
The Effect of Confinement on the Electronic Energy and
Polarizability of a Hydrogen Molecular Ion

Josimar Fernando da Silva,*[a] Fabr�ıcio Ramos Silva,[a] and Elso Drigo Filho[a,b]

The electronic energy and the polarizability of a confined

hydrogen molecular ion in the ground state and the first

excited state, for cavities of different volumes, are calculated

using the variational method. In the treatment adopted an

alternative molecular wave function is introduced with only

one variational parameter and based on wave functions used

for confined atoms. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/qua.25084

Introduction

Studies on the effect of confinement on atomic and molecular

systems are being applied in various fields such as the devel-

opment of Organic Light Emitting Diodes (OLEDs),[1] in protein

folding thermodynamics[2] and the development of new car-

bon adsorbents.[3]

Atomic and molecular systems under high pressure are gain-

ing prominence in the scientific community because of their

anomalous behavior. These unusual behaviors can be applied

to new technologies. In several recent experimental stud-

ies,[3–5] molecules subject to confinement have been analyzed

from different viewpoints. In the work of Zerr et al.,[4] the

authors decompose hydrocarbons under high pressure and

high temperature obtaining hydrogen molecules and dia-

monds. In the article by Mao and co-workers,[5] results are pre-

sented involving the dissociation of H2O molecules under high

pressure using X-rays to form a solid mixture of H2 and O2.

The experimental work of Gallego et al.[3] confines hydrogen

in carbon nanopores and the results obtained can be used as

a guide to develop new carbon adsorbents.

Theoretical papers have also been important in the study of

high pressure systems. Cottrell[6] made one of the first studies

addressing confined molecular systems. Using the variational

method, the energy of the orbital of the confined hydrogen

molecular ion is calculated for different eccentricities of

impenetrable prolate spheroidal boxes. The author used two

variational parameters in the trial wave function. In Ref. [7],

Ley-Koo and Cruz study some energy levels of the confined H

atom and the confined H1
2 and HeH11 molecules. The

Schr€odinger equation is solved using wave functions written in

terms of a series of functions. In calculating the energy for dif-

ferent confinement volumes, they study the hyperfine struc-

ture of the confined H atom and the confined H1
2 molecule. In

the work of LeSar and Herschbach,[8] the electronic energy,

polarizability, the pressure and the quadrupole moment of the

confined hydrogen molecular ion and confined neutral hydro-

gen molecule for different eccentricities of the confinement

area are studied. The variational method was used to get the

energy eigenvalues and the trial wave function used in the

confined H1
2 molecule approach is the same as that presented

in Ref. [6]. The results indicate that the smaller the size of box,

the lower the values of the polarizability and the quadrupole

moment.[8]

Recently, different mathematical methods have been used

to address confinement in order to expand the mathematical

treatment in the study of such a system. In Ref. [9], the

authors use the asymptotic iteration method to get the exact

solution of the energy levels of confined hydrogen-like atoms.

Cruz and Col�ın-Rodr�ıguez[10] calculate, using the variational

method, the electronic energy levels under confinement of an

electron in an H atom and also the H1
2 and HeH11 molecules.

The trial wave function used has three variational parameters

and is shown to be adaptable to molecular and atomic sys-

tems. The energy of the ground state of the molecular orbital

of the H2 molecule for different cavity eccentricities, as well as

the vibrational properties of this molecule, is also analyzed by

these authors.[11] In Ref. [12], the perturbation method is used

to calculate the energy of the He atom under confinement. In

the work of Sarsa and Le Sech,[13] the energy of the confined

H1
2 molecule is calculated with a variational approach using

the Monte Carlo method and the wave function used in the

calculation contain four variational parameters. Kang et al.[14]
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analyze the energies of H1
2 -like impurities confined in spherical

quantum dots.

In this article, we propose an approach that allows you to

build eigenfunctions based on confined atomic wave func-

tions[15] to be used in the variational method. We calculate the

electronic energy and the polarizability of the confined ionized

hydrogen molecule in the ground state and the first excited

state for different values of cavity eccentricity.

The next section describes the theoretical methodology

used in this work and the geometry of the studied molecule is

also described. The third section shows the values of electronic

energy and polarizability obtained for the H1
2 molecule and

these ground state results are compared to those found the

literature.[7,8,10] Finally, the conclusions are in the last section.

