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a b s t r a c t

We consider the one-dimensional Hamiltonian with a V-shaped
potential H0 =

1
2

[
−

d2

dx2
+ |x|

]
, decorated with a point impurity

of either δ-type, or local δ′-type or even nonlocal δ′-type, thus
yielding three exactly solvable models. We analyse the behaviour
of the change in the energy levels when an interaction of the type
−λ δ(x) or−λ δ(x−x0) is switched on. In the first case, even energy
levels, pertaining to antisymmetric bound states, remain invariant
with respect to λ even though odd energy levels, pertaining to
symmetric bound states, decrease as λ increases. In the second,
all energy levels decrease when the factor λ increases. A similar
study has been performed for the so-called nonlocal δ′ interaction,
requiring a coupling constant renormalisation, which implies the
replacement of the form factor λ by a renormalised form factor
β . In terms of β , odd energy levels are unchanged. However, we
show the existence of level crossings: after a fixed value of β the
energy of each even level, with the natural exception of the first
one, becomes lower than the constant energy of the previous odd
level. Finally,we consider an interaction of the type−λδ(x)+µδ′(x),
and analyse in detail the discrete spectrum of the resulting self-
adjoint Hamiltonian.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author at: Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid,
Spain.

E-mail address: luismiguel.nieto.calzada@uva.es (L.M. Nieto).

https://doi.org/10.1016/j.aop.2017.12.006
0003-4916/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2017.12.006
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2017.12.006&domain=pdf
mailto:luismiguel.nieto.calzada@uva.es
https://doi.org/10.1016/j.aop.2017.12.006


S. Fassari et al. / Annals of Physics 389 (2018) 48–62 49

1. Introduction

One-dimensional point potentials in quantum mechanics [1,2] and in quantum field theory (QFT)
have received a lot of attention in the past two decades. They serve to model realistic physical
situations with a number of practical applications. They are used to model several kinds of extra thin
structures [3,4] or tomodel point defects inmaterials, so that effects like tunnelling are easily studied.
They are also used in the study of heterostructures, where they may appear in connection with an
abrupt effective mass change [5]. In addition, they constitute a class of solvable or quasi-solvable
potentials suitable to study basic quantum properties, stationary states, scattering, resonances, etc,
where one uses point interactions of the form δ or δ′ or a linear combination thereof [6–17]. A rigorous
definition of perturbations of the form−a δ(x)+b δ′(x), a and b being real numbers, is rather technical
and we are not going to deal with this here.

Given the increasing relevance of one-dimensional quantum dots in the nanophysics litera-
ture [18–20], point potentials can be used to model sharply peaked impurities inside the dot. In other
physical contexts like scalar QFT on a line, point potentials serve to model impurities and provide
external singular backgrounds where the bosons move [21]. The spectra of Hamiltonians with δ and
δ′ point interactions provide one-particle states in scalar (1 + 1)-dimensional QFT systems [22–24].
In particular, configurations of two pure delta potentials added to the free Schrödinger Hamiltonian
have been used to describe scalar field fluctuations on external backgrounds [25], in terms of the
corresponding scatteringwaves. Delta point interactions allow the implementation of some boundary
conditions compatible with a scalar QFT defined on an interval [26]. The delta interaction is often
multiplied by a real number a. In particular, this coupling of a to the δ potential mathematically
describes the plasma frequencies in Barton’s hydrodynamical model [27], characterising the electro-
magnetic properties of infinitely thin conducting plates. On the other hand, the physical meaning
of the b coupling to the δ′-interaction in the case of an interaction term of the form bδ′ (with the
prime denoting the derivative of the delta in the sense of distributions), appearing in the context of
Casimir physics, has only recently been interpreted [28]: it describes the response of the orthogonal
polarisability of a mono-atomically thin plate to the electromagnetic field.

There are other physical reasons to consider the one-dimensional harmonic oscillator perturbed
by point potentials, particularly in the theory of Bose–Einstein condensates [29–31]. It has been very
widely studied in the mathematical physics literature [10,32–39] including the three-dimensional
case [40–43].

