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Abstract Gamow states are vector states for the pure decaying part of a quantum
resonance. We review and analyze the properties of Gamow vectors in different rep-
resentations. In particular, we discuss the controversial problem of assigning a mean
value of the energy for a Gamow state from several points of view. The question on
whether a Gamow state is a pure state or not is also analyzed here, as has relevance
on the assignation of a non-zero value for the entropy for a Gamow state.

Keywords Quantum resonances · Gamow states · Energy averages on Gamow
states

1 Introduction

As is well known, the decay law of a quantum resonance or, equivalently, a quantum
decaying state is approximately exponential for almost all times within the interval of
observation. Only for very short or very large times, it is possible to detect deviations
from this exponential behavior [1–3]. For those times for which the exponential decay
dominates, it is often quite convenient to assign to the decaying system a vector state
called the Gamow state or Gamow vector, with the property of having an exponential
decay at all times after an origin of times that we identify with t = 0. We shall denote
the Gamow vector as ψD (D meaning decaying).

However, this creates some formal difficulties. To begin with, an exponential decay
law means that the non-decay probability P(t) := |〈ψD|e−i t H |ψD〉|2 is an exponen-
tial of the type e−�t , for t ≥ 0 and � > 0. Then, the non-decay amplitude should be
of the form:
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〈ψD|e−i t H |ψD〉 = eiϕ(t)e−�t/2 〈ψD|ψD〉 = eiϕ(t)e−�t/2, (1)

where eiϕ(t) is a time dependent phase. For the moment, we may assume ψD be
normalized to one. Then, compute formally the derivative of (1) with respect to time
at t = 0. The result is

d

dt
〈ψD|e−i t H |ψD〉

∣
∣
∣
∣
t=0

= −i〈ψD|H |ψD〉 = iϕ′(0)− �, (2)

or

〈ψD|H |ψD〉 = −ϕ′(0)− i�. (3)

Therefore the average of the Hamiltonian H on the Gamow state ψD is a complex
number, which is non-sense because H is self adjoint. In this spirit, Nakanishi [4]
defined the Gamow vector as an eigenvector of the total Hamiltonian H = H0 + V
with complex eigenvalue: HψD = (ER −i�/2)ψD . Here, ER is the resonance energy
and � the width. In this case, the formal time evolution of ψD would be e−i t HψD =
e−i t ER e−t�/2ψD , which contradicts the fact that e−i t H is unitary, i.e., that H is self
adjoint. Then, the non-decay probability is e−t�/2, i.e., a decaying exponential.

This description looks somehow convenient, but at the same time it is definitively
wrong in the context of a description of pure states as normalizable vectors in a Hilbert
space. As a linear operator on a Hilbert space, a self adjoint Hamiltonian cannot have
complex eigenvalues. Fortunately, this is not the end of the story. If we enlarge the
space of states out of the Hilbert space, we may find that the extended Hamiltonian
had complex eigenvalues with well defined eigenvectors.

The mechanism to find complex eigenvalues for self adjoint Hamiltonians is well
known and is based in the concept of Gelfand triplet or rigged Hilbert space (RHS).
In brief, a RHS is a tern of spaces [5–9]:

� ⊂ H ⊂ �×, (4)

where (i) H is the Hilbert space of states of the quantum system under consideration.
The Hamiltonian H is a self adjoint operator on H. (ii) � is a dense subspace in H
contained in the domain of H and endowed with a topology stronger than the Hilbert
space topology. (iii) �× is the space of all continuous antilinear (in order to keep the
Dirac notation in use) mappings (functionals) on�, with values in the complex plane
C. The action of F ∈ �× on ϕ ∈ � is a complex number that we denote as 〈ϕ|F〉.

The extension of H into �× is given by the following duality formula: If ϕ ∈ �,
F ∈ �×:

〈Hϕ|F〉 = 〈ϕ|H F〉. (5)

Here, we shall also denote by H the extension of H for simplicity. The choice of the
space� is not unique and henceforth�× is not unique either. The extension of H into
�× may have solutions of the eigenvalue problem with complex eigenvalues, because
the restriction of self adjointness does not apply there. Some constructions allow the
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extension of the time evolution operator e−i t H into �×, either for all t ∈ R or for
t ≥ 0 [10–12]. In these constructions, formulas like e−i t HψD = e−i t ER e−t�/2ψD

make sense.
In passing, we should recall that if the non-decay probability of a vector state ψ ,

defined as P(t) = |〈ψ |e−i t H |ψ〉|2, is an exact exponential of the type e−t� , then,
its energy distribution (essentially the square of the modulus of the wave function
in the energy representation ψ(E)) must have the Breit-Wigner form, |ψ(E)|2 ∝
[(E − ER)

2 +�2/4]−1 for all real values of E , where the sign ∝ means “proportional
to”. This is not possible if ψ is a vector in the Hilbert space of pure states, since the
Hamiltonian is semibounded. This means that ψ(E) should be zero below a certain
threshold, usually taken equal to zero [13].

Now, the point is that ψD is usually not a normalizable vector, so that expressions
like 〈ψD|ψD〉 = 1 or worse 〈ψD|A|ψD〉, where A is the Hamiltonian or any other
observable, do not make sense in general.

Several attempts have been made in order to propose either an expression for
〈ψD|ψD〉 [14–16], or for 〈ψD|A|ψD〉 [17–19]. The definition by Berggren [17,18] is
assumed to be valid for any observable A and not only for the Hamiltonian. Here, we
focus our attention on the average of the Hamiltonian on a Gamow vector, for which
four different results have been proposed:

• This idea was discussed in [4] or in [20]. If H |ψD〉 = (ER − i�/2)|ψD〉 and
〈ψD|H = (ER + i�/2)〈ψD|, then, 〈ψD|H |ψD〉 = (ER − i�/2)〈ψD|ψD〉 =
(ER + i�/2)〈ψD|ψD〉. This would imply that 〈ψD|H |ψD〉 = 0. Again, the
difficulty lies on the ill definition of 〈ψD|ψD〉.

