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Abstract. A method is presented for reducing a 3d-fold integral occurring in higher order
many-body integrals for a d-dimensional electron gas to a double integral. The result is applied
to the second order exchange energy for a d-dimensional uniform electron fluid. The cases
d = 2, 3 are examined in detail.
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1. Introduction

In their classic work on the ground-state energy of an interacting electron gas[1] Gell-Mann
and Brueckner encountered the second order exchange term

E2b =
3p3F e

4

16π5

∫
d~pd~kd~q

f~pf~k(1− f~p+~q)(1− f~k+~q)

q2(~p+ ~k + ~q)2~q · (~p+ ~k + ~q)
, (1)

where fp is the Fermi distribution function and pF denotes the Fermi momentum. Gell-
Mann’s assistant, H. Kahn, estimated by Monte-Carlo integration the value as -0.044 and in a
1965 lecture in Istambul[2] L. Onsager claimed that the exact value is (ln 2)/3− 3ζ(3)/2π2,
which remained unproven till eight years later when Onsager, Mittag and Stephen published
a lengthy derivation[2]. In 1980, Ishihara and Ioriatti[3] evaluated the two-dimensional
analogue of (1) and In 1984 the author published a note[4] indicating how such integrals might
be handled in d-dimensions. But, due to a number of misprints [4] is difficult to follow and it
seems appropriate to present a simplified and corrected version, particularly since the method
has been found useful in other contexts[5] and, due to an oversight, it erroneously stated that
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the value given in [3] was confirmed. The dimension d will be treated as continuous by means
of the expedient integration rule for an azimuthally symmetric integrand∫

dkd =
2π(d−1)/2

Γ
[
1
2 (d− 1)

] ∫ ∞
0

dkkd−1
∫ π

0

dθ sind−2 θ

The following section covers the reduction of a basic 9d-dimensional integral to more
manageable 3d+2-dimensional form which, in section 3, is applied to the second order
exchange energy. The last section gives the results for d = 2 and d = 3.

2. Basic Integral Identity

The units ~ = 2m = 1, will be used along with the notation

fp = [1 + exp[β(p2 − p2F )]−1, Q(p) = fp(1− f~p+~q), Q′(p) = f~p+~q(1− fp) (2)

∆(p) = f~p+~q − f~p, δ(p) = (~p+ ~q)2 − p2, (3)

All vectors are d-dimensional and vector integrals are over all space.

Lemma. In the zero temperature limit

Q(p)Q(k)−Q′(p)Q′(k)

~q · (~p+ ~k + ~q)
= − 1

π

∫ ∞
−∞

dz
∆(p)

z − iδ(p)
∆(k)

z + iδ(k)
. (4)

The proof follows closely the derivation of a similar result in Appendix A of [3].

Theorem 1. For real ~r and t ≥ 0∫
d~p ei[~r·~p+δ(p)t]∆(p) = −2i

(
2πpF
ξ

)d/2
e−

1
2 i~r·~q sin

(
1

2
~q · ~ξ

)
Jd/2 (pF ξ) , (5)

where ~ξ = ~r + 2t~q.

Proof. First of all note that ∆(p) is simply a rectangular pulse with height 1 and width q, so
has the inverse Laplace transform representation

∆(p) =

∫ c+i∞

c−i∞

ds

2πis
esp

2
F [e−s(~p+~q)

2

− e−sp
2

], c > 0. (6)

By substituting (6) into (5) one obtains the difference of two integrals. In the first make the
change of variable ~p→ −~p− ~q. This gives∫ c+i∞

c−i∞

ds

2πis
esp

2
F {e−i~r·~qe−itq

2

C(−~r − 2t~q)− eitq
2

C(~r + 2t~q)} (9)

C(~ξ) =

∫
d~p ei~p·

~ξe−sp
2

=
(π
s

)d/2
e−ξ

2/4s.

Next, one has ∫ c+i∞

c−i∞

ds

2πi
ep

2
F ss−1−d/2e−ξ

2/4s =

(
2pF
ξ

)d/2
Jd/2(pF ξ), (10)
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which gives for (9)(
2pFπ

ξ

)
Jd/2(pF ξ)e

itq2 [e−i~q·
~ξ − 1] = −2i

(
2pFπ

ξ

)
Jd/2 (pF ξ) e

− 1
2 i~r·~q sin(

1

2
~q · ~ξ) (11)

QED

Now, we choose, from among other possibilities,

α(~q) =

∫
ei~r·~q

r
d~r (12)

and define

A(~q) =

∫
d~pd~k α(~p+ ~k + ~q)

Q(p)Q(k)

~q · (~p+ ~k + ~q)
. (13)

By making the substitution ~p→ −~p− ~q, ~k → −~k− ~q, and adding the result back to (13), we
find, using the identity in the Lemma,

A(q) = − 1

2π

∫ ∞
−∞

dz

∫
d~pd~k α(~p+ ~k + ~q)

∆(p)∆(k)

(z + iδ(p))(z − iδ(k))
(14)

= − 1

2π

∫
d~r

r

∫ ∞
−∞

dzB(~r, z)B(−~r, z)

with

B(~r, z) =

∫
d~pei~r·~p

∆(p)

z + iδ(p)
=

∫ ∞
0

dt e−zt
∫
d~p ei[~r·~p+tδ(p)]∆(p). (15)

By applying Theorem 1 and performing the elementary z− integration, we have, after scaling
q out of tj ,

Theorem 2.
A(q) =

2

πq
(2πpF )

d
∫
d~r

r

∫ ∞
0

∫ ∞
0

dt1dt2
t1 + t2

sin
(
1
2qξ1

)
sin
(
1
2qξ2

)
(ξ1ξ2)d/2

Jd/2(pF ξ1)Jd/2(pF ξ2), (16)

~ξ1 = ~r + 2t1q̂, ~ξ2 = ~r − 2t2q̂.

