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Introduccion

El principal objetivo de esta memoria es dar respuesta a varias preguntas abiertas relativas a
las clases ultraholomorfas de tipo Carleman-Roumieu de funciones, definidas en sectores de la
superficie de Riemann del logaritmo mediante restricciones para el crecimiento de sus derivadas
dadas en términos de una sucesién de nimeros reales positivos. La motivacién de estos problemas
surge del estudio de algunas propiedades que aparecen a la hora de trabajar con un proceso de
sumabilidad de series de potencias formales en este contexto y de la construccién de la nueva
herramienta de multisumabilidad correspondiente. La solucién que se presenta aqui depende
fuertemente de las teorfas clasicas de variacién regular y de érdenes aproximados, que estan
estrechamente relacionadas. En los siguientes parrafos se describe el origen y desarrollo de estos
ingredientes esenciales.

FEl primer tema bésico que nos interesa es el estudio de series divergentes a través de los de-
sarrollos asintoticos. El comienzo de la manipulacién sistemética de series divergentes, atribuido
normalmente a L. Euler, data del siglo XVIII. Las emple6 principalmente para la aproximacién
de constantes como e y 7. Sin embargo, durante el siglo XIX las series divergentes fueron, a
grandes rasgos, excluidas de las matematicas. La causa principal de este hecho fue la definicion
rigurosa y general de la suma de una serie (convergente) proporcionada por A. L. Cauchy, que
rapidamente se convirtié en la estdndar. En este sentido, podemos citar a G. H. Hardy quien, en
su libro |35, p. 5] de 1949, cuando esta debatiendo acerca de la definicion apropiada de la suma
de una serie divergente, apunta lo siguiente:

“it does not occur to a modern mathematician that a collection of mathematical
symbols should have a ‘meaning’ until one has been assigned to it by definition. It
was not a triviality even to the greatest mathematicians of the eighteenth century.
They had not the habit of definition: it was not natural to them to say, in so many
words, ‘by X we mean Y. There are reservations to be made, but it is broadly true to
say that mathematicians before Cauchy asked not ‘How shall we define 1 —-1+1—...7’
but ‘What is 1 — 1+ 1 —...7" and that this habit of mind led them into unnecessary
perplexities and controversies which were often really verbal.”

En 1886, H. Poincaré renové el interés matematico en el uso de series de potencias formales
(normalmente divergentes) introduciendo la nocién de desarrollo asintético para resolver diversos
problemas de fisica matematica y de la mecénica celeste. Los desarrollos asintéticos, en el sentido
de Poincaré, son una especie de desarrollo de Taylor que proporciona aproximaciones sucesivas:
una funcién f compleja y holomorfa en un sector S = {z € C;0 < |z] < r,a < arg(z) < b},
admite a la serie de potencias formal con coeficientes complejos f = Z;io apzP como su desarrollo
asintotico (uniforme) en el origen si para todo p € Ny = N U {0} existe una constante positiva
C) tal que para cada z € S se tiene que

p—1
|(2) =D anz"| < Cyl2P?, (1)

n=0
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en cuyo caso escribimos f € fl(S ). En este contexto, es natural considerar la aplicacion de Borel
asintotica B : A(S) — C][z]] que envia cada funcién f en su desarrollo asintético f.

En 1916 J. F. Ritt mostro que esta aplicacion es sobreyectiva para todo sector S, mientras que
no es nunca inyectiva (dado un sector bisecado por la direccion 0 la exponencial exp(—z~%), para
una eleccion adecuada de o > 0, es una funciéon plana, i.e., asintéticamente nula, y no trivial).
Por tanto, dada una serie de potencias formal f y un sector S es en general inutil intentar
asignarle una suma de una forma correcta, en el sentido de que no hay una tnica funcion en S
asintotica a f

Durante los anos 1970 se produjeron determinantes y originales avances, en este sentido, con
los trabajos de J. P. Ramis, en los cuales se observa que, aunque las series de potencias formales
son a menudo divergentes, bajo condiciones bastante generales el ritmo de crecimiento de sus
coeficientes no es arbitrario. De hecho, un resultado notorio de E. Maillet [66] de 1903 establece
que para toda solucién f = ZPZO apzP de una ecuacion diferencial analitica existen C, A,k > 0

tales que |a,| < CAp(p!)l/k para todo p € Ng. Inspirado por esto, J. P. Ramis introdujo la nocién
y los rudimentos de la k—sumabilidad, que se apoya en resultados clasicos de G. N. Watson y
R. Nevannlina y generaliza el método de sumabilidad de Borel. Sus desarrollos se basan en
una modificacién de los desarrollos de Poincaré donde el crecimiento de la constante C) en
se expresa de forma explicita como C), = CAP(p)Y/* para ciertas constantes A,C > 0, lo que
conlleva estimaciones del mismo tipo para los coeficientes a, de f . Lasucesion M /5, = (p!l/ k )peNo

es la sucesion Gevrey de orden 1 /k, decimos que f es asintotica 1/k—Gevrey a f (denotado
f € Au, ,,(5)) vy, debido a las estimaciones que satisfacen sus coeficientes, se dice que f es una

serie 1/k—Gevrey (f € C[[#]]m, ). La aplicacién de Borel, definida en este caso de AMl/k (S) a
C[[2]]m, ., es sobreyectiva si y solo si la apertura del sector .S es menor o igual que 7/k (Teorema
de Borel-Ritt-Gevrey), y es inyectiva si y s6lo si la apertura es mayor que 7/k (Lema de Watson),
ver Seccion

Este dltimo hecho permite dar la definicién de una serie de potencias formal k—sumable en
una direccién d como aquella en la imagen de la aplicacion de Borel para un sector .S suficiente-
mente amplio y bisecado por la direccion d, a la cual se le puede asignar una k—suma (la tnica
funcién holomorfa en S asintotica a ella). J. P. Ramis probé, de forma puramente tedrica (no
explicita), que toda solucion formal en un punto singular irregular de un sistema lineal de ecua-
ciones diferenciales ordinarias meromorfo en el dominio complejo puede escribirse como ciertas
funciones conocidas multiplicadas por un producto de series formales, cada una de las cuales
es k—sumable (i.e., k—sumable en toda direccion excepto un niumero finito de ellas) para algin
nivel k que depende de la serie. FEl caricter no constructivo de la prueba fue solventado me-
diante el uso de una herramienta méas potente, la acelerosumabilidad, introducida por J. Ecalle
[27] y que, en el caso de involucrar solamente a un nimero finito de niveles Gevrey, se denomina
multisumabilidad (en el sentido de iteracion de procesos elementales de k—sumabilidad). De
hecho, en 1991 W. Balser, B. L. J. Braaksma, J. P. Ramis and Y. Sibuya [9] (ver también [7, [73])
probaron la multisumabilidad de las soluciones formales en un punto singular de las ecuaciones
diferenciales lineales meromorfas y B. L. J. Braaksma [19] (diversas pruebas se pueden consultar
en [6l, B5]) extendio este resultado para ecuaciones no lineales en 1992, lo que permite en cada
caso calcular soluciones concretas a partir de las formales. Se ha mostrado que esta técnica
se aplica con éxito a multitud de situaciones relacionadas con el estudio de series de potencias
formales que son solucién en un punto singular de ecuaciones en derivadas parciales, asi como
problemas de perturbacion singular (ver la introduccion del Capitulo {| para més detalles).

No obstante, pueden aparecer series de potencias formales que no son Gevrey en diferen-
tes tipos de ecuaciones que no pueden ser diferenciales ordinarias (a tenor del resultado de

JAVIER JIMENEZ GARRIDO
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B. L. J. Braaksma). Por ejemplo, V. Thilliez ha probado ciertos resultados en estas clases més
generales para soluciones formales de ecuaciones algebraicas en [97]. Asi mismo, G. K. Immink
en [40, 41] ha obtenido algunos resultados de sumabilidad para soluciones formales de ecuaciones
en diferencias cuyos coeficientes crecen al ritmo marcado por la sucesion (p!log(p + €)™)pen,,
pertenecientes al llamado nivel 17. M4s recientemente, S. Malek [70] ha estudiado ciertas ecua-
ciones diferenciales-en diferencias no lineales singularmente perturbadas de paso pequeno cuyas
soluciones formales con respecto al parametro de perturbaciéon pueden descomponerse como la
suma, de dos series formales, una Gevrey de orden 1 y la otra de nivel 17, un fenémeno que ya,
se habia observado para ecuaciones en diferencias [20].

Todos estos ejemplos muestran que es interesante proporcionar una herramienta para un
tratamiento general de la sumabilidad que extienda las potentes teorfas de k—sumabilidad y
multisumabildad, y que nos permita trabajar con desarrollos asintéticos donde las estimaciones
en estén dadas por una constante C), de la forma C, = CAPM, para ciertos A,C > 0
y para una sucesion M = (M),),cn, de nimeros reales positivos apropiada. Resulta que los
coeficientes de la serie formal cuyas sumas parciales aparecen en , para esta elecciéon de
C), estan controlados por M del mismo modo. La correspondiente clase de series de potencias
formales se denotaré por C[[z]]m.

Esta tarea, el tratamiento comin de la sumabilidad, requiere de dos tipos de resultados o
técnicas:

(i) El conocimiento de la inyectividad y la sobreyectividad de la aplicacion de Borel en este
contexto general. Obsérvese que una version anéloga del Lema de Watson deberia obtenerse
para tener una definicién adecuada de sumabilidad.

(ii) La construccion de niicleos integrales que nos permitan generalizar las transformadas de
Laplace y Borel (analiticas y formales), mediante las que poder dar una expresion explicita
de la suma de una serie M—sumable en una direccién. Ademaés, diferentes niveles co-
rrespondientes a sucesiones distintas deberian poder combinarse, del mismo modo que los
distintos métodos de k—sumabilidad producen la multisumabilidad. Esto nos conduce a
ser capaces de trabajar con nicleos de convolucién y aceleracién, como los desarrollados
por W. Balser en [7].

Como se explica a continuacion, algunas partes del planteamiento previo habian sido resueltas
cuando me incorporé al grupo de investigacién en el que he realizado mi doctorado, otras se
desarrollardn en esta memoria y el resto es trabajo en curso que serd comentado hasta cierto
punto en las conclusiones.

Para abordar el primer problema, debemos enfatizar que pueden considerarse tres clases
ultraholomorfas de funciones en un sector S de la superficie de Riemann del logaritmo y que estian
intimamente relacionadas: la clase JZWM(S ) de funciones holomorfas con desarrollo uniforme en S,
verificando para la eleccion previa de Cp; la clase AM(S ) formada por las funciones holomorfas
con desarrollo no uniforme en S, lo que quiere decir que se verifica para Cp(T) = CrALM,
en todo subsector propio y acotado T' de S (en lugar de uniformemente en S), donde Cp, Ap > 0
dependen del subsector; y, finalmente, la clase Ap(.S) de funciones con derivadas acotadas, para
las cuales existe A = A(f) > 0 tal que

[f P ()]

sup “———— < o0.
2€8, pENp App!Mp

Anterior al estudio de las clases ultraholomorfas es el de las ultradiferenciables, que presentamos
seguidamente. Se trata de un hecho notorio que una funcion f : [a,b] — C es real analitica si y

Universidad de Valladolid
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so6lo si existe una constante A > 0 tal que

S P ()|

sup ——— < 0.
z€[a,b], pENg App!

Miés adn, una funcién real analitica estd determinada por el valor de sus derivadas en un punto
del intervalo. En 1901, E. Borel mostr6 la existencia de clases de funciones indefinidamente
derivables (no analiticas), i.e., contenidas en C*°([a, b]), que heredan la propiedad de unicidad,
v a las que él llamoé clases casianaliticas. En 1912, en un intento por formalizar este estudio
e inspirado por un trabajo de E. Holmgren sobre la ecuacién del calor, J. Hadamard propuso
considerar las clases &yv([a,b]) de funciones indefinidamente derivables en [a,b] tales que existe
A > 0 para el cual se tiene que

|f®) ()]
sup ———— < 00. (2)
z€[a,b], pENg App!Mp

Una de estas clases &wv([a,b]) es casianalitica si y so6lo si siempre que un elemento f de la
clase verifica que f®)(zg) = 0 para todo p € Ny y para algtn zo € [a,b], se tiene que f es
idénticamente nula en [a,b] (avisamos al lector que las notaciones aqui presentes difieren de las
utilizadas en los trabajos clasicos a los que nos referimos, ver la Observacion . Con este
convenio, la formulacion del problema es mas sencilla: ;para qué sucesiones M la clase Ey(]a, b])
es casianalitica? Estas clases para la sucesién (p!l/k)peNo aparecen en un trabajo de M. Gevrey
de 1918, de ahi su nombre. En 1921 A. Denjoy present6 una condicién suficiente y T. Carleman
di6 una solucién completa al problema de casianaliticidad en 1923. Por tanto, este resultado se
conoce hoy en dia como Teorema de Denjoy-Carleman (véase [38, Th. 1.3.8]), y las clases &y,
que se denominan a menudo clases ultradiferenciables de Carleman, se sitdan entre la clase de
funciones reales analiticas y la clase de funciones indefinidamente diferenciables siempre que la
sucesion M verifique inf,en, (M,)/P > 0. Ademés, si la sucesion (p!M,),yen, es logaritmicamente
convexa (i.e., la grafica de la poligonal que une los puntos (p,log(p!M,)) es convexa), el teorema
establece que &v([a, b]) es casianalitica si y solo si

TR
=0 (p+1)Mpi '

Vale la pena mencionar que, en 1940, A. Gorny y H. Cartan mostraron que la hip6tesis sobre
la convexidad logaritmica no es restrictiva. Por ejemplo, las clases Gevrey son no casianaliticas
para todo k > 0 (véase el trabajo panoramico de V. Thilliez [94] sobre casianaliticidad).

Las clases casianaliticas y no casianaliticas han sido ampliamente examinadas en las ultimas
décadas; la importancia de las no casianaliticas reside en el hecho de que su dual topoldgico es
més grande que el espacio de distribuciones, asi que se pueden obtener soluciones mas débiles
de ciertas clases de ecuaciones en derivadas parciales. Con respecto a su topologia natural
los espacios anteriores, denominados de tipo Roumieu, son espacios de Hausdorff (LB), limite
inductivo de espacios de Banach, mientras que si se pide que se cumpla para todo A > 0
tenemos los espacios de tipo Beurling cuya topologia es mas manejable al tratarse de espacios
de Fréchet.

Naturalmente, la aplicacién de Borel se puede considerar en este contexto, enviando a una
funcion f € C>([—1,1]) en la serie de potencias formal construida a partir de su sucesion de
derivadas en cero, Z;io(f(p)(O)/p!)zp € C[[z]]. En 1895, E. Borel prob6 que esta aplicacion es
siempre sobreyectiva, por lo que tiene sentido preguntarse acerca de la sobreyectividad de esta
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aplicacion cuando nos restringimos a una clase ultradiferenciable, B : &v([a, b]) — Cl[[z]]m. Tras
T. Carleman, quien mostré en 1923 que la sobreyectividad no se da para clases casianaliticas que
contienen estrictamente a la clase de funciones analiticas, la respuesta completa fue obtenida por
H.-J.Petzsche en 1988 (con algunas imprecisiones corregidas en J. Schmets and M. Valdivia [91]
en 2000): Si (p!Mp)pen, es logaritmicamente convexa, entonces B : Ev([a,b]) — C[[z]]m es
sobreyectiva si y solo si M es fuertemente no casianalitica, es decir, existe B > 0 tal que

oo
S <p b e,
— (q+ 1) Mgy My 11

En resumen, mientras que se han caracterizado por completo la inyectividad y la sobreyectividad
de la aplicacion de Borel para clases ultradiferenciables, el problema para clases ultraholomorfas,
especialmente en lo que se refiere a la sobreyectividad, dista mucho de estar resuelto integramente.

La inyectividad para las clases flK/ﬁ(S ) v Am(S) fue completamente resuelto por S. Mandel-
brojt y B. Rodriguez-Salinas en los anos 1950 (véase la Seccion .

En lo relativo a la sobreyectividad s6lo habia disponibles informaciones parciales. Aparte del
anteriormente mencionado Teorema de Borel-Ritt-Gevrey de 1978, y mediante la aplicaciéon de
técnicas del marco ultradiferenciable, V. Thilliez probé en 1995 para la clase Gevrey Ay, (S)
que se tiene sobreyectividad si y sélo si la apertura del sector es estrictamente menor que wa.
En el ano 2000, J. Schmets y M. Valdivia dieron los primeros resultados para una sucesion peso
M, es decir, logaritmicamente convexa tal que su sucesion de cocientes de términos consecutivos
m = (my = Mpy1/Mp)pen, tiende a infinito. Su enfoque se basa en la consideracion de ciertas
clases de funciones ultradiferenciables no canénicas y obtienen, para sucesiones peso verificando
la propiedad de ser cerrada por derivacion, esto es, existe A > 0 tal que My < APTIM,
para todo p € Ny, una caracterizacion de la existencia de operadores de extensiéon lineales y
continuos de Cl[z]]m en Am(S) para cualquier sector S, lo que es mucho mas exigente que
la sobreyectividad, asi que de sus resultados sélo pueden deducirse informaciones parciales. FEn
2003, V. Thilliez define la nocién de sucesion fuertemente regular, i.e., logaritmicamente convexa,
fuertemente no casianalitica que, ademés, satisface la condiciéon de crecimiento moderado, es
decir, que existe A > 0 tal que My, < APTIM,M, para todos p,q € Ny. Del mismo modo,
introduce el indice v(M) y prueba que si la amplitud del sector es estrictamente mas pequena
que 7y(M) entonces B : Ap(S) — C[[z]]m es sobreyectiva y no inyectiva (véase la Section
para mas detalles y referencias). Sin embargo, incluso para sucesiones fuertemente regulares los
resultados precedentes para clases ultraholomorfas no son enteramente satisfactorios, dado que
las equivalencias establecidas en el Teorema de Borel-Ritt-Gevrey y en el Lema de Watson para
el caso Gevrey sélo son ahora implicaciones en una direccién.

Los resultados de S. Mandelbrojt y B. Rodriguez-Salinas sugieren la consideracion de un
indice de crecimiento w(M), inicialmente definido por J. Sanz [88] para sucesiones fuertemente
regulares, que separa las amplitudes para las cuales las tres clases antes mencionadas son o no
son casianalfticas. No obstante, quedaba abierta en general la casianaliticidad de la clase flM(S )
para sectores de amplitud ww(M).

La primera solucién, aunque parcial, a esta situaciéon depende del concepto de orden aproxi-
mado, disponible desde los afios 1920 y extremadamente 1itil en la teorfa de crecimiento de fun-
ciones enteras, y de ciertos resultado de L. S. Maergoiz [65] de 2001 relacionados con el mismo:
si definimos las funciones auxiliares wy(t) = sup,en, log(t?/M,) y du(t) = log(wm(t))/ log(t)
asociadas a M, se mostro en [88] que, siempre que dpy(t) sea un orden aproximado no nulo,
se pueden construir funciones planas no triviales en sectores de amplitud 6ptima y ademés se
pueden dar versiones generalizadas del Lema de Watson y del Teorema de Borel-Ritt-Gevrey. La
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prueba de la sobreyectividad se basa en el uso de una transformada de Laplace truncada cuyos
nicleos estdn dados por los resultados de Maergoiz (véase la Subseccion sobre existencia de
funciones analiticas en sectores cuyo crecimiento en la parte central del sector se puede precisar
en términos de wyr(t). Se ha observado que para que los argumentos anteriores funcionen, no es
necesario que dy; sea un orden aproximado, sino que basta con que esté suficientemente cerca de
uno p(t), lo que quiere decir que existen constantes A, B > 0 tales que

A <log(t)(dm(t) — p(t)) < B para t suficientemente grande. (3)

Esta propiedad se reformulara diciendo que M admite un orden aproximado.

En lo que respecta al elemento (ii) del plan establecido anteriormente, y siguiendo los
métodos de sumabilidad de momentos desarrollados por W. Balser [7] en el caso Gevrey, A.
Lastra, S. Malek and J. Sanz [60] han descrito recientemente la correspondiente teoria de
M—sumabilidad. La pieza clave es la construccién de los nucleos de M—sumabilidad, con sus
respectivas transformadas analiticas y formales, en términos de las cuales se puede reconstruir la
M—suma de una serie formal de potencias M—sumable en una direccion (véase la Seccion {.1)).
La existencia de estos nicleos, bajo condiciones bastante sencillas, estd de nuevo garantizada
por los resultados de L. S. Maergoiz y, por tanto, depende de la posibilidad de asociar a M un
orden aproximado. Sin embargo, la combinacién de los métodos de sumabilidad de momentos
correspondientes a sucesiones diferentes (no equivalentes pero comparables, como se explicara a
continuacion) era una tarea pendiente.

Consecuentemente, al iniciarse esta investigacion se pretendia resolver los siguientes proble-
mas:

(A) Caracterizar las sucesiones M tales que djy; es un orden aproximado no nulo.

(B) Caracterizar las sucesiones M que admiten un orden aproximado no nulo. Para estas
sucesiones, el método de M—sumabilidad esta disponible.

(¢) Determinar si los indices v(M) y w(M) coinciden siempre para sucesiones fuertemente
regulares, como es el caso para las sucesiones que aparecen en las aplicaciones.

(D) Decidir si la aplicacion de Borel es o no inyectiva en el caso que queda por resolver, es
decir, para el espacio Ay(S) y para un sector S de amplitud 7w(M) cuando M no admite
un orden aproximado.

(E) Mejorar el conocimiento acerca de la sobreyectividad de la aplicacion de Borel en clases
ultraholomorfas. Si y(M) y w(M) no son siempre coincidentes, sera especialmente intere-
sante determinar cual de los dos separa las amplitudes de sobreyectividad de las de no
sobreyectividad, dado que los resultados conocidos previamente no permiten llegar a una
conclusion.

(F) Llegar, tan lejos como sea posible, en el estudio de la multisumabilidad en este contexto
general. Aplicar estas técnicas al estudio de las soluciones formales de ecuaciones en dife-
rencias como las estudiadas por G. K. Immink, u otro tipo de ecuaciones.

En este punto, comenzaremos a describir los resultados obtenidos en esta memoria y su
organizacion.

El Capitulo 1, de naturaleza preparatoria, contiene en su primera secciéon todas las defini-
ciones preliminares necesarias y un breve resumen sobre las propiedades de las sucesiones que
aparecen cuando se consideran clases ultraholomorfas y ultradiferenciables. Se presentaran tam-
bién detalladamente la funcion asociada wyy y los indices de crecimiento v(M) y w(M).
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Mientras se intentaba dar respuesta a los tres primeros elementos de la lista anterior, se ob-
servo que el concepto de variaciéon regular y sus extensiones aparecian una y otra vez relacionados
con nuestros problemas. Como se deducira de los desarrollos presentados en los capitulos segundo
y tercero, resultan ser de hecho fundamentales en la solucion de los mismos.

En 1930 J. Karamata inicié la disciplina de la variacién regular y la aplic6 a problemas
tauberianos, como el Teorema de Hardy-Littlewood-Karamata. Sus ideas fueron desarrolladas
por sus colaboradores y alumnos de la ‘Escuela Yugoslava’ en las siguientes décadas. Una funcion
medible f : [a,00) = (0,00), con a > 0, es de variacion regular si

lim faz) =g(A) € (0,00) (4)

z—oo f(x)
para todo A € (0,00). La teoria de variacion regular garantiza que existe p € R tal que g(\) = \?
y la convergencia es uniforme para X en los conjuntos compactos de (0, 00) (véase la Seccion[1.2).
Esta disciplina se populariz6 en los anos 1970 gracias a su uso en teorfa de la probabilidad, im-
pulsado por los trabajos de W. Feller y L. de Haan. Sin embargo, nosotros estamos especialmente
interesados en su aplicacién al anélisis complejo, donde aparece estrechamente relacionada con
el concepto de orden aproximado, que proviene del estudio del crecimiento de funciones enteras.

FEn algunas ocasiones esta teoria puede ser muy restrictiva y se han dado diversas generali-
zaciones de la misma. En esta memoria, ademés de la variacién regular, se considerara la llamada
O-variacion regular donde el lim en se sustituye por dos condiciones con limsup y liminf en
su lugar. Esta nocién ya fue considerada por Karamata, pero fue difundida gracias a W. Ma-
tuszewska que establecié su conexiéon con los espacios de Orlicz en 1964. Ademaés, caracterizé esta
nocién en términos de dos indices, conocidos hoy en dia como indices de Matuszewska. Debido
a la naturaleza de este trabajo estamos particularmente interesados en las versiones discretas de
estos conceptos. La extensiéon de la variacién regular para sucesiones de ntimeros reales positivos
fue llevada a cabo por R. Bojani¢ y E. Seneta en 1973, y la de la O-variacién regular ha sido
proporcionada por D. Djuréi¢ y V. Bozin en 1997. En la segunda seccién de este primer capi-
tulo se resumiran de forma concisa pero completa estos elementos caracteristicos de la teoria de
Karamata.

El propésito principal del segundo capitulo es la descripcién de las relaciones existentes entre
las nociones presentadas en el primero. La primera seccién se centra en la nociéon de O-variacion
regular. Ciertas condiciones, como son el crecimiento moderado o la no casianaliticidad fuerte,
que se asumen a menudo para la sucesion M con el objetivo de que la clase correspondiente
tenga ciertas propiedades, pueden reformularse en términos de la O-variacion regular. Merece
ser mencionado que el indice de Thilliez v(M) y el indice de Sanz w(M), introducidos de forma
independiente, resultan tener una representaciéon adecuada en estos términos. Para establecer la
conexién con las sucesiones logaritmicamente convexas, serd necesario expresar estas condiciones
por medio de propiedades de casimonotonia y considerar los 6rdenes p(m) y p(m) y los indices
de Matuszewska f(m) y a(m) para su sucesion de cocientes m = (mp—1)pen. Esta relacion

queda reflejada en los dos siguientes resultados (Teorema [2.1.16|y Proposicion [2.1.18)).

Teorema. Sea M una sucesion de ntimeros reales positivos con sucesion de cocientes m. Entonces

V(M) = B(m),  w(M) = p(m).

Proposicion. Sea M una sucesion de ndmeros reales positivos con sucesion de cocientes m.
Supongamos que (p!M))pen, is logaritmicamente convexa, entonces

(i) M tiene crecimiento moderado si y sélo si a(m) < oo si y sélo si m es de O-variaciéon
regular.
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(ii) M es fuertemente no casianalitica si y solo si 3(m) > 0.

En consecuencia, existe una conexién estrecha entre la O-variacion regular de m y la re-
gularidad fuerte de M. Como resultado colateral, se obtendréan varias definiciones equivalentes
de estos indices y érdenes, que se emplearan en el Capitulo [3] al lidiar con la sobreyectividad
de la aplicacién de Borel, la cual motivé este estudio. Se proporcionard un gran ndmero de
detalles, mas de los necesarios para el problema de sobreyectividad, con el objetivo de dar una
vision completa del problema. En particular veremos que (M) < w(M) (lo que ya se sabia
con anterioridad), pero la informaciéon mas relevante deducida de la O-variacion regular es que
en general para sucesiones fuertemente regulares estos indices son distintos. Esto no ha sido
sencillo de mostrar, dado que la mayoria de las sucesiones fuertemente regulares que aparecen
en las aplicaciones admiten un orden aproximado no nulo, que es una condicién mucho mas
fuerte que implica, en particular, que w(M) = v(M). El Ejemplo al final de este capitulo,
muestra como se pueden construir sucesiones fuertemente regulares con valores arbitrarios de
estos indices, 0 < (M) < w(M) < co. Por tanto, el problema (C) esta resuelto.

Para terminar la seccién, se explica la relacién de estas nociones con la funcién asociada wyy

y la funcién de conteo vy, en el Teorema [2.1.30] y en la Proposicion [2.1.38] de donde se deduce

la construcion de una sucesion dual.

En la segunda seccién de este capitulo, el papel protagonista lo tienen los érdenes aproxi-
mados. Se explora la relacién entre la variacién regular, los 6rdenes aproximados y las suce-
siones peso, lo que, como se menciond anteriormente, es crucial para la disponibilidad de la
teoria de M—sumabilidad. Se obtendra una caracterizacién de las sucesiones para las cuales
dyt = log(wi(t))/log(t) es un orden aproximado no nulo, que era la pregunta abierta (A) satis-
factoriamente respondida en el Teorema [2.2.6]en términos de la variacion regular de m, resumida
a continuacién:

Teorema. Sea M una sucesién peso. Son equivalentes:

(i) dpm(t) es un orden aproximado con lim;_,. dyi(t) € (0, 00),

(ii) m es de variacion regular con indice positivo.

En el caso de que cualquiera de estos supuestos se verifique, el valor del indice en (ii) es w(M) y
el valor del limite en (i) es 1/w(M).

Para sucesiones que admiten un orden aproximado, en el sentido de , se obtendra una for-
mula de representacion que soluciona el problema en (B). Del mismo modo, dado que sucesiones
equivalentes definen las mismas clases ultraholomorfas, resulta que la admisibilidad de un orden
aproximado por parte de M es una condicién natural en el sentido de que es equivalente a la
existencia de una sucesién L equivalente a M y tal que df, es un orden aproximado no nulo. La
prueba de estos resultados se establece en el Teorema [2.2.19 que sigue:

Teorema. Sea M una sucesién peso, entonces son equivalentes:

(i) existe una sucesion peso L equivalente a M (i.e., existen constantes A, B > 0 tales que
APL, < M, < BPL, para todo p € Ny) tal que dp,(t) es un orden aproximado no nulo,

(ii) M admite un orden aproximado no nulo,

(ili) existen w € (0,00) y sucesiones acotadas de ntimeros reales (b,)pen, (7p)pen tales que
(1p)pen converge hacia w y podemos escribir
p+1 0
my, = exp bp+1+27,] , p€ Np.
j=1
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En el caso de que cualquiera de los anteriores sea valido, limy_, oo dp(t) = 1/w = 1/w(M).

Ademés se obtendré una nueva caracterizacion de las sucesiones de variacion regular en la
Proposicion [2.2.3] y se mostrara como se pueden construir sucesiones con buen comportamiento
a partir de los 6rdenes aproximados en el Teorema Finalmente, en la Subseccion [2.2.5]
y gracias a una mejor comprensién de las propiedades involucradas, se presentaran varios ejem-
plos que exhiben diferentes comportamientos patolégicos, incluyendo el Ejemplo antes
mencionado.