The objective of this paper is the study of the energy levels of the one-dimensional Hamiltonian

H̃ = H̃0 + Ṽ := −
h̄2

2m
d2

dy2
+ γ |y| + Ṽ (y) , γ > 0 , (1)

where Ṽ (y) is a point perturbation of one of the following types:

(i) Ṽ (y) = −a δ(y − y0), a Dirac distribution centred at any point,
(ii) Ṽ (y) = −a δ(y) + b δ′(y), a combination of a Dirac distribution centred at the origin with its

derivative multiplied by a different coupling parameter so that the special cases with either
a = 0 or b = 0 may be considered,

(iii) Ṽ (y) = −c |δ′(y)⟩⟨δ′(y)|, a nonlocal δ′-interaction.

The denomination V-shaped potential comes, rather obviously, from the shape of the potential |y|.
Although the V-shaped potential is not qualitatively different from the harmonic one, or any similar
confining potential for that matter, we believe it deserves to be investigated in detail given its
relevance in the theory of δ-doped quantum wells (materials inside which electrons can move freely
in two dimensions but are confined in the third one [44]), as attested by the extent of the relevant
literature [45–50]. The combination of the V-shaped potential γ |y| with Ṽ (y) leads to a singular
funnel shaped potential. We remind the reader that, although the term ‘‘funnel potential’’ (or ‘‘funnel
interaction’’) was coined in meson physics with reference to the central potential V (r) = ar − b/r
in three dimensions (see [51–53]), it has later been used, referring to different potentials, in other
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areas of physics (see [54–56]). It is noteworthy that while there is no ambiguity as to the meaning of
the δ-interaction, there have been different interpretations of the meaning of the δ′-interaction in the
literature on the subject (see [57] for a thorough critical review of the various interpretations found in
the relevant literature). In this paper, we are going to compare the results, especially from the spectral
point of view, obtained with the two different choices of δ′ mentioned above.

The quest for remarkable spectral properties of the total Hamiltonian H̃ (in particular, the depen-
dence of the energy levels on the parameters) requires the use of some rescaling in order to simplify
the expressions. We start by setting y = qx where q is a positive real number to be determined next.
Then, the Hamiltonian is given by:

H̃ = −
h̄2

2mq2
d2

dx2
+ γ q|x| −

a
q
δ(x − x0), (2)

in case (i);

H̃ = −
h̄2

2mq2
d2

dx2
+ γ q|x| −

a
q
δ(x) +

b
q2
δ′(x), (3)

in case (ii);

H̃ = −
h̄2

2mq2
d2

dx2
+ γ q|x| −

c
q4

|δ′(x)⟩⟨δ′(x)|, (4)

in case (iii).
After setting H = H̃/(2γ q) and choosing q3 = h̄2/(2mγ ), the new Hamiltonian reads:

H = H0 + V =
1
2

[
−

d2

dx2
+ |x|

]
+ V (x), (5)

with

V (x) = −a
(

m2

2γ h̄4

) 1
3

δ(x − x0) = −λ δ(x − x0), (6)

in case (i),

V (x) = −a
(

m2

2γ h̄4

) 1
3

δ(x) +
mb
h̄2 δ

′(x) = −λ δ(x) + µδ′(x), (7)

in case (ii), and

V (x) = −c
(
4γ 2m5

h̄10

) 1
3

|δ′(y)⟩⟨δ′(y)| = −β |δ′(x)⟩⟨δ′(x)|, (8)

in case (iii).
In determining the spectral properties of our model, we shall use a technique that relies on some

properties of Green’s functions. This idea has precedents in the study of quantum dots and quantum
wires, as for instance in [58–60], where Coulomb impurities are replaced by nonlocal interactions
instead of point interactions as is our case. This method has the additional advantage of relying on a
rigorous way of achieving a self-adjoint determination of (5) based on the operator resolvent and the
Krein formula [2]. As previously stated, this paper is not the right place to discuss these mathematical
subtleties.

In the present manuscript, we begin by considering the Green function for the free Hamiltonian,
H0, as in (5). This operator can be easily written as an expansion in terms of its eigenfunctions and
eigenvalues involving the Airy function, its derivative and their zeros, as a consequence of results
given in [61]. Then, we add the delta interaction V (x) = −λ δ(x − x0).

The coupling constant, λ, multiplying the δ-interaction will always be preceded by the minus sign
throughout this article. The reason lies in its convenience in showing the full manifestation of the
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so-called Zeldovich effect, also known as level rearrangement, present in various models considered
in the literature [10,42,62,63] and one of the objectives of our study.