3. Application to Second Order Exchange

For our choice of Coulomb interaction

α(q) = e2
(4π)(d−1)/2

qd−1
Γ

(
d− 1

2

)
(17)

which requires d > 1.
The second order exchange contribution to the ground-state energy per unit volume, of a

d-dimensional electron fluid is

E2x =
1

(2π)2d

∫
α(q)A(q)d~q. (18)
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For d > 2 we take the polar axis as the q̂-direction and apply Theorem 2. The q-integration is
elementary and we have

E2x = Kd

∫
dΩq

∫
d~r

r

∫ ∞
0

∫ ∞
0

dt1dt2
t1 + t2

ln

∣∣∣∣ ξ1 + ξ2
ξ1− ξ2

∣∣∣∣ Jd/2(pF ξ1)Jd/2(pF ξ2)

(ξ1ξ2)d/2
, (19)

where Kd collects all the numerical prefactors and powers of pF (for d = 2
∫
dΩq = 2π) and

will be made explicit in the final result. Now set t2 = ut1 and ~r → t1~r, so

E2x = Kd

∫
dΩq

∫ ∞
0

du

u+ 1

∫
d~r

r(η1η2)d/2
ln

∣∣∣∣η1 + η2
η1 − η2

∣∣∣∣ ∫ ∞
0

dt

t
Jd/2(pF tη1)Jd/2(pF tη2),

(20)
where η1 = |~r + 2q̂|, η2 = |~r − 2uq̂|. The θ, t− integrals can be done next, yielding

E2x = Kd

∫ ∞
0

du

u+ 1

∫
d~r

rηd>
ln

∣∣∣∣η1 + η2
η1 − η2

∣∣∣∣ , (d > 2) (21)

For d > 2 we can switch to d−dimensional cylindrical coordinates with axis along q̂.
Since the integrand is independent of the azimuthal angle∫

d~r =
2π(d−1)/2

Γ( 1
2 (d+ 1))

∫ ∞
−∞

dz

∫ ∞
0

ρd−2dρ. (22)

Next, after the successive transformations t = (z − 1)/(z + 1) and ρ = 2s/(1− t) we have

E2x = Kd

∫ 1

−1

dt

1− t
ln

(
1 + t

1− t

)
F (t)

F (t) =

∫ ∞
0

sd−2ds

(s2 + 1)d/2

∫ 1

t

dy√
y2 + s2

. (23)

Carrying out the s−integration, we come to

F (t) =
1

d− 1

∫ 1

t

dy

|y| 2
F1

(
1

2
,

1

2
(d− 1);

1

2
(d+ 1); 1− y−2

)
. (24)

By integrating by parts and noting that 2F1( 1
2 , a; a+1; 1−y−2) = 2|y|

1+|y| 2F1

(
1, 1− a; a+ 1; 1−|y|

1+|y|

)
,

we arrive at the principal result

Theorem 3

The second order exchange contribution to the ground-state energy of a d >
2−dimensional electron fluid is

E2x = KdG(d)

G(d) =

∫ 1

0

dy

y + 1

[
π2

3
− ln2 y

]
2F1

[
1,

1

2
(3− d);

1

2
(1 + d); y

]
. (25)
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4. Discussion

Equation (25) is as far as one can proceed without specifying the dimensionality. For d = 3,
we find, since the hypergeometric function reduces to unity,

E2x = K3G(3) =
e4p3F
4π2

∫ 1

0

dy

1 + y

(
π2

3
− ln2 y

)
=

1

6
(π2 ln 4− 9ζ(3)). (26)

which is exactly the Onsager-Stephen-Mittag value, since they have e2 = 2 and pF = 1.
For the case d = 2 we itake the limit of (25) which gives

G(2) = 2

∫ 1

0

(
π2

3
− 4 ln2 y

)
tan−1 y

y2 + 1
dy (27)

which, unlike the corresponding integral in [3] does not seem to be analytically evaluable.
This gives

E2x = K2G(2) =
p2F e

4

32π4
(18.0586) (28)

about 30% less than the value (p2F e
4/32π4)(28.3664) in [3]. A possible reason is that

in [3,(14)] the argument of the second Bessel function is |~r − 2ût| and after making the
substitution ~r → (t + x)~r + û(x − t), in [3,(16)] the authors present it as (x + t)|~r − û|,
which is incorrect. It is this error which renders the remainder of the evaluation analytically
tractable. An attempt to continue the calculation after correcting this was stymied by a further
difficulty in [3,(14)]; the factor of 2 in the numerator of the argument of the logarithm means
that, as x → ∞ this argument tends to 2, rather than unity as required for convergence at the
upper limit of the x− integration.
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