Si, en lugar de la admisibilidad de un orden aproximado, se piden condiciones mas débiles
para la sucesién M, por ejemplo y con la notacion de la formula de representacion de arriba, si
(np)pen es solamente acotada, lo que equivale a decir que m es de O-variacion regular, no se sabe
como puede ser reproducido el método de M—sumabilidad. No obstante, y este es el problema
que se plantea en (D) y (E), es natural preguntarse sobre la inyectividad y la sobreyectividad de
la aplicaciéon de Borel. El tercer capitulo estd dedicado al estudio de estas cuestiones para las tres
clases ultraholomorfas que comentamos anteriormente. Tras introducir la notacién basica en la
primera seccidn, se examinaré la inyectividad para la cual, como se ha expuesto antes, casi toda
la informacién era conocida. Resulta que los 6rdenes aproximados nos proporcionan una solucion
definitiva al problema de inyectividad: incluso si Ml no admite un orden aproximado, siempre
podemos controlar la funcién dy; por arriba por un orden aproximado, y un uso adecuado de la
variacion regular de las funciones de Maergoiz asociadas a este orden permite construir funciones
planas en sectores de amplitud 6ptima. Por tanto, la cuestion en (D) queda respondida, ver
Teorema [3.2.15] Aqui el indice w(M) muestra su cardcter divisorio. Esta seccion termina,
ayudados por los resultados de casianaliticidad, con la prueba en el Teorema de que la
aplicaciéon de Borel no es nunca biyectiva.

La nltima seccién se centra en el problema de la sobreyectividad. Se obtendrén resultados
parciales para sucesiones peso, por ejemplo se mostrara que si hay sobreyectividad para cualquier
amplitud entonces (M) > 0 o, en otras palabras, M debe ser fuertemente no casianalitica. Sin
embargo, los principales avances se han producido para sucesiones fuertemente regulares. En el
Corolario si S, es el sector no acotado de amplitud 77y y bisecado por la direccién d =0
de la superficie de Riemann del logaritmo, se probara lo siguiente:

Corolario. Sea M fuertemente regular y ¢t € R, t > 0. Cada una de estas afirmaciones implica
la siguiente:

(i) t <~(M),
(i

la aplicacion de Borel B : Ap(S;) — C[[2]]m es sobreyectiva,

(ifi) la aplicacion de Borel B : At (S;) — C[[2]]m es sobreyectiva,

i)
)

(iv) la aplicacion de Borel B : Ay (S;) — C[[2]]m es sobreyectiva,

(v) para todo £ € I con £ < t, la aplicacion de Borel B: AM(Sg) — C|[z]]m es sobreyectiva,
i)

(v

t < (M).

Por consiguiente, v(M) se muestra como el valor limite adecuado para la sobreyectividad, lo
que responde a la pregunta (E). Por tltimo, se dan ciertas informaciones en el caso de que M
sea todavia méas regular.

En el Capitulo 4 volvemos a nuestro tltimo problema (F) de la lista. Obsérvese que ahora
ya conocemos para qué sucesiones el método de M—sumabilidad esta disponible. En la primera,
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seccién se recuerdan los elementos caracteristicos de esta teoria de M—sumabilidad. Ahora esta-
mos interesados en la extensiéon de la multisumabilidad a este contexto general. Comenzaremos
con una discusién de caricter preliminar que afecta a la necesidad, para que el problema tenga
sentido, de que las sucesiones, que definen los métodos de sumabilidad que van a combinarse,
sean comparables y no equivalentes, lo que se estudiard en la Subseccién Tras establecer
las propiedades bésicas de las sucesiones producto y cociente de dos sucesiones peso, se obtendra
el Teorema Tauberiano E2.14}

Teorema. Sean L y M sucesiones peso tales que L admite un orden no nulo aproximado, M/L
es logaritmicamente convexa y w(L) < w(M). Si f € C[[z]]L ¥ f es M—sumable en todas las
direcciones salvo un nimero finito (mod 27), entonces f es convergente.

Gracias a este resultado, es posible dar una definicién consistente de multisumabilidad: una
serie de potencias formal se dird multisumable si se puede dividir en una suma finita de series
de potencias formales fj, cada una de las cuales es sumable para la correspondiente sucesion
M que admite un orden aproximado. Nuestro objetivo es determinar el procedimiento para
reconstruir de forma explicita su suma. FEn los Teoremas {4.3.21] y [4.3.25] se construiran los
niicleos de sumabilidad para las sucesiones cociente y producto, con ellos se podra reconstruir la
multisuma como se muestra en el Teorema[4.3.31] Debemos mencionar que este estudio no se ha
completado aiin, especialmente en lo que respecta a las posibles aplicaciones, pero posponemos
estos comentarios sobre este trabajo en curso para las conclusiones.

El dltimo capitulo de esta memoria no estaba inicialmente programado, pero su inclusion
es natural una vez que las técnicas de los 6rdenes aproximados y la variacién regular se han
incorporado. En él se trata la propagacion de las estimaciones M—asintéticas en una direccion
de funciones, holomorfas y asintéticamente acotadas, a toda una region sectorial, donde M es una
sucesién peso que admite un orden aproximado no nulo. El resultado principal es el siguiente,

Teorema (.3.1}

Teorema. Dado « > 0, supongamos que f es holomorfa en una regiéon sectorial G de amplitud
7y y bisecada por la direccion 0, f esta acotada en todo subsector T propio y acotado de G,
y admite a f € C[[z]] como su M—desarrollo asintotico en una direccion 6 € (—mwv/2,7v/2).
Entonces, f € flM(G) y f admite a f como su M—desarrollo asintético en G.

Este teorema generaliza un resultado de A. Fruchard y C. Zhang [29] de 1999 para desarrollos
Gevrey. Como en el caso Gevrey, las pruebas de estos resultados dependen, por un lado, de una
version adecuada del clasico Teorema de Phragmeén-Lindelof, ver Lemal[5.1.6] y por otro lado, de
la disponibilidad de versiones apropiadas del Lema de Watson y el Teorema de Borel-Ritt-Gevrey.
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Introduction

The main objective of this dissertation is to answer several open questions related to Carleman-
Roumieu ultraholomorphic classes of functions, defined in sectors of the Riemann surface of
the logarithm by imposing constraints for their derivatives’ growth in terms of a sequence of
positive real numbers. These problems were motivated by the study of some properties involved
in the work with a summability procedure of formal power series in this context, and by the
introduction of the corresponding new tool of multisummability. The solutions provided here
will heavily rest on the classical, and closely related, theories of regular variation and proximate
orders. The foundations and development of these diverse essential ingredients will be described
in the following paragraphs.

The first and basic topic which we are interested in is the study of divergent series through
asymptotic expansions. L. Euler is commonly credited with starting the systematic manipulation
of divergent series in the 18th century. He was concerned with their application for the approx-
imation of the values of constants such as e and w. However, during the 19th century and for
some time after this, divergent series were, roughly speaking, excluded from mathematics. This
was mainly due to the fact that A. L. Cauchy gave a rigorous and general definition of the sum
of a (convergent) series which quickly became the standard one. In this sense, we may cite G.
H. Hardy that, in his book [35 p. 5] in 1949, when discussing about the appropriate definition
of the sum of a divergent series, notes the following;:

“it does not occur to a modern mathematician that a collection of mathematical
symbols should have a ‘meaning’ until one has been assigned to it by definition. It
was not a triviality even to the greatest mathematicians of the eighteenth century.
They had not the habit of definition: it was not natural to them to say, in so many
words, ‘by X we mean Y. There are reservations to be made, but it is broadly true to
say that mathematicians before Cauchy asked not ‘How shall we define 1 —1+1—...7’
but ‘What is 1 — 1+ 1 —...7" and that this habit of mind led them into unnecessary
perplexities and controversies which were often really verbal.”

In 1886, H. Poincaré boosted again the mathematical interest in formal (usually divergent)
power series introducing the notion of asymptotic expansion in order to solve several problems
of mathematical physics and celestial mechanics. The asymptotic expansions, in the sense of
Poincaré, are kind of Taylor expansions which provide successive approximations: a complex
function f, holomorphic on a sector S = {z € C;0 < |z] < r,a < arg(z) < b}, admits the
complex formal power series f = Z;O:o apzP as its (uniform) asymptotic expansion at the origin
if for every p € Ny = NU {0} there exists a positive constant C}, such that for every z € S one
has

p—1
|(2) =D anz"| < Cyl2P?, (1)

n=0
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and we write f € A(S). In this context it is natural to consider the asymptotic Borel map
B : A(S) — CJ[[z]] sending a function f into its asymptotic expansion f.

In 1916, J. F. Ritt showed that this map is surjective for any sector .S, while it is never injective
(given a sector bisected by direction 0, the exponential exp(—z~%), a > 0, is a nontrivial flat,
i.e., asymptotically null, function for a suitable choice of o). Hence, given a formal power series
f and a sector S, it is in general hopeless to try to assign a well-defined sum to it, in the sense
that there is not a unique holomorphic function in S asymptotic to f .

Crucial and original advances were produced in this sense during the 1970’s with the works of
J. P. Ramis. He noted that, although the formal power series solutions to differential equations
are frequently divergent, under fairly general conditions the rate of growth of their coefficients
is not arbitrary. Indeed, a remarkable result of E. Maillet [66] in 1903 states that for any
solution f = Zp>0 apzP of an analytic differential equation there will exist C, A, k > 0 such that

lap| < CAP(p))M/* for every p € Ny. Inspired by this fact, Ramis introduces and structures the
notion of k—summability, that rests on classical results by G. N. Watson and R. Nevannlina
and generalizes Borel’s summability method. His developments are based on a modification of
Poincaré’s asymptotic expansion where the growth of the constant C), in is made explicit
in the form C, = CAP(p))'/* for some A,C > 0, what entails the same kind of estimates for
the coefficients a;, in f. The sequence M; = (p!l/k)peNo is the Gievrey sequence 9f order 1/k,
f is said to be 1/k—Gevrey asymptotic to f (denoted by f € Awm, ,(S5)), and f, because of
the estimates satisfied by its coefficients, is said to be a 1/k—Gevrey series (f € Cll=1]m, 1,)-

The Borel map, defined in this case from AMl/k (S) to C[[z]]m, . is surjective if and only if the
opening of the sector S is smaller than or equal to w/k (Borel-Ritt-Gevrey Theorem), and it is
injective if and only if the opening is greater than 7/k (Watson’s Lemma), see Section [3.2]

This last fact enables the definition of k—summable power series in a direction d as those in
the image of the Borel map for a wide enough sector S bisected by d, to which a k—sum (the
unique holomorphic function in S asymptotic to it) is assigned. J. P. Ramis proved, by a purely
theoretical (not explicit) method, that every formal solution to a linear system of meromorphic
ordinary differential equations in the complex domain at an irregular singular point can be
written as some known functions times a finite product of formal power series, each of which
is k—summable (i.e., k—summable in every direction except for a finite number of them) for
some level k depending on the series. The non-constructive character of the proof was solved
by the introduction of a more powerful tool, accelerosummability, due to J. Ecalle [27] and
which, in the case involving only a finite number of Gevrey levels, is named multisummability
(in a sense, an iteration of elementary k—summability procedures). Indeed, in 1991 W. Balser,
B. L. J. Braaksma, J. P. Ramis and Y. Sibuya [9] (see also [7, [73]) proved the multisummability
of the formal solutions of linear meromorphic differential equations at a singular point, and
B. L. J. Braaksma [19] (for different proofs, see [0}, 85]) extended this result for nonlinear equations
in 1992, which allows in every case to compute actual solutions from formal ones. This technique
has also been proven to apply successfully to a plethora of situations concerning the study of
formal power series solutions at a singular point for partial differential equations, as well as for
singular perturbation problems (see the introduction to Chapter [4] for further references).

However, nonGevrey formal power series solutions may appear for different kinds of equations,
which must not be ordinary differential equations (according to the aforementioned result by
B. L. J. Braaksma). For example, V. Thilliez has proven some results on formal solutions
within these more general classes for algebraic equations in [97]. Also, G. K. Immink in [40], 41]
has obtained some results on summability for formal solutions of difference equations whose
coefficients grow at the rate specified by the sequence (p!log(p + €)™),en,, belonging to the
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so-called level 1. More recently, S. Malek [70] has studied some singularly perturbed small
step size difference-differential nonlinear equations whose formal solutions with respect to the
perturbation parameter can be decomposed as sums of two formal series, one with Gevrey order
1, the other of 17 level, a phenomenon already observed for difference equations [20].

All these examples made it interesting to provide the tools for a general, common treatment of
summability, extending the powerful theory of k—summability and multisummability, and which
were able to deal with asymptotic expansions whose estimates in correspond to a constant
C), of the form C), = C AP M), for some A, C > 0 for a suitable sequence M = (M),),cn, of positive
real numbers. It turns out that the coefficients of the formal power series whose partial sums
appear in for this choice of C), are also controlled in the same way by M. The corresponding
class of formal power series is denoted by C[[z]]m.

This task, the common treatment of summability, requires two main types of results or
techniques:

(i) The knowledge of injectivity and surjectivity results for the Borel map in this general
context. Observe that an analogue of Watson’s Lemma should be obtained for a proper
definition of summability.

(ii) The construction of integral kernels for generalized Laplace and Borel (both formal and
analytic) transforms which allow one to obtain an explicit expression for the sum of an
M—summable series in a direction. Moreover, different levels corresponding to distinct se-
quences should be combined, in the same way as different k—summability methods produce
multisummability. This amounts to being able to deal with convolution and acceleration
kernels, as developed by W. Balser in [7].

As we will explain now, some parts of the previous program had been already achieved when
I joined the research team in which my PhD has been developed, some other parts will be carried
out in this dissertation, and the rest are work in progress and will be commented on to some
extent in the conclusions.

In order to tackle the first problem, one should emphasize that one may consider three closely
related, so-called ultraholomorphic classes of functions in a sector S of the Riemann surface of
the logarithm: the class A}{,H(S ) of holomorphic functions with uniform asymptotic expansion in
S, satisfying for the above choice of C); the class AM(S ) consisting of holomorphic functions
with nonuniform asymptotic expansion in S, meaning that holds for Cp(T') = CpALM, on
every proper bounded subsector T' of S (instead of uniformly on S), where Cr, Ay > 0 depend
on the subsector; and, finally, the class Ap(S) of functions with bounded derivatives and for
which there exists A = A(f) > 0 such that

f P ()]

sup ———— < 0.
z€S,peNg App!Mp

Much older than the study of the ultraholomorphic classes is that of the ultradifferentiable ones,
which we introduce now. It is well-known that a function f : [a,b] — C is real analytic if and
only if there exists a constant A > 0 such that

/P ()|

sup ——— < Q.
z€[a,b], pENg App!

Moreover, a real analytic function is determined by the values of its derivatives at a point of the
interval. In 1901, E. Borel showed the existence of classes of (nonanalytic) smooth functions,
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i.e., contained in C*°([a, b]), which inherit that uniqueness property, what he called quasianalytic
classes. In 1912, in order to formalize this study and inspired by a work of E. Holmgren for
the heat equation, J. Hadamard proposed the consideration of the classes Ey([a,b]) of smooth
functions in [a, b] such that there exists A > 0 for which we have

|f®) ()]

me[a?;]laiéNo App!MP = (2)
Such a class &v([a,b]) is said to be quasianalytic if and only if whenever an element f in this
class satisfies f(®)(z) = 0 for all p € Ny and for some zg € [a,b], then f identically vanishes
on [a,b] (we warn the reader that our notations differ from those in the classical works, see
Remark . With this conventions the formulation of the problem became simple: for which
sequences M the class & ([a,d]) is quasianalytic? These classes for the sequence (p!'/*),cx,
appear in a work of M. Gevrey in 1918, hence their name. In 1921 A. Denjoy presented a
sufficient condition, and T. Carleman gave a complete solution of the problem of quasianalyticity
in 1923. Hence, this result is nowadays called Denjoy-Carleman Theorem (see [38, Th. 1.3.8]),
and the classes &y are frequently named Carleman ultradifferentiable classes, lying between the
classes of real analytic and of smooth functions as soon as the sequence M is assumed to satisfy
inf en, (M,)'/P > 0. In addition, if the sequence (p!Mp)pen, is logarithmically convex (i.e., the
graph of the polygonal curve joining the points (p, log(p!M,,)) is convex), the theorem states that
Em([a, b]) is quasianalytic if and only if
> o

—— = 00.

=0 (p+ 1) Mp
It is worthy to mention that, in 1940, A. Gorny and H. Cartan showed that the logarithmic
convexity assumption is not restrictive. For example, Gevrey classes are nonquasianalytic for all
k > 0 (see the panoramic work about quasianalytic classes of V. Thilliez [94]).

Quasianalytic and nonquasianalytic classes have been broadly analyzed in the past decades;
the importance of the nonquasianalytic classes lies in the fact that their topological dual is bigger
than the space of distributions, so one may obtain ‘weaker’ solutions for some classes of partial
differential equations. Regarding their natural topological structure, the former spaces, called
of Roumieu type, are Hausdorff (LB)-spaces, inductive limit of Banach spaces, whereas if we
require that holds for every A > 0 we will have Beurling type spaces whose topology is nicer,
they are Fréchet spaces.

Of course, one may also consider the Borel map in this context, sending a smooth function
f € C>*(]—1,1]) into the formal power series constructed by the sequence of its derivatives at
zZero, Z;io(f(p)(O)/p!)zp € C[[2]]. In 1895, E. Borel proved that this map is surjective, and
it makes sense to wonder about the surjectivity of its restriction to an ultradifferentiable class,
B : &wu([a,b]) — C[[z]]m. After T. Carleman, who showed in 1923 that surjectivity is never
the case for quasianalytic classes strictly containing the class of analytic functions, the complete
answer was achieved by H.-J.Petzsche in 1988 (with some inaccurate statements corrected by
J. Schmets and M. Valdivia [91] in 2000): if (p!M,)pen, is logarithmically convex, then B :
Ev([a,b]) — Cl[z]]m is surjective if and only if M is strongly nonquasianalytic, that is, there
exists B > 0 such that

o0
M, M
> “—<B-—"  pelN.
—p (q+ 1) Mg Mpi1

Summing up, while injectivity and surjectivity of the Borel map for ultradifferentiable classes
have been fully characterized, the problem for ultraholomorphic classes, specially in the case of
surjectivity, was far from being completely solved.
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The injectivity for the classes flﬁ,ﬂ(S ) and Ap(S) was completely solved by S. Mandelbrojt
and B. Rodriguez-Salinas in the 1950’s (see Section [3.2)).

For the surjectivity only partial informations were available. After the aforementioned Borel-
Ritt-Gevrey Theorem in 1978, and by applying techniques from the ultradifferentiable setting,
V. Thilliez proved in 1995 that for the Gevrey class Ay, (S) one has surjectivity if and only if
the opening of the sector is strictly smaller than ma. In 2000 J. Schmets and M. Valdivia gave
the first results for a weight sequence M, that is, logarithmically convex sequence such that its
sequence of quotients of consecutive terms m = (my, = My, 1/Mp)pen, tends to infinity. Their
approach is based on the consideration of some nonclassical ultradifferentiable classes, and they
obtained, for weight sequences satisfying the property derivation closedness, namely there exists
A > 0 such that M, < APTIM, for every p € Ny, a characterization for the existence of linear
and continuous global extension from C[[z]]m to Awm(S) for any sector S, which is much more
demanding than surjectivity, so only partial information can be inferred from their results. In
2003, V. Thilliez defined the notion of strongly regular sequence, i.e., logarithmically convex,
strongly nonquasianalytic sequences that, in addition, satisfy the moderate growth condition,
that is, there exists A > 0 such that M,y, < APTIM, M, for every p,q € Ny. Moreover, he
introduced the index (M) and showed that if the opening of the sector is strictly smaller than
7y(M) then B : Ap(S) — Cl[[z]]m is surjective and not injective (see Section for further
details and references). However, even for strongly regular sequences the preceding results for
ultraholomorphic classes are not fully satisfactory, since the equivalences stated in Borel-Ritt-
Gevrey Theorem and Watson’s Lemma for the Gevrey case are now only one-side implications.

The results of S. Mandelbrojt and B. Rodriguez-Salinas suggested the introduction of a
growth index w(M), initially given by J. Sanz [88] for strongly regular sequences M, which puts
apart the openings of quasianalyticity from those of nonquasianalyticity for the three ultraholo-
morphic classes considered. Nevertheless, in general it remained open the quasianalyticity of the
class Apg(S) for sectors of opening mw(M).

A first and partial solution to this situation relies on the concept of proximate order, available
since the 1920s and extremely useful in the theory of growth of entire functions, and on some
related results of L. S. Maergoiz [65] in 2001: if we define the auxiliary functions wy(t) =
supen, log(t?/M,) and dy(t) := log(wm(t))/ log(t) associated with M, it was shown in [88] that,
whenever dy(t) is a nonzero proximate order, one is able to produce nontrivial flat functions in
sectors of optimal opening, and generalized versions of Watson’s Lemma and Borel-Ritt-Gevrey
Theorem are available. The proof of the surjectivity rests on a truncated Laplace transform
technique with kernels provided by the results of Maergoiz (see Subsection on the existence
of suitable analytic functions in sectors whose growth in the central part of the sector is accurately
given by wy(t). Moreover, one may note that, for the previous arguments to work, dy; need not
be a proximate order, but rather be close enough to a proximate order p(¢) in the sense that
there exist constants A, B > 0 such that

A <log(t)(dm(t) — p(t)) < B for t large enough. (3)

This fact will be rephrased by saying that M admits a proximate order.

Regarding the program in (ii) above, and following the technique of moment summability
methods developed by W. Balser [7] in the Gevrey case, A. Lastra, S. Malek and J. Sanz [60]
have recently put forward the corresponding M—summability theory. The main point is the
introduction of kernels of Ml—summability, and the associated formal and analytic transforms, in
terms of which to reconstruct the sums of M—summable formal power series in a direction (see
Section . The existence of such kernels, under fairly mild assumptions, is again guaranteed
by the results of L. S. Maergoiz and so depends on the possibility of associating M with a
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proximate order. However, the combination of summability methods corresponding to different
(nonequivalent but comparable, as it will be explained later) sequences was left as a pending
task.

So, the problems we had in mind when this research was initiated were the following:
(A) Characterize the sequences M such that dy is a nonzero proximate order.

(B) Characterize the sequences M that admit a nonzero proximate order. For these sequences,
the M—summability technique is available.

(¢) Determine whether the indices v(M) and w(M) are always equal for strongly regular se-
quences, as it happened to be the case for the sequences appearing in the applications.

(D) Decide about the injectivity of the Borel map in the only unsolved case, the space Ap(S)
for a sector S of opening 7w(M) in case M does not admit a nonzero proximate order.

(E) Improve our knowledge about the surjectivity of the Borel map in general ultraholomorphic
classes. In case 7(M) and w(M) are not always equal, it is specially interesting to determine
which of them puts apart the values of surjectivity from those of nonsurjectivity, since
previously known results do not lead to a conclusion.

(F) Proceed, as far as possible, in the study of multisummability in this general context. If
reasonable, apply the technique to the formal solutions of some class of difference equations,
as those studied by G. K. Immink, or other types of equations.

At this point we start describing the results obtained in this dissertation and how they are
organized.

Chapter 1, of a preparatory nature, contains in its first section all the preliminary definitions
needed and a brief overview of the most common properties for sequences that appear in the
consideration of ultraholomorphic and ultradifferentiable classes. The associated function wy
and the growth indices v(M) and w(M) will also be presented in detail.

While preparing for addressing the first three items in the previous list, we found that the
concept of regular variation and its extensions appeared once and again related to our problems.
As it will be inferred from the developments presented in the second and third chapter, it enters
crucially in the solution of these problems.

The subject of regular variation was initiated by J. Karamata in 1930, who made use of it
in Tauberian Theorems, like the Hardy-Littlewood-Karamata Theorem. His ideas were devel-
oped by his collaborators and pupils from the ‘Yugoslavian School’ in the following decades. A
measurable function f : [a,00) — (0,00), with a > 0, is regularly varying if

lim f(Az)

z—oo f(x)
for every A € (0,00). The theory of regular variation ensures that there exists p € R such that
g(\) = X and the convergence is uniform for A in the compact sets of (0,00) (see Section [1.2)).
This subject was popularized in the 1970’s by its applications to probability theory, stimulated
by the contributions of W. Feller and L. de Haan. However, we will be specially interested in its
application to complex analysis, where it appears tightly connected to the notion of proximate
order whose definition was motivated by the study of the growth of entire functions.

=g(A) € (0,00) (4)

In some occasions this theory is too limited and several generalizations have been provided.
In this dissertation, apart from regular variation, we will concentrate on the so-called O-regular
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variation, where the lim in (4)) is substituted by two conditions with lim sup and lim inf instead.
This notion was also considered by J. Karamata, but it was spread by W. Matuszewska thanks
to its relation with Orlicz spaces in 1964. She characterized it in terms of two indices commonly
known as Matuszewska indices. In virtue of the nature of this work we will be specially interested
in the discrete versions of these concepts. The extension of regular variation for sequences of
positive real numbers was carried out by R. Bojani¢ and E. Seneta in 1973, and the O-regularly
varying version was provided by D. Djur¢i¢ and V. Bozin in 1997. In the second section of
the first chapter the elementary features of Karamata theory are summarized in a concise but
complete form.

The main purpose of the second chapter is the description of the existing relations among the
notions presented in the first one. The first section is centered on the notion of O-regular vari-
ation. Some of the conditions, for instance, moderate growth and strongly nonquasianalyticity,
frequently assumed for the sequence M in order to have suitable properties for the correspond-
ing class, can be restated in terms of O-regular variation. It deserves a specific mention that
Thilliez’s index (M) and Sanz’s index w(M), independently introduced, will be proved to have
an adequate representation in the classical theory of O-regular variation. In order to establish
its connection to logarithmically convex sequences, we will need to express these conditions by
means of almost monotonicity properties, and to introduce the orders pu(m) and p(m) and the
Matuszewska indices 5(m) and a(m) for its sequence of quotients m = (mp—1)pen. The following

two results (Theorem [2.1.16{ and Proposition [2.1.18) illustrate this relation.

Theorem. Let M be a sequence of positive real numbers with sequence of quotients m. Then

Proposition. Let M be a sequence of positive real numbers with sequence of quotients m.
Assume that (p!M,)pen, is logarithmically convex, then

(1) M has moderate growth if and only if a(m) < oo if and only if m is O-regularly varying.
(ii) M is strongly nonquasianalytic if and only if S(m) > 0.

Consequently, there is a tight connection between the O-regular variation of m and the
strong regularity of M. As a by-product, equivalent descriptions of those indices and orders are
obtained, which will be employed in Chapter [3] when dealing with the surjectivity of the Borel
problem, which indeed motivated the study. A considerable number of details, more than needed
for the surjectivity issue, will be provided in order to exhibit a complete vision of the subject. In
particular, we always have that v(M) < w(M) (as it was already known before noting this link),
but the most revealing feature deduced from O-regular variation will be that, in general, they
are distinct for strongly regular sequences. This has been not easy to show, since most of the
strongly regular sequences appearing in the applications admit a nonzero proximate order, which
is a stronger condition that in particular implies that w(M) = ~v(M). Example at the end
of the chapter, shows how to construct a strongly regular sequence with arbitrarily prescribed
values of these two indices, 0 < v(M) < w(M) < oco. Hence, problem (C) is solved.

At the end of the section, the link of these notions with the associated function wy; and the
counting function vy, is explained in Theorem [2.1.30] and Proposition 2.1.38] from which the

construction of a dual sequence is derived.

In the second section of this chapter, the leading role is played by proximate orders. The
relation between regularly varying sequences, proximate orders and weight sequences is explored,
which, as mentioned before, is crucial for the availability of the Ml—summability theory. We will
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obtain a characterization of the sequences for which dy; = log(wn(t))/ log(t) is a nonzero proxi-
mate order, which was the open question (A) and has been successfully answered in Theorem[2.2.6|
in terms of the regular variation of m, summarized as follows:

Theorem. Let M be a weight sequence. The following are equivalent:
(1) dm(t) is a proximate order with lim; o dn(t) € (0, 00),
(ii) m is regularly varying with a positive index of regular variation.

In case any of these statements holds, the value of the index mentioned in (ii) is w(M) and the
limit in (i) is 1/w(M).

Regarding the sequences admitting a nonzero proximate order, in the sense of , we will get
a representation formula for them so solving the problem in (B). Furthermore, since equivalent
sequences define the same ultraholomorphic classes, it will turn out that the admissibility of a
proximate order by M is a natural condition in the sense that it is equivalent to the existence of
a sequence L equivalent to M and such that dp, is a nonzero proximate order. The proof of these
facts is presented in Theorem that states:

Theorem. Let M be a weight sequence, then the following conditions are equivalent:

(i) There exists a weight sequence L equivalent to M (i.e., there exist constants A, B > 0 such
that APL, < M, < BPL,, for all p € Ny) such that dp(¢) is a nonzero proximate order,

(ii) M admits a nonzero proximate order,

(iii) There exist w € (0,00) and bounded sequences of real numbers (b,)pen, (7p)pen such that
(Mp)pen converges to w and we can write

p+1

my = exp bp+1+z% , D€ Np.
j=1

In case the previous holds, limy_,o d.(t) = 1/w = 1/w(M).

In addition, a new characterization of regularly varying sequences will be obtained in Propo-
sition 2.2.3] and it will also be shown how one can construct well-behaved weight sequences from
proximate orders in Theorem [2.2.14] Finally, in Subsection 2.2.5] and thanks to our improved
understanding of the properties involved, several examples will be provided exhibiting different
pathological behaviors, including Example mentioned before.

If, instead of admitting a proximate order, weaker conditions are asked for M, for instance
and with the notation of the above representation formula, if (1,)pen is only bounded, which
is equivalent to the O-regular variation of m, it is not known how the Ml—summability method
can be replicated. However, and this was the problem posed in (D) and (E), it is natural to ask
oneself about the injectivity and surjectivity of the Borel map. The third chapter is devoted
to the study of these questions in the three ultraholomorphic classes of functions previously
considered. After introducing the basic notation in the first section, we analyze the injectivity
for which, as commented above, nearly all the information was already known. It turns out that
proximate orders again provide the definitive solution for the injectivity problem: even if M does
not admit a nonzero proximate order, one can always control dy by a nonzero proximate order
from above, and a suitable use of the regular variation of the functions of Maergoiz associated
with this proximate order allows one to construct flat functions in sectors of optimal opening.
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So, the question in (D) is answered, see Theorem [3.2.15] Here the index w(M) shows its dividing
character. This section ends, helped by the quasianalyticity results, showing in Theorem [3.2.16
that the Borel map is never bijective.