It is not difficult to obtain the Green function of the total Hamiltonian including the deltas. We
obtain bound states as solutions of a transcendental equation involving the Airy function and its
derivative. Then, we study the inverse problem, i.e., being given two energy values, and assuming
the potential to be 1

2 |x| − λ δ(x − x0), find the precise values of λ and x0. With this generality, the
problem does not have a unique solution in contrast to the situation analysed in [33], where only a
local analysis is carried out for the two lowest eigenvalues.

The next step consists in the decoration of H0 with a point potential involving the derivative
of the Dirac distribution. Here, there are at least two non-equivalent possibilities, which we shall
consider in this article, both leading to the determination of a self-adjoint operator. Both options can
be given in terms ofmatching conditions that wave functionsmust fulfil at the origin. Let us just say in
passing that these matching conditions determine different domains for H0 and, therefore, different
self-adjoint extensions of H0, as defined on a restricted dense domain.

The former, thatwe call the |δ′
⟩⟨δ′

| interaction, has been considered by several authors [1,11,12,64]
and is determined by the matching conditions: if ψ(x) is the wave function, its derivative ψ ′(x) is
continuous at the origin but ψ(x) itself satisfies the condition ψ(0+) − ψ(0−) = −β ψ ′(0), where β
is a fixed real number, i.e., the coefficient of the δ′-interaction. By using the standard matrix notation,
the above condition can be written as:(

ψ(0+)
ψ ′(0+)

)
=

(
1 −β

0 1

)(
ψ(0−)
ψ ′(0−)

)
. (9)

In this case, a naive calculation of the Green’s function shows divergencies, so that a renormalisa-
tion is necessary.We first introduce anultraviolet energy cut-off and then the ensuing renormalisation
of the coupling constant. Renormalisation procedures are necessary for point potentials not only in
higher dimensions [1,2], but also in one-dimensional problems when the kinetic energy operator is
proportional to themagnitude of themomentum and not to its square, as in the relativistic case [6–8].
Again, eigenvalues are obtained through a transcendental equation involving the Airy function and its
derivative. The obtained results are far more interesting than those for the δ-interaction. In particular,
the odd energy levels are not affected by the interaction. Note that here these odd energy levels
correspond to symmetric bound states, in opposition towhat is customary for the harmonic oscillator.
On the other hand, even energy levels are strongly affected. They correspond to antisymmetric bound
states. For negative values of the coefficient β , their energies are kept higher than the energy of the
next lower odd level. However, after β = 0 the energy decreases sharply and for a certain value of
β = β0, which is the same in all cases, β0 ≊ 1.37172, the energy of each even energy level coincides
with the energy of the next lower odd level. For values β > β0, the energy of the even level decreases
further, so that we are in the presence of a quantum phase transition.

A second δ′ interaction, which is compatible with the δ interaction, so that we may compose
interactions of the form V (x) = −λ δ(x) + µδ′(x) [65–67], comes from the consideration of the
following matching conditions for the wave function at the origin:

(
ψ(0+)
ψ ′(0+)

)
=

⎛⎜⎝
1 + µ

1 − µ
0

2λ
1 − µ2

1 − µ

1 + µ

⎞⎟⎠(
ψ(0−)
ψ ′(0−)

)
. (10)

The problem is explicitly solved and our findings show that, if the potential is purely of δ′ type
(λ = 0), there are no new eigenvalues. On the other hand, if the potential is purely of δ type (µ = 0),
we get the results of Section 3.

2. The spectrum of H0 perturbed by an attractive δ-interaction

Let us consider H0, the Hamiltonian with a V-shaped confinement. Its spectral properties have
been investigated in [61]. In particular, we know that it has a complete set of eigenvectors, ψn, with
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eigenvalues En, n = 1, 2, 3, . . . Consequently, it admits the following spectral decomposition:

H0 =
1
2

[
−

d2

dx2
+ |x|

]
=

∞∑
n=1

En|ψn⟩⟨ψn| . (11)

Using the above input and (3.8) in [68], we can obtain its Green function (integral kernel of the
resolvent), which is

G0(x, y; E) =

∞∑
n=1

ψn(x)ψn(y)
En − E

= −
Ai(x> − 2E)Ai(−x< − 2E)

Ai(−2E)Ai′(−2E)
(12)

= −
Ai

( x+y+|x−y|
2 − 2E

)
Ai

(
−x−y+|x−y|

2 − 2E
)

Ai(−2E)Ai′(−2E)
,

where Ai(y) is the Airy function and Ai′(y) its derivative with respect to the variable y.
Although this remark has been already included in the Introduction, let us say again that the

eigenvalues and the eigenfunctions of the symmetric (respectively antisymmetric) bound states are
labelled by an odd (even) index, in contrast to the traditional labelling used for the harmonic oscillator.