Methods

This study looks at the electronic energy and polarizability of

an H1
2 molecule confined in an impenetrable prolate spheroi-

dal cavity with the nuclei located at the focus of the confining

surface. First, the geometry of the studied molecule (H1
2 )

needs to be defined. It consists of three bodies: two protons

and an electron, as shown in Figure 1.

The confinement parameter nc in Figure 1 characterizes the

ellipsoid of revolution that defines the enclosing cavity. The

eccentricity of this cavity is given by 1=nc and the major axis

of the ellipsoid is given by multiplying nc by R. To obtain the

energy eigenvalues in this type of problem, the following

Schr€odinger equation must be solved:

HW ra; rb; ha; hb;uð Þ5EW ra; rb; ha; hb;uð Þ;

where H is the Hamiltonian, W is the molecular wave function

and E is the energy of the system.

The Schr€odinger equation for this problem has no analytical

solution, therefore to find a solution we have to use some

approximations. The first is the Born-Oppenheimer approach,

which uncouples the electron movement from the nuclear

movement. Thus, the description related to electrons can be

taken considering the fixed nuclei.[16] Using the Born-

Oppenheimer approximation, the Hamiltonian of the molecule

H1
2 is written, in atomic units, as:

H52
1

2
r22

Za

ra
2

Zb

rb
1

ZaZb

R
1V; (2)

where ra and rb are respectively the distances between

nucleus a and the electron and between nucleus b and the

electron and where Za is the atomic number of atom a and Zb

is the atomic number of atom b. In this case, we are studying

the hydrogen molecule, so Za5Zb51. R is the internuclear dis-

tance and V describes the system confinement.

For problems involving confined atomic systems, usually the

cavities are spherical.[9,15,17,18] In the study of confined molecu-

lar systems both spherical cavities[13,19] and ellipsoidal cav-

ities[10,11] have been used. In this work, the confinement

system is described as an impenetrable prolate spheroidal cav-

ity. Such confinement may be represented by a potential of

the type:

V nð Þ5
0; 1 < n < nc

1; n > nc

;

(
(3)

where nc define the size and eccentricity of the confining pro-

late spheroidal box. Prolate spheroidal coordinates (n, g, u) are

used to deal with the system:

n5
ra1rb

R
; (4a)

g5
ra2rb

R
(4b)

and u is the same as the spherical coordinates.

In the new coordinates, the Hamiltonian (2) is rewritten as:

H52
1

2

4

R2 n22g2
� �

"
@

@n
n221
� � @

@n
1
@

@g
12g2
� � @

@g

1
n22g2

n221
� �

12g2ð Þ
@2

@u2

#
2

Za

ra
2

Zb

rb
1

ZaZb

R
1V nð Þ;

(5)

where

ra5
R n1gð Þ

2
; (6a)

rb5
R n2gð Þ

2
: (6b)

The Schr€odinger equation resulting from the Hamiltonian of eq.

(5) is immediately separated on the azimuth axis around the coordi-

nate u. However, the same cannot be said for the coordinates n and

g. Thus, the molecular wave Wb function can be written as

Figure 1. The H1
2 molecule in an ellipsoidal cavity, where nc is related to

the eccentricity of the bounding cavity and Zi is the atomic number of the

atom that forms the molecule; ri is the distance between the atomic

nucleus and the electron; hi is the angle between ri and the azimuth axis

z; and R is the internuclear distance. The subscript i identifies the atom, ie.,

i5a; b.
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Wb n; g;uð Þ / wb n; gð Þeimu; (7)

where the quantum number m has the values m50;61;62; � � �
The mathematical problem of finding eigenvalues and

eigenfunctions for the Hamiltonian (5) can be solved by using

approximation methods. This article uses the variational

method.[20] The approximation method here is to choose an

appropriate wave function Wb n; g;uð Þ to get an energy eigen-

value greater than or equal to the exact energy (Eexact). In

summary, the variational principle states that:

