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Abstract. A method is presented for reducing a 3d-fold integral occurring in higher order
many-body integrals for a d-dimensional electron gas to a double integral. The result is applied
to the second order exchange energy for a d-dimensional uniform electron fluid. The cases
d = 2, 3 are examined in detail.
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1. Introduction

In their classic work on the ground-state energy of an interacting electron gas[1] Gell-Mann
and Brueckner encountered the second order exchange term

_ 3pFe /d_’dkd_' fpfk( fﬁ+d’)(1_ff$+q*) (1)
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where f,, is the Fermi distribution function and pr denotes the Fermi momentum. Gell-
Mann’s assistant, H. Kahn, estimated by Monte-Carlo integration the value as -0.044 and in a
1965 lecture in Istambul[2] L. Onsager claimed that the exact value is (In2)/3 — 3¢(3) /272,
which remained unproven till eight years later when Onsager, Mittag and Stephen published
a lengthy derivation[2]. In 1980, Ishihara and Ioriatti[3] evaluated the two-dimensional
analogue of (1) and In 1984 the author published a note[4] indicating how such integrals might
be handled in d-dimensions. But, due to a number of misprints [4] is difficult to follow and it
seems appropriate to present a simplified and corrected version, particularly since the method
has been found useful in other contexts[5] and, due to an oversight, it erroneously stated that



Second order exchange energy of a d-dimensional electron fluid. 2

the value given in [3] was confirmed. The dimension d will be treated as continuous by means
of the expedient integration rule for an azimuthally symmetric integrand

(d-1/2  poo *
/ drt= 2T / dkk! / dfsin®~2 9
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The following section covers the reduction of a basic 9d-dimensional integral to more
manageable 3d+2-dimensional form which, in section 3, is applied to the second order
exchange energy. The last section gives the results for d = 2 and d = 3.

2. Basic Integral Identity

The units 4 = 2m = 1, will be used along with the notation
fo=M+exp[B® —pE)] ™" QW) =fo(1— freg), Q1) = fara(l—fo)  (2)
Ap) = fprg— fon 8(p) = (F+)? —p°, (3)
All vectors are d-dimensional and vector integrals are over all space.

Lemma. In the zero temperature limit
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The proof follows closely the derivation of a similar result in Appendix A of [3].

Theorem 1. For real ¥and ¢ > 0

1 = 27 d/2 1.2 1 jud
/dﬁez[r~p+6(p)t]A(p) — 9 < §F> e~ 30 gin (26‘ f) Jd/2 (pré), (5)

where E =7+ 2tq.

Proof. First of all note that A(p) is simply a rectangular pulse with height 1 and width ¢, so
has the inverse Laplace transform representation

ct+io00 d .
A(p) = / 27_‘_?86517% [e—sFHD* _ =P’ >0 (6)
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By substituting (6) into (5) one obtains the difference of two integrals. In the first make the
change of variable ' — —p — ¢. This gives

etioo ds 2 i —itg? - ita? R
5 e Pr{e "Ml C(—7 — 2tq) — "1 C(F+ 2t)} (9)
c mis

—100

- o d/2
0@ = [apenées - (T)"* e

S

Next, one has

c+ioco d 2 d/2
/ 78,617%85717(1/26752/45 _ (Z;F) Jd/z(pr), (10)
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which gives for (9)
2prm itq> [ —ig-€ . ( 2pFm Climg o LR
¢ Jaja(pré)e™ [ — 1] = —2i ¢ Ja2 (pp€) €72 sin(5q-€) (11)
QED
Now, we choose, from among other possibilities,
i
o) = / i (12)
and define L
A = /dﬁdk’a(mh@ %. (13)
7-(P+k+q

By making the substitution p’ — —p'— ¢, k— —k— @, and adding the result back to (13), we
find, using the identity in the Lemma,

1
2T

A(p)A(k)
(2 +id(p))(z — 16(K))

1 dr . -
=5 7[@ dzB(T,z)B(—T, z)

= > 47D (p) o —2t / iR
_ i A _ z i[7p+td(p)]
B(7, 2) /dpe Tr i) /o dte dpe A(p). (15)

