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Abstract. We review the mathematical tools that are suitable for a formulation of time
asymmetry in quantum mechanics. In particular, Hardy functions on a half plane and rigged
Hilbert spaces constructed with a subclass of Hardy functions. This time asymmetry often
appears in quantum scattering and, in particular, in resonance scattering. We review the
construction of Gamow vectors, often considered Gamow states for resonances. A brief summary
of the fundamental ideas of time asymmetric quantum mechanics is presented in a last section.

1. Introduction

In the framework of standard non-relativistic quantum mechanics, the time evolution governed
by a self adjoint Hamiltonian H is given by a group of unitary operators on a Hilbert space,
depending on the parameter time t. In this case, t may reach all possible real values, i.e.,
−∞ < t < ∞. However, not all quantum dynamical processes are governed by a single
Hamiltonian. Let us think in scattering, which intuitively and roughly speaking works as follows:
Imagine a quantum particle. In the remote past, its quantum state is prepared as free. This
means that its time evolution is given by some sort of free Hamiltonian H0. At some spatial
localization, the particle enters into an interaction region, where is subject of some forces that we
shall assume that come from the existence of a potential V . Then, inside the interaction region,
time evolution of its state is determined by a Hamiltonian H = H0 + V , which will transform
this state. Eventually, the particle will abandon the interaction region and evolve again with
H0 to be detected in the far future. In this case, time evolution is given by a Hamiltonian pair
{H0, H}. Although it is not necessary, we gain in intuition if we think on the interaction region
as a bounded domain in space.

A particularly interesting situation will occur when the particle spends in the interaction a
time which is much larger than the time it would stay if the interaction would be switched off.
In this case, we say that a metastable state or quantum resonance has been produced. Thus, we
may think on resonances as the result of a capture of some particle by a center of forces and
its release or emission. The whole process is called resonance scattering, while the process of
emission is the decay.

In atomic or nuclear physics, it is obvious the existence of quantum unstable states. A
quantum particle (electron, alpha, etc.) is emitted spontaneously from an atom or nucleus and
this is the observed situation. We may describe the situation in terms of resonance scattering, in
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which we ignore the capture process and identify the unstable state with the quantum resonance.
Here, we are solely interested in the process of decay.

In fact, capture and decay are usually quite different process, which require different
conditions. While the capture requires some conditions in the preparation of the incoming state,
the emission or decay is spontaneous. Therefore, capture (or preparation of the metastable state)
and decay are not mutually symmetric and they are not time reversal of each other.

This type of asymmetry can also be observed in other quantum scattering processes. There are
quantum scattering processes, which are very common but instead their time reversal processes
are very improbable. A typical example has been discussed in [1].

All these situations give an idea of time asymmetry in quantum mechanics. Related notions
are quantum irreversibility, which describes the non-invariance with respect to the time reversal
operation and the existence of a time arrow, which distinguishes between past and future in a
unique way [2].

Since we usually observe decay and not capture, we need a formalism that describes the decay
of quantum unstable particles or resonances. A comment is in order here. In the past physicists
have distinguished between resonances and decaying states [3]. Resonances were characterized
by a bump in the cross section with width Γ, which was the measurable quantity. Then, a lifetime
can be defined as τ := ~/Γ. Decaying states were defined by its mean life. Measurements of
mean life and cross section are independent, so that resonances and decaying states could not
be fully identified until precision in both types of measurements were good enough to establish
the accuracy of the formula τ = ~/Γ. In the relativistic case this is not possible in general since
the mean lives of decaying particles are times below the minimal time interval which is possible
to measure. Yet, lifetimes of relativistic particles are often determined after the measurement
of the cross section by the above formula τ := ~/Γ. It is sometimes claimed that this relation
can be fixed in the context of time asymmetric quantum mechanics [4].

Resonances may also be reasonably modeled by an interaction between a bound state and an
external field, as is in the celebrated Friedrichs model [5–7]. Yet, the Friedrichs model may be
described as a resonance scattering, in which scattering matrix, Møller wave operators, etc. are
well defined [8].

Along this paper, we are going to review a mathematical formalism for the theory of quantum
resonances, which are typical irreversible quantum processes, based in the use of Hardy functions
on a half plane. Hardy functions are complex analytic functions, which properties we review in
the sequel. Hardy functions seem to be the correct mathematical tool to describe irreversibility in
Quantum mechanics. For other descriptions, which do not exclude Hardy functions, see [9, 10].