Eexact �
Ð

V Wb
� n; g;uð ÞĤWb n; g;uð ÞdVÐ

V Wb
� n; g;uð ÞWb n; g;uð ÞdV

5Eb; (8)

where Eexact is the exact energy of the problem, Ĥ is the Ham-

iltonian operator (5) and Wb n; g;uð Þ is the chosen wave func-

tion. The integral is performed on the total volume the system

occupies (1< n< nc; 0< g< 1; 0<u< 2p) and

dV5 n22g2
� �

R3=8ð Þdn dg du. The variational method allows

the addition of adjustable variational parameters (b). These

parameters are used to minimize the expression of the mean

energy (Eb), leading to a more refined result. In this work, only

one variational parameter was used on the suggested trial

wave function. Thus, to further refine the result, the mean

energy Eb is minimized with respect to the parameter b:

dEb

db
50: (9)

Due to the features of this problem and the approach taken

to construct the molecular orbital, the confined molecule H1
2

was studied in two states. First, the molecule in state 1rg, that

is, in the ground state, was analyzed and then the excited

state 1ru was analyzed. In both cases, the molecule has sym-

metry around the azimuth coordinate u, and consequently,

the magnetic quantum number is zero (m50) for both states.

Thus, the molecular wave function in this case (m50) is inde-

pendent of u and set to wb n; gð Þ.
To solve the integral (8), an appropriate trial wave function

is needed. There are different types of trial wave functions

that can be used in this case, such as functions which are

composed of infinite series[7] and functions obtained by the

Linear Combination of Atomic Orbitals (LCAO).[10] Here, based

on the results obtained for atomic systems,[15] a new trial

wave function for the problem was introduced that combines

simplicity and good numerical results.

Combining confined atomic orbitals built with the help of

the formalism of supersymmetric quantum mechanics,[15] the

following eigenfunction for the state 1rg is used:

wb n; gð Þ / Na bð Þ nc2nð Þe2 R
2b n1gð Þ1Nb bð Þ nc2nð Þe2 R

2b n2gð Þ
� �

: (10)

For the state 1ru the following trial wave function is used:

wb n; gð Þ / Na bð Þ nc2nð Þe2 R
2b n1gð Þ2Nb bð Þ nc2nð Þe2 R

2b n2gð Þ
� �

: (11)

The terms (nc 2n) require that the wave function is zero in

n5nc, nc defining the confining cavity, the exponentials corre-

spond to the wave functions of the H atom in the ground state

and b is the variational parameter. Na bð Þ and Nb bð Þ are the con-

stants of atomic normalization of the confined atoms that make

up the studied molecule and have the following values:

Na bð Þ5
ð2p

0

ð1
21

ðnc

1

nc2nð Þ2e2R
b n1gð Þ n22g2

� �
R3=8
� �

dn dg du

0
@

1
A

21

;

(12a)

Nb bð Þ5
ð2p

0

ð1
21

ðnc

1

nc2nð Þ2e2R
b n2gð Þ n22g2

� �
R3=8
� �

dn dg du

0
@

1
A

21

:

(12b)

With the suggested eigenfunctions, the electronic energy

and the average polarizability of the confined H1
2 molecule in

the ground state are calculated and compared to results

obtained previously.[7,8,10] The electronic energy and the aver-

age polarizability of the same molecule in the excited state

1ru are also calculated. The average polarizability indicates

how sensitive the molecule is with respect to being polarized

by an external electric field.[20]

For the calculation of this property, the approximation pre-

sented by Kirkwood is used.[21] We know that the average

polarizability (a) of a molecule is composed of a parallel polar-

izability component and of two perpendicular polarizability

components[8]:

a5
ak12a?

3
; (13)

where ak is the polarizability parallel to an external electric

field and a? is the polarizability perpendicular to this field.

These polarizabilities are related to the mean values of hz2i
and of hx2i respectively; as follows:

ak � azz54hz2i2; (14a)

a? � axx5ayy54hx2i2: (14b)

The polarizabilities are related to the average values of the

position of the electron cloud of the molecule. As the coordi-

nate system used in this work is that of prolate spheroidal

coordinates, the Cartesian coordinates have to be related to

the prolate spheroidal coordinates and this relationship is

given in Ref. [8]:

x5
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n221
� �

12g2ð Þ
q

cos u; (15a)

y5
R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n221
� �

12g2ð Þ
q

sin u; (15b)

z5
Rng

2
: (15c)

The average y2 calculation is not necessary since both the x-axis

and the y-axis are defined as axes perpendicular to the polarizabil-

ity. From the eqs. (15a) and (15b), it can be seen that the mean val-

ues of x2 and y2 are equal for all confinement volumes.
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The results obtained for the electronic energy and average

polarizability described in this section can be compared to

data from the literature.[7,8,10] The average values are deter-

mined by using the suggested wave functions and the fixed

value of b by minimization of eq. (9). These calculations were

done for cavities of different eccentricities. For the numerical

calculation, the software Wolfram Mathematica was used (Uni-

versidad de Valladolid license).