As is well known, the eigenvalues of a self-adjoint operator are the zeros of the denominator of
the Green function. In our case, we have the operator Hλ,x0 := H0 − λ δ(x − x0), where x0 is any fixed
real number. Now, one needs to use sophisticated mathematical tools, such us the Krein formula [2],
in order to determine the poles of the Green function. The detailed procedure is given in [69]. Then,
since the explicit formula for the Green’s function of Hλ,x0 is:

Gλ,x0 (x, y; E) = G0(x, y; E) +
G0(x, x0; E) G0(x0, y; E)

1
λ

− G0(x0, x0; E)
, (13)

in terms of the Green function G0(x, y; E) given in (12).
Thus, for a fixed value of the positive coefficient λ, bound states, that is the poles of the Green

function (13), are determined by the following transcendental equation:

λ = −
Ai(−2E)Ai′(−2E)

Ai(x0 − 2E)Ai(−x0 − 2E)
. (14)

To begin with, let us choose x0 = 0 in (14), so that it reads,

λ = −
Ai′(−2E)
Ai(−2E)

. (15)

The right hand side of the above equation is a multivalued function of the energy E that we may
represent as λ(E, x0 = 0). Thus, the nth eigenvalue is determined by the intersection between the nth
branch of the function and the horizontal line provided by the value of the coupling constant λ. We
show this in Fig. 1, where we have chosen λ = 2.

The multivalued function λ(E, x0 = 0) has infinitely many branches, each of which is a strictly
decreasing function of the energy parameter. Then, the inverse function of the nth branch is the
(2n−1)-th eigenenergy E2n−1(λ, x0 = 0). The eigenvalues corresponding to the antisymmetric bound
states are not modified by the perturbation. Thus for any real λ, we have that E2n(λ, x0 = 0) =

E2n(0, x0 = 0) = E2n. Here, E2n are the even energy values obtained as poles of both (12) and (14), that
is to say as solutions of Ai(−2E) = 0.

In Fig. 2, we plot the five lowest energy eigenvalues as functions of the coupling constant λ. The
eigenvalues of the two lowest antisymmetric bound states, namely E2(0, x0 = 0), E4(0, x0 = 0), are
the horizontal asymptotes of the functions E2n+1(0, x0 = 0) corresponding to the symmetric bound
states.

There are two important differences between our Fig. 2 and Figure 1 in [15]. First of all, the
unperturbed operator in [15] is twice our free Hamiltonian, H0. Moreover, in our total Hamiltonian
Hλ,x0 , wehavewritten aminus sign in front ofλ. Thismakes the interactionmore attractive aswemove
from the left to the right along the horizontal axis. We have chosen this option, since wewish to show
the manifestation of the Zeldovich effect, also called level rearrangement, in this model. This effect
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Fig. 1. The nth eigenvalue of Hλ=2,x0=0 is given by the intersection between the nth branch of the right hand side of (14) as a
function of the energy and the horizontal line λ = 2.

Fig. 2. Plot of the five lowest eigenenergies En(λ, x0 = 0) coming from (14). The even eigenvalues do not depend on λ:
E2(λ, 0) = E2(0, 0) in yellow and E4(λ, 0) = E4(0, 0) in green. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

appears also in the harmonic oscillator perturbed by a Dirac delta in both one and three dimensions.
This has been shown in [10,42]. For additional information on the Zeldovich effect for Hamiltonians
with rapidly decaying potentials and the definition of the Zeldovich spiral, see [62,63].

If the point impurity is centred away from the origin, due to the smooth dependence of the right
hand side of (14) on x0, the spectral structure of the odd eigenvalues, corresponding to symmetric
bound states, does not undergo any major qualitative change. However, the antisymmetric bound
states are also affected by the perturbation. As a consequence, the even eigenvalues are no longer
equal to those of H0, but given instead by functions of the coupling λ. While the analogue of Fig. 1 is
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Fig. 3. The nth eigenvalue of Hλ=2,x0=1/2 is given by the intersection between the nth branch of the right hand side of (14) as a
function of the energy and the horizontal line λ = 2.