By applying Theorem 1 and performing the elementary z— integration, we have, after scaling
g out of ¢,

Alq) = dz/dpdka P+k+q (14)

with

Theorem 2.
Alg) =
dF dt,dty sin (1q€1) sin (2¢&)
27””’/ / / Wit GG Jarere)duppre), (16)

& =742tG, & =7— 2t

3. Application to Second Order Exchange

For our choice of Coulomb interaction

o (Ameni2 i rd—1
cu(q)—e2 pr I‘( 5 ) (17)

which requires d > 1.
The second order exchange contribution to the ground-state energy per unit volume, of a
d-dimensional electron fluid is

1

Por = Gz / o) A(q)dq (18)
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For d > 2 we take the polar axis as the ¢-direction and apply Theorem 2. The g-integration is

elementary and we have
&+ & | Jaj2(préi)Jas(pré2)

_Kd/dQ /dr/ / tdffz 1 —& (&1€2)/2 ’

where K collects all the numerical prefactors and powers of pg (for d = 2 [ d2, = 27) and
will be made explicit in the final result. Now set t; = uty and ¥ — 17, so

(19)

* du dr’ m + 12 /°° dt
By = Ky [ dQ 1 ) tm)J, to),
2 d/ q/o “+1/T(771772)d/2 o oo I A a/2(prtn)Jas2 (prtns)
(20)
where 11 = |7+ 24|, n2 = |7 — 2ud|. The 6, t— integrals can be done next, yielding
> d dr
ng:Kd/ Y /—Zlnm, (d>2) (21)
o ut+lJ) rnS |m—n2

For d > 2 we can switch to d—dimensional cylindrical coordinates with axis along g.
Since the integrand is independent of the azimuthal angle

27T(d 1)/
dr = d =29 22
/T T(L(d+1) / ZA P (22)

Next, after the successive transformations t = (z — 1)/(z + 1) and p = 2s/(1 — t) we have

1
_dt 1+1¢

Pt = / T [ 23
= ) 82+1 d/2 y +82
Carrying out the s—integration, we come to
1 Ly 11 1
Fity=——[ =oFi(5,2(d=1);2(d+1);1—y 2. 24
0= o [ e (g5 il i -y?) (21)
By integrating by parts and noting that > Fy (3, a;a+1;1—y~2) = 13‘}(; o FY (1,1 a;a+1; 1+I ‘I)

we arrive at the principal result
Theorem 3

The second order exchange contribution to the ground-state energy of a d >
2—dimensional electron fluid is
Es, = K4G(d)

— —ln2y} 2o F [1,;(3—d);;(1+d);y . (25)
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4. Discussion

Equation (25) is as far as one can proceed without specifying the dimensionality. For d = 3,
we find, since the hypergeometric function reduces to unity,

I
ar? Jo 14y

Fay = KoG(3) = (7;2 n? y) _ %(WQ In4—9C(3)).  (26)

which is exactly the Onsager-Stephen-Mittag value, since they have e = 2 and pp = 1.
For the case d = 2 we itake the limit of (25) which gives

1 2 -1

T 2 tan™ "y
2)=2 — —41 d 2
G(2) /0<3 ny>y2+1y (27)

which, unlike the corresponding integral in [3] does not seem to be analytically evaluable.
This gives

2 4
pre

3274
about 30% less than the value (p%e*/3271)(28.3664) in [3]. A possible reason is that
in [3,(14)] the argument of the second Bessel function is | — 24t| and after making the
substitution 7 — (¢t + )7 + 4(x — t), in [3,(16)] the authors present it as (z + ¢)|7¥ — 4,
which is incorrect. It is this error which renders the remainder of the evaluation analytically
tractable. An attempt to continue the calculation after correcting this was stymied by a further
difficulty in [3,(14)]; the factor of 2 in the numerator of the argument of the logarithm means
that, as x — oo this argument tends to 2, rather than unity as required for convergence at the
upper limit of the z— integration.

Eay = K>G(2) (18.0586) (28)
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