Results

The electron energy and the polarizability of the confined H1
2

molecule in the ground state 1rg and the excited state 1ru

were calculated for different volumes of cavities. First, the

results for the molecule in the ground state 1rg are presented

and then the results obtained for the excited state 1ru. All

energies are calculated numerically by the variational method.

The energy, volumes and internuclear distances are in atomic

units.

The confined H1
2 molecule in the ground state

With the trial wave function (10) and the Hamiltonian (5), the

electronic energy is calculated using the variational method

(8). Then, comparing the energy eigenvalue obtained for each

confinement parameter value (nc) with results available in the

literature (initially those in Refs. [7,10], then those from Ref.

[8]). In the calculations performed and shown in Table 1, the

value of the internuclear distance is fixed as two atomic units

(a.u.), i.e. R52 a052 bohrs (a0 5 0.53 Å). The size of the semi-

major axis is calculated for different values of the parameter nc

and the volume of the confining cavity is estimated. Table 1

shows the electronic energy eigenvalues for each volume and

the comparison of these results with those shown in Refs. [7]

and [10].

The results in Table 1 show that the wave function pro-

posed in this paper presents electronic energy eigenvalues

close to those values given in Refs. [7] and [10]. The value

obtained practically coincides with that shown in the literature

for V 5 749 a3
0. Another result to be noted is that related to

V 5 24.8 a3
0. In this case, the results from the literature point to

an energy eigenvalue of zero, while our results show a slightly

negative eigenvalue.

However, it is worth remembering that the variational princi-

ple states that the results found by the variational method are

always greater than or equal to the actual values. As the

results obtained here are lower than the previous results, it

can be concluded that these results are quantitatively better

than the previous ones.

Other findings in the literature for the energy eigenvalues

are given in Ref. [8]. These results are particularly interesting

since they include the average polarizability calculations for

the confined H1
2 molecule. These calculations are also repro-

duced here. To determine the average polarizability, first the

electronic energy must be calculated to fix the variational

parameter b in the suggested wave function. Using this

parameter in the wave function (10), hz2i, and hx2i can be cal-

culated and, hence, the average polarizability (a). The electron

energy eigenvalues found for each volume (V) of the cavity

shown in Ref. [8] are shown in Table 2. Each cavity has a

different-sized major axis (Rnc).

The data in Table 2 suggest that the wave function used is

appropriate, since the results of the energy eigenvalues are

smaller than the results from the literature, except for the first

result (Rnc 5 12), where the results practically coincide. In this

case, the difference is in the fourth decimal place correspond-

ing to a very small error of about 0.13%. In Ref. [8], the

Table 1. Numerical results of the energy eigenvalues (Eb) obtained for

cavities of different eccentricities (1/nc) and volume (V).

nc V b Eb E[7] E[10] | E[7] 2Eb | | E[10] 2 Eb |

5.6924 749 1.0988 20.6031 20.6025 20.6022 0.0006 0.0009

2.2237 36.8 1.7581 20.2959 20.2500 20.2499 0.0459 0.0460

1.9934 24.8 1.8920 20.0471 0.0000 0.0001 0.0471 0.0472

1.7434 14.9 2.1491 0.4890 0.5250 0.5258 0.0360 0.0368

1.6150 10.9 2.3958 0.9918 1.0000 1.0250 0.0082 0.0107

1.3621 4.88 3.3229 2.7210 3.0000 3.0214 0.2790 0.3004

The variational parameter b is used to minimize the amount of elec-

tronic energy. The values represented by E[7] and E[10] are eigenvalues

given in Refs. [7] and [10], respectively. | E[7] 2Eb | and | E[10] 2 Eb | are

the absolute differences between the value from the literature and the

value found in this work. The energies, volumes and internuclear distan-

ces are in atomic units.

Table 2. Numerical results of total electronic energy eigenvalues (Eb)

for cavities with different sizes of major axis (Rnc) and internuclear

distances R.