Fig. 4. Plot of the five lowest eigen-energies En(λ, x0), n = 1, . . . , 5, coming from (14), for x0 = 0.5 (blue), 0.2 (yellow), and
0.05 (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

plotted in Fig. 3, the plot of the five lowest eigenenergies as functions of λ for x0 = 0.05, 0.2, 0.5 is
shown in Fig. 4.

Before proceeding with our discussion, let us note that the attractive Dirac delta interaction at
x0 = 0 combinedwith the V-shaped interaction in one dimension,may be approximated by potentials
of the form 1

2 |x| − λ Vn(x), where Vn(x) is a potential which sinks deeply in a neighbourhood of the
origin. By choosing for instance

Vn(x) =
n
3

e−|nx|2/3

|nx|1/3
, (16)
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Fig. 5. Plot of the potentials 1
2 |x|−Vn(x) in (16), for n = 1 (blue), 5 (yellow), and 10 (green). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

we have an example of the aforementioned funnel shaped potential. This example is used in Fig. 5,
where we have also chosen λ = 1.

2.1. The inverse problem: identifying the potential from measured values of the energy

In this brief subsection, we consider the so-called spectral inverse problem [70], directly related to
the operator studied in the previous section. Let us assume that one has two eigenvalues E1 and E2
and that the potential is a priori known to be |x|/2− λ δ(x− x0), one has to determine the values of λ
and x0 so that the resulting Hamiltonian has these two energy levels in the discrete spectrum.

Our motivation can be found in the final section of the paper by Fassari and Inglese on the
Hamiltonian of the quantum harmonic oscillator perturbed by a point interaction [33]. An important
difference between this latter article and the present one is the following: In [33] it is assumed that E1
and E2 are the two lowest eigenvalues, as they have used the bound state equations for these particular
eigenvalues. They have used the specific integral expressions derived from the so-calledMehler kernel
and not a global relationwhich involves parabolic cylindrical functions. In the present article,wemake
use of the bound state equation derived from the global expression for the Green function in terms of
the Airy function and its derivative.

As shown in the literature on inverse problems [70], an inverse problem is often ill-posed either
because it has no solutions in the desired class, or hasmany (two ormore) solutions, or because the solution
procedure is unstable, i.e., arbitrarily small errors in the measurement data may lead to indefinitely large
errors in the solutions. Consequently, the inverse problem investigated in [33] is ill-posed for this
second reason.

Next, we see that an attempt to solve the inverse problem with the a priori assumption that the
potential is of the form |x|/2 − λ δ(x − x0), by means of a global bound state equation, leads to an
ill-posed problem having many solutions. In fact using (14), one has just to solve the equations

Ai(−2E1)Ai′(−2E1)
Ai(−2E2)Ai′(−2E2)

=
Ai(x0 − 2E1)Ai(−x0 − 2E1)
Ai(x0 − 2E2)Ai(−x0 − 2E2)

, (17)

and

λ = −
Ai(−2E1)Ai′(−2E1)

Ai(x0 − 2E1)Ai(−x0 − 2E1)
. (18)

Eqs. (17) and (18) can be easily solved graphically and, since the Airy functions are oscillatory, will
produce infinitelymany potentials possessing the given levels. For example, let us choose x0 = 1.2557
and plot in the plane (E1, E2) the curves solution of (17). Then for every pair of values E1 and E2, (18)
gives the values of λ. See this in Fig. 6, where the dotted lines correspond to pairs (E1, E2) satisfying
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Fig. 6. Plot of the implicit equation (17) for x0 = 1.2557, which has an infinity of branches (dotted red lines). For a fixed value
of E1 , let us say E1 = 0.3333 (blue line), the infinite solutions of the inverse problem are obtained.

(17). If we choose a given value for E1, we automatically have all permitted values for E2 and λ. In
Fig. 6, we have chosen E1 = 0.3333. This gives for the first level E2 = 0.7158 with λ = 1.3602. The
two next values of E2 are E2 = 1.5423 and E2 = 1.9791.

It might also be possible to consider a different type of inverse problem not purely of the spectral
type. In addition to the spectral data onemight include information related to the eigenfunctions such
as the value at a point away from the location of the point impurity or the value of a norming constant,
see [71].

3. The spectrum of H0 perturbed by an attractive δ′-interaction

In this section, we analyse the results obtained after the perturbation of H0 by two distinct choices
of a δ′-interaction. We first consider the nonlocal δ′-interaction as defined in [11] (see also [1,12,72]).
Then, we shall obtain the results after the choice proposed in [9,13].