2. Rigged Hilbert spaces

A rigged Hilbert space or Gelfand triplet is a tern of vector spaces [11–15]

Φ ⊂ H ⊂ Φ× , (1)

where:

i) H is an infinite dimensional (separable) Hilbert space.

ii) Φ is a dense subspace of H. Dense means that for any vector ϕ ∈ H, there is a sequence
of vectors, {ϕn} in Φ such that ϕn 7−→ ϕ in terms of the norm topology on H. This means that
any ϕ ∈ H can be approached by vectors in Φ with arbitrary precision. In addition, Φ has its
own topology, which is stronger than the topology Φ inherits from H. This means, in particular,
that all convergent sequences in Φ are also convergent sequences in H, but the converse is not
true.

iii) In order to define Φ×, let us consider the set of mappings F : Φ 7−→ C, where C is the
field of complex numbers, such that: a) F is antilinear on Φ, i.e., for any ϕ, ψ ∈ Φ and any



3

1234567890

International Conference on Quantum Phenomena, Quantum Control and Quantum Optics  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 839 (2017) 012001  doi :10.1088/1742-6596/839/1/012001

pair α, β ∈ C, we have that F (αϕ+ βψ) = α∗F (ϕ) + β∗F (ψ), where the star denotes complex
conjugation, and b) F is continuous, which in particular means that if ϕn 7−→ ϕ in Φ, then,
F (ϕn) 7−→ F (ϕ) in C. These mappings form a linear space that we denote as Φ×. F (ϕ) is the
complex number resulting of applying F to the vector ϕ. For our purposes, we should use the
Dirac notation: F (ϕ) = 〈ϕ|F 〉.

Then, to any ϕ ∈ H, we may associate a unique Fϕ ∈ Φ×, defined as 〈ψ|Fϕ〉 := 〈ψ|ϕ〉, for all
ψ ∈ Φ. After identification of Fϕ with ϕ (that mathematicians often call an abus de langage,
like that, in French), we conclude that H ⊂ Φ×. We do not want to enter in the discussion of
the possible topologies on Φ×.

Rigged Hilbert spaces have been used to (among other purposes):

i) Give a rigorous setting to the Dirac formulation of Quantum Mechanics [12, 14–16].

ii) Give a precise meaning to Gamow vectors or vector states for resonances [17–19].

iii) With the use of rigged Hilbert space of Hardy functions, provide a mathematical support
for the time asymmetric quantum mechanics [20–23].

Let us briefly discuss some features related with rigged Hilbert spaces (RHS). Let A be a
linear operator on H reduced by Φ. This means that for any ϕ ∈ Φ, we have that Aϕ ∈ Φ,
or AΦ ⊂ Φ, i.e., Φ is invariant under the action of A. Then, A may be extended to a linear
operator on Φ× by means of the duality formula:

〈Aϕ|F 〉 = 〈ϕ|AF 〉 , ∀ϕ ∈ Φ , ∀F ∈ Φ× . (2)

It has been proved that if A is a self adjoint operator on an infinite dimensional (separable)
Hilbert space H, there is always a dense subspace Φ, in the domain of A (the space of vectors
in which A acts) such that Φ reduces A [13]. This is one of the ingredients towards a rigorous
Dirac formulation of quantum mechanics.

From a RHS, we may construct infinitely many others which are, in some sense, equivalent
to the original one. Let U be an arbitrary unitary operator on H, or furthermore, U might
be a unitary operator between to Hilbert spaces H and G, i.e., U : H 7−→ G. We know that
unitary mappings transport topological properties from H into G. Moreover, there are some
other important properties which are preserved relative to operators. In particular, if A is self
adjoint in H, its transformed by U on G, UAU−1 is self adjoint on G. Thus, if we have a RHS
as in (1) and U : H 7−→ G is unitary, the triplet

UΦ ⊂ G ⊂ (UΦ)× (3)

is a new RHS with the same properties than the original one. The topology on Φ is transported
to UΦ by U , so that Φ and UΦ have the same topological properties [18].