The last section is centered on the surjectivity problem. Some partial results will be obtained
for weight sequences, for example it is shown that for arbitrary weight sequences, surjectivity
for any opening requires v(M) > 0 or, in other words, M has to be strongly nonquasianalytic.
However, the main advances are for strongly regular sequences. In Corollary if S, is the
unbounded sector of opening 7y and bisecting direction d = 0 of the Riemann surface of the
logarithm, it will be proved the following:

Corollary. Let M be a strongly regular sequence, and let ¢t € R, ¢ > 0. Each assertion implies
the following one:

(i) t <~(M),

(ii) the Borel map B : Ap(S;) — C[[2]]m is surjective,

)
)
(iti) the Borel map B : A (S;) — C[[2]]m is surjective,
(iv) the Borel map B : Ap(S;) — C[[2]]u is surjective,
)
i)

(v) for every ¢ € I with ¢ < ¢, the Borel map B : Aw(S¢) — C[[2]]m is surjective,

t < y(M).

Hence, v(M) is shown to be the suitable limiting value for surjectivity and this answers the
previous question (E). Finally, some information is specified in case the sequence is even more
regular.

(v

In Chapter 4 we turn to last problem, (F), in the previous list. Observe that we know
now for which sequences the M—summability method is available. The first section recalls the
most import features of M—summability theory. So, we are now interested in the extension
of multisummability to this general context. A preliminary discussion concerns the necessity,
for the problem to make sense, that the sequences, which define the summability methods to
be merged, are comparable and nonequivalent, what will be studied in Subsection After
establishing the basic properties of the quotient and product sequences of two weight sequences,
the Tauberian Theorem [{.2.74] will be obtained:

Theorem. Let L and M be weight sequences such that L admits a nonzero proximate order,
M/L is logarithmically convex and w(L) < w(M). If f € C[[z]] and f is M—summable in all
directions except a finite set (mod 27), then f is convergent.

Thanks to this result, a consistent definition of multisummability can be given: a formal
power series will be said to be multisummable if it can be split into the sum of finitely many
formal power series fj, each of them summable for a corresponding sequence M; admitting a
nonzero proximate order. Our objective is to devise a procedure for the explicit reconstruction
of its sum. In Theorems [4.3.21f and [4.3.25] the summability kernels for the quotient and product
sequences of two sequences will be built, with them we will be able to construct the multisum
as it is shown in Theorem We should mention that the study of multisummability has
not been completed, specially what pertains to some of its possible applications, but we will
postpone the comments on this work in progress to the conclusions.

The last chapter in this dissertation was not initially scheduled, but its inclusion is natu-
ral once the techniques of proximate order and regular variation have been incorporated. It
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deals with the propagation of M—asymptotics in a direction for holomorphic and asymptoti-
cally bounded functions to the whole sectorial region, where M is a weight sequence admitting a
nonzero proximate order. The main result is the following, Theorem [5.3.1}

Theorem. Given v > 0, suppose f is holomorphic in a sectorial region G of opening 7y and
bisected by direction 0, f is bounded in every proper and bounded subsector T" of G and it admits
f € CJ[z]] as its M—asymptotic expansion in a direction 6 € (—my/2,7v/2). Then, f € Ay(G)
and f admits f as its M—asymptotic expansion in G.

This generalizes a result by A. Fruchard and C. Zhang [29] in 1999 for Gevrey asymptotic
expansions. As in the Gevrey version, the proofs of the results rest, on one hand, on a suitable
version of the classical Phragmén-Lindel6éf Theorem, Lemma here obtained for functions
whose growth in a sector is specified by a nonzero proximate order; and, on the other hand, on
the available versions of the Watson Lemma and Borel-Ritt-Gevrey Theorem.
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Chapter 1

Preliminaries

1.1 Logarithmically convex sequences

The classes of functions and formal power series considered in this dissertation are defined by
growth restrictions of their derivatives or of their coefficients, respectively. These restrictions
will be expressed in terms of a sequence of positive real numbers that will be assumed to satisfy
suitable conditions depending on the problem. In this first section, these conditions and their
immediate consequences will be presented. Most of the information is taken from the classical
works of S. Mandelbrojt [72] and H. Komatsu [52], which we refer to for further details.

1.1.1 Definition and properties

In what follows, M = (M,),en, always stands for a sequence of positive real numbers, and we
always impose that My = 1, where Ny = {0,1,2,...} = NU {0}. The names of the condi-
tions given by V. Thilliez and, for the convenience of the reader, the corresponding descriptive
acronyms employed by G. Schindl [90] have been used.

Definition 1.1.1. We say that:

(i) M is logarithmically convez (for short, (lc)) if

M} < My 1My, peN.

(ii) M is of or has moderate growth (briefly, (mg)) whenever there exists A > 0 such that

My, < APYM,M,,  p,q € No.

(iii) M satisfies the strong nonquasianalyticity condition (for short, (snq)) if there exists B > 0
such that

[o@)
M, M,
E L <B—* p € No.
— (q+1)Mgy1 My

According to V. Thilliez [95], if M is (Ic), has (mg) and satisfies (snq), we say that M is a strongly
regular sequence.
Definition 1.1.2. For a sequence M we define the sequence of quotients m = (my)pen, by

Mpi1
mp::ML pGNO
p
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Remark 1.1.3. The properties (Ic) and (snq) can be easily stated in terms of the sequence of
quotients and, as we will see in Lemmas [1.1.9| and [2.1.3] the same holds for (mg). Moreover,
observe that for every p € N one has

M, M, Mo My
M, = PP 2 =m,_ g . 1.1
p Mp—l ]\4})_2 Ml MO mp 1mp 2 mimo ( )

So, one may recover the sequence M (with My = 1) once m is known, and hence the knowledge
of one of the sequences amounts to that of the other. Sequences of quotients of sequences M, L,
etc. will be denoted by lowercase letters m, I and so on. Whenever some statement refers to a
sequence denoted by a lowercase letter such as m, it will be understood that we are dealing with
a sequence of quotients (of the sequence M given by (L.1))).

Example 1.1.4. We mention some interesting examples. In particular, those in (i) and (iii)
appear in the applications of summability theory to the study of formal power series solutions
for different kinds of equations.

(i) The sequences M, g : (p'a D o log” (e + m))pGNo’ where o > 0 and 8 € R, are strongly
regular (in case 8 < 0, the first terms of the sequence have to be suitably modified in order
to ensure (Ic), see Remark . In case 8 = 0, we have the best known example of
strongly regular sequence, M, := My 0 = (p!“)pen,, called the Gevrey sequence of order .

(i) The sequence My 5 := (]2 log” (e + m))pen,, With 8 > 0, is (Ic), (mg) and m tends to
infinity, but (snq) is not satisfied.

(ifi) For ¢ > 1, M := (¢*")pen, is (I¢) and (snq), but not (mg).

Some results remain valid, however, when (mg) and (snq) are replaced by the following weaker
conditions:

Definition 1.1.5. Let M be a sequence, we say that

(i) M is stable under differential operators or satisfies derivation closedness condition (briefly,
(dc)) if there exists D > 0 such that

M, < DP™M,,  peN,.

(ii) M is nonquasianalytic (for short, (nq)) if

o
< Q.
1;0 /f"i‘l Mk+1

The following properties are easy consequences of the definitions.
Lemma 1.1.6. For every sequence M we have the following properties:
(i) If M has moderate growth then M is stable under differential operators.
(ii) If M is strongly nonquasianalytic then M is nonquasianalytic.
Lemma 1.1.7. For every sequence M the following holds:

(i) M is logarithmically convex if and only if m is nondecreasing.
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(ii) If M is logarithmically convex and nonquasianalytic, then limy, o, m, = oo.

(iii) If limy, oo my, = 00, then it exists pg € N such that M, < M,4; for every p > py.
(iv) If M is logarithmically convex, then M,M; < M,y for every p,l € Ny.

(v) Tf M is logarithmically convex, then (M,)"/P < m,_; for every p € N.

(vi) If M is logarithmically convex, then ((M,)'/?) ey is nondecreasing.

)

(vii) Tf M is logarithmically convex, lim, ., (M,)/? = oo if and only if lim, ;. m, = co.

Proof. (i) Note that M is logarithmically convex if and only if M,,/M,_1 < M,1/M, for every
p € N. Since my, = My, 1/My, M is logarithmically convex if and only if m,_; < m, for
every p € N.

(ii) Since M is logarithmically convex, m is nondecreasing (by (i)). If we suppose that m is
bounded, i.e., it exists C' > 0 such that m, < C for every p € N, we see that

> M, > 1 > 1
R — > = .
> T = 2 0 2 X g e =

This is impossible if M is nonquasianalytic, so m is unbounded and nondecreasing, and we
conclude that lim, o, m, = c0.

(iii) If lim, 0o m, = 00, it exists po € N such that m, > 1 for every p > po that implies
M,11 > M, for every p > po.

(iv) We fix p € Ny and apply an induction argument on ¢. The statement holds for ¢ = 0,
because My = 1. Assume that it is valid for some value of ¢, using the induction hypothesis
and that m is nondecreasing (by (i)) we have

My
MyMpi1 = MpM, M, < Mpyomy < Mypompo = My

(v) We observe that M, = mom; - - - my,_2m,_1 and, since m is nondecreasing (by (i)), we have
M, < (mp_1)P for every p € N.

(vi) By (v), we deduce that

MPTIP = M, (M) P < Mymy—1 < Mpymy, = Mpy1,  peN.

(vii) By (v), if limy o0 (M,) /P = oo, then lim, o my, = 0o. If lim, 0 m, = 00, since

log(My41) — log(M
lim 108 o) —log(Mp) _ log(m;) = oo,
% prDop

we deduce by the Stolz’s criterion that lim, . (M,)"/P = oco.
O

Along this document, we may use the basic properties of the last lemma, specially (i) and
(ii), without mentioning.
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Definition 1.1.8. We say that a sequence M is a weight sequence if it is logarithmically convex
and limpﬁoo(Mp)l/p = oo or, equivalently by the lemma above, if m is nondecreasing and
lim,, oo mp = o0.

Under the assumption of logarithmic convexity H.-J. Petzsche and D. Vogt gave the following
characterization of the moderate growth condition in terms of m. For the sake of clarity and
completeness, since there is an index shift in their definition of the quotient sequence, the proof
has been included.

Lemma 1.1.9 (|78], Lemma 5.3). Let M be a logarithmically convex sequence. Then the
following statements are equivalent:

(i) M has moderate growth,
(i) suppen(my/My") < o0,
(iil) suppen(map/my) < oo,
(iv) suppen (MQp/Mg)l/p < 0.

Proof. (i)= (ii) From the logarithmic convexity, we know that m is nondecreasing and for all

p € N, we have

My

(mp)p < mpMp41...M2p—1 = J,

M,
and, applying the (mg) condition with p = [, we show that it exists A > 1 such that (m,)P <
Mo, /M, < Aszp for all p € N.
(ii) = (iii) By the logarithmic convexity, if we assume that (ii) is true, we see that there exists
H > 0 such that

mgg < H2pM2p = H2pm0m1 coemgp1 < ng(mp)p(mgp)p, p € N.
(iii)= (iv) First, we will show that

sup(map/mp—1) < 0. (1.2)
peN

Using (iii), we see that it exists H > 1 such that

m
= P <H , peN.

We observe that for p > 2, we have 2p — 2 > p. Using the logarithmic convexity and applying

(iii) again, we show that

m m Moy —
2p < H D < H 2p—2
mp—1 mp—1 mp—1

<H* p>2

Finally, taking C' := max(H?,ma/my), we see that sup,cn(may/mp—1) < C. Now, using the
logarithmic convexity, we have that

1
2, 2 2 2

My, = momy ... map_omop_1 < momamy . .. mQ(pfl)msz, p € N.
P

Applying (1.2)) and the logarithmic convexity again, we obtain

mo
My, < C*m2mimi. .. m?)_gm;_li < CQPM,?, peN.
map
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(iv) = (i) We fix p, £ € Ny. Firstly, if one or both of them are equal to 0, since My = 1, condition
(mg) holds for A = 1. Secondly, if p+ /¢ = 2k with k € N, by (iv), we deduce that it exists H > 1
such that o Mo M
Mysp = My, < H*MZ = (\/ﬁ) M, M=k

M, M,

We suppose p < k < ¢ (the proof is the same if £ < k < p). Then, by the logarithmic convexity,
we see that

k—p
MkMk—mm - 1 <mk —mo—l
~r v = MpMptt - ME—1 S —mF T Mg =
M, M, MMt - - - My_1 m’i k

Finally, if p4+ ¢ = 2k — 1 with k > 2, then one of the values £ or p is odd and the other is even.
Without lost of generality, we suppose £ is odd and so p > 2. Using the property Lemma (iv)
and applying the last statement for p and ¢ + 1, we see that it exists A > 1 such that

Applying again the first part for 1 and ¢, whose sum 41 is even, we see that My, < AT M, M;.
So we have

M,

ot = Moj—y < ATPHINL, ATTIM, < (AP N, M.

O

Remark 1.1.10. By a slight modification of this proof, given k € N, k > 2, we can see that the
following conditions are equivalent:

(i) M has moderate growth,
(ii) suppen(mup/myp) < oo,

1
(iil) suppen (Mkp/lef) ? < 0o

As an immediate consequence of Lemmal[l.1.7(v) and Lemma[1.1.9](ii), V. Thilliez gave the
following result.

Lemma 1.1.11 ([95]). Let M = (M,),en, be a (Ic) sequence satisfying (mg) condition for a
constant A > 0 appearing in Definition [I.1.1)(ii). Then,

my < AzMg/p < A*my, for every p € N. (1.3)

1.1.2 Equivalent and comparable sequences

The nature of the classes of functions defined in terms of sequences (see Section [3.1)) leads us to
consider the notions of equivalent and comparable sequences.

Definition 1.1.12. Let Ml and L be sequences, we say that M is smaller than L if it exists
C > 0 such that
Mp < Cpr, p € Ny,

()"
sup | — < 00,
peEN Lp

and we write M X L. We call M and L comparable it Ml X L or . £ M holds. If both conditions
hold, we say that M is equivalent to L, and we write M ~ L.

or, equivalently, if
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From (1.3) we observe that if M is a (lc) sequence satisfying (mg) condition, then M and
(mb)pen, are equivalent.

Remark 1.1.13. Since equivalent sequences will turn out to define the same class of functions
or series (see Remarks [3.1.4] and [3.1.7), we are particularly interested in comparable but not
equivalent sequences. In particular, if M 3 I and M # L., we observe that

1/p
inf % =0 and
peN Lp

M 1/p
lim inf <p> =0 and

p—00 D

or, equivalently, if

Consequently, Ml and L are noncomparable if

M 1/p
inf (p> =0 and

peN P

(Mp> 1/p
sup | — < 00,
peEN Lp

lim su <]Wp>1/p
p 7 < Q.

p—o0 P

<Mp) 1/p
sup | — = 00,
peEN LP

or, equivalently, if

M\ YP
lim inf <I/p> =0 and
p—o0

M 1/p
lim sup <p> = 00.
P p—00 Ly,

In the next definitions and results we take into account the conventions adopted in Re-

mark I.1.3]

Definition 1.1.14. Let m and £ be sequences of positive real numbers, we say that m is bounded
from above by £ if it exists ¢ > 0 such that

my < clp, p € Ny,

or, equivalently, if

mp
sup — < 00,
peNg *p

and we write m < £. The sequence m is said to be similar to £ if m =< € and £ < m and we
write m ~ £.

Proposition 1.1.15. Let M and L be sequences, m and £ the sequences of quotients associated
with M and L, respectively. If m < £, then M < .. Consequently, if m ~ £ then M ~ L.

Proof. There exists ¢ > 0 such that m, < ¢/, for every p € No. Writing M,, = mom1...mp—1
and L, = ol ...¢,_1, we see that

Mp =momi...Mp-2Mp—1 S C[(]Cfl e Cfpfgcgpfl = Cpr,
for every p € Ny, then M < L. O

The last proposition shows that the notion of comparability for the sequences of quotients
is stronger than the former one. Under suitable assumptions, the converse implication can be
obtained.
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Proposition 1.1.16. Let M and L be (lc) sequences, m and £ the corresponding sequences of
quotients. We suppose that M has moderate growth. If M 2 L, then m < £.

Proof. By Lemma m(v), we see that (L,)/? < £, and, by Lemma mm) my < A2(M,)'/P
for some A > 0 and for every p € N. If one has M < L, then there exists C > 0 such that
M, < CPL, for every p € Ny and we conclude that

m, < A2(M,)Y/P < A2C(L,)YP < A%CU,,
for every p € N, then m < £. O

We study the stability under equivalence of the properties in Definition [I.1.1]

Proposition 1.1.17. Let M and L be sequences. If M ~ L and M has (mg), then L also has
(mg).

Proof. Since L = M, there exists C' > 1 such that C"PL, < M, < CPL, for every p € Ny. Using
the moderate growth of M, we see that

Lprqg < CTPM,., < (AC)TPM,M, < (AC)1PCPCIL, L, = (AC?*)PTIL,L,,
for every p, q € Ny, then L satisfies (mg) condition. O

Proposition 1.1.18. Let M and L be sequences. If m ~ £ and M is (snq), then L also is (snq).

Proof. Since £ ~ m, there exists ¢ > 1 such that ¢! L, <my < ¢/, for every p € Ny. Using the
strong nonquasianalyticity of M, we have

o o
M M L
<ec g Tk <c¢B—F < CQBip,
kzzp k+1) Lk+1 & (k+ 1) My M, Lpi1

for every p € Ny, then LL also satisfies (snq) condition. O

Remark 1.1.19. If M is a sequence such that (my),>p, is nondecreasing for some py € N,
i.e., m is eventually nondecreasing, we define £, = m,,, for p < po and ¢, = m, for p > po,
then £ is nondecreasing (L is (Ic)) and £ ~ m. Moreover, whenever M is (mg) or (snq), by
Propositions [1.1.15] [L.1.17| and [1.1.18) we have that L is also (mg) or (snq).

Using the Propositions [1.1.76] [T.1.177] and [T.1.18] above we easily deduce that:

Proposition 1.1.20. Let Ml and L be sequences, m and £ the corresponding sequences of
quotients. We suppose that M and L are (Ic) and one of them has (mg). If M ~ L, then m ~ £.

In particular, if M is strongly regular and L is (Ic), then m < £ if and only if M 3 L, and
m ~ £ if and only if M ~ .. Consequently, if Ml ~ L, then L is also strongly regular.

Remark 1.1.21. Logarithmic convexity is not stable for either ~ or ~. Regarding (snq), apart
from Proposition , one may deduce that, for weight sequences, (snq) is stable for ~ by
using [77, Th. 3.4], restated with our notation in Theorem [3.3.4] In this result of H.-J. Petszche,
the stability of the condition (;) for ~ (see Remark for the connection between (1) and
(snq)) is indirectly deduced, to the best of our knowledge there is no direct proof of this fact.
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1.1.3 Associated functions

In the classical study of classes of functions defined in terms of a sequence of positive real numbers,
for instance see S. Mandelbrojt [72] and H. Komatsu [52], the importance of the functions wy(t)
and hy(t) considered below has been illustrated.

For any sequence M we can consider the map wy : [0, 00) — R, defined by

P
wi(t) := sup log ( t>0; wp (0) = 0. (1.4)

pENy ﬁp) ,

If M is a weight sequence, i.e., (Ic) and such that m tends to infinity, we can show that wyy is a
nondecreasing continuous map in [0, 00) with lim; o wy(t) = co. Indeed,

_ [plogt —log(M,) ifte[mp_1,mp), p=1,2,...,
wi(t) = { 0 if t € [0,mp). (1.5)

and one can easily check that wy is convex in logt, i.e., the map ¢ — wy(e!) is convex in R. We
also observe that

mP
=log [ —2 No. 1.6
o (M ). peto (16)
Alternatively, we can consider the map hyy : [0,00) — R, given by

hyi(t) := plenl\];o Myt? = exp ( — wM(l/t)) t > 0; hy(0) =0,

which turns out to be, for a weight sequence, a nondecreasing continuous map in [0,00) onto
[0,1]. In fact,

haa(t) = M,,t? lftE[mp,msl),p:LQ,...,
M 1 ift > 1/my.

If L is another weight sequence such that I &~ M, it is straightforward to check that there
exist A, B > 0 such that

wm(At) <wp(t) <wm(Bt),  t>0, (1.7)
or, equivalently, H, L > 0 such that
haa(Lt) < hp(t) < hye(HE),  t>0.

Example 1.1.22. The following information with respect to the associated function wyy(t) for
the sequences appearing in Example can be given.

(i) We recall that My g = (p!* [Th,—0 log” (e + m))pENo and we have that there exist positive
constants A, B such that:

At/ log(t)P/* < WM, 4(t) < BtY*1og(t)?/®, t large enough

(see [98, Example 1.2.2]). In case § = 0, i.e., for the Gevrey sequence of order o, At*/® <
wi, (t) < Bt'/e for t large enough.

(ii) For ¢ > 1, M, = (qp2)peNO we can show that there exist positive constants A, B such that:
Alog(t)? < wi, (1) < Blog(t)?, t large enough

(see [17, Example 21]).
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One may consider the logarithmically convex minorant sequence MU©) of a sequence M, that
is, the (lc) sequence such that MIS’C) < M, for all p € Ny, and for every other (lc) sequence L

with L, < M, for every p € Ng we have that L, < MIE’C) for all p € Ny. The associated function
is related to this minorant in the following sense.

Proposition 1.1.23 ([72] p. 17 and [52] Prop. 3.2.). Let M be a sequence with lim inf M;/p > 0.
Then, we have that M]glc) = Sup;q t? /e~ for all p € Ny. Consequently, M is (lc) if and only if

— — p
M, = §1>110) o) iggt ha(1/t), p € Np.

In particular, this representation is valid for weight sequences.

Some of the conditions for sequences in Section can be described in terms of the asso-
ciated function, see Subsection In particular, the next characterization of (mg) condition
plays a fundamental role in many of our arguments, it already appears in the work of H. Ko-
matsu [52, Prop. 3.6] and of V. Thilliez [95].

Lemma 1.1.24. Let M = (M,),en, be a weight sequence. The following are equivalent:
(i) M has (mg),

(ii) For every real number with s > 1, there exists p(s) > 1 (only depending on s and M) such
that
hni(t) < (hnm(p(s)t))? for t >0,

or, equivalently, that
swm(t) < wm(p(s)t) for t > 0. (1.8)

(iii) There exist H > 1 and tp > 0 (only depending on M) such that
hai(t) < (hae(H))?  for t < 1/to,

or, equivalently, that
2wpm(t) < wy(Ht) for t > ty.

Proof. (i) = (ii) Given s > 1 we take k € N such that k£ > s. By (mg) condition, there exists
A > 0, depending on k and M (see Remark [1.1.10)), such that My, < A’””MliC for every p € Np.
We deduce that

hav(t) = inf #PM, < inf t*P M, < inf (tA)*PMF = (hy(At)F
m(t) = inf "M, < inf My < inf (EA)TM, = (hua(A2))",

for every t > 0. Since hy(t) € [0,1], (ha(At))* < (hp(At))® for all ¢ > 0, then (ii) is satisfied
with p(s) = A.

(i) = (iii) Immediate.

(iii) = (i) Since M is (Ic), applying Proposition [I.1.23] we see that M, = sup;~q (t*hy(1/t)) for
all p € Nyg. By (iii), we obtain that

My, =sup t?Phyg(1/t) = max( sup (tPhyg(1/t)), sup(t?Phyi(1/1)))
>0 0<t<to t>to

< max(t?, fSF(tQPhM(H/t)Z)) < max(t5?, H* M?)
f 0]

for all p € Ng. Since M, > 1, for p large enough, we can choose A > 1 such that My, < AQPMI?
for every p € Ny. Then, by Lemma [1.1.9] we deduce that M satisfies (mg).
U
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1.1.4 Growth indices v(M) and w(M)

The growth index v(M) was defined and considered by V. Thilliez [95 Sect. 1.3] in the study
of ultraholomorphic classes of functions. The original definition was given for strongly regular
sequences and v > 0, but one can consider it for any sequence M and v € R.

Definition 1.1.25. Let M be a sequence and v € R. We say M satisfies property (P,) if there
exists a sequence of real numbers £ = (¢,)pen, such that:

(i) m ~ £, that is, there is a constant a > 1 such that a='m, < ¢, < am,, for all p € Ny,
(ii) ((p+1)774p), e, is nondecreasing.

If (Py) is satisfied, then (P,) is satisfied for 4/ < +. It is natural to consider its growth indesx
~v(M) defined by
v(M) :=sup{y € R: (P) is fulfilled}.

Remark 1.1.26. Thanks to the property described above, we are allowed to use the classical
conventions inf () = supR = co and inf R = sup () = —c0.

For the study of the injectivity of the asymptotic Borel map (see Section for further
details), J. Sanz [88] defined the growth index w(M).

Definition 1.1.27. Let M be a sequence. We define its index w(M) by

By definition, the value of v(M) and of w(M) is stable for ~. For weight sequences with
(mg), in particular for strongly regular sequences, these values are also stable for =, thanks to
the equivalence between ~ and ~ (see Proposition . In Section we will eventually
show the stability under = for arbitrary weight sequences.

Regarding the relation between w(M) and (M), J. Sanz [88, Prop. 3.7|, using the properties
of v(M) described in [95 Sect. 1.3], stated the following result for strongly regular sequences,
which also holds for any sequence.

Proposition 1.1.28. For every sequence M one has v(M) < w(M).

Proof. 1f v < (M), then M satisfies (P,). By (Py), for every p € Ny, we observe that

/ m
P < 42 P

mo < aly < a a .
S (R e L

Consequently, a=2mg(p + 1)7 < m,, for every p € Ny and we deduce that

1 log(a™? 1)7
w(M) = lim inf O8 M > lim inf og(a” mo(p + 1)7) =",
p—oo  logp p—roo log p
and we conclude that v(M) < w(M). O

The regularity of the sequence entails properties for the corresponding indices.

Lemma 1.1.29. If M is (Ic), then v(M), w(M) € [0, c0].
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Proof. Since m is nondecreasing, (P) is satisfied then v(M) > 0 and we also have

logm,, S logmy
logp — logp

for all p € N then w(M) > 0. O

From this last lemma, we deduce also that for (Ic) sequences the original definition of (M)
given by V. Thilliez, where the supremum is taken only for v > 0, coincides with the general
one considered in this subsection. In [88, 95|, it has been shown that if M is strongly regular
then v(M),w(M) € (0,00) (see also Remark 2.1.19)). However, there are sequences that are not
strongly regular such that (M), w(M) € (0,00) (see Remark [2.2.27). These properties of the
indices will be obtained in Section 2.1 where the relation between O-regularly varying sequences
and (lc) sequences is presented, as an easy consequence of Theorem

Example 1.1.30. For the sequences appearing in Example one may prove (see Exam-

ple 2.1.20f) that

(i) Fora>0and B € Ror a =0 and 8 > 0 we have that y(M, 3) = w(M,3) = a.

(ii) For (¢7°)per, with ¢ > 1, v((¢”" )peny) = w((¢” )pen,) = oo

Most of the classical examples of strongly regular sequences satisfy that w(M) = ~(M).
Moreover, in Section we will show that the values of the indices coincide for a large class of
sequences. However, it is possible to construct a strongly regular sequence for which the values
are different, arbitrarily chosen, positive real numbers (see Example .

1.2 Regular variation, O-regular variation and proximate orders

In the next chapter, the relations between the sequences, the associated functions and the notions
of regular variation, O-regular variation and proximate orders will be studied. This section is
devoted to the description of these concepts and their fundamental properties.

1.2.1 Regularly varying functions

First, we will recall the notion of regular variation introduced in 1930 by J. Karamata ([49] [50]),
although partial treatments may be found in the works of E. Landau [56], G. Valiron [102], G.
Polya [79] and others (see the historical survey [14]). Several applications of this concept have
been shown in analytic number theory, complex analysis and, specially, in probability. The proofs
of most of the results in this subsection are gathered in the books of E. Seneta [92] and N. H.
Bingham, C. M. Goldie and J. L. Teugels [13].

Definition 1.2.1. A measurable function f : [a,00) — (0,00), with a > 0, is regularly varying

if
lim ACS)
oo f(x)

= g()‘) € (0700)7 (19)
for every X\ € (0, 00).

There are three main results regarding the notion of regular variation, the continuous version
of these results is due to J. Karamata [49] and the measurable one was given by J. Korevaar,
T. van Aardenne-Ehrenfest and N.G. de Bruijn [55].
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Theorem 1.2.2 ([I3], Th. 1.4.1, Characterization Theorem). Let f : [a,00) — (0,00), with
a > 0, be a measurable function. If f is regularly varying, then there exists p € R such that the
function g(\) in is equal to A°.
In this case, pis called the index of regular variation of f, we write f € R, and RV := U, R,.
If p =0, then f is said to be slowly varying. We have that f € R, if and only if f(z) = xP4(x)
for some ¢ € Ry.

Consequently, the behavior of a regularly varying function at oo is in some sense similar to the
behavior of a power-like function. For n € N, log,, z denotes the n—th iteration of the logarithm.
Given n; € Nand a; € Rfor i =0,1...,k, the classical example of a regularly varying function
is

f(z) = 2% (log,,, x)*! (log,,, )2 - - - (logy,, )™

Theorem 1.2.3 ([13], Th. 1.5.2, Uniform Convergence Theorem). Let f : [a,00) — (0, 00), with
a > 0, be a measurable function. If f € R,, then for every by, by € (0,00) with by < by we have
that
A
lim ()

2w Y

uniformly for A € [b1, ba].

Theorem 1.2.4 ([I3], Th. 1.3.1 and Th. 1.4.1, Representation Theorem). Let f : [a,00) —
(0,00), with @ > 0, be a measurable function. Then f € R, if and only if there exist A > a
and measurable and bounded functions ¢,n : [A,00) — R with lim,; o c(z) = ¢ € R and
lim, o () = p € R such that

* du,
f@) =exp (c@) + [ nw™) @z A
A u
The value of A is unimportant because f, ¢ and 7 can be redefined in finite intervals preserving
the regular variation, then A can be chosen equal to 0, 1 or a as appropriate. Moreover, this
representation is not unique because, for instance, one may take

Remark 1.2.5. As an immediate consequence of the Representation Theorem, if f € R, we
deduce that
log f(x)

p= lim n(z) = lim

Z—00 Z—00 ]og T

Finally, we can see that regular variation is preserved for the classical equivalence.

