 0);
14 /* Stage 2: Data structures creation and initialization */
15 HitTile_float A; HitTile_float B; HitTile_float C;
16 hit_tileDomainAlloc(&A, float, 2, SIZE, SIZE);
17 hit_tileDomainAlloc(&B, float, 2, SIZE, SIZE);
18 hit_tileDomainAlloc(&C, float, 2, SIZE, SIZE);
19 initMatrices(&A, &B, &C);
20 /* Stage 3: Data structures attachment */
21 CntrlAttach(&comm, &A); CntrlAttach(&comm, &B); CntrlAttach(&comm, &C);
22 /* Stage 4: Kernel launching */
23 Thread threads;
24 ThreadInit(threads, 2, SIZE, SIZE);
25 CntrlLaunch(comm, MatAdd, threads, 3, &A, &B, &C);
26 /* Stage 5: Data structures detachment */
27 CntrlDetach(&comm, &C);
28 }

Fig. 2. Kernel definition and configuration, and host program of a matrix addition
using the Controller library.

3.1 Hitmap library

Hitmap is the library chosen to manage the partition and mapping of data struc-
tures. It is used in the Controller model to manage the data distribution across
devices, and to provide a common interface to implement data management
inside generic portable kernels.

Hitmap defines the HitTile structure, an abstract entity for n-dimensional
arrays and tiles. A HitTile structure is a handler to store array meta-data, along
with the pointer to the actual memory space of the data. There are only three
functions of Hitmap needed to work with the Controller library. The function
hit tileDomainAlloc is used to declare and allocate the index domains of a tile
array. The function hit tileFree is used to free the data memory and clean the
handler. The function hit tileElem is used in the host or kernel codes to access
the elements of a tile. It receives a tile name, a number of dimensions, and the
indexes values of the desired element. The data are accessed in row major order
in all cases, independently of the implementation.

3.2 Controller model

The Controller model provides a structured programming methodology together
with several important features: (1) A mechanism to define common kernels

reusable across different types of devices, or specialized kernels for specific de-
vice kinds; (2) A transparent mechanism of memory management, including op-
timized communications of the data structures between the host and the corre-
sponding images in the accelerators; (3) An optimization system to select proper
values for kernel-launching configuration parameters (such as the threadblock
geometry), guided by simple qualitative code characterization provided by the
programmer.

Kernel definitions: In the Controller library, a kernel is declared by using
the primitive KERNEL <type>. Where type may be empty to indicate a ker-
nel usable on any kind of device, or a specific value for a specialized code
for a given type of device. Currently, the library supports the specific dec-
larations KERNEL GPU for CUDA code targeting NVIDIA’s GPUs, KERNEL CPU

for host machine code targeting sets of CPU cores, and KERNEL GPU WRAPPER,
KERNEL CPU WRAPPER, for host machine code which includes calls to specialized
GPU or CPU libraries, such as cuBLAS or MKL routines.

The kernel-definition primitives declare in brackets the number of parameters
of the kernel, with a tuple of information for each parameter. The parameter
information includes its type, name, and input/output role. We see a kernel
definition in lines 2-7 of Fig. 2.

Controller programming methodology: A Controller host program fol-
lows simple development guidelines:

– The Controller entity creation, assigning the computational device to man-
age by this controller object. A controller entity should be created for each
computational device that will be used for computation.

– The attachment of the data structures to the controller object. Data struc-
tures that will be accessed by a kernel should be also previously attached to
the controller entity.

– The launching of the computational kernels on the controller object.

– The detachment of the data structures.

Figure 2 shows a matrix addition Controller implementation that performs
the computation on a GPU. In the main program, first, a controller object is
created, assigning a GPU to the object (lines 12 to 13). Data structures are
created and initialized on the host (lines 15 to 19). After that, these data struc-
tures are attached to the previously created controller (line 21). In the step 4,
the program launches the kernel MatAdd. It uses a Thread object to specify the
number of threads to be launched. In this example a thread is launched for each
each element of the matrix C (lines 23 to 25). Finally, the program detaches the
matrix with the results (line 27).