3. Hardy functions on a half plane

Let us consider the open upper half plane, C+, of the complex plane, defined as the set of
complex numbers with positive imaginary axis, i.e., C+ := {z ∈ C | Im z > 0 }. By C we
always mean the field of complex numbers. A Hardy function [18, 19, 24–26] f(z) on the upper
half plane is a complex analytic function on C

+ such that

sup
α>0

∫ ∞

−∞
|f(x+ iα)|2 dx < K <∞ . (4)

This means that for any positive value of α, the function f(x + iα) is square integrable and
that all integrals in (4) for all values of α > 0 are bounded by the same finite constant K. One
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important consequence is that the function on the real line R defined as f(x) := limα→0 f(x+iα)
is also square integrable and ∫ ∞

−∞
|f(x)|2 dx < K. (5)

It is customary to call f(x) the function of the boundary values of f(z). The function f(x)
is uniquely determined almost elsewhere, which means that it may not be defined on a set of
zero Lebesgue measure. The converse of this result is true: if we know that a square integrable
function on the real line, f(x), gives the boundary values of a Hardy function on the upper
half plane, f(z), then we can recover all values of f(z) for z ∈ C+. Due to a theorem by
Titchmarsh [24,25], for all z ∈ C

+, we have that

f(z) =
1

2πi

∫ ∞

−∞

f(x) dx

x− z , (6)

where f(x) is the boundary function of f(x). The proof of this result relies in the Cauchy
theorem.

Let us call H2
+ the set of Hardy functions on the upper half plane. These functions have the

following properties:
i) We may identify any function f(z) in H2

+ with its boundary function f(x). Since f(x) is
square integrable, then f(x) ∈ L2(R), where L2(R) is the Hilbert space of all complex square
integrable functions on the real line. Thus, H2

+ ⊂ L2(R).

ii) H2
+ is a linear space, which is a subspace of L2(R).

iii) According to the Titchmarsh theorem, we may recover the values of a function in H2
+

from its boundary function, provided that we know that it is the boundary function of a Hardy
function on the upper half plane. Then, how we can say that a square integrable function is the
boundary function of one in H2

+? The answer was given by Paley and Wiener in a celebrated
result [24–26]: The Fourier transform of a square integrable function f(x) on the real line is
given by

F(f) := f̂(k) :=
1√
2π

∫ ∞

−∞
f(x) e−ikx dx (7)

and it is also a square integrable function with the same norm. We say that f(x) is supported
on an interval ∆ of the real line, either finite or infinite, if its is zero outside ∆.

The Paley-Wiener theorem establishes that f(x) ∈ H2
+ if and only if f(x) is the Fourier

transform of a function supported on the negative semi axis R− ≡ (−∞, 0].
Thus, in order to recognize whether a function, f(x), is in H2

+, we take its inverse Fourier
transform. If the function vanish outside R

−, then it is in H2
+, otherwise it is not.

iv) The Paley-Wiener theorem is a quite useful tool to construct all functions in H2
+. We

only need to consider the space L2(R−) of all square integrable functions on R
− and take their

Fourier transforms. Then, we write that

F [L2(R−)] = H2
+ . (8)

The Fourier transform is a unitary operation on a Hilbert space. Since L2(R−) is a subspace of
L2(R), which is also a Hilbert space, then H2

+ is a Hilbert subspace of L2(R).

v) The values of a Hardy function on the upper half plane not only may be recovered by
its boundary function on the real line, but also from its boundary values on the positive semi
axis R+ ≡ [0,∞) as shown by a result by van Winter [27]. This discussion requires the Mellin
transform. Let f(x) be a square integrable function on R

+. Its Mellin transform is given by

M(f)(s) = fM (s) :=
1

(2π)1/2

∫ ∞

0
f(x)xis−1/2 dx , s ∈ R . (9)
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The Mellin transform of a square integrable function is also square integrable. The van Winter
theorem states that a function f(x) ∈ L2(R+) is the boundary function on the positive semi
axis R+ of a Hardy function on the upper half plane if and only if its Mellin transform fM (s)
satisfies ∫ ∞

−∞
(1 + e2πs)|fM (s)|2 ds <∞ . (10)

The values of f(x) for z = reiθ, 0 < r ≤ ∞ and 0 < θ ≤ 2π are given by:

f(z) =
1

(2π)1/2

∫ ∞

∞
fM (s) (re

iθ)−is−1/2 ds . (11)

Hardy functions in the lower half plane C
− := {z ∈ C | Im z < 0} are defined analogously.