• Along the decaying Gamow vector, one can define its time reversal, the growing
Gamow vector ψG , which is a functional with the following properties: HψG =
(ER +i�/2)ψG and e−i HtψG = e−i t ER et�/2 ψG . In principle, one can define the
bracket 〈ψG |ψD〉, which can be normalized to one. We shall show how this can
be done within the context of the Friedrichs model later. Then, 〈ψG |H |ψD〉 =
(ER − i�/2)〈ψG |ψD〉 = ER − i�/2 may look like a reasonable definition.
However, this mean value contains two terms, one is the resonance energy ER

and the other � is the width, which is assumed to be the inverse of the half life
time τ = �−1. Simultaneous measurements of these two values are supposed to
be forbidden by the time-energy incertitude principle. Therefore, although well
defined, this definition for the mean value of the energy has an uncertain physical
meaning.

• The approach 〈ψD|H |ψD〉 = ER is largely discussed in [19].
• According to the Berggren definition [17,18], one has 〈ψD|H |ψD〉 = ER+o(�2).

Note that these two latter proposals coincide at order zero on �. This one can be
generalized to other observables [17–19]. See a discussion on this approach in
[21].

1.1 Motivation and Organization

Resonances occur when the analytic continuation of the S-operator shows poles with
non-vanishing imaginary parts. In the energy representation, these complex poles
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appear in complex conjugate pairs of the same multiplicity. Along the present paper,
we are always assuming that this multiplicity is equal to one for simplicity. A defin-
ition of resonances in terms of the analytic continuation of the resolvent of the total
Hamiltonian is also possible [22,23]. Although not always [1], these two definitions
are usually equivalent. This is the case for the Friedrichs model, which we shall briefly
describe in Sect. 2.

In the first paragraph of the present Introduction, we have mentioned that deviations
from the exponential decay law have been detected only for very short or very large
times, as compared with the mean life. From the theoretical point of view, this happens
whenever the decaying state is represented by a normalizable vector in Hilbert space
ψ [1]. It is always possible to split this vector space into a sum of two contributions
ψ = ψD + ψ B , where ψD is the decaying Gamow vector and ψ B is a background
term, which are supposed to be responsible for these deviations. In principle, the vector
state ψ can be always chosen in some way so that ψ B be small in some sense, and if
this were the case, the main contribution to the vector state ψ is given by its “Gamow
part”, ψD .

Most of the period of observation belongs to those intermediate times for which
the decay is approximately exponential. Then, the use of ψD as vector state is a good
approximation. We should be able to evaluate observable averages on Gamow states,
or at least to have a way to propose definitions for these averages. The most obvious
case, as we have discussed earlier is the energy average values. As an intermediate
step, we need some well posed definition of scalar products between Gamow vectors
or between a Gamow vector with itself.

In order to understand the origin of these difficulties better, we recall the structure
of the Gamow vectors for the simplest Friedrichs model. In this case, scalar products
(that should be more properly called brackets) of the form 〈ψD|ψD〉 or 〈ψG |ψG〉
cannot be constructed with the usual machinery of the model. This is due to the fact
that the explicit expression for the Gamow vectors contains distributional terms that
cannot be multiplied and come from the explicit form of the background. Since the
effect of the background is small over large time intervals, it may be convenient to stay
in the space spanned by Gamow vectors and get rid of the background contribution.

Finally, we address to the following question: Are Gamow states pure states? Since
they are expressed as vector states and not as densities, a naive answer would have
been yes. Pure states have zero entropy. On the other hand, Gamow states decay (either
to the future likeψD or to the past likeψG) and decay exponentially. This may suggest
that the entropy of a Gamow state cannot be zero. A non-zero entropy for decaying
states was suggested in [20]. With the use of an algebraic formalism developed by
Antoniou et al. [24] in order to study the so called singular diagonal states [25–27],
we show that Gamow states cannot be pure states. In this context, Gamow states can
be expressed as functionals over an algebra, at least in three different forms. Each of
these forms gives different averages for the energy of Gamow vectors and all these
averages have been already discussed in the literature.

This paper is organized into this Introduction and other five sections as follows:
In Sect. 2, we discuss the difficulties to define brackets (or scalar products) among
Gamow vectors in the Friedrichs model. We see that in some cases this is possible
while in others do not.
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In Sect. 3, we get rid of the background and work in spaces spanned by Gamow
vectors. In this case, it is trivial to define scalar products and other brackets between
vectors of these spaces. Their interest lies in the possibility of proposing well defined
energy averages for some of the possibilities discussed in the literature.

The explicit construction of normalizable vectors in the energy representation that
approximates Gamow vectors is made in Sect. 4, where we discuss the meaning of this
approximation.

Finally, in Sect. 5 we show that a Gamow vector can be given as a functional over
an algebra of observables [24,28,29]. We show that this can be done, at least, in three
different forms and this is totally new. Each one of these forms give different values for
the energy averages. None of these three possible functionals representing a Gamow
state is a pure state.

The paper is closed with a section on concluding remarks.

2 The Friedrichs Model and More

It is interesting the use of the Friedrichs model in order to understand the difficulties
for a rigorous definition of brackets between Gamow vectors. In fact, the Friedrichs
model is the first and the simplest rigorous model for quantum decay phenomena. It
is much more than a toy model, since it serves as to appreciate the basic features of
quantum decay. The basic Friedrichs model and its successive refinements serve as
general models for both relativistic and non-relativistic quantum decay [12,22,30,31].
In order to make this article self contained, let us recall the basic features of the simplest
Friedrichs model.

A quantum model with resonances, has two Hamiltonians, a free Hamiltonian H0
and a total or perturbed Hamiltonian H = H0 + V , where V is a potential which is the
interaction responsible for the production of resonances. In the case of the simplest
Friedrichs model, H0 has a non-degenerate continuous spectrum from 0 to ∞ and one
bound state embedded in the continuous spectrum. The potential V intertwines the
discrete and the continuous spectrum of H0. As a consequence, the bound state of H0
becomes unstable. Explicitely,

H0 = ω0|1〉〈1| +
∫ ∞

0
dωω|ω〉〈ω|, H0|1〉 = ω0|1〉, H0|ω〉 = ω|ω〉, (6)

with ω0 > 0 and ω ∈ [0,∞). The potential V is

V =
∫ ∞

0
f (ω) [|1〉〈ω| + |ω〉〈1|] dω, (7)

where f (ω) is square integrable and can be chosen real without loss of generality. It
is called the form factor. In order that the forthcoming discussion be valid, we need
some extra mathematical assumptions on the form factor such as f (ω0) 	= 0 and that
the function f 2(ω) be analytically continuable on an open set containing the positive
semiaxis R