3.1. Nonlocal δ′-interaction

In the analysis of this nonlocal δ′ perturbation, we shall use similar mathematical techniques as
done for the δ interaction and detailed in [69]. The objective is to find the eigenvalues of the perturbed
Hamiltonian as poles of the Green function.

As we have remarked in the Introduction, one of the possible ways to characterise point interac-
tions supported at any point is by giving the matching conditions that wave functions have to satisfy
at the given point [2,73]. If this point is the origin, the nonlocal δ′ interaction is produced by the
assignment of the matching conditions (9) for all wave functions ψ(x):

ψ(0+) − ψ(0−) = −β ψ ′(0) , ψ ′(0+) = ψ ′(0−) , (19)

where ψ(0±) = limx→0±ψ(x) for any function ψ(x).
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Therefore, if the approach based on the theory of ordinary differential equations were adopted,
one should look for those solutions of the differential equation 1

2

[
−

d2

dx2
+ |x|

]
ψ = Eψ satisfying

the above conditions at the origin. Therefore, while the derivative of the function must be continuous
at zero, the function itself must have a jump discontinuity at that point. We remind the reader that,
in the absence of a potential, the unique normalised eigenfunction of −

d2

dx2
ψβ (x) = Eψβ (x) with the

above conditions at the origin is (see [1]):

ψβ (x) =

√
β

8
x
|x|

e−
2|x|
β , E = −

4
β2 .

If instead onewere to repeat themathematical steps leading to (13), the counterpart of (14) would
read

1

β̃
−

1
2

∞∑
n=1

1
E2n − E

, (20)

where E2n are the even energies for H0. However, the above series does not converge because the
general term of the sequence (E2n − E)−1 behaves asymptotically like n−2/3. The cure for this disease
is the renormalisation of the coupling constant by introducing an ultraviolet energy cutoff and a
counterterm in the reciprocal of the coupling constant, namely:

1

β̃(N)
=

1
β

+
1
2

N∑
n=1

1
E2n

. (21)

Although the mathematical procedure leading to the determination of the desired Hamiltonian is
rather complicated since it requires the norm resolvent convergence, we can take advantage of the
explicit formula of the resolvent of the limiting self-adjoint operator Hβ provided in [69] to get the
corresponding expression for the Green’s function:

Gβ (x, y; E) = G0(x, y; E) +
Ψ (x; E) Ψ (y; E)

1
β

−
E
2

∑
∞

n=1
1

E2n(E2n−E)

. (22)

The explicit expression of Ψ (x; E) and further details can be found in [69].
It is crucial now to point out that the series in the denominator of (22) converges, since the general

term of the sequence (E2n(E2n − E))−1 behaves asymptotically like n−4/3. Then, the values of E giving
the poles of the Green function (22) for each value of β are given by the following transcendental
equation:

1
β

=
E
2

∞∑
n=1

1
E2n(E2n − E)

. (23)

Similarly to the operations performed for the δ-perturbation, we may write (23) in terms of Airy
functions. After some operations (see [69]), we obtain our final result, namely

β =
Ai(0)Ai(−2E)

Ai(0)Ai′(−2E) − Ai′(0)Ai(−2E)
. (24)

The odd eigenvalues remain unperturbed under the interaction. As was shown in [61], this means
that Ai′(−2E2n−1) = 0. The dependence on β of the even energy levels is depicted in Fig. 7. The level
E0 exists for negative values of β only. However, the situation is different for all other values of E2n in
terms of β . There exists a value β0 such that:

(i) if β < β0, E2n−1 < E2n, n = 1, 2, . . .;
(ii) for β > β0, the situation is the reverse: E2n−1 > E2n.
Crossings occur at β = β0, where E2n−1 = E2n. Therefore, the spectrum ofHβ0 is doubly degenerate

at all levels.
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Fig. 7. The level crossings occurring in (23) at β0 = 1.37172 between the eigenenergy E2(β) (middle blue curve) and E1(0)
(orange horizontal line), as well as between the eigenenergy E4(β) (upper blue curve) and E3(0) (green horizontal line). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The value for β0 is quite easy to find after the remark given in the first sentence right after (23).
Since Ai′(−2E2n−1) = 0, one finds that

β0 = −
Ai(0)
Ai′(0)

≊ 1.37172 . (25)

These results can be compared with those obtained by replacing H0 with its counterpart for the
one-dimensional harmonic oscillator. The study of the latter has been undertaken in [11,72]. The
situation is essentially the same, only numerical values are different. Of course, it is also worth
stressing that, while in the case of the harmonic oscillator the length of the interval between two
adjacent energy levels is constant, that no longer holds in our model (see [61]). In particular, level
crossings in the model with the harmonic confinement occur for β0 ≊ 1.47934.