The space of Hardy functions in the lower half plane is denoted by H2
−. Functions in H2

− have
similar properties than functions in H2

+ with some minor differences. In particular, (6) needs of
a minus sign right after the equal sign and in iii.) and iv.) we have to replace Fourier transforms
supported in the negative semi axis by Fourier transforms of functions on the positive semi axis.
There are some additional properties concerning functions in H2

±:

vi) The spaces H2
± are subspaces of L2(R), which are also Hilbert spaces. Moreover, as a

consequence of the Paley-Wiener theorem, each function in H2
± is orthogonal to each function

in H2
∓:

∫ ∞

−∞
f∗±(x) g∓(x) dx = 0 , f±(x) ∈ H2

± , g∓(x) ∈ H2
∓ . (12)

In addition:
L2(R) = H2

+ ⊕H2
− , (13)

where the sign ⊕ means orthogonal direct sum.

vii) The complex conjugate f∗(x) of a function f(x) ∈ H2
± is in H2

∓, f
∗(x) ∈ H2

∓.
Furthermore, [f(z∗)]∗ = f(z), where the star always denotes complex conjugation.

viii.) Any function f(z) in H2
± has the following asymptotic behavior for large values of |z|:

|f(z)| ≈ |z|−1/2 . (14)

These are the most relevant properties of Hardy functions on a half plane. Next, we are going
to refine the space of Hardy functions.

3.1. Smooth Hardy functions

The Schwartz space S is the set of all complex functions of a real variable, f(x) satisfying the
following properties:

i) Any function f(x) ∈ S is continuous and has continuous derivatives of any order at all
points.

ii) Any function f(x) ∈ S, as well as any of its derivatives, goes to zero at the infinity faster
than the inverse of any polynomial. i.e.,

lim
|x|→∞

xn
dm f(x)

dxm
= 0 , n,m = 0, 1, 2, . . . . (15)

Functions in S are called the Schwartz functions and have the following properties [28]:
i) S is a vector space over the field of complex numbers.
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ii) Any function in S is square integrable, so that S ⊂ L2(R). Furthermore, S is dense in
L2(R).

iii) S can be endowed with a metric (there exists a distance between vectors) topology, which
is stronger than the norm topology inherited from L2(R). This means that the triplet of spaces

S ⊂ L2(R) ⊂ S× (16)

is a RHS. The space S× is equivalent to the space of tempered distributions, with the only
(very minor) difference that elements on S× are antilinear mappings on S, while tempered
distributions are linear mappings on S.

iv) Let [a, b] any interval in the real line R, either finite or infinite. Let S[a, b] the space of
functions in S supported on [a, b]. One may prove that

S[a, b] ⊂ L2[a, b] ⊂ S×[a, b] , (17)

where L2[a, b] is the Hilbert space of complex square integrable functions on the interval [a, b],
is again a RHS. Recall that [a, b] could be either finite or infinite, as for instance [0,∞). In
particular, S[a, b] is always dense in L2[a, b].

v) The Fourier transform of a Schwartz function is also a Schwartz function. Furthermore, the
Fourier transform is an one to one onto mapping from S onto itself that preserve the topological
structre on S.

Now, we are in the situation to construct the spaces of smooth Hardy functions. For that
purpose, we shall use the Paley-Wiener theorem as an essential ingredient.

Let us consider the Schwartz spaces S(R∓) and the space of Fourier transforms of functions
in S(R∓), F [S(R∓)]. These spaces have the following properties:

i) After the Paley-Wiener theorem, F [S(R∓)] ⊂ H2
±.

ii) The Fourier transform of a Schwartz function is also another Schwartz function and this
operation is bijective (one to one and onto), so that

F [S(R∓)] ≡ S ∩H2
± . (18)

iii) The spaces S∓ are dense in L2(R∓). Since the Fourier transform is unitary, then, S ∩H2
±

is dense in H2
± with the norm topology. In addition due to the above comments on unitary

mappings on RHS, the triplets:

S ∩ H2
± ⊂ H2

± ⊂ (S ∩ H2
±)
× (19)

are well defined RHS.

iv) Let us consider the space of restrictions to R
+ of functions in H± that we shall denote

here as H2
±

∣∣
R+ . After the van Winter theorem, there exists one to one onto mappings (and

therefore invertible) θ±:

θ± : H2
± 7−→ H2

±

∣∣∣
R+
, θ± : S ∩ H2

± 7−→ S ∩H2
±

∣∣∣
R+
. (20)