In this paper, we propose a internal method in the programming model that
allows also the efficient execution of this program on the Xeon Phi, only by
changing the CNTRL GPU modifier by CNTRL XPHI on the line 13 of the code.

1 /* Internal attach function */
2 void attachToXPHI(CntrlXPHI* cntrl,
3 HitTile *tile){
4 Lock(tile, cntrl);
5 int MIC= cntrl->MIC;
6 float *data = (float*)(*tile).data;
7 int numElems = hit_NumElem(tile);
8 #pragma offload target(mic:MIC) \
9 in(data:length(numElems) \

10 alloc_if(1) \
11 free_if(0))
12

13 }

1 /* Internal detach function */
2 void detachToXPHI(CntrlXPHI* cntrl,
3 HitTile *tile){
4 int MIC= cntrl->MIC;
5 float *data = (float*)(*tile).data;
6 int numElems = hit_NumElem(tile);
7 #pragma offload target(mic:MIC) \
8 in(data:length(0) alloc_if(0) \
9 free_if(0)) \

10 out(data:length(numElems) \
11 alloc_if(0) \
12 free_if(1))
13 Unlock(tile, cntrl);
14 }

Fig. 3. Internal codes that perform data transfers. Left: Internal code to transfer the
data of a HitTile object to a MIC coprocessor from a host. Right: Internal code to
transfer the data of a HitTile object from a MIC coprocessor to a host.

4 Integrating Xeon Phi coprocessor in the Controller
programming library

A previous version of the Controller library supports the deployment of kernels
on GPUs or computational devices formed by groups of CPU-cores. In this sec-
tion we present the implementation support of the MIC devices in the Controller
library. We implement a MIC controller object containing several function-
alities such as: an internal queue to manage the asynchronous task executions,
a variable to store the MIC identifier that the controller object is managing, or
a method to lock and unlock data structures.

4.1 Attaching and detaching data structures to MIC Controller
object

Attaching a data structure to a Controller object implies to lock the data struc-
ture until that structure is detached. In computational devices such as GPUs or
MIC coprocessors, where their memory spaces are separated to the host memory
space, the attachment/detachment operation also implies a data transfer.

We have implemented in this extension library two internal functions to per-
form the data transfers to/from the MIC coprocessor, using the Intel Language
Extensions for Offload (LEO). The functions are executed internally when an
attachment or detachment operation is called respectively. Figure 3 shows the
code of both functions.

On the left, we see the code used to attach a tile to a MIC controller object
(represented in the figure by the CntrlXPHI type). In this function, first the
attached tile is locked. Secondly, the code extracts: 1) the MIC identifier assigned
to the controller object (line 5); 2) the pointer to the actual data (line 6); and
3) the number of elements to be transferred (line 7); After that, the function
performs the actual data transfer from the host to the MIC, ensuring that there

is allocated memory space in the target device (using alloc if(1)), and that after
this offloading the actual data will be maintained (using free if(0)).

On the right, we show the code used to detach a tile from a MIC controller
object. As in the attachment, first the code extracts the information about the
data transfer (lines 4 to 6). Secondly, the actual data transfer from the copro-
cessor to the host is defined using a pragma. For determining the pointer of the
data previously transferred, the program uses the in modifier to make the data
pointer available in the Xeon Phi, and sets the length to 0 to prevent any data
from being copied (lines 8 to 9). Once the pointer is available on the MIC, the
pragma also defines the data transfer and the freeing of the MIC space memory
(lines 10 to 12). Finally, the data structure is unlocked.

4.2 Kernel definitions

A kernel definition specifies the device that fits with its implementation by using
the primitive KERNEL <type>. We have developed a framework to support MIC
kernel definitions in the Controller library. A MIC kernel definition is trans-
formed in three functions through macros. We show the code of the three func-
tions in Fig. 5.