Remark 1.2.6. Let f,g : [a,00) — (0,00), with a > 0, be measurable functions. Assume that
f and g are equivalent, in the classical sense, at oo, that is,

. f(@)
lim —= =1
voo g(z)

we write f ~ g. It is plain to check that f € R, if and only if g € R,,.
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1.2.2 Proximate orders and smooth variation

In order to study quasianalyticity of the ultraholomorphic classes (see Section and to con-
struct kernels of summability in this context (see Section we need to introduce the notion
of proximate order, appearing in the theory of growth of entire functions and developed, among
others, by G. Valiron [103], B. Ja. Levin [63] and A. A. Goldberg and I. V. Ostrosvkii [32]. In
this dissertation, a prominent role is played by the results of L. S. Maergoiz [65]. The concept of
proximate order, its elementary properties, its relation to regular variation and the main results
of L. S. Maergoiz are presented in this subsection.

Definition 1.2.7. We say a real function p(t), defined on (¢, c0) for some ¢ > 0, is a prozimate
order, if the following hold:

(A) p is continuous and piecewise continuously differentiable in (¢, 00) (meaning that it is dif-
ferentiable except possibly at a sequence of points, tending to infinity, at any of which it is
continuous and has finite but distinct lateral derivatives),

(B) p(t) > 0 for every t > c,
(C) Timy oo p(t) = p < 0,
(D) limy—,o0 tp'(t) logt = 0.

In case the value p in (C) is positive (respectively, is 0), we say p(t) is a nonzero (resp. zero)
proximate order.

Remark 1.2.8. If p(t) is a proximate order with limit p at infinity, for every € > 0 there exists
t. > 1 such that
tr=e < tr) < pote, t>t..

Definition 1.2.9. Two proximate orders p;(t) and po(t) are said to be equivalent if
Jim [p1(¢) — pa(t)]log t = 0.

For the functions Vi (t) = t*1(®) and Va(t) = t72()) this precisely means that

=~

) () e tP1(t) B
tlggo Va(t) tlggo to2(t) 1

that is, V1 ~ V5.
Remark 1.2.10. If p;(t) and pa(t) are equivalent and lim;_,o p1(t) = p, then
Jim pa(t) = p.

Example 1.2.11. The following are examples of proximate orders, defined in suitable intervals
(¢, 00):

) 1 Blog(logt)
)= - LB S0, B eR.
() paplt) = 5~ DE0ED 50 e

.. 1
(i) p(t) =p+ 5, p20,7>0.
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An example of a function verifying all the conditions except (D) is p(t) = p + sin(¢)/t.
There is a basic connection between regular variation and proximate orders.

Lemma 1.2.12 (63|, Sect. 1.12, p.32). Let p(t) be a proximate order with lim; . p(t) = p.
Then, the function V(t) = t*® € R,,.

The relation is even stronger, that is, it is also possible to go from regularly varying functions
of positive index to nonzero proximate orders. Even more general, we can associate with a
regularly varying function a smooth function of the class defined below and considered by A.
A. Balkema, J. L. Geluk and L. de Haan [4]. Several of the next results will not be used in the
forthcoming sections and have been included to make the reader aware of the deep connection
between proximate orders and regular variation.

Definition 1.2.13. A function f : [a,00) — (0,00), with a > 0, varies smoothly with index
p R, if fe€C®((a,00)) and the function h(z) = log(f(e")) satisfies

lim A/ (z) = p, lim 2™ (z) =0, n>2. (1.10)

T—r00 T—00

In this case, we write f € SR,.

If f € SR,, it turns out that the function n(x) := h'(log(x)) = = f'(x)/f(x) tends to p as x
tend to oo and

fta) = exp (1ogtr(@) + [ )

u

and by the Representation Theorem [1.2.4] we deduce that f € R, i.e., SR, C R,. Furthermore,
one may check (see [4, Lemma 9]) that (1.10) is equivalent to the fact that

" ()
The interest of smoothly varying functions is that every function in R, can be approximated
by a function in SR,,.

Theorem 1.2.14 ([13], Th. 1.8.2). Let f : [a,00) — (0,00), with a > 0, be a measurable
function. If f € R,, then there exist f1, fo € SR, with fi ~ fa, equivalent in the classical sense,
such that fi(x) < f(z) < fa(x) for x large enough. In particular, if f € R, there exists g € SR,
such that g ~ f.

We observe that if f € SR, defining ps(z) := log(f(x))/log(x) € C* for x large enough
and, since f € R,, by Remark we have that lim, .o pr(x) = p. Finally, we notice that

: _(zf'(x)
l / 1 = 1 — = .
lim 2y (z) log(x) = lim ( ) pf(ﬂf)) 0
Consequently, if p > 0, ps(x) is also positive for x large enough and we deduce that ps(x) is a
proximate order. As an immediate consequence of the previous result and this construction, one
may also approximate regularly varying functions by proximate orders.

Proposition 1.2.15 ([13], Prop. 7.4.1). Let f : [a,00) — (0,00), with @ > 0, be a measurable
function and p > 0. Then f € R, if and only if there exists a proximate order p(x) with
limy 00 p(t) = p such that f(z) ~ zP(®).
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If condition (B) is removed from the definition of proximate order the previous result is valid
for p € R. Then, as it was mentioned in [I3, p. 311], “it is a matter of indifference whether one
uses the language of regular variation or of proximate orders. Incidentally, from an historical
point of view it seems that Valiron may well be credited with initiating the subject of regular
variation.”

Moreover, condition (A) is imposed for essentially traditional reasons, because Lemma
and Theorem show, up to asymptotic equivalence, that smoothness for p(z) can be as-
sumed. In the same direction, one may study if stronger regularity conditions for p(z) could be
guaranteed. In particular, G. Valiron [102] showed that, always up to asymptotic equivalence,
the function 2”(*) has an analytic continuation to a sector in the complex plane containing the
positive real axis (see [I3l Th. 7.4.3|). For our purposes, we will use the extension constructed
by L.S. Maergoiz in Theorem below. For an arbitrary sector bisected by the positive real
axis, it provides holomorphic functions whose restriction to (0, 00) is real, has a growth at infinity
specified by a prescribed proximate and satisfies several regularity properties.

In order to state this result, we need to consider unbounded sectors of the Riemann surface
of the logarithm R

S(d,y):={z€R:|arg(z) —d| < g ’
with bisecting direction d € R and opening ym (v > 0). If d = 0, we write S, := S(0,7).

Theorem 1.2.16 ([65], Th. 2.4). Let p(¢) be a nonzero proximate order and p = lim;_,o p(t).
For every v > 0 there exists an analytic function V(2) in S, such that:

(I) For every z € S,

uniformly in the compact sets of S,.
V(z) = V(%) for every z € S, (where, for z = (|z|,arg(2)), we put Z = (|2|, — arg(z))).

V (t) is positive in (0, 00), strictly increasing and lim;_,o V' (t) = 0.

)
)
(IV) The function r € R — V (e") is strictly convex (i.e. V is strictly convex relative to log(r)).
) The function log(V (t)) is strictly concave in (0, 00).

)

The function py(t) := log(V (t))/log(t), t > 0, is a proximate order equivalent to p(t),
that is,
lim V(¢)/t?® = lim t*v® /ip®) = 1.

t—o00 t—o00

This result motivates the following definition.

Definition 1.2.17. Given v > 0 and p(t) a nonzero proximate order, M F' (v, p(t)) denotes the set
of Maergoiz functions V' defined in S, and satisfying the conditions (I)-(VI) of Theorem |1.2.16]

Remark 1.2.18. Suppose p(t) (¢ > ¢ > 0) is a nonzero proximate order. Then the function
V(t) = tP® is strictly increasing for ¢t > R, where R is large enough. The inverse function ¢t =
U(s), defined for every s > V(R), has the property that the function p*(s) :=log(U(s))/ log(s)
is a proximate order and p*(s) tends to 1/p as s tends to oo (see [65, Property 1.8]). This p*(s)
is called the prozimate order conjugate to p(t). Note that, by Lemma the function U is
regularly varying.
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This conjugate proximate order can be also extended, up to equivalence, to an analytic
function.

Theorem 1.2.19 ([65], Th. 2.6). Let p(t) be a nonzero proximate order, v > 0 and V €
MF(v,p(t)). Let t = U(s), defined for all s > 0, be the function inverse to s = V(¢), for
every t € (0,00), and let p*(s) be the proximate order conjugate to p(t). Then InU(s)/Ins is
a proximate order equivalent to p*(s), and the function U(s) admits an analytic continuation
to a function U(W) in a domain T" C S, symetric relative to the real axis and such that for
f < there exists Rg > 0 such that the domain T" contains S, N {|2| > Rg}. Furthermore, the
function U verifies, in its domain, the properties (I)-(VI) in Theorem of the functions of
the class M F(pv, p*(s)).

In Section [2.2] the possibility of associating with a weight sequence a nonzero proximate
order, consequently also a Maergoiz function, is characterized. These functions are used in the
study of the injectivity of the Borel map in Section are an essential part of the asymptotic
problems considered in Chapter 4] For the classical problem that motivates the introduction of
the notion of proximate order, that is, the study of the growth of entire functions, the reader is
referred to [63] Sect. 1.12], [32, Section 2.2] and [I3] Sect. 7.4], in the last one the solution is
stated through regular variation (see also Theorem [3.2.12).

1.2.3 O-regularly varying functions

For some of our purposes, the theory of regular variation is too restrictive and one may ask
what remains valid if we replace lim by limsup and liminf in . This extension of the
class of regularly varying functions, was defined by J. Karamata [51], V. G. Avakumovié¢ [3]
and considered by W. Matuszewska [74] and W. Feller [28]. Although we refer to the book of
N. H. Bingham, C. M. Goldie, and J. L. Teugels [13] for the proofs, the first complete study was
done by S. Aljanci¢ and I. D. Arandjelovié¢ [I] in 1977. In this subsection, it is shown that this
weaker notion preserves several desirable properties.

Definition 1.2.20. A measurable function f : [a,00) — (0,00), with a > 0, is O-regularly

varying if
0 < fiow(A) = liminf 222 < po 3y i sup LO%) < o (1.11)

a=oe f(x) w—oo [(x)

for every A > 1, and we write f € ORV.

Remark 1.2.21. We observe that fiow(A) = 1/f"P(1/A) for every A > 1. Consequently, if
f € ORV, then (1.11)) holds for every A € (0,00) and we deduce that RV C ORV. Moreover,
f € ORV if and only if

f'P(N) = li;lljgp f;()\;;) < 00

for every X € (0, 00).

In this general context, the index p of regular variation is split into two values, the Ma-
tuszewska indices, defined for any positive function.

Definition 1.2.22. For a function f : [a, 00) — (0, 00), with a > 0, its upper Matuszewska index
a(f) is defined by

a(f) =inf S a € R; 3C, > 0s.t. VA > 1, limsup sup f(\z) < C,
z—o00 Ae[,A] A f ()
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and its lower Matuszewska index 5(f) by

_ f(Ax)
B(f) = Sup{ﬂGR dDg > 0 s.t. VA > 1, h:cn—1>£f)\elﬂf1\] )\Bf( )>D5,

with the conventions in Remark

We always have that 5(f) < a(f). The finiteness of these indices characterizes O-regular
variation and the analogous version of the three main theorems of regular variation is available.

Theorem 1.2.23 ([13], Th. 2.1.7, Characterization Theorem for ORV). Let f : [a,00) — (0, 00),
with a > 0, be a measurable function. Then

f is O-regularly varying if and only if B(f) > —oo and a(f) < cc.
Theorem 1.2.24 ([I3|, Th. 2.0.7, Uniform Convergence Theorem for ORV). Let f : [a,00) —
(0,00), with @ > 0, be a measurable function. If f € ORV/, then for every A > 1 we have that

0 < liminf inf FAx) < limsup sup f(z)
z—o0 Ae[L,A] f(x) 200 Ae[r,A] Jf(T)

< 00

Theorem 1.2.25 ([13], Th. 2.2.7, Representation Theorem for ORV). Let f : [a,00) — (0, 00),
with a > 0, be a measurable function. Then f € ORYV if and only if there exist A > a and
measurable and bounded functions d,& : [A,00) — R such that

F(z) = exp < / £(u d“) x> A (1.12)

This representation is not unique and for every «, 8 satisfying 8 < 8(f) < a(f) < «, represen-
tations exist with the function £ taking values only in [, a].

We can give several alternative definitions of the indices a(f) and B(f).

Theorem 1.2.26 ([13], Th. 2.1.5 , Coro. 2.1.6 and Th. 2.1.7). Let f : [a,00) — (0,00), with
a > 0, be a measurable function. If 5(f) > —oo or a(f) < oo, then

_ g log PO L log 1P ()
alf) = ,\lgrolo logh ;\r;fl log A
6(f) _ log flovv()‘) _ log flovv()\)
A—00 log A A>1 log A '

Please note that, in particular, last theorem states that if 5(f) > —oo the formula for a(f)
holds, and the one for §(f) is valid if a(f) < oo. For instance, if f is nondecreasing 3(f) > 0
and both formulas hold.

The second equivalent definition is a concise characterization in terms of almost increasing
and almost decreasing properties and it is valid for any positive function.

Definition 1.2.27. Let f : [a,00) — (0, 00), with a > 0, be a function. We say that f is almost
increasing if there exists M > 0 such that

flx) <Mfly), y=>z2>a,

and f is said to be almost decreasing if there exists m > 0 such that

f@)zmfly), y=zz>a
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Theorem 1.2.28 ([13], Th. 2.2.2). Let f : [a,00) — (0,00), with a > 0, be a function. Then
a(f) = inf{a € R; 7 f(x) almost decreasing},
B(f) =sup{f € R; 7P f(x) almost increasing}.

Finally, the third alternative definition is a consequence of the Representation Theorem for
ORV.

Theorem 1.2.29 ([I], Th. 3). Let f : [a,00) — (0,00), with @ > 0, be a measurable function.
If f € ORV, then

o(f) = inf{limsup& )},

p(f) = Sgp{lixrggf &(x)}.

where the sup and inf are taken over all measurable and bounded functions & for which there
exists d measurable and bounded such that (1.12)) holds.

Other definitions of a and [ are available if one assumes that f is O-regularly varying and
locally integrable on [a, 00) (see [1]).

These indices can be compared to the classical upper and lower order of a function.

Definition 1.2.30. For a function f : [a,00) — (0,00), with a > 0, its upper order p(f) (often
shorted to order) and lower order u(f) are defined by
log f()

e o log f ()
u(f) = hxrgggfw, p(f) = lim sup gz

It is possible to define a class of functions, that contains ORV, attending to the finiteness of
these orders. In the recent work of M. Cadena, M. Kratz and E. Omey [21], a generalization of
the main theorems of regular variation and O-regular variation has been shown for this class.

Similarly to Remark O-regular variation has some stability property.

Remark 1.2.31. If f,g: [a,00) — (0,00), with a > 0, are measurable functions with

f(z) f(x)

0 < liminf —— < limsup ——= < o0, (1.13)
200 g(x) T zooeo 9(2)

it is plain o check that A(f) = B(g), 4(f) = #(g), p(f) = plg) and a(f) = a(g). Consequently,
f € ORV if and only if g € ORV. In particular, if f € RV then g € ORV and S(g) = u(g) =

p(g) = a(g).

Proposition 1.2.32 ([I3], Prop. 2.2.5). Let f : [a,00) — (0,00), with a > 0, be a function.
The orders and Matuszewska indices of f are related by

B(f) < p(f) < p(f) < alf).

As an easy consequence of the Representation Theorem [1.2.4] if f € R, then 8(f) = p(f) =
p(f) = a(f) = p. However, the converse is not true as it shows the next example.

Example 1.2.33 ([13], Prop. 2.2.8). The function f : [1,00) — (0, 00) given by

oy = {1 expllgta) =2)2) it me (@) G012,
= 1 if zell,e.

satisfies the following properties:
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(i) f is nondecreasing and continuous,

)

(i) 1< flow(A) < fP(X) = exp((log(A))/?) for every A > 1,

(iii) f € ORV and B(f) = u(f) = p(f) = a(f) =0,

(iv) There do not exist A > a and measurable and bounded functions d,¢ : [A,00) — R with
lim, o0 £(z) = 0 such that

F(@) = exp (d(w) + /:gu)?) CoasA

Consequently, by Theorem [1.2.4] f is not RV and it does not exists g € RV such that
(1.13)) holds. Regarding Theorem [1.2.25|and Theorem [1.2.29]it shows that neither 5(f) nor

a(f) is in general attainable for the representation.
We refer the reader to the cited proposition for the proof.

In Section the relation between the orders, Matuszewska indices and O-regular variation
with growth properties for sequences is studied. In this context, this final result, comparing
the O-regular variation of a function and its derivative, will be used to connect the associated
function and the counting function of a weight sequence M (see Subsection [2.1.4).

Theorem 1.2.34 ([13], Th. 2.6.1, Coro. 2.6.2). Let f : [X,00) — (0, 00) be a locally integrable
function. We define F(z) := [y f(t)/tdt. Then,

if a(f) < oo, then limsup,_,. f(z)/F(x) < oo.

if B(f) > 0, then liminf, .~ f(x)/F(z) > 0.

we have that a(F) <limsup,_, f(z)/F(x).

we have that (F) > liminf,_o f(z)/F(z).

Moreover, we have that

f(z)

o f@)
< — .
0< hxrglcgf Fla) = hirisgp F(z) < 00

if and only if a(f) < oo and B(f) > 0. In this case, a(F) = a(f) and B(F) = 5(f).

1.2.4 Regularly varying sequences

In 1973, R. Bojani¢ and E. Seneta [16] show that, under a suitable adaptation, one may consider
regularly varying sequences satisfying similar properties to the ones of regularly varying functions.
Even if all the results in this subsection, except the last one, were shown by R. Bojani¢ and
E. Seneta, we refer to [13] for the proofs, as in the previous sections. In the next chapter,
this notion will be used to characterize those sequences which can be attached to a proximate
order. This characterization will be given in terms of the sequence of quotients m = (mp,_1)pen
of M, then the notation in this subsection has been chosen according to the considerations in
Remark

Definition 1.2.35. A sequence a = (ay)pen of positive numbers is said to be regularly varying
if
a
lim —22 = g(\) € (0, 00), (1.14)

p—oo

for every A € (0, 00).
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Theorem 1.2.36 (|I3], Th. 1.9.5, Characterization Theorem for regularly varying sequences).
Let @ = (ap)pen be a regularly varying sequence of positive numbers. Then there exists p € R
such that the function g(\) in is equal to A°.

In this case, p is called the index of regular variation of a.

The next theorem makes possible to apply the results about the theory of regularly varying
functions to regularly varying sequences.

Theorem 1.2.37 ([I3], Th. 1.9.5). Let a = (ap)pen be a sequence of positive numbers. The
sequence a is regularly varying if and only if the function fo(z) = a|,| for z > 1 is regularly
varying.

From this embedding result, we deduce that the convergence of the limit in ([1.14) is uniform
in the compact sets of (0,00) and we see that regularly varying sequences also admit a very
convenient representation.

Theorem 1.2.38 ([13], Th. 1.9.7, Representation Theorem for regularly varying sequences).
Let @ = (ap)pen be a regularly varying sequence of positive numbers of index p. There exist
sequences of real numbers (cp)pen and (7p)pen, converging to ¢ € R and p, respectively, such
that

p
ap = exp cp—l—z%_j , peN.
j=1

Conversely, such a representation for a sequence (ap)pen implies that it is regularly varying of
index p.

As it happens for functions, this notion is stable for the classical equivalence.

Remark 1.2.39. Let a = (ap)pen and b = (by)pen be sequences of positive numbers. Assume
that a and b are equivalent in the classical sense , that is,

. a
lim -£ =1,
p—o0 by

we write a ~ b. It is plain to check that a is a regularly varying sequence of index p if and only
if b also is. Please note that if @ ~ b, then there exists ¢ > 0 such that cflbp < ap < cby for
every p € N, that is, a ~ b.

In Section [2.2] we will need to deal with sequences defined for p € Ny. As it is shown below,
there is no problem with this approach since regular variation is stable for index shifts.

Lemma 1.2.40 ([I3], Lemma 1.9.6.). If @ = (ap)pen is a regularly varying sequence, then
lggo apt1/ap = 1.

Consequently, the sequence a is regularly varying of index p if and only if the shifted sequence
8a = (8p = apt1)pen is regularly varying of index p.

The next theorem is the discrete version of Proposition [1.2.15] We construct a ‘smooth’
sequence b = (by)pen from a regularly varying sequence a = (ap)pen, where the condition
lim, o xf'(2)/f(x) = p is replaced by

lim p(bp+1 - bp)

p—00 bp - P
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Theorem 1.2.41 ([I3], Th. 1.9.8). Let p € R be given. A sequence of positive real numbers
a = (ap)pen is regularly varying with index p if and only if it exists a sequence of positive real
numbers b = (b,)pen such that

(i) limp oo bp/ap =1, 16, a ~b.
(i)
I)I)H—l—&-w—i—o(l) as p — oo, (1.15)
by p p
and we know by Remark that b is also a regularly varying sequence of index p.

Example [2.2.21]at the end of Chapter [2]shows that (1.15)) does not hold in general for regularly
varying sequences.

Finally, we should mention that the theory of regularly varying sequences becomes much
simpler if one considers only monotone sequences. The following theorem of L. de Haan [33]
shows that if we have monotonicity, we only need to prove (1.14)) for two suitable integer values
of A.

Theorem 1.2.42 ([33], Th. 1.1.2). A monotone sequence of positive real numbers (ap)pen, is
regularly varying if there exist positive integers ¢1, ¢y > 2 with log(¢1)/log(¢2) irrational such
that for some real number p,

ayp.
lim 92 — ¢ =12

This property is not true if the monotonicity hypothesis is removed as it has been proved by
J. Galambos and E. Seneta [30]. As it will be shown in Section this is specially useful when
dealing with the quotient sequence m of a (lc) sequence M.

1.2.5 O-regularly varying sequences

The extension of the notion of O-regular variation for sequences was stated by S. Aljancié¢ [2]
and detailed by D. Djurc¢i¢ and V. Bozin [25] in 1997. We introduce the basic elements of this
concept that will be required in the next chapter. For the definition, the characterization of
O-regularly varying functions given in Remark has been taken into account.

Definition 1.2.43. A sequence a = (ap)pen of positive numbers is said to be O-regularly varying
if
a
lim sup “LAn] < 00,
p—oo  Qp

for every A € (0, 00).

Note that if @ = (ap)pen is regularly varying then it is O-regularly varying. As for regular
variation, O-regularly varying sequences are embeddable as O-regularly varying step function.

Theorem 1.2.44 ([25], Th. 1). Let a = (ap)pen be a sequence of positive numbers. The sequence
a is O-regularly varying if and only if the function fq(z) = a|,| for z > 1is O-regularly varying.

From this result, we obtain the Uniform Convergence and Representation Theorems.

Theorem 1.2.45 (|25], Th. 2, Uniform Convergence Theorem for O-regularly varying sequences).
Let @ = (ap)pen be an O-regularly varying sequence of positive numbers and a,b € (0, 00) with

a <b. Then

a
limsup sup it ] < 00.

p—00  Aeglah] Dp
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Theorem 1.2.46 ([25], Th. 3, Representation Theorem for O-regularly varying sequences). Let
a = (ap)pen be an O-regularly varying sequence of positive numbers. Then there exist bounded
sequences of real numbers (dp)pen and (§p)pen such that

p .
a, = exp dp+2§'] , peN.
j=1

Conversely, such a representation for a sequence (ap)pen implies that it is O-regularly varying.

In Section the relation between weight functions and ORV sequences is established. In
that context, this Representation Theorem will play a key role in the construction of pathological

examples (see Example [2.2.26)).

One may notice the stability of the notion of O-regular variation for sequences under ~.

Remark 1.2.47. Let a = (ap)pen and b = (b,)pen be sequences of positive numbers with a ~ b.
It is plain to check that a is O-regularly varying sequence if and only if b also is.

Finally, it naturally arises the question about the possibility of considering the Matuszewska
indices and the orders for sequences. This question was not posed by D. Djuré¢i¢ and V. Bozin
and will be the main topic of Subsection [2.1.2]

JAVIER JIMENEZ GARRIDO



ol

Chapter 2

Logarithmically convex sequences,
O-regular variation and nonzero
proximate orders

The main objective of this chapter is to describe the connection between weight sequences and
the notions of proximate orders, regular and O-regular variation. In the first section, it will be
shown that the growth properties and indices of Section can be represented in terms of upper
and lower orders and the Matuszewska indices. In the second section, we will restrict to the
study of those weight sequences which it is possible to associate a nonzero proximate order with,
characterizing this crucial point for the success in putting forward a satisfactory summability
theory in the general context.

2.1 Logarithmically convex sequences and O-regular variation

The results presented below revolve around the notion of O-regular variation. First, basic prop-
erties of weight sequences are described in different ways, for instance, in terms of almost mono-
tonicity properties from which the connection with O-regular variation is inferred. Simultane-
ously in the second subsection, Matuszewska indices, upper and lower orders for sequences are
formalized together with the proof of some distinctive features. In third place, the ingredients
of the previous subsections will be combined, stating this way qualitative growth properties in
terms of quantitative values, orders and indices, which are related to the (independently defined)
indices (M) and w(M) (see Subsection [1.1.4]), measuring the opening of the regions for which the
Borel map is surjective or injective, respectively (see Chapter . In subsection four, the interac-
tion of the preceding concepts with the associated function wyy, considered in Subsection [1.1.3]
is illustrated. Finally, dual and bidual sequences are constructed giving a possible explanation
for some open questions regarding the essence of indices and orders.

2.1.1 Strongly nonquasianalyticity and moderate growth characterizations

This subsection is primarily devoted to the study of (snq) and (mg) conditions. Characterizations
of these properties will be obtained merging slightly improved versions of some classical results
leading, in the forthcoming subsections, to the notion of O-regular variation. For this purpose,
we need to introduce almost increasing and almost decreasing concepts for sequences, analogous
to the ones for functions (see Definition [1.2.27)).



52 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

Definition 2.1.1. Let a = (ap)pen be a sequence of positive numbers. We say that a is almost
increasing if there exists M > 0 such that

ap < Mag, forall p,ge N with ¢>p>1,
and a is said to be almost decreasing if there exists m > 0 such that
ap > mag, forall p,ge N with ¢g>p>1.

We directly see that if @ = (ap)pen is nondecreasing (resp. nonincreasing) then it is almost
increasing (resp. almost decreasing) with M = 1 (resp. m = 1). It is also plain to check that
these notions are stable for ~.

The first result characterizes (snq) property in five different forms. It is obtained by the com-
bination of results of R. Meise and B. A. Taylor |75, Prop. 1.3|, K. N. Bari and S. B. Steckin [12]
Lemma 2|, H.-J. Petszche |77, Prop. 1.1, Coro. 1.3.(a)] and S. Tikhonov [99, Lemma 4.5]. The
proof is included because some implications are not a direct application of their theorems, for
instance some of them were proved for functions and in others it is assumed that the sequence
M is (Ic), which is not necessary.

Proposition 2.1.2. Let M be a sequence such that the sequence I\\7JI, given by M\p = plM,,
p € Np, is logarithmically convex. Then, the following statements are equivalent:

(i) the sequence M satisfies (snq), that is, there exists B > 0 such that
[o.¢]
1 B
— < — € Np,
Z(ﬁ—i—l)mg_mp’ pE0

(ii) there exists a logarithmically convex sequence H such that h ~ m and

h
inf -2 > 1,
p>1 hy
(iii) we have that lim liminf Mhkp 00,
k—oo p—oo My,
(iv) there exists k € N, k > 2, such that
liminf 2 > 1, (2.1)
P00 My

v) there exists € > 0 such that (m,/p®),cn is almost increasing,
p/P")p

(vi) for every 6 € (0,1) there exists £ € N, k > 2, such that for every p € N we have that
my < 0mpy,.

Proof. (i)=(ii) For every p € Ny, we define the sequence

1 1
= — Sy
Pmy ; (¢ +1)my
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Since m = (M, = (p + 1)my)pen, is nondecreasing (see Lemma [1.1.7}(i)), the sequence (£,)pen,
is nonincreasing because

1 1 > 1 _p+2 >
tp=—+——+ > =+ >
P my  (p+1)my, Pt (L +1)my my Pl +1 f +1)m
2 o0
SPY2 N L 4, forall peN,.
Mpy1 o (E+1)my

Using that M satisfies (i), i.e., (snq), for every p € Ny we observe that

00
1
mptp:1+mp2m§1+33

1
mpp—lerpZWleLO.
t=p

Hence there exists C := 1+ B > 1 such that C’*lmp < (tp)*1 < m,, for each p € Ny and we
define b, := 1/t, for every p € Ny. With the conventions in Remark , we have that b ~ m,
then, by Proposition B satisfies (snq) and, since (tp)pen, is nonincreasing, we have that
B is (Ic). For every p € Ny, we consider

1 oo
R 17+Z £+1
p ézp

Since B is (Ic), we have that b= (bp = (p+ 1)by)pen, is nondecreasing and, as above, we see
that (sp)pen, is nonincreasing. We define h, := 1/s,, for every p € Ny, then H is (Ic). Since B
satisfies (snq), proceeding as before, we see that h ~ b and, consequently, h ~ m. Moreover,
since b is nondecreasing, for every p € N we observe that

hay /sy (1/bp) + 3 45, (1/(€ + 1)by) . S N1/ (€ + 1)by)
hp sy (1/bap) + D pso,(1/(€+1)be) = (1/bap) + X ys0,(1/(£+ 1)by)

Applying again that b is nondecreasing, for every p € N we see that

2 1
@21+p/(pb2p):1+ ‘
hy S2p 2bopsop

Since B satisfies (snq), as we previously did, we can show that there exists D > 0 such that for
every p € N we have b,s, < D and we conclude that

hgp 1
>14 —
n, ~ Tap
(ii)=(iii) First we will show that
. .. hkp -
lim liminf — = oc. (2.2)

k—oo p—0o0 P
By (ii), there exists v > 1 such that hap/hy, > 7 for all p € N and we deduce that hgn,/hy, > "
for every p,n € N. Therefore, for every n € N we have that

h n
liminf —2 > ~™.
p—oo Ny,
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Given M > 0, there exists ng € N such that y™ > M. Using that H is (Ic) (by (ii)), for every
k > 2" we see that hy, > hano, for every p € N and we deduce that

h2n0p

lim inf —*2 > lim inf > " > M,

p—0o0 D pP—o0 D

ie., (2.2) is valid. By (ii), h ~ m, that is, there exists ¢ > 1 such that ¢~'h, < m, < ch, for
every p € Ng. Then, for every k,p € N we have that

Py Mip
2, < :
" Np mp

Since ([2.2) holds, we conclude that

lim liminf "% = oo
k—oo P00 My,

(iii)=-(iv) Immediate.