Van Winter has also proved that H2
±

∣∣
R+ is dense in L2(R+). From here, we can also prove

that S ∩ H2
±

∣∣
R+ is also dense in L2(R+). The topology on H2

±

∣∣
R+ can be transported by θ± to

S ∩ H2
±

∣∣∣
R+
, so that the triplets

S ∩ H2
±

∣∣∣
R+
⊂ L2(R+) ⊂ (S ∩ H2

±

∣∣∣
R+
)× (21)

are new RHS.
It is important to point out that, although functions in S ∩H2

±

∣∣
R+ can be uniquely extended

to the negative semi axis R− (and to a half plane), as functions in S∩H2
±

∣∣∣
R+

, we are considering

their values on the positive semi axis R
+ only.
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4. Gamow states and their mathematical construction

Once the metastable or decaying state or resonance (all these names represent the same object)
has been prepared, it starts to decay. We may use an origin of times t = 0 at which the
preparation of the decaying state is complete and starts to decay [3] (Although we shall stick to
this notion of the origin of times, this determination is somehow ambiguous [29]). Then, assume
that the state is represented at t = 0 by the state vector ψ. The non-decay probability at time
t > 0 is

P (t) = |〈ψ|e−itHψ〉|2 , (22)

where H is the interacting or total Hamiltonian, where {H0, H} is the Hamiltonian pair,
responsible for the resonance scattering.

Assume that ψ is a normalized vector in a Hilbert space (in the subspace of scattering states)
and that the Hamiltonian H is semi bounded, i.e., that its spectrum has a lower bound. This
is a condition that have most of known quantum Hamiltonians. Then, P (t) goes to zero as
t 7−→ ∞ [30]. The vector ψ denotes a decaying state if the non-decay probability is exponential
function of the type e−αt, α > 0. This is because the observed decay rate is exponential [3].

However, under the above conditions imposed to ψ and H, P (t) cannot be exponential.
It could be approximately exponential for almost all times within the range of observation.
However, it is far from being exponential for very short (Zeno era) and very long (Khalfin
region) times [30]. Both deviations of the exponential regime have been reported to be found
experimentally [31,32], but they are difficult to detect, the Zeno era because it is too short and
the Khalfin region because it remains very little amount of undecayed material. Thus within a
reasonable degree of accuracy, we may assume that resonances decay exponentially at all times.
But then, this exponential decay cannot be produced by a normalizable state vector. The vector
state that decays exponentially for all t > 0 is called the (decaying) Gamow state and it cannot
be normalized with the usual L2 norm.

It is well know that (non relativistic) resonances are very often associated to pairs of poles of
the analytic continuation, S(p), to the complex plane of the scattering operator (or scattering
matrix), in the momentum representation, located symmetrically with respect to the negative
imaginary axis. If we shift to the energy representation, the lower half plane is transformed
into the second sheet of the two sheeted Riemann surface corresponding to the transformation
p =

√
2mE. Then, resonances are characterized by pairs of poles of the analytic continuation

of S(E) to the second sheet, at values zR = ER − iΓ/2 and its complex conjugate, z∗R. Here,
ER is the resonant energy and Γ the width, which gives the mean life [3]. There are some other
mathematical and physical definitions of resonances [3] that not always coincide [30]. The study
of the relations of between these definitions needs to be completed.

We are now in the position of defining the decaying Gamow vector, ψD, as an eigenvector
of the total Hamiltonian H with the complex eigenvalue zR = ER − iΓ/2, i.e., HψD = zR ψ

D

and the growing Gamow vector, ψG, as an eigenvector of H with eigenvalue z∗R = ER + iΓ/2,
HψG = z∗R ψ

G. Gamow vectors ψD and ψG cannot be normalizable as they are eigenvectors of
a self adjoint Hamiltonian with complex eigenvalues. This means that Gamow vectors do not
belong to the Hilbert space in which H is defined as a self adjoint operator. The advantage of
this definition is that the decaying Gamow vector decays exponentially for all positive values of
time (we should clarify this point later):

e−itHψD = e−itER e−tΓ/2 ψD . (23)

The fact is that Gamow vectors belong to the antiduals of two, in principle different, RHS. Now,
we proceed to explain the idea of their mathematical construction.

In order to do it, we reduce the hypothesis to a minimum, further generalizations can be
constructed without serious difficulties. Assume thatH0 andH have simple continuous spectrum
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equal to R
+ = [0,∞), so that both have only scattering states. Assume that these operators

are defined on certain Hilbert space H. Then, according to a spectral theorem [28] pp. 226-
227, there exists a unitary operator U : H 7−→ L2(R+) such that H is transformed into the
multiplication operator on L2(R+). To understand this, let us consider ψ(E) ∈ L2(R+) such
that E ψ(E) ∈ L2(R+) (we use the argument E to mean energy). On the space of functions
with this property, let us define the multiplication operator E as Eψ(E) := Eψ(E). Then,
UHU−1 = E . Note that U diagonalizes H by this operation.