+ ≡ [0,∞).
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The total Hamiltonian is H = H0 + λV , where λ is a real constant (usually small
so that perturbation theory can be applied) called the coupling constant. The total
Hamiltonian H has purely absolutely continuous spectrum for λ > 0, which is equal
to R

+ and has no real eigenvalues.
As a result of the interaction, the bound state |1〉 of H0 becomes unstable. Today,

it is commonly accepted that unstable quantum states and quantum resonances are
the same physical objects, so that we shall refer to both indistinctly. A discussion on
this can be found for instance in [32,33]. Resonances are usually obtained as poles of
the analytic continuation on the complex plane of a multivalued function called the
reduced resolvent, which is:

ϕ(z) :=
〈

1

∣
∣
∣
∣

1

H − z

∣
∣
∣
∣
1

〉

. (8)

This function is analytic on the entire complex plane, except for a branch cut on
the positive real semiaxis R

+ ≡ [0,∞). It admits analytic continuations through the
cut from above to below (i.e., from the upper half plane into the lower half plane) and
from below to above (from the lower into the upper). These analytic continuations
cannot coincide with the values that f (z) has on these half planes, so that it is often
convenient the use of a two sheeted Riemann surface to support the values for ϕ(z).

Under the conditions stated before, the analytic continuation from above to below
of the function ϕ(w) has a simple pole at the point given by the following integral
equation [22,34]:

zR = ω0 +
∫ ∞

0
dω

λ2 f 2(ω)

[zR − ω]+ := ω0 +
∫ ∞

0
dω

λ2 f 2(ω)

zR − ω
− 2π i λ2 | f (zR)|2.(9)

Let us recall that we have assumed that f 2(ω) is analytically continuable, so that
| f (zR)|2 is well defined. In addition the analytic continuation of ϕ(ω) from below
to above has a pole at z∗

R , where the asterisk denotes complex conjugation, so that
| f (z∗

R)|2 is also well defined. The Gamow vectors ψD and ψG are obtained by the
following formulas:

|ψD〉 = N

[

|1〉 +
∫ ∞

0
dω

λ f (ω)

[zR − ω]+ |ω〉
]

(10)

|ψG〉 = N

[

|1〉 +
∫ ∞

0
dω

λ f (ω)

[z∗
R − ω]− |ω〉

]

, (11)

where N is a normalization constant, which is assigned by convenience. These vectors
are functionals on some test function spaces, as discussed in several articles [12,31,34].
If we call�− and�+, respectively, the test vector space forψD andψG andφ± ∈ �±,
the meaning of (10) and (11) is:

〈φ−|ψD〉 = N

[

〈φ−|1〉 +
∫ ∞

0
dω

λ f (ω)

[zR − ω]+ 〈φ−|ω〉
]

(12)
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〈φ+|ψG〉 = N

[

〈φ+|1〉 +
∫ ∞

0
dω

λ f (ω)

[z∗
R − ω]− |〈φ+|ω〉

]

. (13)

Note that 〈φ−|ω〉 and 〈φ+|ω〉 are functions of ω ∈ R
+. The products 〈φ−|1〉 and

〈φ+|1〉 are well defined as scalar products on Hilbert space. Then, the meaning in the
plus sign in the denominator of (12) has been explained in (9). The minus sign on the
denominator of (13) has a similar meaning.

Unfortunately, there is no way to define 〈ψD|ψD〉 or 〈ψG |ψG〉 using the expres-
sions (10) and (11) along with 〈ω|ω′〉 = δ(ω − ω′) and 〈1|ω〉 = 0. Take for instance
〈ψD|ψD〉. According to (10), we should have

〈ψD|ψD〉 = N 2
[

1 +
∫ ∞

0
dω

λ2 f 2(ω)

[z∗
R − ω]− [zR − ω]+

]

. (14)

The integral in (14) denotes the action on the function f 2(ω) of the product of two
distributions 1/[z∗

R − ω]− and 1/[zR − ω]+ and this product is not well defined in
general. Thus, an expression like 〈ψD|ψD〉 cannot be properly defined in the mere
framework of the Friedrichs model. Same can be said about 〈ψG |ψG〉.

However as mentioned earlier, expressions like 〈ψD|ψG〉 and 〈ψG |ψD〉 can be
well defined by using (10) and (11) and their conjugates (for details see [35]). This
gives:

〈ψD|ψG〉 = N 2

[

1 +
∫ ∞

0
dω

λ2 f 2(ω)

[z∗
R − ω]2−

]

, (15)

and a similar expression for 〈ψG |ψD〉 (replace the denominator of the function under
the integral by [zR − ω]2+). The integral in (15) is well defined as is the action on
f (ω) of the derivative of the distribution 1/[z∗

R − ω]− (or 1/[zR − ω]+ if we had
〈ψG |ψD〉), in the usual distributional sense. Then, the constant N 2 can be determined
so that 〈ψD|ψG〉 = 1 = 〈ψG |ψD〉.

We can also construct a Friedrichs model with a finite number, N , of resonances
[31,36]. In this case, the total Hamiltonian is H = H0 + λV with:

H0 :=
N

∑

i=1

ωi |i〉〈i | +
∫ ∞

0
ω|ω〉〈ω| dω,

V :=
N

∑

i=1

∫ ∞

0
fi (ω) [|ω〉〈i | + |i〉〈ω|] dω, (16)

where the form factor functions { fi (ω)} are square integrable on [0,∞) and analyt-
ically continuable, just as f (ω). The eigenvalues ω1, . . . , ωN of H0 are assumed to
be positive. Furthermore, if i 	= j , one also assumes that |i〉 	= | j〉, so that the energy
levels of H0 are non-degenerate. This assumption is made for simplicity only. As in
the case of only one eigenvalue, when the potential λV is switched on, the eigenvalues
of H0 are transformed into resonances. Let us call z1, z2, . . . , zN to the respective
resonance poles. Their corresponding decaying Gamow vectors have the form:
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|ψD
i 〉 = |i〉 +

∫ ∞

0
dω

λ f (ω)

[zi − ω]+ |ω〉, i = 1, 2, . . . , N , (17)

and a similar equation for the growing Gamow vectors, |ψG
i 〉, i = 1, 2, . . . , N . We

note that, in this context, not only 〈ψD
i |ψD

i 〉, i = 1, 2, . . . , N , but even expressions
like 〈ψD

i |ψD
j 〉, i 	= j , etc are not defined.