(iv)=-(v) We deduce from (iv) that there exists ¢ > 0 such that

lim inf my, /m, > k°.

Then, there exists pg € N such that my,/k* > m,, for every p > py. For every ¢,¢ € N with
q > 0 > pg there exists n € Ny such that k"¢ < ¢ < k"4, so we have that

me o Mke o Mkng
= = (k0= — (kne)e

Since m is nondecreasing, for ¢ > £ > po with k"¢ < ¢ < k"7 we deduce that

me _ Mene (¢ +1)mq _ Mg (g +1)a* < Mapep.
= = (k0) = (ke + D(k"0F ¢ (k"0 + 1)(k"0)F ~ ¢

We denote by

154
Med S O = AR

A:= max —
1<t<q<po Mg (¢

If g > >pgorifl <q<py, wesee that myq® < Cmgl®, and if £ < pg < g we observe that

me o g™ o oM

<A <C—,
G
and we conclude that (m,/p®)pen is almost increasing.
(v)=(vi) Since (mp/p°)pen is almost increasing, there exists C' > 1 such that for every ¢,p € N
with ¢ > p we have that
my _ Mg
IS
We fix € (0,1), we take k € N such that k > (C/#)'/¢ with k > 2 and for every p € N we have
that m
my < Ck—]:p < O My,
(vi)= (i) For 6 = 1/2 there exists k € N, k > 2, such that 2m, < my,, for every n,p € N we
deduce that
2"my, < myny,. (2.3)
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Since m is nondecreasing, for every p € N we have that
%) oo kntlp—1 00 00
kE'p(k — 1) 1
<(k-1) .
R M M S o
Applying (2.3), for all p € N we deduce that

o0 [e.9]

3 L k=11 2(k—1)
= (L+1Lme = my =27 my,
It only remains the case p = 0, by taking B = max(2(k—1),1+2(k—1)mg/m1), we deduce that
- 1 B
Z (41 S
P (C+1)mg = my
for every p € Npy. O

If M is (lc), M = (p'Mp)pen, is also (Ic). However, the opposite is not true in general. The
ultradifferentiable classes of functions are frequently defined only assuming that M is (Ic), for
further details see Remark This weaker condition for M will be considered along this
dissertation in order to be able to bring our results and the ones in the ultradifferentiable setting
together.

Applying Lemma [1.1.9] we can give a characterization of (mg) condition in terms of the
sequence of quotients of a sequence M such that M is (Ic).

Lemma 2.1.3. Let M be a sequence such that the sequence M is (Ic). The following are
equivalent:

(i) M has (mg),
(ii) sup M 00,
peNg Mp

(iii) there exists v > 0 and k € N, k > 2, such that

lim sup D g, (2.4)
p—oo My

Proof. (i)=-(ii) Since M has (mg) and (p + q)! < 2PT9plg! for all p, q € Ny we observe that
Myq = (p+ q)!Myq < 2°T9plgl APTIM, M, = (2A)PHI0M, M,

that is, M also is (mg). Using that M is (Ic) and Lemma , we obtain that sup,cy, Map/My
is finite and we conclude that
m m 1 m
Supﬂzsup 2pp+ Ssp72<oo
peNg My peNg mp 2p+1 7 peny Myp

(ii)=(iii) Immediate, taking k = 2 and ~ > log(sup,cn, (m2p/mp))/ loAg(Q).
(iii)=>(i) From (iii), it follows that sup,cn, (mkp/my) is finite. Since Ml is (Ic), we see that

Mo my, Mip kp + 1
supA—pgsupA—p:sup—p P
peNg Mp — peNy Mp  peNy Mp P+ 1

Hence, we can apply Lemma to the (lc) sequence M and we deduce that M has (mg). Since
(p+ ¢)! > plg! we conclude that M has also (mg).
[l
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Following the ideas in K. N. Bari and S. B. Steckin [I12] Lemma 3|, we can give five equivalent
conditions, analogous to the ones for (snq) that, according to the last lemma condition (iii),
are tightly connected to (mg). The limiting value —1 appears because M is (Ic), under weaker
conditions a more general version of this result might be given in the same direction of the
auxiliary Lemma that extends Proposition 2.1.2]

Proposition 2.1.4. Let M be a sequence such that the sequence M is (Ic). For every v > —1,
the following statements are equivalent:

(i) there exists B > 0 such that

P
(¢ 1 B 1)7
Z + (p+1) for all p € Ng,

(ii) there exists a sequence H such that ((p 4+ 1)77hp)pen, is nonincreasing, h ~ m and

h
sup 22 < 27, (2.5)
p=1 Itp

m
(iii) we have that lim limsup "
k—o00 p—00 'Vmp

(iv) there exists k € N, k > 2, such that

. mg
limsup —2 < k7,
p—oo  Mp

(v) there exists € > 0 such that (m,/p?™%)pen is almost decreasing,

(vi) For every 6 € (0,1) there exists k£ € N, £ > 2, such that for every p € N we have that
My < 0K my,.

Proof. (i)=(ii) First, we consider the auxiliary sequence (o)pen, given by

(p+2)7 — (p+ 1)+
Q1= ,
b (p+2)

We observe that lim, ,o oy =7 +1 > 0, we take D > max(27" (y +1)/(271 — 1), sup ey )
and for every p € Ny we define the sequence

p € Np.

p

p—l—lvko £+1 yme  Dmy,’

Using that m satisfies (i), for every p € Ny we have that

P
(L+1)7 1
— <B
"y p+1v§ (+1)m; D=
and, since m is nondecreasing and v > —1, for every p € N we see that

1 P ) L1 1 p+1 i 1
mpt >7E +1)) =2 — r'dr — —
= e 24T D—<p+1>v+1/1 D

1 1 1 D2+ —1) — (y + )20+

> _ _ = > 0.
T v+ (y+DE+ITt DT (y+1)271D
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Consequently, if b, := 1/t,, for every p € Ny, we have that b ~ m. It follows that b also satisfies
(i) for a constant C' > B. We will verify that ((p+1)77b,)pen, is nonincreasing or, equivalently,
that ((p + 1)7¢p)pen, is nondecreasing. Since m is nondecreasing, for all p € Ny

p+1

¢+ (p+1) (t+1)7 (p+2)7 (p+1)(p+1)
Z L+ 1)my Dm,, = z; (C+1)mg  (p+2)mpy1  D(p+2)mp1

p+ 1
z:o

For all p € Ny, by the definition of D, D > «a,, which leads to (p+2)YD + (p+1)7T! > (p+2)7+!
and we deduce that

-5 (ERV TSI RS )+

« (C+1)my D(p + 2)mp4

(p+1)"t, < (p+2)tpe,

as desired. From the sequence b, for every p € Ny we construct

Sl
Sp .
(p+ 1 v 6:0 (¢ + 1 by
Since b also satisfies (i), for every p € Ny we observe that
by ~= ({+1)7
1 <bpsp, =1+ <14C,
g (p+1)7 ; +1)be

then if h, := 1/s, for every p € Ny, we have that h ~ b ~ m. Using that ((p + 1)77bp)pen, is
nonincreasing, we notice that

+1
PRI SRS RS RS
—o (L+1)be (p+2)bpt1 by
p+1
(+1)7  (p+2)7(p+1)
< < 2)7 , eN
_g:0(€+1)bg+ bpt1 p+2 < (2754, peNo

Hence ((p + 1)77hy)pen, is nonincreasing. Finally, we verify that h satisfies (2.5)). Applying
again that ((p 4+ 1)77bp)pen, is nonincreasing, we see that

hop _1/sap _ (P4 1) 30 o(0+ 1) (be) " + (bp) "

by sy (2p+ 1)1 2+ 1)1 (be) " + (bap) !

ST S (1) ()
“pr1y o+ 1)1 (b))~ + (2p + 1) (b))t )

Once more, since ((p + 1)77b,)pen, is nonincreasing, for every p € N we have that

i (C+D0 _ 2p+1)lp
(

S DT~ (p+ 1) (b))

and, by the definition of sg),, we deduce that

hayp _ (2p+1)7 < (p+1)7p ) < 1 >
< 1- <E(1- )
hy = (p+1) bpsap(2p + 17+ ) = (bp/bap)bapsap3E
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where F = max(1,27). Using that b ~ m and that m is nondecreasing, we know that there
exists a constant a > 1 such that for all p € N
bzp map p+ 1

Finally, since bys, < 14 C for every p € N and 3EF > 1, we conclude that

hap 1
—<F(l-———— E.
hy < 2421 +0>3E) -

(ii)=-(iii) First, we will show that

R,
lim li P —0. 2.6
il s 5, 20

By (ii), there exists ¢ > 0 such that hg,/h, < 277°, so we deduce that han,/h, < 207" for
every p,n € N. Hence for every n € N we have that

lim sup hanp < =9,
p—oo Ip
Given 0 > 0, there exists ng € N such that (279)" max(277,27) < 6. We take k € N, k > 270,
there exists n > ng such that 2" < k < 2”1, Using that ((p + 1)7hy)pen, is nonincreasing, we
see that

h’k‘p < hgnp(kp+ ].)’Y < h?np
Khy = KYhy(2rp + 1)) — 2k,

Consequently, we deduce that

max(277,27).

R hanp

lim sup < lim sup max(277,27) < 4, k> 2",

p=oo KThy p—oo 2"y

so (2.6)) is valid. By (ii), h ~ m, that is, there exists ¢ > 1 such that ¢~1h, < m, < ch, for every
p € Ng. Then, for every k,p € N we have that

Mip < 02 hkp
kvmy, = kYhy,

Since ([2.6) holds, we conclude that limy_;o limsup,,_, o mgp/(k7m;) = 0.
(iii)=(iv) Immediate.
(iv)=(v) There exists pg € N and € > 0 such that my, < k7"°m,, for every p > py. By iterating
this inequality, for every j € N we obtain that

My, ,

R A R S

myp
For q > p > po, there exists j € Ny such that k/p < ¢ < k7T!p and, using that m is nondecreasing,
we see that

my _ myi+1, (K p+1) kU0 (Ri+1p 4 1)
¢ T ¢ (g+1) T ¢qF (¢+1)

my < max(k”°, 1)k——

e
We define D := sup; <, <po {mep? (¢7"*my) '} > 1 and E := Dkmax(k7¢, 1), it follows that

mq < myp

Qe T pre
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(v)=(vi) Since (m,/p?~%)pen is almost decreasing, there exists E > 0 such that for every k,p € N

we have that
Mkp mp

<F .
(kp)r—= = pr—¢
Then for every 6 € (0,1) we take k large enough such that £ < 6k°. Consequently, for every
p € N we see that

)
My < Ekﬁmp < Ok"my,.

(vi)=(i) For 0 € (0,1) there exists k € N with k£ > 2 such that for every ¢ € N we have that
Miq < 0k7 mgy. Then for any s,j € Ng with s > j we see that

Mps+1 < (ekﬁ)s—i_l_jmm. (27)

For all p € N there exists s € Ny such that k% < p < k*T!. Since m is nondecreasing, for all
p € N we have that

= f—i—lmz = iy f—l—lmg
: 1 i )(k7)" max(1, &)
max
< —_— (L+1)7 < .
> —~ (k] + 1)mkj Z + Z k] + 1)ka
= {=kJ
Then by (2.7), for every p € N we get
P s : 4 s
1) JV(QkY)sH1-J -1 1. k") s+
Z E‘f’ <maX(17k7)(kj—1)Zk (Hk' ) S (k )max( ,k )k‘ Zes+1_]
£+ 1)my - Mps+1 Mps+1
Z:l 7=0
Since m is nondecreasing and k* < p < k5t we deduce that
S~ CHDT (- Dmex(L )4 ) (1) 1)
pt (t+1) mg_ (1—0)m, p+1) — my

with C := (k — 1)max(1,k*)k(1 — 0)~1. We need to add the term for £ = 0. By ([2.7), we
see that mys+1 < kYT Dmy for all s € Ny. As before, using that m is nondecreasing, for every
k® < p < k5! we obtain that

1 v(s+1) v(s+1) 1)
< k < k k < kmax(l’]ﬂ)u‘
mq Mps+1 mp my

Taking M = max{kmax(1,k7),C}, for all p € N we conclude that

P
— (¢ ~ mo mp mo mp

Since for p = 0 (i) trivially holds, we conclude that (i) is valid for every p € Np. O

Remark 2.1.5. If condition (iv) in Proposition holds for some v > —1 then it exists
—1 < v < 7 such that (iv) is also true for 4/. Then conditions (i)-(vi) are also valid for " and
the set of v > —1 such that any of these conditions is satisfied is open.
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Assume that is satisfied for some kg € N. Then it is straightforward to check is
also satisfied, suitably enlarging the value of ~, for all k > kg applying the trivial estimation
deduced for £, with n € N such that £ > k. Consequently, since the previous results can also
be applied to a (lc) sequence M, it is possible to characterize strong regularity of a sequence M

in terms of the sequence of quotients using (2.1)) and (2.4).

Corollary 2.1.6. Let M be a sequence of positive numbers with My = 1. The following are
equivalent:

(i) M is strongly regular,
(ii) m is nondecreasing and there exists k£ € N, k > 2, such that

1 < liminf —2 < limsup —2 < oo.
p—00 My, p—oo My

This corollary points out the connection between these properties and the notion of O-regular
variation (see Definition [1.2.20[and Definition [1.2.43]). The study of this relation will be the main
aim of the subsequent subsections.

Remark 2.1.7. Moreover, this characterization allows us to easily verify if a sequence is or not
strongly regular. For example:

(i) We consider the sequences M, g = (p!®IIY _, log?(e + m))peNy, Where o > 0 and 8 € R.
Since m = ((p+ 1)®log?(e +p+1)),en, for 8 > 0 is nondecreasing M, g is (Ic). For 8 < 0
since m, = (p + 1)®log®(e + p + 1) is eventually nondecreasing, we can modify the first
terms according to Remark[1.1.19|and change the sequence for a (Ic) one. We observe that

By Lemma [1.1.9) we deduce that M, g has (mg) and, by Proposition [2.1.2] we have that
M, g is (snq).

(ii) For the sequence My 5 = (I, _, log® (e + m))pen, with 8 > 0, we also have that it is (Ic)
and we see that

lim 2% 1 forall keN, k>2.

p—00 My

By Lemma we deduce that My s has (mg) and, by Proposition 2.1.2} we have that
M g does not satisfy (snq).

(iii) Finally, M = (qp2)p€NO with ¢ > 1 is (lc) because m = (¢°**1),en, is nondecreasing. We
have that
lim My _ lim q

k=1 = o, for every keN, k>2.

By Lemma we deduce that M has not (mg) and, by Proposition we have that
M is (snq).
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2.1.2 Orders and Matuszewska indices for sequences

The work of D. Djur¢i¢ and V. Bozin [25] deals with the definition of O-regularly varying se-
quences and the proof of the fundamental theorems (see Subsection . Even if some infor-
mation can be inferred from their paper, to the best of our knowledge, the notions of orders
and Matuszewska indices for sequences have not been considered. In this subsection, a possi-
ble formalization of these concepts is proposed, providing a simple description, analyzing their
behavior under elementary sequence transformations and showing some stability properties.

The regular variation and the O-regular variation of a sequence a = (ap)pen is equivalent
to the regular variation and, respectively, the O-regular variation of the function fg(x) = |z
which suggests the next definition.

Definition 2.1.8. Let a = (a,)pen be a sequence of positive numbers. We define its upper
Matuszewska indezx a(a), its lower Matuszewska indezx ((a), its upper order p(a) and its lower
order u(a) by

aa) == a(fa), Bla):=B(fa), pla):=p(fa), wna):=p(fa),
where fa(2) = ajy) for all z > 1,
Remark 2.1.9. By Proposition it immediately follows that
B(a) < u(a) < pla) < ala).

and, using Theorems [1.2.23] and [1.2.44] we see that a is O-regularly varying if and only if
B(a) > —oo and a(a) < oco.

Thanks to the almost increasing and almost decreasing notions for sequences defined in the
previous subsection, it is possible to skip the step function f, and give a simple characterization
of these indices and orders only in terms of the sequence a.

Proposition 2.1.10. Let a = (ap)pen be a sequence of positive numbers. We have that

a(a) =inf{a € R; (ap/p”)pen is almost decreasing},
B(a) =sup{B € R; (a,/p?)pen is almost increasing},

log(ayp) limin log(ap)
(a) B 1p—>o<>f log(p) '

a) =lim sup ,
pla) p—oo  10g(p)

Proof. By Theorem [1.2.28] we have that
a(a) = a(fe) = inf{a € R; 7 %a|,| almost decreasing},

B(a) = B(fa) = sup{B € R; 2 Pa|,| almost increasing}.

If 277a |, is almost decreasing or almost increasing, it follows immediately that (p™7ay)pen is al-
most decreasing or almost increasing, respectively. Conversely, if (p™7ap)pen is almost decreasing
or almost increasing and we take any y > x > 1, then |y| > |z| > 1 and we have that

Ao _ (l2])” ) ([2])7 o)  map
» w2y

Uo| o W) e Ml ap Y Gl o)
2 = (L) () (g = g’
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where M and m are the positive constants of the almost monotonicity of (p™7ap)pen. Conse-
quently, the equality for the Matuszewska indices holds. On the other hand, we have that

log(am) - log(am) < log(x) log(am)7 5> 1.
log(z) ~ log(lz]) ~ log(lz]) log(z)
Since lim, o log(x)/log(|x]) = 1, we conclude that
log(am) log(am) log(ap)
a) =limsup ————= = limsup —————— = limsup L2
A =P Togle) P Tog(lal) o Tog(p)

]
.. log(ay)) log(ajz)) . . log(ap)
a) =liminf ————~ = = lim inf L
pa) z—oo  log(z) z—oo log(|z]) p—oo  log(p)

0

When applying ramification arguments in the classes of functions defined in terms of a given
sequence M, transformations of Ml will appear. Using this last characterization result, the indices
for the transforms and the original sequence can be compared as indicated below.

Proposition 2.1.11. Let a = (a,)pen be a sequence of positive numbers. For any r € R\{0},
we have that

a(a") =ra(a), f(a") =rba), pla")=rp(a), pla")=rua),
where a” := (a})pen and we also obtain that
a(g,-a)=r+ala), B(g, a)=r+pB(a), plg, -a)=r+pla), pulg, a)=r+ua),

where g, := (p")pen and g, - a = (p"ap)pen.

Proof. For every o € R, we observe that (app™7)pen is almost decreasing (resp. almost in-
creasing) if and only if (a,p™"")pen is almost decreasing (resp. almost increasing). By Proposi-
tion [2.1.10) we deduce that a(a”) = ra(a) and B(a”) = r3(a). Similarly, (a,p~7)pen is almost
decreasing (resp. almost increasing) if and only if (p"app™"7")pen is almost decreasing (resp.
almost increasing), then a(g, - a) = r + a(a) and B(g, - a) =r + [(a).

Employing the representation given by Proposition 2.1.10] of  and p, we conclude that

_ rlog(ay) . rlog(p) + log(ay)
a") =limsup ———= =rp(a), ,-a)=limsu =7+ pla),
p(a”) ms p(a) p(g, - a) msup log pla)
1 1 1
wu(a”) =liminf rlog(a) =ru(a), wu(g, - a) = liminf rlog(p) + log(ay) =7+ p(a).
p—oo  logp p—oo log p
]

In the context of ultraholomorphic classes, it is always possible to switch M for an equivalent
sequence. Since O-regular variation is stable for ~ (see Remark [1.2.47)), it is unavoidable to ask
if the same happens for the orders and the Matuszewska indices.

Lemma 2.1.12. Let a = (ap)pen and b = (by)pen be sequences of positive numbers with a ~ b.
Then, we see that
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Proof. For every r € R\{0}, we observe that a ~ b implies that g,a ~ g,.b, where g, = (p")pen.
It is plain to check that almost monotonicity is kept for ~ by suitably enlarging the corresponding
constant and we conclude, using Proposition that a(a) = a(b) and S(a) = S(b). Since
a >~ b, there exists ¢ > 1 such that apc*1 < b, < cfor every p € N and we have that

log(ap) — log(c) < log(bp) < log(ap) + log(c)
log(p) ~ log(p) ~ log(p)

Taking limsup and liminf in these inequalities, by Proposition 2.1.10] we get p(a) = p(b) and
n(a) = pu(b). O

In the next subsection, these results will be applied for the sequence of quotients m =
(mp—1)pen of M, then the stability of those indices under ~ is a first approach but the appropriate
question is the stability under . A partial but sufficient solution is given at the end of the current
section (see Remarks [2.1.24] and [2.1.32]).

Since the sequence m is defined for p € Ny, it also naturally arises the question of the stability
of these values and the notion of O-regular variation for index shifts.

, p € N.

Lemma 2.1.13. For any sequence a = (ap)pen and the corresponding shifted sequence sq :=
(@p+1)pen we have that

a(a) = a(sa), fla)=p(sa), pla)=p(sa), wla)= p(sa).
Consequently, by Remark a is O-regularly varying if and only if s, also is.

Proof. We observe that for every a > 0 we have that p® < (p+ 1)* < 2%p%, then for any v € R
we see that (pYapi1)pen is almost decreasing (resp. almost increasing) if and only if (p7ap)pen
is almost decreasing (resp. almost increasing). Hence a(a) = a(sq) and f(a) = 5(sq)-

We also observe that
log(apy1)  log(apy1) log(p+ 1)

log(p) ~ log(p+1) log(p)
and, since lim, ,~ log(p + 1)/ log(p) = 1, we conclude that p(a) = p(sq) and p(a) = p(sq).

O

Remark 2.1.14. If the sequence a is regularly varying of index w € R, by Theorem [1.2.37] the
step function f, is also regularly varying of index w, we deduce that

B(a) = ula) = pla) = a(a) = w.
The opposite is not true in general, see Examples [2.2.22| and [2.2.23] at the end of next section.

2.1.3 Logarithmically convex sequences, growth indices and O-regular vari-
ation

Almost monotonicity notions appear in the last two subsections: characterizing (snq) and (mg)
conditions and in the definition of the Matuszewska indices for sequences. This fact is an obvious
hint of the relation between growth properties for weight sequences and O-regular variation which
will be settled in this subsection. Therefore, several equivalent definitions of the Matuszewska
indices are deduced. Finally, the true nature of Thilliez’s and Sanz’s growth indices, (M) and
w(M), is revealed. These growth indices, which were independently defined and, as it will be
shown in Chapter [3] characterize the injectivity and surjectivity of the Borel map, coincide with
B(m) and p(m), respectively.
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The sequence of quotients m of a sequence M, with the conventions in Remark[1.1.3] is defined
for p € Ny, subsequently, a index shift problem appears. Please note that, as some authors [17, 52|
77, [78, 91] have done, it is possible to consider a different definition of the sequences of quotients
that will make the results in this section more friendly, but other parts in the forthcoming sections
will become troublesome. Moreover, taking into account Lemma and Lemma the
study of the regular variation, O-regular variation, orders and Matuszewska indices of m =
(mp—1)pen is equivalent to the study of the same features for the shifted sequence sy, = (my)pen.
Hence we will be able to deal with both approaches at once using one or another sequence, as
appropriate.

The central connection between logarithmic convexity and O-regular variation can be formu-
lated as follows.

Proposition 2.1.15. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp—1)pen. For any v € R, we have that

(i) if there exists t = (t,)pen, nondecreasing such that ((p+1)77Ymyp)pen, = t, then S(m) > .
(ii) if B(m) > =, then there exists t = (,)pen, nondecreasing such that ((p+1)""my)pen, >~ t.
(iii) if M = (p!M,)pen, is (Ic), then B(m) > —1.

(iv) if M is (Ic), then S(m) > 0.

Proof. (i) If there exists t = (t,)pen, nondecreasing such that ((p+1)""mp)pen, = t, then there
exists ¢ > 1 such that

M o <ty < P qg>p, q,p€N
iy <SSy 9z ereto

Consequently, (p~"mp—1)pen is almost increasing then, by Proposition [2.1.10, #(m) > ~.
(ii) By Proposition [2.1.10, (p~"mp—1)pen is almost increasing, then there exists M > 1 such that

(p+1)""my < M(qg+ 1) "my, forall ¢>p, gq,p€ Ny

We define ¢, := infe>p,((s + 1) Vmy) for every p € Ny. For every ¢,p € Ng with ¢ > p, we check
that

(1) tp =infe>p((s +1)7Vmy) <infe>q((s+1)7Tms) =t
(2) MY (p+1)""m, <infssp((s +1)Ims) =t, < (p+ 1) Vmy,.

Then t is nondecreasing and ((p + 1)™7my)pen, =~ t.

Finally, (iii) and (iv) follow immediately from (i). O

According to Lemma [2.1.13| and Proposition 2.1.10] the lower order p(m) and Sanz’s growth
index w(M), see Definition coincide for any sequence M. The relation between ~(M)
and Matuszewska indices can be deduced from the previous result. We have included a weaker
version of it, for strongly regular sequences and v > 0, in [43] Prop. 4.15] where the connection
with O-regular variation was unknown.

Theorem 2.1.16. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp—_1)pen. Then
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Proof. From Lemma [2.1.13| and Proposition [2.1.10] we have that

uw(m) = p(8py) = liminf log(1mp) = w(M),

p—=oo  log(p)

where sm = (mp)pen is the shifted sequence.

If v(M) > ~, we have that M satisfies (P,), then there exists a sequence £ such that m ~
£ and ((p+1)774p),cy, is nondecreasing or, equivalently, there exists ¢ = ((p + 1)77¢p)pen,

nondecreasing with ((p +1)7"mp)pen, =~ t. Then, by Proposition 2.1.15/(i), S(m) > ~.
Conversely, if 5(m) > =, from the relation between £ and ¢t and using Proposition [2.1.15}(ii),
we deduce that v(M) > ~. O

Remark 2.1.17. The result above shows that the growth index (M) can also be defined by

v(M) = sup{y € R : the sequence ((p +1)""m,) is almost increasing},

PENo
or, as it will be shown in Proposition [2.1.22] using Lemma [2.1.13| by

v(M) = sup{~y € R : the sequence (p*Vmp) is almost increasing}.

peN
Combining the previous results with Proposition and Proposition [2.1.4] a simple con-

nection of (snq) and (mg) with the Matuszewska indices is provided.

Proposition 2.1.18. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp—1)pen. Assume that M is (Ic), then

(i) M has (mg) if and only if o(m) < oo if and only if m is O-regularly varying.
(ii) M has (snq) if and only if 5(m) > 0.

Proof. (i) By Lemma [2.1.3) M has (mg) if and only if there exists & > 0 and k € N with k > 2
such that lim sup,,_, . mkp/mp < k% and, by Proposition , this happens if and only if
there exists a > 0 and € > 0 such that (p~*"*my,)pen is almost decreasing, or, equivalently,
a(sm) < oo where sm = (mp)pen is the shifted sequence that, by Lemma , is the
same as saying that a(m) < co.

Finally, since M is (Ic), by Proposition [2.1.15](iii), #(m) > —1 > —oo. Consequently, by
Remark a(m) < oo if and only if m is ORV.

(ii) By Proposition M is (snq) if and only if there exists ¢ > 0 such that (p~=my)pen is
almost increasing or, equivalently by Lemma [2.1.13] S(m) > 0.
(I

Remark 2.1.19. From the previous results and taking into account Remark Lemmall.1.29
can be generalized. Concretely, we have that if M is (Ic), then

—1 < Bm) = 4(M) < p(m) = w(M) < p(m) < am) < oo,
and if M is (I¢), then
0 < B(m) = 7(M) < p(m) = w(M) < p(m) < a(m) < oo,

Moreover, we can extend the characterization of strongly regular sequences in Corollary [2.1.6],
i.e., the following are equivalent:

Universidad de Valladolid



66 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

(i) M is strongly regular,
(iii) m is nondecreasing, a(m) < oo and S(m) > 0
(iv) m is nondecreasing, O-regularly varying and S(m) > 0.

In particular, for strongly regular sequences, f(m) = (M), u(m) = w(M), p(m), a(m) €
(0,00). In the context of O-regular variation, it is usual to name the class of positive func-
tions having the Matuszewska indices in certain range: if a(f) < oo, f is said to be of bounded
increase and if S(f) > 0, f is said to be of positive increase. The same terminology can be
adopted for sequences, then a nondecreasing sequence m is strongly regular if and only if it is of
bounded and positive increase.

Example 2.1.20. For all the examples of weight sequences considered until now in this disser-
tation and for most of the ones appearing in the applications the sequence of quotients is either
regularly varying or rapidly varying (see [I3], Sect. 2.4, Rapid variation| ). The first case occurs
for M, g = (n!°TI7 _o log? (e + m))nen, With @ > 0 and 8 € R or @ = 0 and 8 > 0 where for all
A € (0,00) we have that

lim el g ([Ap] + D)*(log(e + [Ap]| +1))?

= )\O‘7
p—00 1My, P—00 (p + 1)0‘(10g(e +p+ 1))6

then as it happens for all the regularly varying sequences, by Remark [2.1.14] we deduce that
YM) = B(m) = wM) = p(m) = p(m) = a(m) = a.

The second case appears when dealing with the ¢—Gevrey sequence (qp2 )peN, With ¢ > 1 where
a similar computation leads to S(m) = p(m) = p(m) = a(m) = oco. Consequently, for these
classical examples the existence of different orders and indices remains hidden.

However, this is not the general case, using the Representation Theorem at the end of this
chapter we construct strongly regular sequences with the following properties:

(i) In Examples 2.2.21] [2.2.22] and [2.2.23] all the indices and orders coincide with 3/2 in the
first case in which the sequence is regularly varying and with 1 in the other two where the
sequences are only O-regularly varying.

(ii) For the Example [2.2.24] we have that f(m) = u(m) = p(m) =1 and a(m) = 2.
(iii) In the Example [2.2.26| we see that f(m) = 2, u(m) =5/2, p(m) = 11/4 and a(m) = 3.

Regarding other examples we have found in the literature, a careful computation leads to the
following conclusion:

(i) for Example 3.3 in [57], where the sequences m = (my,)pen,, (¢k)ren and (di)ken are defined
inductively by

cz, forall ¢, <p< (ck)3/2 =:dj — 1,
pt/d2, forall di <p<(d)?=:crs1— 1,
taking ¢; = 1 and mo = 1, we can show that S(m) = 0, u(m) = 2, p(m) = 3 and a(m) = 4.

(ii) for Example 21 in [17], M, := exp(p®) for s € (1,2] and p € Ny as in the g—Gevrey case,
we have that f(m) = u(m) = p(m) = a(m) = oco.
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(iii) for Example 25 in [I7], M), := ((p + 1) log,(es + p))? for s,p € N where e, := exp(es_1),
eo = 1, log, = log(log,_,(z)) and logy(z) = x, as in the first case, the regular variation
entails f(m) = u(m) = p(m) = a(m) = 1.