Fig. 7 shows some other interesting facts. For instance, we see that the curves representing the
unperturbed odd energy levels do not serve as horizontal asymptotes for the curves representing the
even levels. This is in sharp contrast to the situation shown in Fig. 2. This fact confirms the extremely
singular nature of the nonlocal δ′ interaction which, in physical terms, produces a spectral effect far
stronger than the aforementioned one named after Zeldovich.

In analogy with the behaviour observed in [11,72] for the harmonic oscillator perturbed by the δ′-
interaction, the symmetry of the wave function changes from symmetric to antisymmetric crossing
the point β = β0. Therefore, this is evidence that a quantum phase transition has occurred.

As a remark, it might be worth pointing out that the level crossings observed in the spectrum of
the three-dimensional isotropic harmonic oscillator perturbed by a δ-interaction occur at the point

β0 =
πΓ (1/4)
Γ (3/4)

≊ 9.29495 , (26)

see [11,40,42,43]. There is, however, a big qualitative difference: for β > β0 the symmetric bound
state energy E2n(β) falls below the unperturbed antisymmetric bound state energy E2n−1 =

3
2 +
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(2n − 1), so that the symmetry properties in three dimensions are reversed with respect to the
symmetry properties in one dimension.

3.2. Local δ′-interaction

In order to illustrate the sensitivity of these calculations to the precise interpretation of highly
singular point potentials we shall examine the effect of the potential V (x) = −λ δ(x) + µδ′(x) on the
conical oscillator when interpreted, as is frequently done, as the set of boundary conditions [9].

It is noteworthy that, while the nonlocal δ′ interaction is not compatible with a Dirac delta
interaction −λ δ(x) due to the incompatibility of the matching conditions defining each one, this is
not the case for the local δ′ interaction. In fact, a potential of the form V (x) = −λ δ(x) + µδ′(x)
may be defined through matching conditions (10). In this case, µδ′(x) has a local character. Then,
the total Hamiltonian H = H0 − λ δ(x) + µδ′(x) is self-adjoint on a domain of functions showing
a discontinuity at the origin, so that the product of each function ψ(x) in this domain is given by,
respectively:

δ(x)ψ(x) =
ψ(0+) + ψ(0−)

2
δ(x) (27)

and

δ′(x)ψ(x) =
ψ(0+) + ψ(0−)

2
δ′(x) −

ψ ′(0+) + ψ ′(0−)
2

δ(x) . (28)

A slight generalisation of these products was given in [74,75].
The previous analysis relative to the characterisation of the resolvent of the operatorH0−β |δ′

⟩⟨δ′
|

for the nonlocal δ′ is not straightforwardly applicable here. Instead, we use a technique that has
been discussed in [9], which relies on calculations with the Green’s functions of H0 and H . In fact,
if G0(x, x′, E) is the Green function of H0, then bound states ψ(x) with energy E corresponding to the
total Hamiltonian H = H0 − λ δ(x) + µδ′(x) as above have the following form:

ψ(x) =

∫
G0(x, x′, E)[−λ δ(x′) + µδ′(x′)]ψ(x′) dx′ . (29)

This expression yields a homogeneous system of four equations with four unknowns. In order to
obtain nontrivial solutions, the determinant of the system has to be equal to zero. This determinant
can be further simplified so as to obtain the following expression (see [9]):⏐⏐⏐⏐⏐⏐⏐⏐

2 −1 − µ 0

−1 1 +
λ

2
A +

µ

2
µ

2
A

0 −
µ

A
1

⏐⏐⏐⏐⏐⏐⏐⏐ = 1 + λA + µ2
= 0 . (30)

Then, the energy levels of the total Hamiltonian H are the roots of the above determinant. Here, A is
related to the Green function G0(x, x′

; E) defined in (12) by

A = G0(0+, 0; E) =
Ai(−2E)
Ai′(−2E)

. (31)

Therefore, the vanishing of the determinant (29) reduces to

Ai′(−2E)
Ai(−2E)

= −
λ

µ2 + 1
. (32)

Hence, if λ = 0 there are no new states, and if µ = 0 the new states coincide with those of (15). In
Fig. 8 we plot the structure of the first five energy levels for this Hamiltonian for a particular value of
λ, as functions of µ.
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Fig. 8. The first five energy levels of the conic potential plus the perturbation V (x) = −λδ(x)+µδ′(x) for λ = 1 as functions of
µ, coming from (31): in blue the symmetric levels and dashed the antisymmetric ones (they do not depend on µ). The dotted
lines correspond to the symmetric energy levels of the unperturbed conic potential.