Single-element function: The first function implements the kernel that
the programmer has defined for computing each element. The function is named
kernel xphi ##name, where the ##name element is the first parameter of the
kernel definition. It is defined as a MIC function using the attribute target(mic).
The parameters are a set of indexes represented by a Thread object, that rep-
resent a point in the execution domain, and the actual kernel parameters. In
Fig. 5, lines 4 to 5 show the function declaration and lines 37 to 38 the function
definition.

Parallel coarse-grained function: The second one (wrapper xphi ##name)
performs the offloaded coarse-grained parallel computation. It receives a vari-
able number of parameters. The first one is the controller object, the second
one the domain where computation should be performed and the rest are the
data structures needed for computation. Lines 10 to 12 of Fig. 5 show how the
information is extracted from the parameters (auxiliary macros for the trans-
formations are defined in Fig. 4). The next of the body of the function defines
the offload region. The offload pragma transfers the data-structure handlers, the
domain represented by a Thread object, and the pointer to the actual data for
each HitTile. As in the detachment operation, in order to determine the data
previously transferred, the offload pragma uses the in modifier to make the data
pointer available in the Xeon Phi, and sets the length to 0 to prevent any data
from being copied (see line 13 of Fig. 4). Inside the offload region, the HitTile
handlers update their data pointer to the actual transferred data (line 15), and
the parallel computation is performed on the specified domain (lines 16 to 28).

Task addition function: The third one is named name## xphi. It is the
internal implementation of a kernel launch. In its body, the function implements
the task addition to the internal controller queue. The information needed for
the addition is: The controller object, the pointer of the coarse-grain parallel

1 /* Auxiliar macros for kernels with one parameter */
2 #define STRINGIFY(a) #a
3 #define XPHI_WRAPPER_PARAMS1(io1, type1, value1) \
4 type1 value1
5 #define XPHI_WRAPPER_VALUES1(io1, type1, value1) \
6 value1
7 #define XPHI_WRAPPER_CAST1(io1, type1, value1) \
8 type1 value1_p = (type1)args[2]; \
9 HitTile value1_t = *(HitTile*)value1_p; \

10 float *data_tile1=(float*) (value1_t).data;
11 #define XPHI_OFFLOAD_PARAMS1(MIC, io1, type1, value1) \
12 offload target(mic:MIC) in(threads:length(3)) in(value1_t) \
13 in(data_tile1:length(0) alloc_if(0) free_if(0))
14 #define XPHI_POINTERS1(io1, type1, value1) \
15 HitTile value1 = value1_t; \
16 value1.data = data_tile1;

Fig. 4. Auxiliary macros defined for a one kernel parameter.

1 /* Macro of the kernel definition */
2 #define KERNEL_XPHI(name, nparams, params...) \
3 /* Single-element function declaration */ \
4 static void __attribute__((target(mic))) \
5 kernel_xphi_##name(Thread threadId, XPHI_WRAPPER_PARAMS##nparams(params)); \
6 \
7 /* Parallel coarse-grained function */ \
8 static inline void wrapper_xphi_##name(void** args){ \
9 int MIC=cntrl->MIC; \

10 CntrlXPHI* cntrl = (CntrlXPHI*) args[0]; \
11 Thread* threads = (Thread*)args[1]; \
12 XPHI_WRAPPER_CAST##nparams(params); \
13 _Pragma(STRINGIFY(XPHI_OFFLOAD_PARAMS##nparams(MIC, params))) \
14 { \
15 XPHI_POINTERS##nparams(params); \
16 _Pragma("omp parallel"){ \
17 int i,j,k; \
18 Thread threadId; \
19 _Pragma("omp for private(i,j,k)") \
20 for(i=0; i<=threads->x; i++){ \
21 for(j=0; j<=threads->y; j++){ \
22 for(k=0; k<=threads->z; k++){ \
23 threadId.x = i; \
24 threadId.y = j; \
25 threadId.z = k; \
26 kernel_xphi_##name(threadId, XPHI_WRAPPER_VALUES##nparams(params)); \
27 } } } \
28 }} \
29 \
30 /* Task addition function */ \
31 void name##_xphi(CntrlXPHI* cntrl, Thread thread, \
32 XPHI_WRAPPER_PARAMS##nparams(params)){ \
33 CntrlXPHIAddTask(cntrl, wrapper_xphi_##name, thread, nparams, \
34 XPHI_WRAPPER_VALUES##nparams(params)); \
35 } \
36 /* Single-element function definition */ \
37 static void __attribute__((target(mic))) \
38 kernel_xphi_##name(Thread threadId, XPHI_WRAPPER_PARAMS##nparams(params)); \