It is possible to generalize Proposition that has been stated individually for its rele-
vance, by giving several alternative definitions of 5(m) and «(m), but for this purpose we need
the next auxiliary lemma that extends Proposition in the direction of Proposition but
going one step further.

Lemma 2.1.21. Let m be a sequence such that ((p + 1)77my)pen, is nondecreasing. Then for
every 3 > ~, the following are equivalent:

(i) lim liminf —2
k—oo p—oo kPm,,

= OO7
(ii) there exists k € N, k > 2 such that

. ..M
lim inf —% > kﬁ,
P00 My

(iii) there exists € > 0 such that (p~"~*m,,),en is almost increasing,

(iv) there exist § > 0 and A > 0 such that

i (k+1)8+9 A(p+1)5+5 N
(k+1)my — mp rP 0
=p

Proof. (i) = (ii) Immediate. (ii) = (iii) There exists ¢ > 0 such that my,/m, > k°*¢ for every
p > po > 1. Then, for every ¢ > p > po there exists n € Ny such that k"p < ¢ < k"*p. Using
that ((p + 1)7"mp)pen, is nondecreasing and iterating the previous inequality we get

my (q+1)mypny (g +1)Ym, k"t
q5+€ - q5+€(knp + 1)7 qﬁ-l—é(knp + 1)'\/

for all ¢ >p > po.

Since k"p < ¢ < k"*1p, we see that 1 > (k"p+1)/(¢+1) > k=t and 1 > k"p/q > k~1. Then

% > min(1, k%) min(1, k:'y)
q

pﬁ - forall q>p > po.
Then, by suitably enlarging the constant as in the proof of Proposition we see that
(p~P~*my)pen is almost increasing.

(iii) = (iv) As in the proof of Lemma [2.1.13| one can show that((p + 1)™#=m,)pen, is almost
increasing. For every p € Ny, for suitable M > 0, we see that

o B+e/2 B+e o) B+e/2
(k+1) <M(p—|—1) / dx <2M(p—|—1) .

(k+1)my — myp pi1 xlte/2 = emy

k=p

We conclude by choosing 6 :=¢/2 >0 and A :=2M/e.
(iv) = (i) Using that ((¢ +1)""mg)pen, is nondecreasing, for ¢,p € Ny with ¢ > p we have that

B+ s B+6 9
A(p + 1) Z (k + 1 Z > 1_ / xﬁ—’Y‘i‘é—ldqj.
mp p (k+ P k + 1 )Ty, (¢+1)""mq Jp11

v
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Since 8 — v+ 9 > 0, we get

LD (g )P <1_<p+1>&ww>.

myp T (B—v+8)my qg+1

For any k € N, k > 2, taking ¢ = kp we observe that

B+6
| f > 1—
poe my, ~ A(B—7+0) ( kﬁ'*+5> ’
which implies (i). O

From the previous results, concerning the characterizations of (snq) and (mg) and the prop-
erties of the Matuszewska indices, several equivalent representations of «(m) and f(m) are
obtained, similar to the ones in the work of S. Aljan¢i¢ and I. D. Arandjelovi¢ [I] for O-regularly
varying functions. Although weaker conditions on M might be assumed, the proposition is stated
in a quite general form which includes the situation when M or M are (lc), providing flexible and
practical conclusions for the applications.

Proposition 2.1.22. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp—1)pen. We have that

(i) a(m) = inf{o € R; (my/p¥)pen is almost decreasing},
(ii) B(m) = sup{B € R; (m,/p”)pen is almost increasing},

If there exists v € R and a nondecreasing sequence £ such that £ ~ ((p + 1)7"mp)pen,, then
f(m) >~ and we have that

(ili) a(m) = inf{a > ~; hm lim sup Mkp = 0},
k—00  p—oo amp

(iv) a(m) =inf{a>~; Ik e N, k > 2; lim sup —2 < k3,

p—oo  Myp
p
1)« 1)«
(v) a(m) = inf{a >~; IA > 0; z:éfd) <A%;), p € No},

. 1 A(p+1)
(vi) a(m) =inf{a >~; 34> 0; ;% ERELIICEIE ((p+1)_7mp)1/(a_7)7pENO},
(vii) B(m) = sup{f >~; lim lim inf kﬂmp = 00},

(viil) B(m) = sup{f >~; Ik € N, k > 2; liminf 2 > A},
p—00 mp
. > (L+1 Alp+1)»
(i) B(m) = sup{f > 7,34 > 0; Z )) <AL ey,
p
1 Alp+1)

(X)ﬁhn):suP“3>fﬁﬂfl>0;Z;(w4-U—Wn@UW—w < p € No}.

((p+ 1) 1m) VT
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Proof. The expressions in (i) and (ii) are immediately deduced from Lemmal[2.1.13]since f(m) =
B(sm) and a(m) = a(sm) where s, = (my)pen is the shifted sequence.

We observe that v < f(m) < a(m) < o, then a —v > 0. By Proposition [2.1.11] we have that
a(m) < aifand only if a(g_,m) < a—y whereg_., = (p77)pen and g_,-m = ((p+1)77my)pen,
and, by Lemma this happens if and only if a(€) < a — «y or, equivalently, if there exists

€ (0, — ) such that a(€) < a — v — . Summarizing and using (i), «(m) < « if and only if
(pY~*Tlp)pen is almost decreasing. We observe that the sequence

tp = (p+ 1)_1€pa p € N,

satisfies that ((p + 1)tp)pen, = £ is nondecreasing and (p7~TT1¢,) ey is almost decreasing.
Since a« — v — 1 > —1, applying Proposition for t, the following are equivalent

(1) a(m) <o,

(2) There exists A > 0 such that

¥4 p 1 —y— a—
(k+1)*7 (k+1)*=7~ A 1)*= A 1
Z + Z + < Alpt 1) (P+1) p e No,
]{2 +1 Ek k‘ + 1 tk tp fp
=0 k=0
(3) lim limsu = lim limsu o _ 0
k—o0 p_>oopk £ k—o0 p_mop ke—r=1g, ’
(4) There exists k € N, k > 2, such that
limsup — = limsup — thp < koL
p—r00 k‘f p—00 tp

Since £ ~ g_. m, it follows that (iii) holds and, by suitably enlarging A and k, (iv) and (v) are
also valid.

As before, a(m) < « if and only if there exists ¢ € (0, — ) such that (p7~*T¢(p),en is
almost decreasing. Equivalently, we observe that the sequence

Up = (p+ 1)—1(gp)1/(a—v)’ p € N,

satisfies that ((p + 1)up)pen, is nondecreasing and there exists § € (0, 1) such that (p°up)pen is
almost decreasing. By Proposition applied to u, a(m) < « if and only if there exists A > 0

such that » X , , y ) X
> T = G T Sy = e
k=0 'k k=0 ke T P
Then, since £ ~ g_.m, enlarging A, (vi) holds.

For any 8 > +, with the same reasoning, we see that 8 < S(m) if and only if there exists
e > 0 such that (pv_ﬁ_‘ffp)peN is almost increasing. Since 8 — v > 0, applying Lemma to
the nondecreasing sequence £ and then using that £ ~ g__m, the following are equivalent:

Mkp
W B o,

= 00,

(2) There exists k € N, k > 2 such that
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70 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

(3) B < B(m),
(4) There exist § > 0 and A > 0 such that

oo

(k+1) B+d A 4 1)8+9
Z (p ) . peN,.
k=p

k+1mk_ my

Hence (vii), (viii) and (ix) are true.
Analogous to (vi), we apply Proposition to the sequence v, := (£,)#=7(p 4+ 1)~! for
p € Np, using that £ ~ g_.m we obtain (x).
]

Remark 2.1.23. We are specially interested in the (lc) sequence case, particularly when m =
(pmp—1)pen o M = (mp_1)pen are nondecreasing, then v = —1 or v = 0, respectively (see
Remark for further information about both situations). In the first case, (x) can be
expressed as follows

- 1 Alp+1)
£=p

The reader may notice the connection with condition (1) of H.-J. Petzsche [77] for m by taking
B =0, that is, if there exists A > 0 such that

1 p+1
(’YI) Z )7 pGNOa

{=p Z p

and condition (yz41) of J. Schmets, M. Valdivia [9I] for m by taking 8 € Ny, that is, if there
exists A > 0 such that

[e.e]

1 A(p+1)
= S = ; p € No,
(1) ZZ_; () VB+1) = (773,)1/(B+1) 0

that will be used in Section [3.3] when studying the surjectivity of the Borel map. For m nonde-
creasing, extending this condition for g € R, 5 > —1, one can, equivalently, write

B(m) = sup{B > —1; m satisfies (yg41)},

and for m nondecreasing,
B(m) = sup{B > 0; m satisfies (y3)}.

It is plain to check that m satisfies (1) if and only if M satisfies (snq). Moreover, from Propo-
sition [2.1.11| we know that S(m) = 1+ S(m) and, using Proposition [2.1.18| for a nondecreasing
sequence m we see that

f(m) >1 if and only if m satisfies (71).
Assuming again that m is nondecreasing, by Proposition [2.1.22|(viii), we obtain that

f(m) > 0 if and only if there exists k € N, k > 2, such that liminf,_, m,/m, > 1.
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It is worthy to mention that, due to the previously commented index shift, the last condition also
appears in the literature as: there exists k € N, & > 2, such that liminf,_, Mgp—1/Mp—1 > 1.
Thanks to Lemma [2.1.13] we know both are equivalent.

Finally, using Proposition [2.1.18 a(m) = a(m) + 1 and that M has (mg) if and only if M
also has (see the proof of Lemma [2.1.3]), for a nondecreasing sequence m, we obtain that

a(m) < oo if and only if M has (mg).

In particular, the classical result of J. Bonet, R. Meise and S.N. Melikhov [I7, Th. 14|, stated
in a more general framework in [90, Sect. 6] by G. Schindl, can be translated into the following
form: the ultradifferentiable space defined by a weight sequence M satisfying f(m) > 0 can be
defined in terms of a weight function w (see Remark , measuring the decay properties of
the Fourier transform of the functions in the space, if and only if a(m) < co.

Taking into account the stability of (v1) property under ~, we can also obtain the stability
of the index v(M) = 5(m) for weight sequences generalizing Lemma [2.1.12| where only stability
for ~ was proved.

Remark 2.1.24. Let M and L be sequences such that M and L are weight sequences, i.e., (Ic) and
such that m and £ tend to infinity, with M ~ L. Then B(m), B(Z) > 0 and, by Proposition ,
we have that #(i1) >~ > 0 if and only if A(m'/7) > 1 where m'/7 = ((mp(p+1))"/7)pen,- Since
m'/"7 is nondecreasing, by the previous remark, B(m/7) > 1 if and only if m'/"7 satisfies (7).
Using that M7 and L7 are weight sequences with M/7 ~ L1/7 and that H.-J. Petszche has
proved the stability of (1) for weight sequences (see [77, Th. 3.4]), we see that S(m) > v > 0
if and only if £1/7 satisfies (1) which, with the same reasoning, is equivalent to B(z) >y > 0.
Then

(M) = B(m) = B(£) = y(L).
Moreover, again by Proposition [2.1.11] and Theorem [2.1.16] we deduce that

~

y(M) = 7(M) — 1 = (L) - 1 = ~(L).

In particular, if M and L are weight sequences with Ml = L, the same is true for M and L and
the last equality also holds.

Similarly but more directly, the stability for ~ of the value a(m) is obtained. Because if M
and L are weight sequences with M = L, by Proposition [2.1.18] a(m) = oo if and only if M is not
(mg), or equivalently, by Proposition[L.1.17}, L is not (mg), that is, a(€) = oo, so a(m) = «(¥£). If
a(m) < oo or a(£) < oo, by Proposition [1.1.20] ~ is equivalent to ~, using Proposition [2.1.12] we
conclude that a(m) = «(€). Furthermore, this implies that O-regular variation for the sequence
of quotients of a weight sequences is also stable for ~.

Recalling the definition of exponent of convergence of a sequence and how it may be computed,
a characterization for the lower order p, similar to (vi) and (x) in Proposition [2.1.22] can be
established, getting as a byproduct the relation with (nq) property.

Proposition 2.1.25 (|37, p. 65). Let a = (ap)pen be a nondecreasing sequence of positive real
numbers. The exponent of convergence of a is defined as

— 1
AMa) :=inf{p >0: —
(a) :=inf{u pzz:l e converges }
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72 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

(as in Remark [1.1.26] if the previous set is empty, we put A(a) = c0). Then, one has

1
A(a) = limsup 08(p) .
p—oo log(ap)

Proposition 2.1.26. If there exists v € R and a nondecreasing sequence £ such that £ ~
((p+1)""mp)pen, then pu(m) > f(m) > v and we have that

o0

p(m) =sup{u >~ >

=0

1
(€ + 1)~7my)t/ (=)

< 00}

In particular, if M is (Ic), then v = —1 and
(i) if M satisfies (nq) (see Definition [1.1.5)), then p(m) > 0,
(ii) if p(m) > 0, then M satisfies (nq).

Proof. By Proposition [2.1.25] the inverse of the exponent of convergence of the nondecreasing
sequence £ = ({,_1)pen is given by

Mo " mint ) n(€) = =y + p(m)

applying Proposition [2.1.11] and Lemma [2.1.12) for the last equality, because £ ~ g_.m. Then,
using again that £~ g__ m, we see that

p(m) =sup{A > 0; > 1/(6,)"* < o0} + 5 = sup{p > 7; > 1/(6,)" ) < o0}

p=0 p=0
oo

=sup{p > 7 Y _1/((p+1)7my,) "7 < oo},
p=0

0

There is not a straightforward extension of this characterization, similar to (vi) and (x) in

Proposition 2.1.22] for the upper order p(m) (see also Remark [2.1.31)).

2.1.4 O-regular variation of the associated function

Departing from a weight sequence M, this subsection is devoted to the study of the properties
of orders and Matuszewska indices of the associated function wy and the counting function.
As it happens for the sequences, these values characterize several classical properties of these
functions. However, only the necessary statements for our aim will be shown (see Remark.
The connection between the indices of M and wy; (see Theorem which we have partially
stated in [43], Th. 3.2]) is the central point of this subsection.

We start by recalling the following definitions and facts, mainly taken from the book of A.
A. Goldberg and L. V. Ostrovskii [32].

Definition 2.1.27. Given a weight sequence M, i.e., (Ic) and such that m tends to infinity, we
consider the counting function for the sequence of quotients m, vy, : (0,00) — Ny given by

Vm(t) == #{j € Ng: m; <t} =max{j € N:m;_; <t}
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2.1. LOG-CONVEX SEQUENCES AND O-REGULAR VARIATION 73

For a weight sequence M, using (1.5) we recover the classical relation, which can be also
found in [72], between vy, and the associated function wpy. One has that

t
wm(t) = / Vm(r) dr, t>0, (2.8)
0 T
which allows us to write
/ Vm (1)
wmM(t) = vm(t) log(t) —log(M,, 1), t>0; wy(t) = — t>0, t#my, peNy. (29)

The associated function wy(t) of a weight sequence M is continuous, so measurable, and
positive in [X, 00) with X > mg. Since the counting function vm(t) is nondecreasing, the same
holds. Consequently, we can consider their Matuszewska indices S(wm), 8(Vm), a(wm), @(Vm)
and their upper and lower orders p(wn), #(¥m), p(wm), p(¥m). Please note that if wyy (or vy, ) is
regularly varying of index p, the corresponding indices of wyy (or of vy, ) are all equal to p. Using
the monotonicity of these functions, we easily obtain the analogue version of Proposition 2.1.18]

Proposition 2.1.28. Let M be a weight sequence, then

(1) Blwrr), B(vm), alwmr), a(Vm), p(wn); #(¥m); plwrr), p(vm) € [0, 00].

(ii) vm € ORV if and only if a(vm) < oo if and only if v, (2t) = O(vm(t)).

(iv) B(vm) > 0 if and only if there exists H > 1 such that liminf, . vm(Ht)/vm(t) > 1.

)
)
(iil) wy € ORV if and only if a(wy) < oo if and only if wy(2t) = O(wy(t)).
)
)

(v

Proof. (i) By Theorem |1.2.28] since wy and vy, are nondecreasing, S(wm), S(vm) € [0, 0], from
Proposition [1.2.32] (i) is valid.
(ii) By (i) and by Theorem |1.2.23] vy, € ORV if and only if a(vm) < oo.

By Theorem [1.2.28} if a(vm) < 00, then there exists a > 0 such that vm, (£)t~% is almost de-
creasing. Hence there exists ¢ > 0 such that v, (£)7 > cvm(2t)(2t)~* for t > X. Subsequently,
vm(2t) = O(vm(2)).

Conversely, if vm(2t) = O(vm(t)) there exist «,tg > 0 such that vm(2t) < 2% (t) for t > 1.
Then, for s > t > t( there exists j € Ng such that s € [2/¢, 2/71¢] and iterating the last inequality
we see that

B(wy) > 0 if and only if there exists H > 1 such that liminf; o wy(Ht)/wm(t) > 1.

Vm(s) < vm(2711¢)

@) nlt) o im(®)
s T (20t)e '

(27t) te

<

By suitably choosing A > 2% we obtain that vm, ()t~ is almost decreasing for ¢t > X.

(iii) Analogous to (ii).

(iv) By Theorem B(vm) > 0 if and only if there exists € > 0 such that vy ()¢ is almost
increasing. Then, if B(vm) > 0, there exists ¢ > 0 such that for any H > 1 we have that

m(Ht) > (Ht)fcyngjt) = Hecvm(t), t>X.

We take H such that H°c > 1, then liminf; o0 vm(Ht)/vm(t) > 1. Reciprocally, if

hg(l)gf vm(Ht)/vm(t) > 1,
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there exist ,t9 > 0 such that vm(Ht) > Hvy(t) for t > t5. Reasoning as in (ii), we conclude
that vm(t)t~° is almost increasing.

(v) Analogous to (iv).
O

Since vm @ [mg,00) — (0,00) is a locally integrable function, an easy consequence of (2.8)
and Theorem [1.2.34] is the following:

Theorem 2.1.29. Let M be a weight sequence. Then the following are equivalent:

(i) 0 < liminf Vin(t) < lim sup Vin(t)
t=oo wm(t) ~  tmoo wmlt)

< 00,

(ii) B(¥m) > 0 and a(vm) < oo,
(iii) A(wm) > 0 and a(wm) < oo.
In this case, B(wm) = B(vm) and a(wy) = a(Vm).

Proof. (i) < (ii) Immediate from Theorem [1.2.34

(i) and (ii) = (iii) Again by Theorem [1.2.34] we have that S(wym) = S(vm) > 0 and a(wym) =
a(vm) < oo.

(iii) = (i) From (2.8) and the monotonicity of vy (t) for every ¢ > 0 we get

anlet) = [ 2 [ ) 2> v

u u

Since a(wy) < oo, by definition, this means that

t t
lim sup Vm(t) < limsu wa(et) < 00

t—oo WM(t) Tt WM(t)

Using that S(wy) > 0, again by definition, there exist 5, C > 0 such that

lim inf wu(M)

> O\, for every A > 0.
t—oo  wy(t)

Taking A > (2/C)Y8 | we see that 2wp(t) < wy(At) for t > to. By Lemma [1.1.24] we have that
M has (mg), then, by Lemma [1.1.9] this implies that there exists A > 1 such that

m
sup pp <A< 0.
Hence, for every t > my, there exists p € Ny such that t € [m,, mp41) and we have that

wu(t) < wit(myp41) = (p+ 1) log (%) < (p+ 1) log(A) = vm(t) log(A).
Mp+1

Consequently, we conclude that

lim inf vm(t)

mint 2O > (log(A))~! > 0.

0
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Specially relevant for our purposes, regarding the construction of proximate orders from
weight sequences, is the next result that connects the upper order of wy and vy with the lower
one of m. In the following subsection, a more general dual relation between m and vy, is
established.

Theorem 2.1.30. Let M be a weight sequence, then

(wng) = i log w(t) () = I log(p) 1 1

wy) = limsup ———— = p(vm) = limsu = =

Pt =B Tloge P T Tog(my) — p(m) — w(M)

(where the last quotient is understood as 0 if w(M) = oo, and as oo if w(M) = 0). Moreover,
. Jlogan(t) . logum(t)

Proof. The first expression for p(wy) came from the very definition of the order because for
t > mg, wm(t) > 0. For the second expression of p(wy), we take into account the link given
in between wy(t) and the counting function vm(t). Since both functions are positive and
nondecreasing for ¢t > mg, one may apply [32, Ch. 2, Th. 1.1], in which the following classical
chain of inequalities is stated

vm(t) < wm(et) < vm(et)log(et/myg), t > my, (2.10)

to deduce that the upper order of wy(t) equals that of vm(t).

Now, from [32, Ch. 2, Th. 1.8] we know that the upper order of vy () is in turn the exponent
of convergence of m (see Proposition 2.1.25)), we conclude that p(vm) = A(m) = 1/p(m) using
Proposition with v = 0.

The last expression can be obtained as the first one, that is, from but taking lim inf
instead of lim sup. O

Remark 2.1.31. The main difficulty regarding the connection between p(wp), p(vm) and p(m)
is that there is not an extension of the notion of exponent of convergence in order to provide
an analogous result to Proposition for p(m). This problem will be skipped in the next
subsection by passing to a dual sequence (see Theorem .

Remark 2.1.32. We observe that if M and I are weight sequences with M ~ IL then, as in
(1.7)), there exists A > 1 such that

wr(A7) < wp(t) < wp(At), ¢t >0,

and we can show that p(wy) = p(wr). As an easy consequence of the last theorem and Theo-

rem we have that

w(M) = p(m) = p(8) = w(L).
Together with Remark this means that one can extend Lemma that is, we have
stability for =, for the two relevant indices v(M) and w(M), as it will be shown in the next
chapter, in the study of the asymptotic Borel map.

Remark 2.1.33. Ultraholomorphic and ultradifferentiable classes can also be defined in terms
of a weight function, that is, a function w : [0,00) — [0,00) continuous, nondecreasing with
w(0) = 0 and limy_, oo w(t) = 0o. For these functions Matuszewska indices and orders can be
considered, in the same way we have done for the associated and the counting function. These
values characterize growth conditions of the function w(t), like the ones in Proposition
or others like the strong nonquasianalyticity |75, condition (¢)], that, similarly to the sequence
case, describe elementary properties of the corresponding spaces. Since these classes will be out
of the study in this dissertation, the reader is referred to our works [45], 47].
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2.1.5 Dual sequence

In the next chapter, it will be shown that the value of the index w(M) characterizes the injectivity
of the Borel map for weight sequences and (M) characterizes the surjectivity for strongly regular
sequences. As we have seen, Theorem these growth indices coincide with the lower order
pu(m) and the lower Matuszewska index S(m), respectively. One may naturally ask what the
upper order p(m) or the upper Matuszewska index o(m) stand for. In this subsection, a possible
interpretation of their meaning is given by constructing a dual sequence D of a weight sequence
M such that w(D) = 1/p(m) and (D) = 1/a(m). This dual construction will be employed in
Subsection in order to associate a regularly varying sequence to a proximate order.

In the preceding subsections, it has been shown that the regular variation, the O-regular
variation and the Matuszewska indices of a sequence a are characterized in terms of the step
function fq (see Theorem Theoremand Proposition. One might think when
the opposite is true, i.e., when a function f can be described by its values at the natural numbers.
The answer to this question will be used in the construction of the dual sequence through the
counting function and in the examples at the end of the chapter. Starting with a nondecreasing
function f, one can prove the following:

Lemma 2.1.34. Let f : [V,+00) — (0,+00), with N € N, be a nondecreasing function. For
p € Np, we define a sequence a, := f(p) for p > N and a, := f(N) for p < N. Then, the
following are equivalent:

(i) there exists C' > 1 such that

aps1 < Cap, peNy, 2.11)
(ii) the function f satisfies
1
sup 18D o (2.12)
>N f( )

Whenever any of the previous equivalent conditions holds, we have that there exists a constant
C > 1 such that

C™'fa(z) < f(z) < Cfalz)  z>N, (2.13)
where fq(z) = a|,|. Similarly, the following are equivalent:
(i) lim 22+ =1,
p—=oo ay
. . flx+1)
iv) lim ———= =1.

If (iii) or (iv) holds, then fq ~ f, that is, lim, ,c fa(x)/f(z) = 1. Moreover, if f is continuous

then (2.13) implies (2.11)) and (2.12)) and fq ~ f implies (iii) and (iv).
Proof. (i) = (ii) For x > N, since f is nondecreasing, we have that
Fle+1) < f(lz] +2) = apayr2 < CPapy) = CPf([2]) < C?f(2).

(ii) = (i) For p < N (i) holds by the definition of a and for p > N it is immediate from (ii).

(iii) = (iv) For > N, since f is nondecreasing, we see that

fa+1) _ f(lx)+2) f(le) + 1)
ST STl ) fQa)
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and (iv) follows from (iii).
(iv) = (iii) Immediate.

Furthermore, assuming (i) or, equivalently, (ii), since f is nondecreasing for z > N we have
that

fa(®) = ap) = f(lz]) < f(z) < f([2] +1) = ajp41 < Cay) = Cla(w).

Similarly, for x > N we observe that

(] +1)
0= i)

f(z)
f(lz

1<

so, assuming (iii) or (iv), fq ~ f.

In addition, if f is continuous and satisfies (2.13)), for p > N, by the continuity in x = p+1, we
have that for e = f(IN) > 0 there exists 0, € (0, 1) such that 0 < f(p+1)— f(p+1—-9) < f(N).
Consequently,

apr1=flp+1)<2f(p+1-6) <2Cfa(p+1-0)=2Cay,, p=>N,
and (i) is satisfied. Analogously, for f continuous we see that f, ~ f implies (iii) and (iv). O

From the last result, we can establish an inverse version of the embedding theorems, Theo-
rems [1.2.37) and [1.2.44] for nondecreasing functions.

Corollary 2.1.35. Let f : [N,4+00) — (0,+00), with N € N, be a nondecreasing function.
Then

f isregularly varying if and only if a also is.
f is O-regularly varying if and only if a also is.

Proof. 1f f is regularly varying, then lim, ,~ f(|z])/f(x) =1 and we have that

lim 2P0 g SN FOR) o

o a,  pooo f(Ap)  f(p)

i.e., a also is. Conversely, if a is regularly varying, by Lemma [1.2.40]lim a,1/a, = 1, using the
previous lemma we deduce that f ~ fq. Applying Theorem [1.2.37, we know that fq is regularly
varying and by Remark we conclude that f also is.

Assuming that f is O-regularly varying, we see that
aap)

ST (V1] DO ¥
P—+00 ap p—00 (p) p—roo f(p)

< oo, A€ (0,00),

then a also is. Reciprocally, if a is O-regularly varying, then

. ap+1 . az
lim sup 2= < limsup —% < o0,
Pp—00 Qp p—oo  Ap

so (2.11)) holds. Consequently, there exists a constant C' > 1 such that
C7 ' faz) < f(z) < Cfalw)  z >N,

and, applying Remark [1.2.31] we deduce that f is O-regularly varying because, by Theo-
rem [1.2.44] fo, € ORV. O
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In particular, if f(2z) = O(f(z)), or, equivalently, a(f) < oo (see the proof of Proposi-
tion [2.1.28](ii)), then it is plain to check that holds, so we can represent our function f
by the sequence a.

Monotonicity hypothesis on f might be replaced by some weaker or different condition but,
in the context of weight sequences and weight functions, this requirement is enough.

Remark 2.1.36. Condition (2.11]) also appears in different contexts (see [80], (2.10)]). We know
that if M is (lc) we have the following implications:

(mg) = (2.11) = (dc),

meaning that if M has (mg) then m satisfies (2.11]) because, by Proposition forallp e N
we see that
Mp+1 < map < Cmpa

and, by a simple computation, if m satisfies (2.11)), then M satisfies (dc) since
Mpi1 =momy ---mpy < moCPmomy - - - mp—1 = moCPM,, p € Ny.

The converse implications fail in general. For the first one, we have the g—Gevrey sequences
M = (qp2)peN0, g > 1, do not satisfy (mg) but nevertheless holds true. For the second
one, we consider
my = exp(27), 20 <p< 2t jeN,.

We observe that m is nondecreasing, m, = exp(2’) < exp(p) for p € N, then M satisfies (dc)
and the quotient mq;+1/mgj1_1 = exp(27) is not bounded, then (2.11) is violated.

Remark 2.1.37. This is not the first approach to go from weight functions to weight sequences.
In [I7], where the connection between weight functions and regular variation was mentioned,
from a function g : [0,00) — [1,00) they construct a sequence M = (((p + 1)g9(p))?)pen,. Under
suitable assumptions for g the authors show that the corresponding sequence M is strongly
regular, that is, M is (Ic), has (mg) and is (snq). In between these conditions, for a continuously
differentiable increasing function g, three are connected to O-regular variation:

(I) g(2x) = O(g(x)) [I7, Lemma 22.(1)].
(II) limsup,_,.(g(x +1)/g(x))* < oo [17, Lemma 22.(2)].
(ITT) sup,>qzg'(xz)/g(x) < oo [17, Lemma 24.(i)].

For the construction of Example 25 [17] the function g was directly proved to satisfy (III) that
implies the other two conditions (I) and (IT).

It is plain to check that condition (I) is equivalent to a(g) < oo (as in the proof of Propo-
sition [2.1.28l(ii)). Regarding condition (III), one may observe that for g : [0,00) — [1,00)
continuously differentiable and increasing with g(0) = 1, we can write

dt

77 J}ZO,

x
oa) =1+ [ g0

0
which leads to Theorem since h(t) = tg'(t) is a positive locally integrable function. Con-
sequently, from the point of view of O-regular variation, one may alternatively assume that
a(g’) < oo then, by using the almost decreasing characterization, a(h) < oo and, by Theo-
rem .(i)7 (II1) is satisfied. Hence also (I) and (IT) hold and the corresponding sequence M
has also the expected properties.
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Theorem suggests that one may also find relations for the Matuszewska indices of
m, vy, and wy. This connection has been partially studied for functions in a recent work of
D. Djurci¢, R. Nikoli¢ and A. TorgaSev [26], where they analyze the O-regularly varying duality
between a positive nondecreasing unbounded function f : [X,00) — (0,00) and the function

[T (@) ==inf{y > X; f(y) > 2z} = sup{y > X; f(y) < =}.

for x > f(X). Even if some information can be inferred from their proofs, there is not a explicit
correspondence between the indices. In our situation, we will show the duality between a weight
sequence and its counting function.