Leaving aside the Friedrichs model, for some other quantum models we may find
a wave function valid for unstable states. This wave function plays the role of Gamow
vector. This is the case when H0 is the Hamiltonian for the free particle and H =
H0 + V , where V = V (ρ) is a spherically symmetric potential of short range. In this
case, wave functions for unstable states have a radial part that behaves asymptotically
as eκρ , where ρ is the distance to the center of forces and κ > 0. In this case, some
brackets among Gamow states have been defined. Here, the basic tool is the well
known Zeldovich regularization method [37]. See details in [14,15] and another point
of view in [38].

3 The Space of Gamow Vectors

So far, we have seen some of the difficulties arisen when we try to define brackets
among Gamow vectors. The situation looks like worse when we note that, even in the
cases in which regularized brackets can be defined, the meaning of energy averages
like 〈ψD|H |ψD〉 or 〈ψG |H |ψG〉 is not clear.

From our experience with the Friedrichs model, it seems that these difficulties
may come from the consideration of quantum decaying states as open systems where
the background (consequence of a series of effects responsible for the deviations of
the pure exponential decay law) plays a substantial role. However, we have already
mentioned that, for large periods of experimentation, the decay is (approximately)
exponential. Thus suggest that the assumption that the set of decaying states forms a
closed system is not a bad approximation. At least for times neither too short or too
large.

This idea drastically changes the scenario, as it allows us to consider the space
spanned by the Gamow vectors as the truly space of states for a system in which our
solely interest is focused into these unstable quantum states.

Our experience shows that it is always possible the separation between the Gamow
state and the background [10–12]. Then, let ψ be a quantum (normalizable) state,
such that its survival probability P(t) = |〈ψ |e−i t H |ψ〉|2 is, approximately with a
good degree of accuracy, a decaying exponential for almost all values of t > 0 (with
exception of t ≈ 0 or t large). Then, one can decompose ψ as

ψ =
∑

i

aiψ
D
i + ψ B, (18)

where {ψD
i } are the decaying Gamow vectors, andψ B the (non-normalizable) quantum

state vector for the background. Along to this decomposition, there is another one that
makes use of the growing Gamow vectors ψG

i [11,12]. Here we have that HψD
i =
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ziψ
D
i and HψG

i = z∗
i ψ

G
i , where zi and z∗

i are the pair of poles of the analytic
continuation of the S-matrix, S(E), characterizing the i-th resonance. Gamow vectors
ψD

i and ψG
i belong to a convenient space of functionals [11,12].

To understand the situation better, let us assume that we have only one resonance in
the sum (18), so that it has the form ψ = aψD +ψ B . Then, the non-decay amplitude
is now:

〈ψ |e−i t H |ψ〉 = 〈ψ |e−i t H
(

a|ψD〉 + |ψ B〉
)

= a〈ψ |e−i t H |ψD〉 + 〈ψ |e−i t H |ψ B〉
= a e−i t ER e−�t/2 〈ψ |ψD〉 + 〈ψ |e−i t H |ψ B〉. (19)

This formula shows that the background is responsible for all possible deviations
of the exponential decay.

A technical point: Since ψD is not a vector in Hilbert space, but a functional on a
space of test vectors, the question is if 〈ψ |ψD〉 is well defined for any normalizable
ψ . The answer is: No. However, since the space of test vectors, in which ψD acts,
is dense in the total Hilbert space, the error of replacing ψ by a test vector can be
arbitrarily small.

Then, within the large time interval in which exponential decay (or oscillating decay
for the case of more than one resonance) is dominant, we may drop the background
and consider the effect of resonance poles only. The oscillating decay would be an
effect of interference between resonances [36].

Along the decomposition (19), we have a spectral decomposition for the total Hamil-
tonian H , which can be written as:

H =
∑

i

zi |ψD
i 〉〈ψG

i | + B P, (20)

where B P stands for “background part”. Its explicit form is irrelevant as we are only
interested in the Gamow contribution, given by the sum in (20), and therefore we shall
drop B P out.

It is at this point when we start considering the space of unstable quantum states as
a closed system.

Note that in the expression (20) there is no trace of a property like Hermiticity. As a
matter of fact, the formal Hermitian conjugate of (20), where we drop the background
term, is given by:

H† =
∑

i

z∗
i |ψG

i 〉〈ψD
i |. (21)

In the general study on the construction of Gamow vectors, we made use of two
Gelfand triples, �± ⊂ H ⊂ �×± [11,12], so that ψD

i ∈ �×+ and ψG
i ∈ �×−, for all

i . Therefore, ψD
i are functionals on �+ and ψG

i are functionals on �−. Then, note
that H as in (20) acts on vectors in�+ and transforms them in vectors in�×− and H†

as in (21) acts on vectors of �− and transforms them on vectors in �×+. Thus for any
ϕ± ∈ �±, we have:
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Hϕ− =
∑

i

zi |ψD
i 〉〈ψG

i |ϕ−〉 ∈ �×+, H†ϕ+ =
∑

i

z∗
i |ψG

i 〉〈ψD
i |ϕ+〉 ∈ �×−. (22)

This shows that H and H† must belong to different spaces. If we call L(�,�) to
the space of continuous linear functionals from the topological vector space � into
the topological vector space �, we conclude that [39]

H ∈ L(�−,�×+); H† ∈ L(�+,�×−), (23)

so that they belong to different spaces. For our purposes, we would like to have a
formally Hermitian Hamiltonian. Its construction is simple and we shall do it in the
sequel.

To this end, let us consider the subspace HD spanned by the Gamow vectors ψD
i ,

in one side, and HG spanned by ψG
i in the other, i = 1, 2, . . . , N . The number

N of resonances can be either finite or infinite, but in the studied case of multiple
resonance Friedrichs model, N is finite. However, in realistic models in non-relativistic
quantum mechanics, the consideration of an infinite number of resonances makes no
clear physical sense. Since resonance poles are isolated, two situations may happen
(independently or at the same time):

(i) Either the imaginary part of the resonance poles is, save for a finite number of
them, too big. Then, the mean life for these resonances is negligible and they
become unobservable.

(ii) Or the real parts of the resonance poles become too large. These real parts are
identified with the resonance energies. These resonances are in the relativistic
regime, which we have discarded from our analysis.