Fig. 5. Functions internally generated by the Xeon Phi kernel definition : 1) Function
to apply to each element: kernel xphi ##name; 2) Function that executes an enqueued
kernel in parallel: wrapper xphi ##name; 3) Function to add a task to the Controller
queue: name## xphi.

computational function, and its execution parameters (the index space where the
application will be executed, the number of kernel parameters, and the actual
kernel parameters). See lines 31 to 35 of Fig. 5.

4.3 Execution model: Queue management and Kernel launching

As opposite as the CUDA programming model, the offloading MIC coprocessor
programming model does not provide a queue system to manage asynchronous
kernel launchings. We have developed a FIFO queue system for the asynchronous
execution of several kernel launches on the MIC coprocessor.

When a MIC controller object is created, an asynchronous omp task is
launched. The program of this omp task is checking the possible new task queue
additions. When there is a task in the queue, the controller dispatches/executes
it, and restarts the checking again. The checking is implemented using omp locks
avoiding thus active waits. The execution of a task on the MIC is carried out
simply by the execution of the already offloaded parallel wrapper xphi ##name
generated function, that is associated with the task that is being executed. The
function pointer, and its execution parameters are determined in the kernel
launching.

The last task added is the controller destruction. It stops the checking, fin-
ishes the omp task and, destroys the controller.

5 Experimental study

We perform an experimental study to evaluate the potential advantages and
constraints of the integration of the MIC coprocessor in a homogeneous library
for CPU-GPU heterogeneous systems. The section consists of: (1) a description
of the considered study cases, (2) a performance study of our proposal, and (3)
a comparison of the development effort needed between programming using the
new library extension or using device vendor programming models.

5.1 Study cases

We select four benchmarks to test the extension proposed in this work.
Matrix addition The Matrix addition consists of the sum of two different

matrices, storing the result in a third one: C = A+B. Our MIC implementation
for this problem is similar to the GPU version. Only one generic kernel is defined
by the programmer.

Black-Sholes The Black-Scholes formula is based on a mathematical model
of a financial market. The result estimates the price of European-style options.
The program, obtained from the CUDA Toolkit Samples, independently applies
the formula to the input values of an array, calculating and storing their results.
In our implementation, the same generic kernel definition is used for both GPUs
and MICs accelerators.

Code Mat. Black- Mat. Mandel-
Add. Scholes Mult. brot

Size 50002 106 40962 40002

LEO Code 1.67 0.60 2.59 6.49

Ctrl. Code 1.43 0.74 2.88 6.86

Code Mat. Black- Mat. Mandel-
Add. Scholes Mult. brot

Size 200002 5 ∗ 107 81922 200002

LEO Code 24.99 5.49 19.87 148.47

Ctrl. Code 24.65 5.01 19.27 147.36

Table 1. Performance results (seconds) comparing LEO reference codes with Controller
codes. Experiments executed in a Intel Xeon E5-2620 v2 @2.1GHz, 32Gb DDR3 main
memory, and with the Xeon Phi Knights Corner 3120A coprocessor. Compiler used:
ICC 17.0.0 version with the flags -O3, and -fopenmp.