Concerning E , the following properties are relevant:
i) The operator E leaves the spaces S ∩ H2

±

∣∣
R+ invariant, so that for any function ψ±(E) ∈

S ∩H2
±

∣∣
R+ , we have that Eψ±(E) = Eψ±(E) ∈ S ∩H2

±

∣∣
R+ .

ii) The operator E can be extended to the dual (S∩H2
±

∣∣
R+)

× by means of the duality formula:

If ψ±(E) ∈ S ∩H2
±

∣∣
R+ and F± ∈ (S ∩ H2

±

∣∣
R+)

×, then,

〈E ψ±(E)|F±〉 = 〈ψ±(E)|E F±〉 , (24)

so that E acts on all vectors in (S ∩ H2
±

∣∣
R+)

×.
Next, we construct a new RHS as follows: Let U be the unitary operator which diagonalizes

H as above (UHU−1 = E). If Φ± := U−1[S ∩ H2
±

∣∣
R+ ], we consider these new RHS given by

Φ± ⊂ L2(R+) ⊂ Φ×±. Then,

UHΦ± = UHU−1 [S ∩ H2
±

∣∣
R+ ] = E [S ∩ H2

±

∣∣
R+ ] ⊂ S ∩H2

±

∣∣
R+

=⇒ HΦ± ⊂ U−1 [S ∩ H2
±

∣∣
R+ ] = Φ± , (25)

so that Φ± reduce H (HΦ± ⊂ Φ±). By the duality formula, 〈Hϕ±|F±〉 = 〈ϕ±|H F±〉, valid for
all ϕ ∈ Φ± and all F± ∈ Φ×±, we extend H into the antiduals Φ×±.

Then, we may obtain some rigorous results that we list in the sequel. These results have been
proved in some references like [18, 19]:

i) Assume that zR = ER − iΓ/2 is a resonance pole of the S matrix associated to the
Hamiltonian pair {H0, H}. Then, there exists a unique vector (which is a generalized function)
δzR ∈ (S ∩H2

+

∣∣
R+)

× such that EδzR = zR δzR , i.e., δzR is an eigenvector of E with eigenvalue zR.
This eigenvector lies in the dual (S ∩H2

+

∣∣
R+)

× and cannot be in L2(R+) due to the Hermiticity

of E . Analogously, there exists δz∗
R
∈ (S ∩H2

−

∣∣
R+)

× with Eδz∗
R
= z∗R δz∗R . The star always means

complex conjugation.

ii) Let us define the decaying Gamow vector as ψD := U−1 δzR ∈ Φ×+. Then,

EδzR = zR δzR =⇒ U−1EUU−1 δzR = zR U
−1δzR =⇒ HψD = zR ψ

D . (26)

The latter identity makes sense in Φ×+. Analogously, we define the growing Gamow vector as

ψG := U−1 δz∗
R
∈ Φ×−. Then, we have that Hψ

G = z∗R ψ
G, equation valid in Φ×−. Thus Gamow

vectors are defined as the eigenvectors of the total Hamiltonian H with eigenvalues given by
resonance poles of the S matrix in the energy representation.

iii) Our structures have been constructed using Hardy spaces on a half plane. Hardy spaces
on a half plane split the unitary group given by e−itE , t ∈ R into two semigroups. In fact [18,19]:

If t ≥ 0, eitEH2
+ ⊂ H2

+ and also eitE [S ∩H2
+

∣∣
R+ ] ⊂ S ∩H2

+

∣∣
R+ . However, for any t0 < 0, there

exists a function φ+(E) ∈ S ∩H2
+

∣∣
R+ , such that e

it0Eφ+(E) /∈ S ∩H2
+

∣∣
R+ .

If t ≤ 0, eitEH2
− ⊂ H2

− and also eitE [S ∩H2
−

∣∣
R+ ] ⊂ S ∩H2

−

∣∣
R+ . However, for any t0 > 0, there

exists a function φ−(E) ∈ S ∩H2
−

∣∣
R+ , such that e

it0Eφ−(E) /∈ S ∩H2
−

∣∣
R+ .
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vi) These ideas can be immediately carried to Φ±, since U
−1 eitE U = eitH . Thus:

If t ≥ 0, eitHΦ+ ⊂ Φ+. Furthermore for any t0 < 0, there exists a vector ϕ+ ∈ Φ+ such that
eit0Hϕ+ /∈ Φ+.