Thus, we may assume that the number of resonance poles is finite, although this would
not really affect to the forthcoming mathematical discussion. Either finite or infinite
dimensional, we may always assume that {ψD

i } and {ψG
i } form an orthonormal basis

for HD and HG , respectively. This just serves to construct a scalar product in both
spaces.

As a state vector for the exponentially decaying part of a resonance, we may use
ψD or ψG indistinctly. If we want to have a description that includes both types of
state vectors, it would be convenient to use the sum of spaces HD ⊕ HG . Is in this
spaces, where objects like 〈ψD

i |ψG
j 〉 could make sense.

Because of the form we have defined the scalar product, the identity on the space
HD ⊕ HG is given by:

I =
∑

i

{

|ψD
i 〉〈ψG

i | + |ψG
i 〉〈ψD

i |
}

. (24)

Note that |ψD
i 〉〈ψG

i | and |ψG
i 〉〈ψD

i | are the adjoint of each other. Then, the Hamil-
tonian (without the background) must have the following spectral decomposition:

H =
∑

i

zi |ψD
i 〉〈ψG

i | +
∑

i

z∗
i |ψG

i 〉〈ψD
i |, (25)
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which is obviously Hermitian. Here, HψD
i = ziψ

D
i and HψG

i = z∗
i ψ

G
i . This and

the spectral decomposition (24) are compatible if and only if 〈ψG
i |ψD

j 〉 = δi j and

〈ψG
i |ψG

j 〉 = 〈ψD
i |ψD

j 〉 = 0, for all i, j = 1, 2, . . . , N . Therefore, we should give a
meaning to these brackets, a task we shall do in the next separated subsection.

3.1 The Spaces of Gamow Vectors with a Pseudometric

Once we have isolated the space of Gamow vectors from the background, we can easily
provide of good definitions for the mean value of the energy, as well as for the scalar
products or brackets of Gamow vectors, given in [4,20]. For a better understanding,
we shall start our discussion with a toy model with only one resonance. In this case, the
basis for HD ⊕HG is {ψD, ψG}. We may introduce on HD ⊕HG a scalar product such
that {ψD, ψG} be an orthonormal basis. In addition, we are going to introduce here
a pseudometric which will be very convenient for our purposes. Note that HD ⊕ HG

can be realized by C
2, the two dimensional complex vector space. In C

2, we introduce
the pseudometric given by the following Hermitian matrix:

A =
(

0 1
1 0

)

, (26)

so that if ψ, ϕ ∈ C
2 with components ψ = (ψ1, ψ2), ϕ = (ϕ1, ϕ2), one has the

following product of ψ and ϕ:

(ψ |ϕ) := (ψ1, ψ2)

(

0 1
1 0

) (

ϕ1

ϕ2

)

= ψ1ϕ2 + ψ2ϕ1. (27)

Since in the basis {ψD, ψG}, we have

ψD =
(

1
0

)

, ψG =
(

0
1

)

, (28)

then,

(ψD|ψG) = (ψG |ψD) = 1, (29)

(ψD|ψD) = (ψG |ψG) = 0. (30)

In the present case, it is convenient to write the Hamiltonian in (25) as:

H = zR |ψD)(ψG | + z∗
R |ψG)(ψD|, (31)

which in matrix form reads:

H =
(

0 zR

z∗
R 0

)

. (32)
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With this formalism, it is quite simple to obtain some of the averages often discussed
in the literature [4,19,20]. We can write our results, either writing the Hamiltonian as
in (31) or in the matrix form (32). In fact, with (31) we have:

(ψD|H |ψD) = (ψD|{zR|ψD)(ψG | + z∗
R |ψG)(ψD|}|ψD)

= zR (ψ
D|ψD)(ψG |ψD)+ z∗

R (ψ
D|ψG)(ψD|ψD) = 0. (33)

The same expression can be obtained using the matrix form (32). Same procedures
give:

(ψG |H |ψG) = 0, (ψG |H |ψD) = zR, (ψD|H |ψG) = z∗
R . (34)

This result provides of formal sense to the results given in [4,20].
These results can be trivially generalized to the case of N resonances (even to the

case of an infinite number of resonances). In this case, we define the pseudoscalar
product (−|−) with the matrix

A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 . . . . . . . . . . . . . . .

1 0 . . . . . . . . . . . . . . .

. . . . . . 0 1 . . . . . . . . .

. . . . . . 1 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 0 1

. . . . . . . . . . . . . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (35)

where all other entries in the matrix (32) are equal to zero. Then, we have:

(ψD
i |ψD

j ) = (ψG
i |ψG

j ) = 0,

(ψG
i |ψD

j ) = (ψD
i |ψG

j ) = δi j .

(ψD
i |H |ψD

j ) = (ψG
i |H |ψG

j ) = 0,

(ψG
i |H |ψD

j ) = ziδi j , (ψD
i |H |ψG

j ) = z∗
i δi j i, j = 1, 2, . . . , N , (36)

where δi j is the Kronecker delta. These results are consistent with (34).

4 Approximate Gamow Vectors

From a mathematical point of view, there exist normalizable state vectors arbitrarily
close, in some sense, to a Gamow vector [11,12]. From a physical point of view, an
explicit construction of a normalizable state vector with an approximately exponential
time decay on a wide interval is also possible [1]. However, explicit constructions
of approximations to Gamow states are not easy to find, in general. Based on the
energy representation, we here propose a simple way to construct such normalizable
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approximations, where the accuracy of the approximation depends on the resonance
energy and life time.