Proposition 2.1.38. Let M be a weight sequence. Then

(with the typical conventions for 0 and oo). Consequently, we recover the classical equivalence
for the growth conditions of M and vpy,:

(1) M has (mg) if and only if there exists H > 1 such that liminf; o vm(Ht)/vm(t) > 1 (see
[80, Lemma 2.2]).

(ii) M satisfies (snq) if and only if vm(2t) = O(vm(t)) (see [I7, Lemma 12| for one of the
implications).

Proof. First we assume that 0 < v < f(m), so, by Proposition 2.1.10, (p~7my)pen is almost
increasing, then (pflmpl/V)peN is almost increasing with constant D > 1. We have that for
every t > s > my, there exist p,q € Ny such that ¢ > p, s € [mp, mp41) and t € [mg, mgy1). If

q = p, we see that
Vm(8)  Vml(t) - Vm(t)

sl/v = gl/y T 4l/y
andif g >p+12>1, we get
vm(s) o pH1 ¢ g g+l Vm(t>7
s T (mpg1)Y/7 T D(mg)YY T q+ 1Dt/ T 2D/

that is, vm(t)/t"/7 is almost decreasing, then 1/v > a(vm) and 1/8(m) > a(vm).

Correspondingly, if v > a(m), then ((p+ 1)"'m,"/7)en, is almost decreasing with constant
d € (0,1). For t > s > mg taking p,q € Ny as before we see that

Vm(s)< p+1 < q+2 < _1q+2q+1< _1Vm(t)
si/v — (mp)l/v - d<mq+1)1/7 - g+1 (t)l/v - t1/v

then 1/ < B(vm) and 1/a(m) < B(vpy).

Reciprocally, if v > a(vmm), there exists € > 0 such that v — e > a(vm), so v — e > 0, since
a(vm) > 0 by Proposition [2.1.28,(i). Then, vm(t)/t7~° is almost decreasing which implies that
there exists d € (0,1) such that for every A > 1 and all ¢ > mg we have that

)

Um(t) > dvm (M) /N5,

We fix Q € N, large enough, such that Q(¢/2/(v=¢/2)¢ > 1 and taking A\ = QY/(=¢/2) we see that

Vi (D)Q > v (QY072) £ > my. (2.14)
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Using (2.14), for p € N, we observe that
my, =sup{t > mo; vn(t) < p} < sup{t > mo; vm(Q"/0/?t) < Qp}
—0~Y(r—¢/2) 1/(v=¢/2) . MmQp
—Q P sup(s = QU i vns) < Qp} <

(v—e/2)"

Hence we have shown that there exist @ € N, @ > 2 and § > 0 such that

s mQp 5
> .

By Proposition [2.1.22](viii), we obtain that 1/ < f(m) and 1/a(vy) < S(m). Analogously, if
0 < v < B(vm), there exists € > 0 with v+ & < B(vm) and Q € N, large enough, such that

Vm(H)Q < vm(QYOF/ Dty > my,.
For p € N, large enough, we observe that

my =sup{t > mo; vm(t) < p} > sup{t > mo; vm(Q/?)t) < Qp}

—O~/(v+e/2) 1/(v+e/2) . __ MQp
=Q sup{s >Q mo; Vm(s) < Qp} = Ql/(,y+€/2) .

By Proposition 2.1.22|(iv), we obtain that 1/ > a(m) and 1/5(vym) > a(m).
Finally, by Proposition [2.1.18] M has (mg) if and only if a(m) < oo if and only if 5(vyy,) > 0
which, by Proposition 2.1.2§] is equivalent to the existence of H > 1, such that

liminf vy, (Ht) /vm(t) > 1.
t—00
Similarly, we see that M satisfies (snq) if and only if vy (2t) = O(vm(t)). O

Remark 2.1.39. In particular, for a weight sequence M, by using the previous result and
Proposition [2.1.29] we can increase the list of alternative definitions of strong regularity in
Corollary and Remark [2.1.19] that is, the following are equivalent:

(i) M is strongly regular,

(v) 0 <liminf Vin(t) < limsup V(1)
t—oo wy(t) t—oo W (t)

< 00,

(vi) a(vm) < oo and B(vm) > 0,
(vii) a(wym) < oo and S(wy) > 0.

In this case, we also have that a(wy) = a(vm) < o0 and S(wnm) = B(vm) > 0 and p(wm), p(wm),
p(Vm) 1(tim) € (0,0).

This suggests a possible explanation, which was also pointed out in [57], of some of the facts
described at the end of Remark one may assert that vy, is a dual function in terms of
O-regularly varying behavior of the sequence m, but if we have strongly regularity we can replace
Vm by wnm. More concretely, for a weight sequence M, we have that

(1) a(m) < oo if and only if S(wy) > 0 (see [80, Lemma 2.2]).

(2) B(m) > 0 implies a(wy) < oo (see [I7, Lemma 12]).
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These conditions can be read in terms of growth properties (see Proposition and Propo-
sition 2.1.28)). The fact that the implication in (2) can not be reversed (see our example in [47]
where S(m) = 0 and a(wy) = 0) might clarify why the weight function approach (see Re-
mark is more general than the weight sequence case, meaning that, even if a(m) = oo, so
Blwnm) = 0, and S(m) = 0 we may have a(wy) < co. In other words wy might be of O-regular
variation even though m is quite pathological. Whereas if a(wy) = oo and S(wy) = 0, then
automatically o(m) = oo and f(m) = 0.

Accordingly, the following notion of the dual sequence is proposed.

Definition 2.1.40. Let M be a weight sequence. For p € Ny, we define its dual sequence D
using the sequence of quotients by

dy = vm(p), p>mo; dy, =1, p<my.
Correspondingly, Do := 1 and D,, := dod; - - - dp—1 for p € N.
It is plain to check that D is also a weight sequence and we can consider the bidual sequence.

Definition 2.1.41. Let M be a weight sequence and I its dual sequence. For p € Ny, we define
its bidual sequence E, as the dual sequence of I, that is,

ep:=va(p), p>1=do;  eo:=1,
and Ey:=1and E, :=epeq - --ep—1 for p € N.

Since vm, g : [0,00) — No, d, e are sequences of natural numbers and we can establish the
expected connection between M and E.

Theorem 2.1.42. Let M be a weight sequence and E its bidual. Then, m ~ e , i.e., there exists
¢ > 1 such that
c_lep <my < cep, for all p € Np.

In fact, m ~ e, that is, lim,_, e,/mp = 1.
Proof. For p > max(1, vm(|mo] + 1)), we can ensure that
ep = va(p) =max{j € N;d;_1 < p} =max{j € N;vm(j — 1) < p}
=max{j € Nymax{k € Nymyp_1 <j—1} < p}.
If j —1 > myp, then max{k € Nymy_; <j—1} >p+1and j > e,. Conversely, if j —1 < my,
then max{k € Nymy_; < j—1} <p+1, then j < e, For all p > max(1,vm(|mo| + 1)) we

deduce that
ep =max{j € N;j —1<mp}.

Consequently, for every p > max(1, vy (|mo]| + 1)) we have shown that
ep — 1 <my < ey
and we conclude that
my < ep < mp+ 1< (1+mg!)my.

By suitably choosing a constant ¢ > (1 + mal), we can extend these inequalities for p <
max(1, vm(|mo] + 1)) and we see that m ~ e. Moreover, since lim,_, m, = 0o, we conclude
that m ~ e. O
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We want to make use of Proposition to study the O-regularly varying behavior of D
and E, in terms of vy, and vg, respectively. Hence, we need to use Lemma and it seems
reasonable to assume that vy, and vy satisfy . However, since m ~ e, m satisfies if
and only if e also does, or equivalently, by Lemma [2.1.34] if v4 satisfies (2.12)). Let us see that
this condition is enough for our purposes.

Theorem 2.1.43. Let M be a weight sequence such that m satisfies (2.11)). The following
relation for orders and Matuszewska indices holds
1 1 1 1
Bm) = ——, p(m)=——, p(m)=—— a(m)= .
W@ M M e ™ G
Consequently, we have that some of the growth properties for M and D are reflected:
(i) M has (mg) if and only if D satisfies (snq),
(ii) M satisfies (snq) if and only if D has (mg).

In particular, if M is strongly regular, all the previous indices are positive real numbers and D
is also strongly regular.

Proof. Since m satisfies (2.11)) and m =~ e, then e also does. Since e, = vg4(p) for p € N, by
Lemma [2.1.34] and Remark [1.2.31] this means that

Ble) = B(fe) = B(va), ple) =p(fe) =p(va), ole)=a(fe) = alva).
By Proposition applied to D, we get

1 1
ﬁ(e) - B(Vd) = m, Oé(e) = Ot(l/d) = M
Since e ~ m, we conclude that S(m) = 1/a(d) and a(m) = 1/8(d). Moreover, using Theo-

rem [2.1.30| for D, we know that

p(m) = p(e) = p(fe) = p(va) = 1/p(d).
Finally, for ¢ > max(2,mg + 1) we observe that
log(t — 1) log(vm(t = 1)) _ log(vm([t])) _ log(vm(t)) log(t)
log([t]) log(t—1) = log(lt]) ~ log(t) log(lt])
then p(vm) = p(d). Applying Theorem for M, we deduce that p(d) = 1/u(m). O

Condition (2.11) characterizes (2.13) for continuous nondecreasing functions, but since vy,
and vg4 are only nondecreasing there is some hope that this condition can be skipped by going

directly from the indices of m to the indices of d. However, as commented in Remark [2.1.36
assuming (2.11)) it is not a big restriction and it is enough to illustrate the reflection between D
and M.

Remark 2.1.44. According to Remark [2.1.39] if M is strongly regular then vy, is O-regularly

varying and
t t
0 < liminf V(1) < limsup V(1)
t—00 wM(t) t—00 wM(t)
Moreover, there exists pp € N such that wy(t) > 1 for ¢ > po, we can consider the sequence:

< Q.

tp == wm(p), P> po; tp =1, p<po.

Hence d ~ t and

1 1 1 1
Blm) = g plm) = s pm) = e am) = g
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Example 2.1.45. Thanks to the connection with the associated function given in the previous
remark and the computations in Example or also by a direct calculation, we can show that
the dual sequence of the Gevrey sequence My o = (p!*)pen, is equivalent to M /, ¢ = (p!l/o‘)peNO.
However, since the Gevrey sequences and the sequences M, g = (n!*1I7,_ logﬁ(e+m))neN0 with
a > 0 and 8 € R are regularly varying, all the indices are equal (see Example , the duality
is hidden.

For the g—Gevrey sequences M = (qp2)pEN07 with ¢ > 1, we can consider the sequences D
and T defined from vy, (t) and wy(t), respectively. By Example we know that a(m) =
B(m) = oo and since M satisfies (2.11]), we obtain that a(d) = 8(d) = 0, so the duality is also
concealed. By a simple computation, we can notice the following

d = (log(p+e))pen,  t = ((log(p + €))*)pen,
in this case, d % t as expected by the characterization of strong regularity in Remark [2.1.39]

Remark 2.1.46. It is worthy to mention that the duality is not preserved for ~ or ~, this
means that in general some information is lost when passing to the dual sequence. For example
we consider the sequences Ml and LL defined for all k£ € N in terms of their sequences of quotients:

(2k)* (2(k+1))k+1

mo=miy=ma=mg:=1, my:=k for every 2 <p<?2 ,

)k+1

lo=01 =0y =10l3:=1, 0, :=k+1 forevery 22R" <p < 2@k+D)
P Yy p

Evidently, M and L are weight sequences of moderate growth with m ~ €. We can compute
their duals, for £ > 2 we have that

dgﬂ — Vm(k') — max{j c N; mj_1 < k} _ 2(2(kz+1))k+17

dy = max{j € N; (;_1 < k} = 20",

For all £ > 2, we observe that

Dy e (dit )M 22k k—1 k-1 E
<D;H§> > i = gt — &P log(2)2" (k- 1) 2 (k—l) —-11].

Hence DM % DY, because the left hand side is unbounded as k tends to ooc.

However, if we add some regularity the equivalence is kept. For instance, if M and L are
weight sequences with m ~ £ and S(m) > 0, so 5(£) > 0, there exists @ € N such that for ¢
large enough we have that

vm(t) < ve(Q1), ve(t) < vm(Q1).

By Proposition [2.1.38, a(vm) < 0o and a(vg) < oo, so we conclude that d™ ~ d*. In particular,
this stability holds for strongly regular sequences.

2.2 Log-convex sequences, regular variation and nonzero proxi-
mate orders

The construction of nontrivial ‘fine’ flat functions belonging to ultraholomorphic classes and
defined in sectors of optimal opening, on which is based the M—summability theory developed
in [60, 88] by A. Lastra, J. Sanz and S. Malek, depends on the possibility of associating with the
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weight sequence, that defines the class, a nonzero proximate order. The link between proximate
orders (see Definition [1.2.7) and a weight sequences M, is given by the function

bty = )

for t large enough. (2.15)
The characterization of the sequences for which dy is a nonzero proximate order was an open
question, successfully answered in Theorem below. As a byproduct of this result, a new
characterization of regularly varying sequences has been obtained.

Example provides a strongly regular sequence M, equivalent for ~ to L = (p!)pen,,
such that dy(t) is not a proximate order. However, it will be proved in Example that dp, is
a nonzero proximate order (in particular, we deduce that the property of dy being a proximate
order is not stable under equivalence of sequences, neither &~ nor ~). So, we may obtain a
satisfactory summability theory in the Carleman ultraholomorphic class associated with IL, which
coincides with that associated with M. This shows that asking for dy to be a nonzero proximate
order is a too demanding restriction and one could ask instead for:

(f) There exists a weight sequence L such that I ~ M and dp,(¢) is a nonzero proximate
order.

On the other hand, J. Sanz had already observed |88 Remark 4.11(iii)| that, for the con-
struction of nontrivial flat functions in sectors of optimal opening, dp need not be a nonzero
proximate order, but it is enough that there exist nonzero proximate orders close enough to d,
in the following sense:

Definition 2.2.1. Let M = (M,),en, be a weight sequence. We say that M admits a prozimate
order if there exists a proximate order p(¢) and constants A and B such that

A <log(t)(p(t) — du(t)) < B, for t large enough,

or, equivalently, if
1Pt

<eB

A
e” < ,
S (@)

for ¢ large enough.

In Subsection we will show that the requirement (f) and the admissibility of a nonzero
proximate order are equivalent for a weight sequence Ml and we provide a Representation The-
orem for such sequences. In order to prove this, we need to construct well-behaved sequences
from proximate orders, employing the duality presented in Subsection Finally, several
pathological examples of strongly regular sequences, which will be mentioned along the chapter,
are provided.

The results contained in this section are the core of our work [44]. Nevertheless, here some
new information is given, for instance the Representation Theorem the relation between
the conditions (f), (j), (k) and (¢) is clarified through some counterexamples (see Remark [2.2.18)
and Subsection [2.2.3] corresponding to Section 4.1 in the paper, has been completely rewritten
with a different and more simple approach.

2.2.1 A new characterization of regular variation

The main aim of this subsection is to provide a new characterization of the regular variation
of the sequence of quotients m of any sequence M of positive real numbers with My = 1. This
result, interesting in its own right, will be used in the next subsection, Theorem to describe,
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in terms of the existence of a limit, when it is possible to construct a proximate order from a
weight sequence.

For convenience, given a sequence M of positive real numbers and the corresponding sequence
of quotients m = (mp)pen, we define the auxiliary sequences

mp

M];/p

ap = log(my), p € Np; Bo := o, Bp = log ( ) , p=>1 (2.16)

From the relation between M and m we deduce a elementary connection between (oy,)pen,
and (Bp)peny-

Lemma 2.2.2. Given a sequence M of positive real numbers with My = 1, for all p € Ny we
have

1
Bp = — — Z ag, (2.17)
Pz
p—1
B
o=+ By (2.18)

Proof. From the definition of (8,)pen we have that Sy = g, and for all p € N

-1

m 1 L3

B, = log <M11;P) = log(my) — 2; log(momy - - mp—1) = o — 1; Z Qs
» k=0

then (2.17) holds.
For the proof of (2.18) we apply induction. It immediately holds for p = 0, and if we admit
its validity for some p € Ny, then

p—1
m & m
i1 = log(myi1) = o +log (1) = 37 Py, g (et
P — k+1 mp
k=0
S~ k+1 p+17F »
k=0
So, we are done if it holds that
p Mp+1
1 =
p+lﬁp+ Og( my ) Bp+1,
but this equality can be easily checked by direct manipulation. (I

As it has happened in the previous section when dealing with the sequence of quotients m
of M|, that is defined for p € Ng, an index shift inconvenience arises. It can be solved thanks to
Lemma [1.2.40] and we can state the following proposition.

Proposition 2.2.3. Let M = (M),),en, be a sequence of positive real numbers. The following
are equivalent:

(i) There exists lim,_, log (mp/M;/p) € R,

(ii) m = (mp—_1)pen is regularly varying.
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In case any of these statements holds, the value of the limit in (i) and the index of regular
variation of m are the same.

Proof. (i) = (ii) We call w the value of the limit in (i). If we consider the sequences (a;)pen,
and (Bp)pen, defined in (2.16)), we will show that

ph_glo(aMpJ —ap) = wlog(A), A >0,
which, by definition, shows that the shifted sequence sy, = (mp)pen is regularly varying and, by
Lemma [1.2.40} this is equivalent to condition (ii). For A = 1 the result is immediate. Assume
A > 1, using (2.18)), for all p € Ng, p > (A — 1)~! we see that |Ap] > p and we have that

[Ap]-1 B,
A rp] — Op = Z k+1+5t)\pj_ﬁp-
k=p

Condition (i) can be written as lim,_, 5, = w, so it is sufficient to prove that

[Ap]—1 B,
=P

If we take e > 0, we fix 6 > 0 such that dlog(\) < €/6. There exists ps € N such that |3, —w| < ¢
for p > ps. We remember that the p—th partial sum H, = i:l 1/k of the harmonic series may
be given as

H, =log(p) + v + €p, ~ = Euler’s constant, lim g, = 0.

p—00

Consequently, for p > max(ps, (A — 1)71) we have

[Ap]—1 A
;;; O < (w4 D) (Hingy — Hy) = (w0 +9) (10g <L>£J> +1o8() + el _€p> ‘

k+1

Using that lim, o0 [Ap|/(Ap) = 1 and that lim,, o &, = 0, we take pg > max(ps, (A\—1)"") such
that for every p > po one has

‘wlog (L:\\Z;JN < e/l2, ‘Mog (L;;;J)‘ <e/l12, |wep| <e/6, |depy| < e/6.

Then for p > pg we see that
[Ap]-1

Bk

p k+1

Analogously, for p > pg we may also get that

and we are done.
For A € (0,1), the proof is similar and we omit it.
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(ii) = (i) Let w € R be the index of regular variation of m = (m,_1)pen. By Theorem [1.2.38

one may write
p+1 -
myp = exXp (Cp_l,_l + Z k) , D€ NO,
k=1

where (¢p)pen and (7,)pen are sequences of real numbers converging to ¢ € R and w, respectively.
Then

p p—1j+1
M, = mgmy -+ -mp_1 = exp Z +Zznk = exp ch—l—Zp k—i—lnk
=1 7=0 k=1
P p 7 P
= exp Zq—k(p—kl)Zf—an
j=1 k=1 k=1

Since limy,_y00 1p/p = 0, limyy00 1y = w and lim, ,c ¢, = ¢, for the corresponding arithmetic
means we have that

P P
lim p? an/j =0, hm p Zn] =w and lim p! Z cj = ¢,
j=1 Jj=1

pP—00 P—00
7=1

and we see that
m 1 /2 P - P
. p _ . - _ e
pliglo log M}}/]’ o pll{go D Z Mk Z k Z Ck | T Cpi1

or, equivalently, lim, , 5, = w. O

:W,

Remark 2.2.4. In fact, we observe that, since M is any sequence of positive real numbers with
My =1, m can be substituted by any sequence a = (a,)pen of positive real numbers. We can
consider the sequence of geometric means given by

p 1/p
ap = (H an> , p € N.
n=1

By carefully skipping the index shift nuisance, with Lemma [1.2.40], the following are equivalent:
(i) there exists lim, o0 ap/ap € (0, 00),
(ii) a is regularly varying.

The main advantage of this equivalent definition of a regularly varying sequence is that we avoid
working with the integer part and the corresponding step function fo () = a,)-

Remark 2.2.5. The reader may note that following the same reasoning a new characterization
of O-regular variation for sequences in terms of the geometric means can be provided. With the
same notation as in the previous remark, the following are equivalent:

(i) 0 <liminf, e ap/a, < limsup,_, ap/a, < oo,
(ii) a is O-regularly varying.

The proof has been omitted because we will not employ it in the forthcoming sections.
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2.2.2 Proximate order associated with a weight sequence

The principal result, gathered in this subsection, characterizes those sequences for which one can
define, in a straightforward and natural way, a nonzero proximate order. In addition, we will
show how these sequences interact with the notions considered in the previous sections such as
strong regularity, regular variation and the associated functions.

The function dy(t) = log(wm(t))/log(t), presented in the introduction of the section, is
immediately shown to be continuous and piecewise continuously differentiable in its domain
(meaning that it is differentiable except at a sequence of points, tending to infinity, at any of which
it is continuous and has distinct finite lateral derivatives) and nonnegative for ¢ large enough.
Then dy(t) always verifies conditions and of proximate orders (see Definition [1.2.7).
Hence we only need to deal with conditions and @])

In the proof of the principal theorem, we will use the theorem of L. de Haan, Theorem [1.2.42
which for monotone sequences shows that regular variation can be expressed in a much more
nicer form and that is the case of m = (mp—1)peny when M is (lc).

Theorem 2.2.6. Let M = (M),),en, be a weight sequence. The following are equivalent:
(a) dp(t) is a proximate order with lim;_,. dy(t) € (0, 00),
(b) There exists w > 0 such that wym(t) ~ wy(t), that is, limy_eo wm(t) /wm(t) = 1,

(c) There exists w > 0 such that for every natural number ¢ > 2,

.My
lim —2 = ¢,
p—00 My,

(d) m is regularly varying with a positive index of regular variation,

(e) There exists limy, o log (mp/M;/p) € (0, 00).

In case any of these statements holds, the value of the limit mentioned in (e), that of the index
mentioned in (d), and that of the constant w in (b) and (c¢) is w(M) and the limit in (a) is
1/w(M).

Proof. (a) = (b) According to (2.9) and (2.15)), we have that

) ) 1 ()
B0 = gt ~ ot~ 7o () ~ )

for ¢ # m,, large enough. Observe that (D)) in Definition amounts then to

. Vm (1)
lim —du(t)) =0, 2.19
i ey m(t) (2.19)
t#myp
By Theorem [2.1.30]and condition (C) in Definition [1.2.7, we know that lim;_,o dyi(t) = 1/w(M),
and so ) )
Vm
lim —% = ——.
o () w(b)
t#£mp

By Lemma [1.2.12) we know that wy € Ry ), 80 limyeo wm(t + 1)/wm(t) = 1. For every
p € Ny large enough, we take ¢, € (0, 1) such that m, +¢,, m, —ep, mp+ep,—1 and my, —e,+1
are not elements of the sequence m. By the monotonicity of vy, and wyg, we have that

vm(myp +&p)  wm(my +€p)

wm(mp —€p)  Vm(myp — &p) < Vm(mp)
wm(mp + &p — 1) wm(my + &p)’

wm(mp —ep) wm(mp —ep +1) ~ wm(my)

<
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for all p large enough and we conclude that limy, o vm(mp)/wm(my) = 1/w(M).

(b) = (c) We redefine wj;(my) := w(myp)/(mpw) for all p € Ny. Since limy_,o wm(t) = o0, there
exists N € N such that wy(t) > 0 for t > my, we can write

an(®) = () e /m i WM iy

By (b) and the definition of wy(my), we have that

twpy(t) _ o vm(t) 1

t—oo wy(t) oo wm(t) Cw

Then by the Representation Theorem [1.2.4] we have that wy(t) is regularly varying of index 1/w
and, again by (b) and Remark we have that vy (t) is regularly varying of index 1/w.

For any ¢ € N with ¢ > 2, for every ¢ € (0,1) we take \i({,¢) := (¢/(1+¢))* and A2({,¢) :=
(¢/(1 —€))* then, using the regular variation of vy (t), there exists ¢y > 0 such that

vm(Ajt) _ R

1/w
AP (1—e) < V(1) y

; (1+¢), for all t > to,

for j = 1,2. Since limy,_,o m;, = 00, there exists py € N such that m,,_; > max(Aitg, Aato, to),
then vy (tg) < po- So for p > py we have that

myp = sup{t > mo; vm(t) < p} = sup{t > to; vm(t) < p}.
Consequently, since vm(A1t) < lvm(t) < vm(Aot) for every ¢t > g, for every p > po we see that
sup{t > to; vm(A2t) < lp} < my, < sup{t > to;vm(Mt) < Ip}.
Since ¢p > p > po, for j = 1,2 we have that vm(\;to) < po and for all p > py we observe that
sup{t > to; vm(\t) < €p} = (N\;) " tsup{s > Ajto; vm(s) < €p} = (\)) Ty,
Finally, for every p > pg we conclude that

fod my I
<Py =
Q+er ' om, — 7 Q-

(c) = (d) Since sm = (my)pen is nondecreasing, by Theorem [1.2.42| we see that sy, is regularly
varying of index w > 0. Then it suffices to apply Lemma [1.2.40| to ensure that m = (mp—1)pen,
is regularly varying of index w > 0.

(d) < (e) Apply Proposition [2.2.3]
(e) = (a) According to (2.16]), condition (e) can be written as

lim £, =w € (0, 00). (2.20)

p—o0

By using (2.18)), we see that
Bp/(p+1)

lim (O‘erl - ﬁerl) - (ap - ﬁp) — lim —w
p=oo  log(p+ 1) —log(p) p=oo  1/p ’
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and then we deduce by Stolz’s criterion that

lim op — fp
p—oo log(p)

Since B, = O(1) (and «y, = log(m,)), we get

lim log(my)
p—oo log(p)

— w. (2.21)

On the other hand from (e), there exist a, A > 0 and py € N such that
a < log (mp/MI}/p) < A, p > po,
what, by (1.6]) and taking logarithms, amounts to

log(a) + log(p) < log(wm(myp)) < log(p) +log(A),  p = po.

Subsequently, we see that
- Tog(un(my))

Jim = L (2.22)

Observe that wy(t) is nondecreasing, so for every t € [mp_1,m,) we have

p Vm(t) p

n(my) = wo®) = w(mp—1)’

log(wm(myp—1)) _ log(wm(t)) _ log(wm(my))
log(my) = log(t) log(mp-1)

By we know that wy(my) = pB, for every p € N, so from and the first inequalities
we see that limy_oo v (t)/wm(t) = 1/w. Now, using and we conclude from the
second inequalities that lim; o dyi(t) = 1/w, and also that is satisfied. So, and (D))
in Definition[I.2.7)are valid and dy is a proximate order. Moreover, by Theorem [2.1.30]we deduce

that w = w(M).
The value of the different limits or indices involved in the statements is deduced in the course
of the proof. O

Remark 2.2.7. We can easily deduce some necessary conditions for dy being a nonzero prox-
imate order. By Remark 2.1.14] and Remark [2.1.19] if M is a weight sequence such that m is
regularly varying of positive index, the following holds:

(j) m is nondecreasing and we have that

= w(M), (2.23)

(¢) M is strongly regular.
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Condition (k) trivially implies (¢) and, by Remark we deduce that, if (j) is valid, M is
strongly regular and, using Proposition [2.1.10} we see that holds, then (j) implies (k). The
converse implications do not hold, see Example 2.2.24] for (j) and (k) and Example [2.2.26] for (k)
and (/).

It is plain to check that (j), (k) and (¢) are stable for ~. Moreover, if M is a weight se-
quence satisfying any of these conditions and L is another weight sequence with I ~ M, by
Proposition we have that £ ~ m, consequently, I also satisfies the same condition.

In some sense, Theorem can be seen as the analogous version of the equivalent definitions

for strongly regular sequences in Corollary Remarks [2.1.19| and [2.1.39| for the case of
regularly varying sequences.

Example 2.2.8. For the sequences in the Example we have shown that w(M, 3) = a and
w(My) = oo for the considered values of «, 5 and ¢ (see Example . So, Theorem m
shows that for the sequences My g and M, the function dy is not a nonzero proximate order.
On the contrary, one may easily check that (c) or (e) in that theorem hold for M, g whenever

a > 0 and, consequently, dy, , is indeed a nonzero proximate order, although its handling will
be difficult in general (in this sense, see Remark [2.2.16)).

Among the examples at the end of the chapter, only the first one Example [2.2.21] satisfies the
theorem. For the second one, Example[2.2.22] even if dy is not a nonzero proximate order, we are
still able to apply the results from the generalized summability theory, presented in Section (4.1,
whereas the others are examples of pathological strongly regular sequences for which this theory
is not available, but nevertheless the properties of the asymptotic Borel map can be analyzed,
as it will be done in the next chapter.

2.2.3 Regularly varying sequences defined from proximate orders

In the previous subsection it has been shown how to go from weight sequences to nonzero prox-
imate orders. Now, departing from a nonzero proximate order, and for every element V in the

class M F (v, p(t)) given by L.S. Maergoiz [65] (see Theorem [1.2.16| and Definition [1.2.17)), we
will construct a well-behaved sequence V. This procedure is closely related to the one described

in Subsection

Definition 2.2.9. Let p(t) be a nonzero proximate order, v > 0 and V€ MF(v,p(t)). We
define its associated sequence by

v, :=V(p), peN, vo = V(1).
Then V), :== vov1 - --vp—q for all p € N and Vy = 1.

Using Remark|[1.2.8] Theorem [1.2.16](I), (IIT) and (VI), we see that V is a weight sequence and
that v is regularly varying of positive index p := limy_,o p(t). In particular, by Theorem [2.2.6]
dy is a nonzero proximate order and, by Remark V is strongly regular.

We have the following relation between V and the dual sequence D™ (see Definition [2.1.40)
of a weight sequence M admitting p(t) as a nonzero proximate order (see Definition @

Lemma 2.2.10. Let M be a weight sequence admitting p(t) as a nonzero proximate order. Then
for any v > 0 and every V € MF(v, p(t)) we have that v ~ d™.