If t ≤ 0, eitHΦ− ⊂ Φ−. Furthermore for any t0 > 0, there exists a vector ϕ− ∈ Φ− such that
eit0Hϕ− /∈ Φ−.

v) Let Φ ⊂ H ⊂ Φ× be a RHS and U a unitary operator on H such that U †Φ ⊂ Φ, where U †

is the adjoint of U . Then, U can be extended to an operator on Φ× by duality: If ϕ ∈ Φ and
F ∈ Φ× are chosen arbitrarily, then, 〈U †ϕ|F 〉 = 〈ϕ|UF 〉. This equation defines the action of U
on Φ× in a unique way. In consequence:

e−itHΦ×+ ⊂ Φ×+ , if and only if t > 0 ; e−itHΦ×− ⊂ Φ×− , if and only if t < 0 . (27)

Due to the properties of Hardy functions the evolution group e−itH has split into two semigroups,
one for positive values of time and the other for negative values of time.

On the other hand, we may reconstruct our spaces in such a way that relations (27) be valid
for all values of time [33].

vi) Now, it comes the essential property of Gamow states, which has been proved in [18,19]:
For t ≥ 0, the time evolution of the decaying Gamow state is given by

e−itH ψD = e−itER e−tΓ/2 ψD . (28)

This means that the decaying Gamow state has an exact exponential decay for t ≥ 0. Due to
the use of Hardy functions in the definition of our spaces, time evolution is not defined for ψD

at times t < 0.
For t ≤ 0, the time evolution of the growing Gamow state is given by

e−itH ψG = e−itER e+tΓ/2 ψG . (29)

This means that the decaying Gamow state has an exact exponential grow for t ≤ 0 or an exact
exponential decay to the past. As for ψD, time evolution is not defined for ψG at times t > 0.

vii) The growing Gamow vector as well as all growing process that takes place in Φ×− for t < 0
should not be confused with the process of capture, preparation or creation of the resonance.
In fact, it is the time reversal of the decaying process: something that describes the same in the
reverse direction of time. In particular, if T is the time operator, TΦ×± = Φ×∓ and TψD = ψG

and also TψG = ψG. Nevertheless, another interpretation is possible. This interpretation is the
founding stone of Time Asymmetric Quantum Mechanics.

5. Time Asymmetric Quantum mechanics

As we have just pointed out in the previous section, we may reinterpret Φ×+ in a different

way than being the time reversal of Φ×−. This interpretation was proposed by A. Bohm and
collaborators in a series of papers [4, 20–23]. Thus, the notion of time asymmetric quantum
mechanics (TAQM) comes from the idea according to which the processes described by vectors
in the space Φ×− are not related with the time reversal of the decay as described by vectors in Φ×+.

We have already mentioned in the Introduction that irreversibility in quantum mechanics
include resonances but it goes beyond than resonances. In particular, it must consider many
scattering situations in which the probability of the process in one direction of time is much
smaller than the probability of its time reversal [1, 2].

In order to introduce a formulation of TAQM, we need to add to the standard formulation
of Quantum Mechanics a new axiom to the existing ones. This new axiom is called the Hardy

space axiom. Since TAQM manifest itself on scattering processes, resonate or not, it is
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reasonable to present it in this context and using a causality principle. This causality principle
states than in any scattering experiment, first comes the preparation and then the registration.

We may assume that in our scattering experiment, the scattering Møller wave operators
exists [34]. Let us denote these operators ΩIN and ΩOUT for the incoming and outgoing Møller
operator respectively. The relation between the free and perturbed scattering states is given by
these operators [34], so that we define

ΦIN := Ω−1IN Φ− ; ΦOUT := Ω−1OUT Φ+ . (30)

Under the simplest conditions (no bound states, no singular spectrum, if any of these elements
were present, we have to use the Hilbert space of scattering states [18]), ΦIN and ΦOUT are
dense in the Hilbert space H. These spaces define two new RHS [18,19]

ΦIN ⊂ H ⊂ Φ×IN ; ΦOUT ⊂ H ⊂ Φ×OUT . (31)