Rnc R V b Eb E[8] |E[8]2Eb |

12 2.024 879 1.086 20.6013 20.6021 0.0008

10 2.012 502 1.154 20.6091 20.6010 0.0081

8.0 1.955 252 1.261 20.6129 20.5937 0.0192

7.0 1.874 167 1.326 20.6049 20.5800 0.0249

6.0 1.731 104 1.389 20.5764 20.5455 0.0309

5.0 1.518 59.4 1.440 20.4994 20.4587 0.0407

4.0 1.248 30.2 1.470 20.2988 20.2369 0.0619

3.0 0.936 12.8 1.462 0.2676 0.3867 0.1191

2.0 0.601 3.81 1.385 2.2784 2.5901 0.3117

The column data E[8] are the electronic energy eigenvalues indicated in

Ref. [8]. The absolute difference between the result obtained with the

result from the literature is shown by |E[8]2Eb |. The energies, volumes,

and internuclear distances are in atomic units.

Table 3. Values of hx2i and hz2i calculated for different volumes (V)

obtained using the suggested wave function (10) and the results from

the literature.[8]

V b hz2i hx2i hz2i 8½ � hx2i 8½ � |hz2i 8½ �2hz2i | |hx2i 8½ �2hx2i |

879 1.086 1.325 0.788 1.134 0.632 0.191 0.156

502 1.154 1.219 0.743 1.103 0.613 0.116 0.130

252 1.261 1.029 0.648 1.010 0.556 0.019 0.092

167 1.326 0.886 0.571 0.912 0.500 0.026 0.071

104 1.389 0.714 0.475 0.770 0.420 0.056 0.055

59.4 1.440 0.530 0.366 0.596 0.326 0.066 0.040

30.2 1.470 0.356 0.256 0.415 0.229 0.059 0.027

12.8 1.462 0.207 0.156 0.249 0.140 0.042 0.016

3.81 1.385 0.094 0.075 0.116 0.067 0.022 0.008
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variational method is also used based on the calculation per-

formed but, however, with a different trial wave function from

that proposed here and with two variational parameters.

With variational parameters of Table 2 and eqs. (15a) and

(15c) which relate the Cartesian coordinates to the prolate sphe-

roidal coordinates, the mean values of x2 and z2 can be calcu-

lated. These mean values of x2 and z2 relate, respectively, to the

parallel polarizability eq. (14a) and perpendicular polarizabilities

eq. (14b). Finally, these two results give the average polarizability

given in eq. (13). The mean values of x2 and z2 used to deter-

mine the perpendicular and parallel polarizabilities are calculated

using the molecular wave functions (10) with their respective

normalization for different eccentricities and internuclear distan-

ces. The results obtained are show in Table 3.

In Table 3, we find that, for volumes greater than or equal to

252 a3
0, the hz2i values are lower than those indicated in the liter-

ature and,for volumes below 252 a3
0, the values of hz2i are

higher. The values of hx2i obtained in this work are all lower than

those in the literature. However, it can be seen that the values of

hx2i and hz2i are calculated from a wave function which, accord-

ing to the variational principle, best describes the system being

studied, since it leads to a lower energy value. The exception is

the case where the volume is equal to 879 a0
[3] where the results

practically coincide (Table 2). From the results for the values of

hx2i and hz2i, the values of the parallel, the perpendicular and

the mean polarizability are calculated. These values are pre-

sented in Table 4.

The values of the parallel (akÞ and perpendicular (a?) polariz-

abilities are calculated from eqs. (14a) and (14b), respectively.

Similarly to that observed for the values of hz2i, for volumes

greater than or equal to 252 a0
[3] the parallel polarizabilities

obtained are lower than those found in the literature and for

smaller volumes, higher parallel polarizability values result than

those indicated in the literature. The perpendicular polarizability

values obtained in this study, similar to the values of hx2i, are all

lower than those in the literature. In general, the average polariz-

ability (a), calculated from equation (13), is close to those values

obtained in Ref. [8] using a wave function with two variational

parameters. The best agreement between the results can be

observed for the confinement volume equal to 104 a3
0.