Case
Version

Lines
#Tokens

Cyclomatic
study of Code Complexity

Matrix LEO 26 210 3
addition Ctrl.MIC 35 317 1

Black LEO 80 525 6
Scholes Ctrl.MIC 89 693 5
Matrix LEO 23 217 4
mult. Ctrl.MIC 37 337 3

Mandelbrot LEO 32 319 5
Ctrl.MIC 46 488 4

Case CUDA → Ctrl.GPUs →
study Offloading Ctrl.MICs

Common 13% Common 92%
Matrix Delete 30% Delete 0%

Addition Change 57% Change 8%
Common 53% Common 69%

Black- Delete 25% Delete 21%
Scholes Change 22% Change 10%

Common 8% Common 49%
Matrix Delete 43% Delete 3%

multiplication Change 48% Change 47%
Common 32% Common 97%

Mandelbrot Delete 61% Delete 0%
Change 7% Change 3%

Table 2. Left: Measurements of the development effort metrics for the codes of the
study cases. Right: Comparison in terms of the percentage of words that are common
and can be reused, should be deleted, or should be changed, when porting codes between
GPU and MIC versions using the native models, or the Controller library.

Matrix multiplication The Matrix multiplication computes the product
of two different matrices, storing the result in a third one: C = A ∗B. The read
patterns on A and B matrices should be adapted to exploit coalescence in GPUs,
and properly exploit caches and vectorization on MICs. These features lead
to interesting optimizations in both accelerators. Our implementation declares
different specialized and optimized kernels for each kind of device.

Mandelbrot algorithm The Mandelbrot algorithm is used to compute,
create, and display fractal geometric images. In our implementation, the same
generic kernel definition is used for both GPUs and MICs accelerators.

5.2 Performance study

In this section we show the low performance overhead produced by the MIC
library extension implementation of our proposal, using the four study cases
previously described.

Table 1 shows the times spent (including computation and data transfers)
for the four benchmarks with two different problem sizes. Codes have been im-
plemented directly by the Intel Language Extensions for Offload (LEO), using
OpenMP internally, and by our proposal. Results for groups of CPU-cores and

GPUs were presented in [1], indicating a penalty performance up to 0.4 seconds.
We can observe on Tab. 1 that the execution time overhead derived from using
our MIC proposal is also up to 0.4 seconds, that is the time spent by the queue
system. For bigger problem sizes, some performance gain is obtained compared
with the reference codes due to Hitmap optimizations in the internal manage-
ment of the data structures. But, in general terms, the performance obtained by
using our approach is similar to the native programming models.

5.3 Development effort measures

This section includes two development effort comparisons between the proposed
implementation of the MIC Controller library and references codes. For the Xeon
Phi reference codes we use LEO, using OpenMP internally, and CUDA for the
GPU reference codes.

In the first comparison, found on the left of Tab. 2, we apply three classical
development effort metrics: the number of lines of code, the number of tokens,
and the McCabe’s cyclomatic complexity [11]. The metrics are applied to the
parts of code that include: kernel definitions, kernel characterizations, the coor-
dination host code in the main program, and data structures management. We
observe that the use of the Controller library implies less cyclomatic complexity,
but more number of lines and tokens in the implementation.

However, the goal of the library is to provide an homogeneous interface to
deal with any kind of accelerator. For this reason, we also compare on the right
table of Tab. 2 the effort needed to transform a code in order to be executed
in a different device. We analyze the percentage of words of each implemen-
tation that are common and can be reused, should be deleted, or should be
changed. The largest changes are on the matrix multiplication benchmark, be-
cause of the implementation of different optimized kernels for each device. For
the other benchmarks, we see that using our proposal the programming effort
needed to change the target computational device is extremely low. These mea-
sures demonstrate the abstraction and standardization capacity of our proposed
library implementation.

6 Conclusions

In this paper we propose an extension to support the Intel Xeon Phi coprocessors
in a homogeneous programming model for CPU-GPU heterogeneous systems,
that is implemented as an agnostic library. We have completely integrated the
support for a MIC coprocessor in the library, without adding any constraint to
the programming model.

The experimental study shows the high flexibility of our approach, that im-
plies a minimum programming effort for changing the execution target devices,
without penalizing the performance.