Due to the construction of the RHS (31) and the properties of the Møller operators, we have
the following result:

For t < 0 , e−itH0 Φ×IN ⊂ Φ×IN ; ; for t > 0 , eitH0 ΦOUT ⊂ ΦOUT . (32)

To prove the second relation in (32), take t > 0 and φout ∈ ΦOUT . We have:

φout(t) = eitH0φout = Ω−1OUT e
itHΩOUT Ω

−1
OUT φ+ = Ω−1OUT e

itH φ+ ∈ ΦOUT , t > 0 . (33)

To prove the first relation in (32) we proceed analogously with ΦIN and then, apply the duality
formula 〈eitH0ϕ|ψin〉 = 〈ϕ|e−itH0ψin〉 valid for all ϕ ∈ ΦIN .

In order to introduce the Hardy space axiom, we need to do it on the preparation and
registration in an scattering experiment separately.

i) Preparation. Before the scattering, we have to prepare states of particles to be scattered.
This is done with some sort of device called the preparation apparatus, which produce the
incoming state ψin, which after preparation and before entering into the interaction region,
evolves freely.

Then, for incoming states the Hardy space axiom is stated as follows:

The incoming state ψin belongs to a space of incoming free states, Φ×IN
Due to the use of Hardy functions in the construction of ΦIN , and therefore of Φ×IN ,

time evolution is defined for times t < 0 only, on all vectors in Φ×IN . This, for any t < 0,
ψin(t) = e−itH0ψin(0), where ψin(0) := ψin.

ii) Registration. The unstable quantum state decays after the particle leaves the interaction
region. Decaying products (we use this word for general scattering experiments, not only for
resonances) are registered in a registration apparatus. This registration apparatus lies outside
the interaction region so that it detects free states. As a matter of fact, the registration apparatus
detects the projection into the region it covers of the total outgoing state. This projection is
given by a vector φout(0) = φout. And this vector is observed, so that we should look at the
operator |φout〉〈φout| as an observable.

Then, for the registration part the Hardy space axiom is stated as follows:
The vector φout that defines the observable |φout〉〈φout|, lies in ΦOUT , φout ∈ ΦOUT .
Thus, according to (32), φout(t) = eitH0φout, t > 0. Observables must evolve according to the

Heisenberg rule of time evolution, something which is obvious here, since

|φout(t)〉〈φout(t)| = eitH0 |φout〉〈φout| e−itH0 . (34)
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Another way of seeing that the registered observable should evolve in time as an observable
comes from the Born probability of measuring |φout(t)〉〈φout(t)| in the arbitrary (pure) state
given by the density operator ρ(t) := |ψ(t)〉〈ψ(t)| given by (t > 0, ψ(0) = ψ):

Pρ(t)(|φout〉〈φout|) = |〈φout| ψin(t)〉|2 = Tr{ |φout〉〈φout|[e−iH0t|ψ〉〈ψ|eiH0t]}

= Tr{eitH0 |φout〉〈φout|e−iH0t} = Pρ(|φout(t)〉〈φout(t)|) . (35)

Thus, |φout〉〈φout| evolves for t > 0 as an observable. Thus, we have complete consistency.
In consequence: states are vectors ψin ∈ Φ×IN or density operators |ψin〉〈ψin|, the latter acting

as operators from ΦIN into Φ×IN (this space is commonly denoted as L(ΦIN ,Φ
×
IN )). Observables

are operators |φout〉〈φout| on ΦOUT . The time reverse operation transforms Φ
×
± into Φ

×
∓ and from

here one deduces that it transforms Φ×IN onto Φ×OUT and vice versa. However, it is not true that
it transforms Φ×OUT onto either ΦIN or L(ΦIN ,Φ

×
IN ). Also, time reversal of observables are not

states.
Finally, let us re-state the Hardy class axiom as:
We take as space of in-states Φ×IN . Any vector of Φ×IN can be represented by a smooth Hardy

function on the lower half plane. Analogously, we take as space of observables the operators
formed by dyads |φout〉〈φout| of vectors φout in ΦOUT . These vectors can be represented by
smooth Hardy functions on the lower half plane.

In conclusion, we have summarized the essential mathematical formalism that yields to a
presentation of the TAQM. We have skipped many details, in particular those concerning to
scattering and resonance scattering. The final description of TAQM, as given in the present
paper, is very short so that we encourage the interested reader a careful study of the original
papers listed in our references.
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