The confined H1
2 molecule in the excited state 1ru

No studies were found in the literature for the excited state

1ru, which prevents a comparison of results. However, the suc-

cess of the proposed treatment for the ground state condition

1rg indicates that the same methodology can be applied to

other states, in particular, to state 1ru. The symmetry of the

problem and the different parity between these states permit

a direct extension of the trial function from the ground state

to the first excited state. However, in principle, the methodol-

ogy can be adapted for other excited states as it was success-

fully carried out for central force potentials (see, for instance,

Ref. [22]). The electronic energy eigenvalues Eb1ru
are calculated

from the trial wave function (11) and the Hamiltonian (5). The

calculation of the average polarizability depends on the varia-

tional parameter (b1ru), which is obtained by using the varia-

tional method, the wave function (11) and the Hamiltonian (5).

Table 4. Parallel (ak), perpendicular (a?), and average (a) polarizability values obtained from the trial wave function (10) and the results found in the liter-

ature[8] ðak 8½ � , a? 8½ � , and a 8½ �Þ for different volumes.

V b ak a? a ak 8½ � a? 8½ � a 8½ � jak 8½ �-akj ja? 8½ �-a?j ja 8½ �-aj

879 1.086 7.026 2.485 3.999 5.140 1.600 2.780 1.886 0.885 1.2188

502 1.154 5.947 2.206 3.453 4.864 1.501 2.622 1.083 0.705 0.8308

252 1.261 4.235 1.681 2.532 4.083 1.238 2.186 0.152 0.443 0.3464

167 1.326 3.138 1.306 1.917 3.328 0.998 1.775 0.190 0.308 0.1415

104 1.389 2.037 0.901 1.280 2.372 0.707 1.262 0.335 0.194 0.0176

59.4 1.440 1.123 0.535 0.731 1.421 0.425 0.757 0.298 0.110 0.0261

30.2 1.470 0.507 0.262 0.344 0.688 0.209 0.369 0.181 0.053 0.0254

12.8 1.462 0.172 0.097 0.122 0.247 0.078 0.134 0.075 0.019 0.0119

3.81 1.385 0.036 0.022 0.027 0.054 0.018 0.030 0.018 0.004 0.0032

The absolute differences of the polarizabilities ðjak 8½ �-akj, ja? 8½ �-a?j, and ja 8½ �-ajÞ are indicated in the last three columns.

Table 5. Numerical results of total electronic energy eigenvalues in the excited state 1ru (Eb1ru
) for cavities of different volumes.

Rnc V Eb1ru
b1ru hz2i1ru hx2i1ru ak1ru a?1ru a1ru

12 879 20.1509 0.8323 1.8026 0.3905 12.9978 0.6098 4.7391

10 502 20.1215 0.8387 1.6876 0.3599 11.3919 0.5180 4.1426

8.0 252 20.0472 0.8389 1.4771 0.3082 8.7273 0.3799 3.1624

7.0 167 0.0383 0.8297 1.3064 0.2705 6.8266 0.2926 2.4706

6.0 104 0.1983 0.8077 1.0841 0.2246 4.7011 0.2018 1.7016

5.0 59.4 0.5029 0.7679 0.8266 0.1737 2.7333 0.1207 0.9916

4.0 30.2 1.1092 0.7068 0.5670 0.1224 1.2858 0.0600 0.4686

3.0 12.8 2.4772 0.6197 0.3345 0.0754 0.4476 0.0227 0.1643

2.0 3.81 6.4414 0.4989 0.1530 0.0367 0.0937 0.0054 0.0348

The minimized variational parameter b1ru is shown in the third column. Also shown are the average values x2 and z2 and the perpendicular (a?1ru),

parallel (ak1ru) and average (a1ru) polarizabilities
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Using the constraint given by eq. (9), the energy is minimized

and the value of the parameter b1ru is determined with the

values of variational parameters b1ru, the average x2 and z2

values are calculated.

Then the values of the average, parallel, and perpendicular

polarizabilities from eqs. (13), (14a), and (14b), respectively, are

calculated. Table 5 shows the electron energy eigenvalues,

average values of x2 and z2 (calculated as already normalized

functions of molecular waves (11)) and perpendicular a?1ruð Þ,
parallel (ak1ru), and average (a1ru) polarizabilities for the

excited state, 1ru of the hydrogen molecular ion and these

values are calculated for different cavity volumes. The internu-

clear distance is determined by the relationship Rnc.