Gamow vectors are often defined as functionals on a space of complex functions
analytic at least on a half plane. Let us consider two rigged Hilbert spaces �± ⊂
H ⊂ �×±, where�+ and�− admit a realization as complex analytic functions on the
upper and lower half of the complex plane, respectively. We do not want to enter here
into details that have been largely explained in the literature [11,12]. Let us consider
a resonance characterized by the resonance poles zR = ER − i�/2 and its complex
conjugate. Decaying and growing Gamow vectors are functionals on �×+ and �×−
respectively and can be written in the following form [40,41]:

ψD =
√

�

2π

∫ ∞

−∞
|E+〉 d E

(E − ER)+ i�/2
, ψG =

√

�

2π

∫ ∞

−∞
|E−〉 d E

(E − ER)− i�/2
,

(37)
where |E±〉 ∈ �×± are generalized eigenvectors of the total Hamiltonian H , H |E±〉 =
E |E±〉, for all real values of E (for simplicity, we have assumed that the energy
spectrum is simple, as is in the case of the Friedrichs model). If ϕ± ∈ �±, the
expressions 〈ϕ+|E+〉 and 〈ϕ−|E−〉 are square integrable functions on the whole real
axis, which are boundary values of functions analytic on the upper and lower half of the
complex plane, respectively. In the context of Time Asymmetric Quantum Mechanics
(TAQM) [32,42], these analytic functions are taken to be of Hardy class [11,12]. The
action of ψD on ϕ+ ∈ �+ and ψG on ϕ− ∈ �− is given by the following integrals,
respectively:

〈ϕ+|ψD〉 =
√

�

2π

∫ ∞

−∞
〈ϕ+|E+〉 d E

(E − ER)+ i�/2
, (38)

〈ϕ−|ψG〉 =
√

�

2π

∫ ∞

−∞
〈ϕ−|E−〉 d E

(E − ER)− i�/2
. (39)

As a matter of fact, ψD and ψG , represented as in (37), are normalizable vectors,
although they lie outside of the domain of the total Hamiltonian H . This is a possible
representation for Gamow vectors [11,40]. One quite interesting feature of Gamow
vectors (37) is that they have an energy distribution of Breit–Wigner type. As is
well known, this is a necessary and sufficient condition for a vector state to have an
exponential non-decay probability [13].

However, the spectrum of H has to be semibounded, so that we can assume, without
lost of generality, that it covers the positive semiaxis R

+ ≡ [0,∞). Then (37–39) may
not be the most adequate representation for Gamow vectors, as integrals on the variable
energy go from −∞ to ∞. Thus, let us replace (37) by the following expressions:

| f D〉 =
√

�

2π

∫ ∞

0

|E+〉 d E

(E − ER)+ i�/2
, (40)

| f G〉 =
√

�

2π

∫ ∞

0

|E−〉 d E

(E − ER)− i�/2
. (41)
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We have replaced the integrals from −∞ to ∞ by integrals from 0 to ∞, which is the
range of the values of the energy for the continuum spectrum of the total Hamiltonian
H . We call | f D〉 and | f G〉, the decaying and growing approximate Gamow vector
(for the resonance given by the pole zR = ER − i�/2 and its complex conjugate),
respectively. These vectors are normalizable [41] and their norms are given by

|| f D||2 = || f G ||2 = 1

π

(
π

2
+ arctan

(
2ER

�

))

. (42)

Obviously,
lim

2ER/� �→∞ || f D|| = lim
2ER/� �→∞ || f G || = 1. (43)

The approximate Gamow vectors | f D〉 and | f G〉 have the following properties,
which have been proven in [41]:

1. The spaces �×± are endowed with a topology called the weak topology. In this
topology, we have the following limit:

lim
2ER/� �→∞ f D = i(2π�)1/2ψD (44)

and a similar formula relates f G and ψG . Since all representations of the triplets
�± ⊂ H ⊂ �×± have equivalent topologies [11,12], this relation is independent
on the representation of �± (and hence of their duals �×±).

2. Vectors f D and f G are not in the domain of the total Hamiltonian H .
3. In spite of the previous statement, we still can ask ourselves, if there is an average

of the energy on f D and f G . Although the answer is no, which can be deduced
by observing that

〈 f D|H | f D〉 = ER

π

∫ ∞

−2ER/�

dx

1 + x2 + �

2π

∫ ∞

−2ER/�

x dx

1 + x2 , (45)

where the second integral in (45) obviously diverges, we may take the limit as
2ER/� �−→ ∞. Then, let us consider the Cauchy principal value on the resulting
integrals in (45). This principal value is zero for the second integral and is π for the
former. Therefore, in the considered limit 〈 f D|H | f D〉 �−→ ER , which coincides
with the result given in [19]. Same result can be obtained for f G .

4. The non-decay amplitude for f D (or f G) can be easily obtained:

〈 f D|e−i t H | f D〉 = �

2π

∫ ∞

0

e−i t ER d E

(E − ER)2 + �2/4
. (46)

This integral is not a decreasing exponential on t . However, for either ER large (high
resonance energies) or� small (large lifetimes), the integral approaches to a decreasing
exponential on time. In both cases, 2ER/� is high. Thus, deviations of the exponential
law are less noticeable in these situations, a standard result [1].
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Remark Assume that we have a RHS, � ⊂ H ⊂ �×, and an eigenvalue equation
in �× of the form HψD = zRψ

D . This properly means that for all ϕ ∈ �, one has
that 〈Hϕ|ψD〉 = zR 〈ϕ|ψD〉. Assume that we have a representation of the Gamow
vector ψD such that ψD is in H. Such a representation is possible [11,12], but then
ψD cannot be in the domain of the Hamiltonian H and, hence, ψD cannot belong
to �, as � should always be contained in the domain of H [11,12]. Then, consider
〈ψD|H |ψD〉. For any representation such that ψD be normalizable we can say: (i)
the product 〈ψD|H |ψD〉 does not make sense in Hilbert space, since ψD is not in the
domain of H ; (ii) Also, 〈ψD|H |ψD〉 does not make sense in the RHS� ⊂ H ⊂ �×,
since ψD is not in� . Consequently, an expression like 〈ψD|H |ψD〉 = zR 〈ψD|ψD〉
is now wrong even if, as is the case here, the scalar product 〈ψD|ψD〉 is well defined.
In addition, the identity 〈ψD|H |ψD〉 = ER makes sense only as a limit, precisely as
we have explained in the paragraph numbered 3 right above.

5 Are Gamow States Pure States?

Pure states are given by normalizable vectors in a Hilbert space. However, Gamow
vectors admit a representation as functionals which are either non-normalizable or if
they are normalizable, they must range outside the domain of the total Hamiltonian
H . The representation of Gamow states as functionals is indeed a representation of
them as vector states, so that one is tempted to consider Gamow states as pure states.
However, pure states preserve norms with time evolution and Gamow states decay (or
grow) exponentially. The scenario here is somehow confusing. We need a formalism
which discriminates without doubt pure states of other possible states which are not
pure, either mixtures or something else.