Acknowledgment

This research has been partially supported by MICINN (Spain) and ERDF program
of the European Union: HomProg-HetSys project (TIN2014-58876-P), and COST Pro-
gram Action IC1305: Network for Sustainable Ultrascale Computing (NESUS).

References

1. Alonso-Mayo, A., Ortega-Arranz, H., Gonzalez-Escribano, A.: Communicators: An
abstraction to ease the use of accelerators. In: High-Level Programming for Het-
erogeneous and Hierarchical Parallel Systems (Jan 2016)

2. Contassot-Vivier, S., Vialle, S.: Algorithmic scheme for hybrid computing with
cpu, xeon-phi/mic and gpu devices on a single machine. Parallel Computing: On
the Road to Exascale 27, 25 (2016)

3. Deepika, H., Mangala, N., Babu, S.C.: Automatic program generation for heteroge-
neous architectures. In: Advances in Computing, Communications and Informatics
(ICACCI), 2016 International Conference on. pp. 102–109. IEEE (2016)

4. Diogo, M., Grelck, C.: Towards heterogeneous computing without heterogeneous
programming. In: International Symposium on Trends in Functional Programming.
pp. 279–294. Springer (2012)

5. Dolbeau, R., Bihan, S., Bodin, F.: Hmpp: A hybrid multi-core parallel program-
ming environment. In: Workshop on general purpose processing on graphics pro-
cessing units (GPGPU 2007). vol. 28 (2007)

6. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.:
Hpc programming on intel many-integrated-core hardware with magma port to
xeon phi. Scientific Programming 2015, 9 (2015)

7. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.R.: An extensible sys-
tem for multilevel automatic data partition and mapping. IEEE Transactions on
Parallel and Distributed Systems 25(5), 1145–1154 (2014)

8. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: A uniform approach for pro-
gramming distributed heterogeneous computing systems. Journal of parallel and
distributed computing 74(12), 3228–3239 (2014)

9. Hijma, P., Jacobs, C.J., van Nieuwpoort, R.V., Bal, H.E.: Cashmere: Heteroge-
neous many-core computing. In: Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. pp. 135–145. IEEE (2015)

10. Karimi, K., Dickson, N.G., Hamze, F.: A Performance Comparison of CUDA and
OpenCL. arXiv preprint arXiv:1005.2581 (2010)

11. McCabe, T.J.: A complexity measure. Software Engineering, IEEE Transactions
on (4), 308–320 (1976)

12. Nvidia, C.: Cublas library. NVIDIA Corporation, Santa Clara, California 15, 27
(2008)

13. Pérez, B., Bosque, J.L., Beivide, R.: Simplifying programming and load balancing
of data parallel applications on heterogeneous systems. In: Proceedings of the 9th
Annual Workshop on General Purpose Processing using Graphics Processing Unit.
pp. 42–51. ACM (2016)

14. Riebler, H., Vaz, G., Plessl, C., Trainiti, E.M., Durelli, G.C., Del Sozzo, E., San-
tambrogio, M.D., Bolchini, C.: Using just-in-time code generation for transparent
resource management in heterogeneous systems. In: Research and Technologies
for Society and Industry Leveraging a better tomorrow (RTSI), 2016 IEEE 2nd
International Forum on. pp. 1–5. IEEE (2016)

15. Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering 12(1-3),
66–73 (2010)

16. TOP500.org: Top500 supercomputing sites (Jan 2017), on http://www.top500.

org/

17. Viñas, M., Fraguela, B.B., Andrade, D., Doallo, R.: Towards a high level approach
for the programming of heterogeneous clusters. In: Parallel Processing Workshops
(ICPPW), 2016 45th International Conference on. pp. 106–114. IEEE (2016)

18. Wu, S., Dong, X., Chen, H., Dang, B.: Ocls: A simplified high-level abstraction
based framework for heterogeneous systems. In: Advances in Parallel and Dis-
tributed Computing and Ubiquitous Services. pp. 57–65. Springer (2016)