As expected, comparing the data in Tables 2 and 5, it can be

seen that the energies eigenvalues of the excited state are

higher than those of the ground state. Analyzing Tables 5 and 4,

one can find that the polarizability of the H1
2 molecule is greater

when the molecule is in the excited state 1ru. These relations

can be observed in the plots in Figure 2.

In terms of the energies eigenvalues (Fig. 2a), it is noted

that the largest distortion of these eigenvalues occur in strong

confinement regime. The gap on the ground state energy and

the first excited state energy also decreases when the confine-

ment parameter increases. For weak confinement, i.e. large val-

ues of the parameter Rnc, the energies eigenvalues tend to

the eigenvalues of the molecule without confinement. This

tendency is observed in Figure 2a.

The polarizability behavior shown in Figure 2b indicates that

for stronger confinement regime the polarizability tends to

zero for both analyzed states. On the other extreme, for a

large value of Rnc, one observes that the difference between

the polarizability increases.

The parallel and perpendicular components of the polariz-

ability shown in Table 4 (ground state) and Table 5 (excited

state) are plotted in Figure 3. It can be noted in both cases

that the values tend to zero for small values of the

Figure 2. a) Energies eigenvalues computed from ground state (Eb) and

first excited state (Eb1ru), and b) polarizabilities average computed from

ground state (a) and first excited state (a1ru).

Figure 3. a) Parallel polarizability obtained from ground state (ak) and first

excited state (ak1ru), and b) perpendicular polarizabilities obtained from

ground state (a?) and first excited state (a?1ru).
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confinement parameter. The remarkable result is the behavior

of the curves in these cases. The parallel polarizability (Figure

3a) for the ground state (ak) is greater than in the excited

state (ak1ru). For the perpendicular polarizability, the situation

is reversed. These results are probably related to the geometry

adopted, particularly with the different sizes of the axis.

Conclusions

In this paper we introduce a new trial wave function to describe

confined molecular systems starting from atomic wave functions

and study the hydrogen molecular ion, H1
2 , using the variational

method using these functions, eqs. (10) and (11).

Regarding the ground state electronic energies (Tables 1 and 2),

the trial wave function proved satisfactory. The results are close to

the values indicated by other authors. It can be seen that the

energy values obtained are the same as or lower than those shown

in other studies,[7,8,10] i.e. the results obtained, according to the var-

iational principle, are numerically better or equivalent to those

reported in the literature. These results are obtained despite using

only one variational parameter in the present work. It is important

to stress that even though the problem has been attacked by dif-

ferent approaches; the methodology introduced here is very sim-

ple and provides accurate results.

In some cases, particularly for large confinement volumes,

the average polarizability of the molecule in the ground state

(Table 4) obtained in this work show results with a significant

difference when compared to previous results.[8] However, the

polarizabilities calculated here are obtained from a wave func-

tion that better describes the confined H1
2 molecule, indicating

that the results presented in this paper are quantitatively bet-

ter than those presented in previous works.

The electronic properties for the H1
2 molecule in the excited

state 1ru were also calculated. As expected, the resulting energy

eigenvalues for the excited state 1ru are greater than the eigenval-

ues of the ground state. The molecular polarizability increases

when the molecule is excited to state 1ru. As far as can be seen by

the authors, these results are unpublished. However, the successful

application of the treatment to the ground state 1rg is an indica-

tion that the same approach can be applied to the state 1ru.

In addition, it was noted that the results obtained for energies in

both states are in qualitative agreement with recent results obtained

for spherically cavities from diffusion Monte Carlo method.[23] In par-

ticular, the behavior of energy as a function of the confinement

parameter is similar. Complementary, admitting that for large values

of the confinement volume the system tends to the free one, the

results for the H1
2 without confinement (for instance, Refs. [24,25])

can be compared with the results obtained here for the larger value

of the volume. The ground state energy obtained for the system

without confinement by Flolov is 20.602 633 511 30[24] and by Pil�on

and Baye is 20.597 139 063 123 4[25] while the result obtained here

for V 5 879 a0
[3] is 20.6031 (Table 2). It is worth noting that the

cited results[[24,25] were achieved without the Born-Oppenheimer

approximation.

One can conclude that the approach proposed here leads

to a good quantitative description of the confined H1
2 mole-

cule. It is important to note that the trial wave functions

introduced for use in the variational method are based on

atomic wave functions and require only one variational

parameter, which simplifies the mathematical treatment of

the problem.
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