In the connection with some problems of statistical mechanics, in particular to
include the so called states with singular diagonal [25–27], Antoniou et al. [24] have
developed an algebraic formalism for the description of states and observables. In
this formalism, we can give a precise meaning to Gamow states. We begin with the
Hamiltonian pair {H0, H = H0 + V }. For simplicity, it is often convenient to assume
that both have a non-degenerate absolutely continuous spectrum, which is [0,∞).
Then, H0 admits the following spectral decomposition:

H0 =
∫ ∞

0
E |E〉〈E | d E, (47)

where |E〉 are the generalized eigenvectors of H0 with eigenvalue E , i.e., H0|E〉 =
E |E〉. We say that an operator O is compatible with H0 if it has the form:

O =
∫ ∞

0
d E OE |E〉〈E | +

∫ ∞

0
d E

∫ ∞

0
d E ′ OE E ′ |E〉〈E ′|, (48)

where OE is a function of the variable E and OE E ′ is a function of the variables E
and E ′.

Assume now that the Møller operators�± exists and are asymptotically complete.
Here �− represents the incoming and �+ the outgoing wave operator. Then, H =
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�± H0�± (at least for the restrictions of H0 and H to their respective absolutely
continuous subspaces). The generalized eigenvectors of H can be defined as |E±〉 =
�±|E〉 [12]. Then, for any operator O compatible with H0, let us define:

O± := �±O�± =
∫ ∞

0
d E OE |E±〉〈E±| +

∫ ∞

0
d E

∫ ∞

0
d E ′ OE E ′ |E±〉〈E ′±|.

(49)
We say that these operators are compatible with H . Operators compatible with H form
a pair of involutive algebras A± [24,28,29] with identity. The involution is given by
(O± ∈ A±)

O± �−→ O±† :=
∫ ∞

0
d E O∗

E |E±〉〈E±| +
∫ ∞

0
d E ′

∫ ∞

0
d E O∗

E ′ E |E ′±〉〈E±|,
(50)

where the star denotes complex conjugation. Operators verifying O± = O±† are called
observables. In order to simplify the above notation, let us write |E±) := |E±〉〈E±|
and |E E ′±) := |E±〉〈E ′±|. Then, (49) can be rewritten as:

O± =
∫ ∞

0
d E OE |E±)+

∫ ∞

0
d E

∫ ∞

0
d E ′ OE E ′ |E E ′±). (51)

The respective identities I± in A± take the form:

I± =
∫ ∞

0
d E |E±〉〈E±| =

∫ ∞

0
d E |E±). (52)

Let us consider the linear space of linear mappings (also called functionals) ρ±
from A± into the set of complex numbers C. The action of ρ± into O± ∈ A± is
denoted as (ρ±|O±). A state on A± is usually defined as a linear mapping ρ± on
O± ∈ A± verifying the following conditions: (i) Positivity: (ρ±|O±† O±) ≥ 0. (ii)
Normalization: (ρ±|I±) = 1.

A typical functional on A± is written in our notation as [28,29]

ρ± =
∫ ∞

0
d E ρE (E±| +

∫ ∞

0
d E

∫ ∞

0
d E ′ ρE E ′ (E E ′±|. (53)

Here, ρE and ρE E ′ are functions or distributions on the considered variables. If they
are distributions, OE and OE E ′ must belong to suitable spaces of test functions. Then
[28,29], the action of ρ± into O± ∈ A± is written as

(ρ±|O±) =
∫ ∞

0
d E ρE OE +

∫ ∞

0
d E

∫ ∞

0
d E ′ρE E ′ OE E ′, (54)

where we have used the following identities:

(E±|E ′±) = δ(E − E ′), (E E ′±|ww′±) = δ(E − w)δ(E ′ − w′), (55)
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which are a direct consequence of 〈E±|E ′±〉 = δ(E − E ′).
In this formalism, Antoniou et al. [24] classify three types of states (see also [28,

29]):

(i) Pure states In this representation, a state ψ is pure if and only if there exists a
functionψ(E) of the energy E such that ρE = |ψ(E)|2 and ρE E ′ = ψ∗(E)ψ(E ′),
where the star denotes complex conjugation.

(ii) Mixtures If ρ is a mixture of pure states, then, there exists a spectral decomposition
of the type ρ = ∑

i λi |ψi 〉〈ψi |, where |ψi 〉 are pure states. Assume now that,
in the energy representation, |ψi 〉 can be represented as a function ψi (E). Then,
ρE = ∑

i |ψi (E)|2 andρE E ′ = ∑

i λi ψ
∗
i (E)ψi (E ′). Then, the stateρ is a mixture

if and only if it is not a pure state and ρE E = ρE .
(iii) Singular diagonal states These states were introduced in the context of quantum

systems far from equilibrium [25–27]. As a matter of fact, the above formalism
was introduced in [24] order to accommodate this kind of states. We are not discuss
their properties here, but the interested reader could go to [24]. Here, we simply
define these states as those having the property that ρE E 	= ρE .

All these types of states have the properties of positivity and normalization.
Gamow vectors can be represented as functionals in this formalism, although not

in a unique way. As a matter of fact, we have found three different possible ways to
define a Gamow state as a functional over the algebras A±. In order to do this, we
need to define the algebras A± so that the functions OE can be analytically continued
to a half plane as functions of a complex variable. A similar construction should go
for OE E ′ , see [29] for details. In this case, δz would be the functional that maps OE

into its value at the point z, Oz . Analogously, δz ⊗ δz′ maps OE E ′ into Ozz′ .
Now, we are in the position to define a Gamow states in this context. In the sequel,

we shall discuss with some detail a first construction and leave for the next subsection
the other two. Proofs of their properties are the same in all cases. Then, let us define
the following functional over A+:

ρD =
∫ ∞

0
d E

∫ ∞

0
d E ′ δz∗

R
⊗ δzR (E E ′+|, (56)

where zR = ER − i�/2 is the resonance pole. In addition, there exists a functional,
ρG , on A− for the growing Gamow vector and it is given by

ρG =
∫ ∞

0
d E

∫ ∞

0
d E ′ δzR ⊗ δz∗

R
(E E ′−|. (57)

Henceforth, we call ρD and ρG the decaying Gamow functional and the growing
Gamow functional, respectively. They have the following properties [29]:

(i) These operators have trace zero:

tr ρD = (ρD|I+) = 0, tr ρG = (ρG |I−) = 0 (58)

and therefore, they cannot fit into the standard definition of state.
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(ii) Both Gamow functionals are positive, which means that for any observable O+ ∈
A+ or O− ∈ A−, one has (ρD|O+† O+) ≥ 0 and (ρG |O−† O−) ≥ 0.