4. Concluding remarks

We have perturbed the Hamiltonian with a V-shaped potential H0 =
1
2

[
−

d2

dx2
+ |x|

]
by various

point interactions. The operatorH0 describes a quantum oscillator with a conical confinement instead
of the usual harmonic confinement. The point interactions studied here are of three basic types:
Dirac delta δ, nonlocal δ′ and finally local δ′. In all three cases, the model is solvable in the sense
that we are able to determine the perturbed energy levels in terms of the interaction parameters.
We have obtained these energy levels as poles of the resolvent of the perturbed Hamiltonian. These
poles should depend on the given parameters, something which is not true in all cases. Our results
do not differ qualitatively from those previously obtained when H0 is instead the Hamiltonian of the
harmonic oscillator. Our study of these models was motivated by the increasing use of the V-shaped
potential in condensed matter physics.

Let us summarise our results as follows:

(i) When H0 undergoes a perturbation of the type −λ δ(x), even energy levels, pertaining to
antisymmetric bound states, are unaffected by the perturbation. This is not the case for odd
energy levels, pertaining to symmetric bound states, for which the energy decreases as λ
increases. For odd energy levels excluding the first one, the function of the energy E in terms of
λ shows an asymptotic behaviour towards the upper (lower) even energy value as λ → −∞

(λ → ∞). The first energy level shows the same behaviour for λ → −∞, while the value of
the energy goes to −∞ as λ → 0−.

(ii) However, when the perturbation is of the type −λ δ(x− x0), even levels are no longer constant
with respect to λ, but instead undergo a change, which is usually small. All levels decrease as λ
increases and the energy of the first one still goes to −∞ as λ → ∞.

(iii) When the perturbation is of the type δ′ the situation changes dramatically. First of all, we
consider two types of δ′ interactions: nonlocal and local. We have constructed the resolvent
operator for theHamiltonianH0 decoratedwith a nonlocal δ′ perturbation centred at the origin:
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Hβ = H0 − β |δ′
⟩⟨δ′

|. Contrary to the case of the Dirac delta perturbation, this construction
requires the renormalisation of the coupling parameter. Odd energy levels, pertaining to
symmetric bound states, are unchanged with respect to the renormalised form factor β , but
even energy levels, which correspond to antisymmetric bound states, decrease as β → ∞. At
a particular value of β , which is the same for all levels β ≊ 1.37172, we observe a noteworthy
phenomenon: the existence of level crossings. The energy of each even level becomes lower
than the energy of the previous odd level (except the first one) and remains lower as β → ∞.

(iv) When the perturbation of type δ′ is local, it is possible to combine it with a Dirac delta
perturbation, so that the total Hamiltonian becomes H = H0 − λ δ(x) + µδ′(x) in this case.
We have investigated the energy levels of H using its Green function. While the energy of even
levels remains unaffected, the odd levels are lowered but level crossings are absent, provided
that λ ̸= 0. If λ = 0, none of the energy values is affected by the µδ′(x) term.

We believe the current findings pave the way to the investigation of both the conic and the
pyramidal oscillator perturbed by a point impurity in two and three dimensions. Furthermore, if our
Hamiltonian were added to the two-dimensional negative Laplacian, it could provide a model for a
V-shaped quantum well (heterostructure in which electrons can move freely in two dimensions but
are confined in the third one). We are also convinced that it should be possible to show that the self-
adjoint operator Hβ whose Green’s function, given by (22), has been obtained by renormalising the
coupling constant can also be obtained by means of the so-called Cheon–Shigehara approximation
involving a suitable triple of Dirac distributions, given that such a result holds when the free
Hamiltonian is the one of the harmonic oscillator (see [12,72] and the references therein). The latter
approximation, in turn, grants the possibility of approximating the nonlocal δ′-interaction by means
of a combination of three sharply peaked attractive potentialswith shrinking support, aswas achieved
in the absence of confinement in [76].
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