(iii) All the energy momenta with respect either to ρD or ρG vanish:

(ρD|Hn) = (ρG |Hn) = 0, n = 0, 1, 2, . . . , (59)

where, according to (44) and (46) one has

Hn =
∫ ∞

0
d E En |E±〉〈E±| =

∫ ∞

0
d E En |E±), n = 0, 1, 2 . . . (60)

For n = 1, we have that (59) is in agreement with (30), which states that the mean
value of the energy for a Gamow state should be zero.

(iv) The functional ρD decays for t > 0 and the functional ρG grows for t < 0, as
t �−→ 0, [28,29]:

(ρD(t)|O+) = e−�t (ρD|O+) , t > 0 ; (ρG(t)|O−) = e�t (ρG |O−) , t < 0 ,
(61)

for arbitrary operators O± ∈ A±. These decay modes can be found if we use
Hardy functions on a half plane in order to define OE and OE E ′ [28,29]. Using
entire functions instead, we can show that time behavior (15) can be extended for
all values of t [39].

(v) The functionals ρD and ρG are time reversal of each other.

These representations of Gamow states as functionals are well defined and satisfy
requisites like a correct time behavior and the property that ρD and ρG are the time
reversal of each other. The energy averages for these states are zero as suggested in
[4,20]. The fact that both ρD and ρG have zero trace, implies that they do not fit with
the standard definition of state.

5.1 A Second Definition for the Gamow Functionals

The definition for the Gamow functionals given in the previous section is not very sat-
isfactory for two reasons: First of all, their trace is equal to zero (non-normalizability),
so that they should not be considered as states. Secondly, all the moments of the energy
are equal to zero, not only the energy average, see (59). Here, we propose two other
possible definitions that fix both related problems. In the first one, the mean value of
the energy is zR = ER − i�/2, for ρD and its complex conjugate for ρG , and in the
second is equal to the resonance energy ER , as suggested in [19]. Then, we propose
the following two alternative definitions for the decaying Gamow functional:

ρD =
∫ ∞

0
d E δzR (E+| +

∫ ∞

0
d E

∫ ∞

0
d E ′ δz∗

R
⊗ δzR (E, E ′+| (62)

and

ρD :=
∫ ∞

0
d E δER (E+| +

∫ ∞

0
d E

∫ ∞

0
d E ′ δz∗

R
⊗ δzR (E, E ′+|. (63)
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Similar formulas will define the growing Gamow functional, ρG . Both, (62) and
(63) have trace one:

(ρD|I+) = (ρG |I−) = 1, (64)

and and both are positive. Therefore, both functionals (62) and (63) are states. How-
ever, both functionals (62) and (63) do not satisfy the condition to be a pure state.
Furthermore, for the particular choice of ρE and ρE E ′ in (62) and in (63), they cannot
be even a mixture. Therefore, they are singular diagonal states.

With respect the momenta of the energy, with (62), one has:

(ρD|H) = zR, (ρD|Hn) = zn
R, n = 0, 1, 2, . . . , (65)

while for (63), we have:

(ρD|H) = ER, (ρD|Hn) = En
R, n = 0, 1, 2, . . . (66)

Concerning the time evolution, observe that for both definitions (62) and (63), ρD is
decomposed in a sum of two terms. Let us write ρD = ρR + ρS , where R and S stand
for regular and singular, respectively. It can be easily shown that the regular term does
not evolve, while the singular term, which coincides with (56), decays exponentially,
so that

ρD(t) = ρR(0)+ e−�t ρS(0), (67)

and a similar formula for ρG(t) = ρR(0)+ e�t ρS(0).
The conclusion is that Gamow states can be described as functionals over an algebra

including observables, at least in three different ways. They give different energy
averages depending on the definition used: either zero, zR = ER − i�/2 or ER . The
choice giving zero mean value of the energy does not satisfy the definition of state,
contrary to the other two. None of the three choices represents a pure state nor a
mixture.

6 Concluding Remarks

Along the present paper, we discuss some properties of Gamow vectors, which are
vector states for the exponentially decaying (or its counterpart and time reversal image,
the exponentially growing) contribution to the unstable quantum states. These Gamow
states provide a good picture of a quantum unstable state during a large time interval.
However, Gamow vectors do not admit a scalar product normalization as they do
not belong to the Hilbert space of pure states of the system under consideration. In
most cases, we cannot even define brackets among Gamow vectors as we can do, for
instance, among plane waves.

These facts produce difficulties in the treatment of unstable quantum states using
Gamow vectors as vector states. For instance, serious problems arise when one needs
to define energy averages on Gamow states. As we have seen, there are different
approaches to define these averages. As a matter of fact, there is no agreement in the
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scientific community on what the energy of a Gamow state should be. Even worse,
many of the proposed approaches are ill defined.

Here, we use the Friedrichs model as a working example to illustrate some of these
difficulties.

The effect of the background on the decay is small or even negligible for times
neither too small nor too large. This allows to ignore it for a wide time interval and
use a description of quantum unstable states based solely on the space of Gamow
vectors. In this case, we can easily define brackets allowing to define energy averages
for Gamow states formally consistent.

The standard theory of Gamow states shows that there exists normalizable state
vectors arbitrarily close, in some sense, to Gamow states. The task of finding such
approximate normalizable vectors is often difficult. Here, we propose a way to con-
struct an approximation of this kind using the energy representation and discuss its
accuracy. This has been used to conclude that the energy average on a Gamow state
should coincide with the resonance energy ER . This is possibly the best choice for
this average.

In principle, the question whether a Gamow state is a pure state or not is not trivial.
The solution of this problem may have some consequences, as for instance if the
entropy of a Gamow state should be zero or not. The question of the purity of a
Gamow state can be solved unambiguously. In fact, Gamow states can be defined as
functional on algebras of observables. Here, we have proposed three different forms
of defining these functionals. None of them satisfies the properties required to pure
states. Furthermore, energy averages are well defined in all cases, although our three
different definitions give three different values for these averages. Nevertheless, these
values coincide with those given on some of the approaches discussed in the literature.
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