Proof. Since Ml admits p(t) as a nonzero proximate order, there exist A, B > 0 such that

< A, fortlarge enough.
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By Theorem [1.2.16(VI), there exist C, D > 0 such that

t
D < 40) < C, fort large enough.
wia ()

Then, by Theorem |1.2.16(I) and Remark [1.2.31] wy € ORV and a(wm) = B(wm) € (0,00).
Applying Theorem [2.1.29 we have that there exist F, F' > 0 such that

t
F < 40) < E, for tlarge enough.
Vm (1)
then, evaluating in the natural numbers, v ~ d™. O

Using the notion of conjugate proximate order, defined in Subsection we can associate
with a nonzero proximate order a conjugate sequence.

Definition 2.2.11. Let p(t) be a nonzero proximate order, v > 0 and V € MF(v,p(t)). We
define its associated conjugate sequence by

Up = U(p)7 pe Na U = U(1)7

where U(s) is the inverse of the function V(¢) (see Remark [1.2.18) and U, := uou; - - - up—1 for
every p € N and Uy = 1.

By Theorem [1.2.19] U is a weight sequence and w is regularly varying of positive index 1/p,
where p = limy_, o p(t). Naturally arises the question of the relation between U and the dual
sequence DY of V defined by

dz‘)/ =1p(p), p>myo, d]‘; =1, p<myg
and DY :=1 and D;/ =dydy - -~d2‘7/_1 for all p € N.

Lemma 2.2.12. Let p(t) be a nonzero proximate order, v > 0 and V€ MF (v, p(t)). Then we
have that
vp(s) = |U(s)]| + 1, s>V(1),

where U(s) is the inverse of the function V(¢), and d" ~ wu.
Proof. For s > V(1) we have that
vp(s) =max{j e N; V(j —1) <s}=max{j e N;j —1<U(s)} = [U(s)] + 1.

We see that for s large enough U(s) > 1 and

Hence we conclude that d¥ ~ u. OJ

Remark 2.2.13. By carefully combining the results in Subsections and for t large
enough it is also possible to show that there exist positive constants A and B such that

wy(t)

S0

< B,

confirming what was expected for the conjugate sequence U.
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Finally, Lemmas [2.2.10] and [2.2.12] suggest the next connection between the sequence U, a
weight sequence M admitting p(t) as a nonzero proximate order and its bidual sequence EM (see

Definition [2.1.41)).

Theorem 2.2.14. Let M be a weight function admitting p(¢) as a nonzero proximate order.
Then u ~ e and u ~ m.

Proof. By Lemma , v ~ d" then it exists a > 1 such that
vp(a't) < vgu(t) < vy(at), t > 0.
Consequently, as in the proof of Lemma [2.2.12] for ¢ large enough we have that
Ula™'t) < U@ ') +1 < wg(t) < |Ulat)| +1 < 2U(at).
Using the regular variation of U(t), we observe that

Ulat) _ 1y oy Ul

e U() 7 i5ee U(Y)

then we see that there exist A, B > 0 such that U(at) < AU(t) and U(a~'t) > BU(t) for t large
enough. Hence
BU(t) < vyq(t) <2AU(t) for t large enough.

We deduce that for p € N large enough
Bu, < egﬂ = vau(p) < 24u,,
which implies €™ ~ u and we deduce that u ~ m by Theorem [2.1.42 O

Remark 2.2.15. Other procedures for going from functions to sequences in this context have
been considered, as the one by J. Bonet, R. Meise and S.N. Melikhov [I7] decribed in Re-
mark 2.1.37

In our work [44], Sect. 4.1], inspired by the argument by S. Mandelbrojt [72] and H. Ko-
matsu [52] to recover a sequence from its associated function wy(t), given a nonzero proximate
order p(t), v > 0and V € MF(v,p(t)) we define the sequence

P
V.
M, = igg RY0K p € Np.
We show that M" is strongly regular, making use of the Young conjugate we see that wyyv (t) ~
V(t), finally, we prove that MY =~ U. Since the previous proofs are simpler than the ones in the
paper, this new equivalent approach has been included in the dissertation.

2.2.4 Sequences admitting a nonzero proximate order

Before proving that the weaker conditions (f) and (g) in Theorem introduced at the begin-
ning of the section, which are sufficient for the construction of nontrivial ‘fine’ flat functions in
sectors of optimal opening, are indeed the same, some worthy remarks regarding the admissibility
condition (see Definition are presented.

First, note that the notion of equivalent proximate orders (see Definition [1.2.9)) is more
demanding (apart from the fact that here dy need not be a proximate order). If M admits a
proximate order, dy; verifies all the properties of proximate orders except possibly @, since
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from the definition of admissibility limy_, .o dy(t) = limy—o0 p(t) exists and, by Theorem
equals 1/w(M). Moreover, from the relation between regular variation, O-regular variation and
proximate orders (see Lemma and Remark, we deduce that if Ml admits a proximate
order, then wy(t) € ORV.

Remark 2.2.16. The admissibility condition is interesting even if dy is a proximate order. For
instance, if we consider the sequences M, g in Example with a > 0, for large ¢t we have

et log™P/2(t) < wm, ,(t) < it/ log =P/ (t)
for suitable constants c1,co > 0 (see [98, Example 1.2.2]), then

log(c2) < log(t)(dm, 4(t) — pa,s(t)) <log(c1) for t large enough

(see Example for the definition of p, g). This shows that the proximate order po g(t) is
admissible for M, g, and therefore, for our purposes, it may substitute du, , (t) whenever it is
convenient. In particular, when working with Gevrey ultraholomorphic classes one may consider
the constant order p,o(t) = 1/a, as expected.

As a consequence of the results in the previous subsection, we can show that the weaker
conditions are equivalent.

Theorem 2.2.17. Let M be a weight sequence, then the following conditions are equivalent:
(f) There exists a weight sequence L such that L ~ M and df,(¢) is a nonzero proximate order,
(g) M admits a nonzero proximate order.

Proof. (f) = (g) Since . & M, there exist positive constants A and B such that for every
t € (0,00) one has

wL(At) S wM(t) S CU]L(Bt).
Since dy(t) is a nonzero proximate order, wy (t) = t%(®) is regularly varying by Lemma [1.2.12
and we deduce that there exist positive constants C' and D such that

WM (t)
wy(t)

Cc< <D for ¢ large enough.

Finally, taking logarithms, we conclude that M admits dy, as a nonzero proximate order.

(g) = (f) Let p(t) be the nonzero proximate order that M admits. By Theorem [2.2.14] for any
v > 0 and every V. € MF(v,p(t)), we have that m ~ w where u is the regularly varying (of
positive index) nondecreasing sequence defined in terms of the inverse function U(s) of V(t) (see

Definition [2.2.11)).

Applying Theorem [2.2.6] we know that dy is a nonzero proximate order and, by Proposi-
tion [1.1.15] we deduce that U ~ M. g

Remark 2.2.18. The implication (a) = (f) (see Theorems [2.2.6| and [2.2.17) is obvious, while
Example shows that the converse fails.

It is also immediate that (f) = (j) in Remark because, with the notation of (f), if
dp, is a proximate order, then L satisfies (j) and so M also satisfies (j) since it is stable for ~.
Again, the converse implication (j) = (f) fails, as Example illustrates. Consequently,
the sequences M, and My g do not admit a nonzero proximate order, since they are not strongly
regular. Among the strongly regular ones, for those appearing in applications (f) and even (a) are
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valid, but extremely pathological examples (see Examples [2.2.23] [2.2.24] and [2.2.26)) of strongly
regular sequences not satisfying (f) will be constructed below.

Adding the information in Remark (a) = (f) = (j) = (k) = (¢), and the arrows can
not be reversed.

The next representation result, analogous to Theorems [1.2.38| and [1.2.46] provides a char-
acterization of the weight sequences that satisfy (f), only in terms of their structure, i.e., not
depending on the existence of another weight sequence L or a nonzero proximate order p(t),
closing an open question set in [44] Remark 4.15].

Theorem 2.2.19. Let M be a weight sequence, then the following conditions are equivalent:
(f) There exists a weight sequence L such that I ~ M and df () is a nonzero proximate order,
(g) M admits a nonzero proximate order,

(h) There exist w € (0,00) and bounded sequences of real numbers (bp)pen, (7p)pen such that
(Mp)pen converges to w and we can write

p+1
my = exp bp+1+2% , D€ Ng.
j=1

In case the previous holds, limy_, dp(t) = 1/w = 1/w(M).

) < (g) Theorem [2.2.17]

(f) = (h) Applying Theorem we know that € = (£,_1)pen is regularly varying of index
w = w(L) = w(M). Then by the Representation Theorem [1.2.38] there exist sequences of real
numbers (¢p)pen and (1p)pen, converging to ¢ € R and w, respectively, such that

Proof. (f

p+1

lp = exp cp+1+z%,j , D€ Np.
j=1

By Remark L satisfies (j), then it has (mg) and, by Proposition |1.1.20] we deduce that
m ~ £. This means that there exists a bounded sequence (hy)pen such that

p+1
ni
my = exp(hp1)lp = exp | hpy1 + cpp1 + Z 7] , p€No.
j=1

Writing by, := hy, + ¢, for p € N, we conclude that (h) holds.
(h) = (f) We define the sequence

Since limy_o 1p = w € (0,00), we fix € € (0,w) and we get po € N such that 7, > w —e > 0 for
P > po, this implies that
tpt+1

= exp(np+2/(p+2)) > 1.
p
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We consider
by =1y, p>Dpo, by =tp,, P <po

Then by the Representation Theorem [1.2.38] we know that ¢ is regularly varying of index w.
Hence, by Lemma [1.2.40] then £ also is. Moreover, by construction, £ is nondecreasing and, from

the regular variation of positive index, one can easily deduce that lim, . ¢, = oo, so L is a
weight sequence and, by Theorem [2.2.6] dj, is a proximate order of index 1/w.

Finally, we observe that

m m
Tp = 2 - exp(bp+1)7 p 2 Po,
p t

P
and we conclude that m ~ € because (bp)pen is bounded, then L. ~ M by Proposition|1.1.15, [

Remark 2.2.20. If M is a weight sequence satisfying (h), we can obtain more information from
the representation formula, concretely, since m is nondecreasing for every p € Ny we have that
bp+1 — by + 11/ (p+ 1) > 0 should hold. Moreover, as we already know by Remark [2.2.18] but
now directly from Theorem [I.2.46] we have that m is O-regularly varying and

w = f(m) =y(M) = p(m) = wM) = p(m) = a(m) € (0, ).

2.2.5 Examples

In this subsection five examples of pathological regularly varying and O-regularly varying se-
quences are provided. Hence, by the connections to weight sequences described in this chapter,
we can infer some properties for Ml when these sequences are assumed to be the corresponding
sequence of quotients m = (mp—1)pen, clarifying several open questions. We have presented
some of these examples in our papers [43, 44], where most of the computations, included here,
were skipped.

The examples below, ordered attending to their regularity, are constructed by means of dif-
ferent techniques. Specially relevant is the one employed in Examples [2.2.21] 2.2.23] and 2.2.26|
inspired by the Representation Theorems [1.2.38] and [1.2.46] If m has the appropriate struc-
ture provided by these theorems several conditions can be automatically checked, systematically

producing new examples (see Remark [2.2.27]).
In these representations, the partial sums of the harmonic series play a fundamental role, one

may write the p—th partial sum by H, := i:l 1/k, and we know that
H, =log(p) + v+ ¢y, ~ = Euler’s constant, pli_glo g, = 0. (2.24)

Before knowing Theorem [2.2.6] J. Sanz suggests in [88], Corollary 4.10] that the existence of

lim plog <mp+1> , (2.25)
m

p—0o0 D

which implies Theorem M(e), could be equivalent to dy; being a nonzero proximate order.
This first example shows this sufficient condition is not necessary.

Example 2.2.21. We consider the sequence M defined by the sequence of its quotients as
mo=1,m; =eand forall pe N

_ 1 _ 1/(2p+1
Moy = €/Pmg, 1, mapr1 = /P my

The following are valid:
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(i) M is a strongly regular sequence,
(ii) m is regularly varying of index w = 3/2 and, by Theorem dyp is a proximate order,

(iii) m is not ‘smooth’ in the sense of Theorem [1.2.41] that is, it does not satisfy

3/2 1
My g 3 () 2 p s oo,
P

(iv) m does not satisfy (12.25)).

Proof. The sequence (mp)pen, is nondecreasing, then M is (Ic). We can write

1 1
—H,+ H N.
2p+1+2 p+ 2ps pe

1
log(map) = §Hp + Hyp, log(maop+1) =

Thanks to the well-known behavior of the partial sums of the harmonic series, we show that

lim 2 — ¢3/2,
P—00 MMy

for every £ € N and ¢ > 2, which, by Theorem [2.2.6] implies that m is regularly varying and by
Corollary [2.1.6] that M is strongly regular. However, we observe that

Mapt _gyzprt gy L (L » 88 p— 00,
may 2p+1 D

map 1/ 2 1

— L —elP =14+ 40>, as p — 00,
map—1 2p p

then (iii) is true. With a similar computation, we see that

lim 2plog (mQPH) = lim 2plog <el/2p+1> =1,
pP—00 map pP—00

lim (2p — 1) log ( M2p ) = lim (2p — 1) log (el/P) =2,
p—>00

map—1 p—00

and (2.25)) does not hold. O

The second example shows that the equivalent conditions in Theorem 2.2.6] are stronger than

the ones in Theorem [2.2.17| (see Remark [2.2.18)), that is, (f) does not imply (a) in general. The
idea is to construct a nondecreasing O-regularly varying sequence that is not regularly varying

but that is equivalent for ~ to (p!)pen, -

Example 2.2.22. Let M be defined using the sequence of quotients m. We put mo = m; =1,
mo =ms3 = 2 and my = ms = mg = my = 6; for every k € N and 221 < p < 22°7'+1 we define
m,, as follows:

Jj—1

k 92\ 2F-1 ks ki
my =223 5 , 22t < p< P 1 j=1,2,...,2%

The following are valid:

(i) M is a weight sequence,
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(ii) m is not regularly varying and dy is not a nonzero proximate order,

(iii) There exists £ nondecreasing and regularly varying of index w = 1 such that £ ~ m.
Consequently, from Theorem [2.2.6 df, is a nonzero proximate order and, by Theorem [2.2.17
M admits dy, as a nonzero proximate order,

(iv) m is O-regularly varying, with

so it is also strongly regular.

Proof. (i) Since mg = 12, in order to obtain the property (Ic) it is enough to show that (my),>s
is nondecreasing. For every k € N there are three possibilities:

L If22 i <p<p4+1<22"H+l _1for j=1,...,2% we have that Mmpt1/my = 1.

2. If p=22"H+ _1forj=1,...,2¥ — 1, we have that myy;/m, = (22°/3)"/@" =D which is
greater than 1 since k € N.

gk+1 gk+1

3. If p=22"""+1 _ 1 we have that my,.1/m, = 22 '3/22""" = 3,

k k+1 k .
Moreover, we deduce that for 22"t < p <227+ my, > mp,, = 2273, s0 limy, 00 ), = 00.

(ii) Next we analyze the quotients ma,/m,. By definition, for any 2245 < p < 224l 1 we
have that 22" +i+1 < 2p < 22" +i+2 _ 1. We distinguish two cases:

1. 122" < p < 92" 41 _ 1, we have that mgp,/m, = 3.
2. 1f 22+ < p < 92" HiH _ 1 for j =1,...,2% — 1, we have that mg,/m, = (22*/3)1/2*~1),

We observe that
92% /(2% ~1)
P U@

From both cases, we have that

m m
1 <2=liminf —2 < limsup —2 = 3 < .
P—00 My p—oo My

Since the limit lim,_,~ map,/m, does not exist, condition (c¢) in Theorem is violated, so m
is not regularly varying and dp(t) is not a nonzero proximate order.
(iii) Next, we are going to see that m ~ I, where the sequence I = ({))pen,, with ¢, = p+ 1 for
every p € Ny, corresponds to the sequence of quotients of the Gevrey sequence of order 1, i.e.,
(p!)peny, which is nondecreasing and regularly varying. For every p > 8 and there exist k£ € N
and j € {1,2,...,2%} such that 22+ < p < 22"+3+1 _ 1 and we have that

92*3 (22’“ /3) #

22*3 (22’“ /3) #

mp
ks < < ks
9228 +j+1 ~—p ~ 928+
Then i . . i
PLE N L 2k_j -2
32F—192F 1 ! < Mp < 321@_{2;@_1‘
p
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Since j € {1,2,...,2F}, we see that
22 <™ <3
p
from where we conclude that m ~ £.

(iv) This follows immediately by the stability of orders, Matuszewska indices, O-regular variation
and strong regularity for ~.
O

The third example shows that condition (j) in Remark is weaker than the equivalent
conditions (f), (g) and (h) in Theorem The construction is based on Example [1.2.33|from
which it is possible to build a nondecreasing O-regularly varying function with its Matuszewska
indices equal to 1 that is not equivalent in the sense of Remark to any regularly varying
function.

Example 2.2.23. We consider the function f : [1,00) — (0,00) in Example [1.2.33] we define
g(x) := zf(x). From the properties of f, we observe that g satisfies the analogous ones:

(i) g is nondecreasing and continuous,
(i) A < glow(A) < g™ (A) = Xexp((log(A))/?) for every X > 1,
(iii) g € ORV and B(g) = n(g) = p(g) = a(g) = 1,

)

(iv) There do not exist A > a and measurable and bounded functions d,§ : [A,00) — R with
lim, o0 £(x) = 1 such that

o) e (i) + [Tew ™), aza

what implies, by Theorem [1.2.4] that g is not regularly varying. Furthermore, it does not
exist h € RV and C > 1 such that

C~lh(z) < g(x) < Ch(z), x> 1.

We can consider the sequence my, := g(p) for p € N and mg = g(1). Then

(i) m is nondecreasing, so M is (Ic),
(ii) m is O-regularly varying and S(m) = u(m) = p(m) = a(m) = 1, so M satisfies (j),

(iii) Tt does not exist £ with £ ~ m such that £ is regularly varying, which, by Theorem [2.2.17
and Proposition [1.1.20} implies that M does not satisfy (f).

Proof. (i) Immediate.

(ii) Since g is nondecreasing and g € ORV, by Lemma [2.1.34] we see that there exists C > 1
such that for all z > 1, C~lg(|z]) < g(z) < Cg(|z]). Using that g € ORV, B(g) = u(g) =
p(g) = a(g) = 1, Remark [1.2.31] Theorem and the definition of indices and orders for
sequences, we conclude that (ii) is valid.

(iii) Assuming that the contrary is true, by Theorem |1.2.37|and Lemma [2.1.12] this would mean
that fe(z) = ¢, is regularly varying of index p = 1 and that there exists D > 1 with

(DC) ™ fe(x) < C7' fn(@) < g(2) < Cfm(z) < CDfelw), x> 1,

which contradicts property (iv) of g.

Universidad de Valladolid



100 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

In the fourth place, we present an example of a sequence that is strongly regular for which
the lower Matuszewska index and the upper and lower orders coincide (then (k) holds) but the
upper Matuszewska index takes a different value ((j) is violated).

Example 2.2.24. Let M be defined using the sequence of quotients m. The counstruction is
similar to the one in Example [2.2.22] We set mg = m; = 1 and me = 2. For each k£ € Ny,
we consider the intervals AF := (22 ,22k+1] which we divide in 2¥ subintervals. We put [ jk =

(22k+j, 22k+j+1] NNfor 0<j <2 —1. Forall 0 < j < k — 1 we define m,, as follows:
my = dmyy,, = 4122 pe Ik
for every k < j < 2F — 1 we write 7, = (2¥ — 2k)/(2% — k) > 0 and we set
my = 2mp,, = 207K DTR92R o, o Tk,
For all k£ € N, we observe that
Mok = 92" and Mook, = 92" 42k

In some sense, one may say that the sequence is oscillating between M g and My ;. We can show
that

(i) M is strongly regular,
(ii) p(m) = p(m) =1, so (k) holds,
(iii) B(m) € (0,1] and a(m) > 2, then (j) is violated.

Proof. (i) The sequence M is a weight sequence, since m is nondecreasing, and lim,_, m, = coc.
By definition, for any p € I ]k we have that 2p belongs to the adjacent interval. We distinguish
two cases:

1. prEI]’?“forOgjSk—2orj:2k—1,wehavethatmgp/mpzél.
2. Ifpe I]’-§ for k —1 < j < 2F — 2, we have that Map/my = 27k,

We observe that limy_,o, 7 = 1. From both cases, we have that

m ) m
1 <2=liminf —2 < hmsupﬂ =4 < o0.
p—0 mp pP—00 mp

Applying Corollary [2.1.6] we see that M is (mg) and (snq).
(ii) We are going to show that

lim log(rmy) =
oo log(p)
which implies that p(m) = p(m) =1. Foral 0<j<k—1,ifp€ I]]-g we get

)

(7 + 1) log(4) + 2% log(2)

(7 + 1) log(4) + 2 log(2) - log(m,)
(2% + j) log(2)

(28 +j+1)log(2) — log(p)

Since 0 < j < k — 1 we have that

<

2 + 2k _ log(my) _ 2k + 2k
28 +k — log(p) — 2

(2.26)
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For every0§j§2k—k—1,ifp61}j+j then

(j4+1) -7k - log(2) + (2F + 2k) log(2)

(5 +1) - 7 - log(2) + (2" + 2k) log(2) _ log(my)
(28 + k + 7) log(2) ’

(28 + k + 7+ 1)log(2) ~— log(p)

<

or, equivalently, we see that

E@2F —k—7—1) _ log(my) _ k2F —k—j—2)+2F
2k +k+j+1)(2F—k) ~ log(p) — @F+k+j)2F—k)

Since 0 < j < ok _ o — 1, we deduce that

log(my) E(2F -k —2)+2F
1< <1 . 2.27
= Toglp) © 22k — 2 (220
By (2.26) and (2.27), we conclude that lim,_, log(m,)/log(p) = 1.
(iii) By Remark and Proposition [2.1.18} we can show that
0 < B(m) < 1= p(m) = p(m) < afm) < oo,
hence only a(m) > 2 needs to be verified. If o < 2, we take p = 922" and ¢ = 22"+,
k k k
Mok (22 +k)a _ 22 (22 +k)a _ a2k
Mgk 1k (22k>a 22"+2k (22k)a .
Therefore, since limy_,o(ov — 2)k = —o0, we deduce that m,/p® is not almost decreasing for all

a < 2 and we conclude, by using Proposition [2.1.10| that a(m) > 2.

Moreover, a tedious but simple computation, using the almost increasing and almost decreas-
ing characterization of f(m) and a(m), leads to f(m) = 1 and a(m) = 2.
O

Our last example is a strongly regular sequence for which the values f(m) = y(M), u(m) =
w(M), p(m), a(m) are mutually distinct. Regarding the implications for the corresponding
ultraholomorphic class presented in the next chapter, this will mean that the asymptotic Borel
map is neither surjective nor injective for sectors whose opening is 7y with v € (y(M),w(M)).
The Representation Theorem for O-regularly varying sequence plays a key role and, related to
it, appears the notion of Riesz summability.

Definition 2.2.25. [18, Sect. 3.2| A numerical sequence (si)gen of complex numbers is said to
be logarithmic summable or Riesz summable of order 1, if there exists some A € C such that

. (2.28)

el e

. 1 & si 2
plggo Fp Z e A, where H, = ;

This method is regular, that is, if the ordinary limit exists, then the limit in also exists
and with the same value. The base of the example is the construction of a sequence of positive
real numbers bounded away from 0 and oo that is not Riesz summable of order 1. We were not
able to find such an example in the classical literature and the reader is referred to the book
of J. Boos [18] for further details regarding the summability methods. In Example it is
hidden the use of a sequence that is 2 on the even positions and 1 in the odd ones, which was
proved to be Riesz summable with sum 3/2. Hence the next example requires more elaboration
to make the logarithmic means divergent.

Universidad de Valladolid



102 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

Example 2.2.26. We define M by the sequence of its quotients,

p
mo = 17 my = efp/pmp_l = exp (Z 6]5) , pE N.
k=1

We consider the sequences of subindices
kn = 23n < Qgn = k‘?L = 23"2 < kn+1 = 23n+17 n € Ny,
and we choose the sequence (£;)7°; as follows:

&1 =8 =2,
=3, if ked{k,+1,...,q,},n € Ny,
& =2, if k‘E{qn—l-l,...,kJn_H},nENo.

The following hold:
(i) M is strongly regular, that is, (¢) is valid.
(ii) M does not satisfy (k), i.e., the limit in (2.23]),
Jim log(my)/ log(p),
does not exist. Consequently, neither (j), nor (f), nor (a) holds.

(iii) f(m) =~y(M) =2, p(m) = w(M) =5/2, p(m) = 11/4 and a(m) = 3.

Proof. (i) From the definition we deduce immediately that mpyi1 > my, for p € Ny, then M is
(Ic). For all p € N we have that

2p 1 - 2p & 2p 1
w2 psgrmen| 2 g sew(s X g
k=p+1 p k=p+1 k=p+1

Using the asymptotic expression (2.24) for the partial sums of the harmonic series, for every
p € N we have that

exp (21og(2) + 2e9p — 2¢p) < % < exp (3log(2) + 3e2p — 3¢p) -
P

From these inequalities and using Corollary we deduce that M satisfies (mg) and (snq),
therefore M is strongly regular, which can be also alternatively shown from Theorem and
Remark 2.1.79

(ii) Observe that M verifies (2.23) if and only if the sequence

P
Z & pen,
log k:l k

is convergent (in other words, precisely when the sequence ()72, is Riesz summable, see Defi-
nition [2.2.25] m We will see that (§;)72, is not Riesz summable, more precisely we will show that

) 11
lim t, = =5 lim ¢, = R (2.29)

n—o0 n—oo
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We have the following relations:

log(k H, —H t 3 —
tg, = log(kn) n)tkn yp3ten =~ e Theoy 04 gfan — Cha (2.30)
log(gn) log(gn) 2 log(gn)
2t 2 €k —€
t ="n 4 2 g Al Tin 2.31
kn+1 3 + 3 log(kn+1) ( )

Using (2.30) and ([2.31]), we see that

tr €qn — €k 2 €kni1 — Eqn tr 5
t =" 4+14+2"—" 4 42" = 0 , 2.32
bt =g T loglan) 3 log(kerr) 3 30" (232)
where &, := (2e,,, + €q, — 3¢k, )/ log(kny1) noting that lim, .o &, = 0. Given ¢ > 0, there
exists ng € N such that |g,| < € for every n > ng. We consider the sequences (sp)n>n, and
(Un)n>n, recursively defined by

{ Sp41 =58n/3+5/3+¢€ { Upt1 = Up/3+5/3—¢

Sno = tkn() uno = tkn()

If ty,, <5/2+3¢/2 (resp. ty,, > 5/2+3¢/2) using induction, for every n > ng, we deduce that
sn <5/243¢/2 (resp. sy > 5/243¢/2). Then, (sp)n>n, is nondecreasing (resp. nonincreasing)
and in both cases we prove that lim, o $, = 5/2 + 3¢/2.

Analogously, we see that lim,,_,oc u, = 5/2—3¢/2. Since Sy, = Up, = tky, » Using that len| < €
for every n > ng we prove by induction employing (2.32)) that

Up < Tk, < Sy n 2 ng.
Taking limits, we get
) 3€<1, e < i ; <5+35
— — — < limin imsu -+ —.
2~ 2 = e e S AP =5 T

Since € > 0 is arbitrary, we conclude that lim,,_,« tx, = 5/2. In a similar way, we also can show

that lim, o t4, = 11/4. Using (2.30) and (2.31)), we see that

tqn

1 6kn+1 - €Qn
tonis = 3" T3+ Ty

=4 — 45,
log(kn+1) "

+ § Eqn+1 — Eknt tqn 11 =
2 log(gn+1) 3 6

where &, 1= (3€gns1 — Eknyr — 2€4,)/ 10g(gn+1) and we conclude, reasoning as before.

(iii) Studying the monotonicity of the sequence (tp),>1, we will show that

. . 5 . . 11
wM) = p(m) = hprggjlftp = r}l—>n<>10tk" =5 p(m) = hlr)ri)solip tp = nh—>nolotq" = (2.33)

If we show, for n large enough, that ¢, < t,.1 for p € {kpn,...,q, — 1} and t, > ¢, for

p € {qn,- .., knt1 — 1}, using (2.29)), we obtain (2.33) . We observe that

log(p) €p+1 _ St (p+ 1) log(p)ty, (2.34)

T logp+ 1) Gt Dlogp 1) log(p+1)(p+ 1)

tp+1

Then
1

T log(p+ )(p+1)

tpr1 —tp (&p+1 — (p+1)log(1+1/p)t,) . (2.35)
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First we will show that there exists n; € N such that for every n > nj, we have that
3
tp <3 — % forall pe{kn,...,q—1}. (2.36)
P

Since limy, o0 tg,, = 5/2, there is ny € N such that for every n > n; we have t;, <5/2+5/16 =
45/16. Since k1 = 8, for every n > n; we have that

th, < 45/16 =3 — 3/(2k1) < 3 — 3/(2ky,).

Reasoning by induction if we assume that ¢, < 3 —3/(2p) for a certain n > n; and a certain
p € {kn,...,qn — 1}, s0 {1 = 3, and using (2.34) we see that

log(p + 1)(p + Dtpr1 =3+ (p+ 1) log(p)t, < 3+ (p+ 1) log(p) (3 - ;;) :

Hence it suffices to prove that

3+ (p+ 1) log(p) (3 _ ;;) <log(p+1)(p+1) <3 _ 2(;’“)) .

This happens if and only if
2p + (p+1)log(p)(2p — 1) < plog(p+1) (2p+1),

or, equivalently, if
2p < (2p” +p) log(1 + 1/p) + log(p).
Since z/(1 + x) < log(1 4 z) for every & > 0, we see that the last inequality holds for every p
large enough which proves (2.36)). Using (2.35)), we see that t, < t,4+1 if and only if
Epr1 > (p+ 1) log(1+ 1/p)ty.

We observe that 1 1
(p+ 1) log(1+1/p) =14+ — — — +o(1/p?).

2p  6p?
Consequently, there exists neo € N such that for every p > k,,,, we have that
(p+1)log(1+1/p) <1+ A~ —
b 2)08 P) =T o, T 192

By (2.36) for every n > ng := max(ni,n2) and p € {kn,..., ¢, — 1} we have that

ty(p+1)1 1—1—1 <3 5 1—1—1 ! =3 1+1<3—£
PP 08 p 2p 2p  12p2) 7 p2 Tgpt T M
Consequently, t, < t,11 for every n > ng and p € {kn,...,q, — 1}. Analogously, we will show
that for n large enough, and p € {qn, ..., kn+1 — 1} we have that

1

tp > 2+ —. (2.37)

p
Since lim;, o0 t4, = 11/4 there exists ng € N such that ¢, >2+1/64=2+1/q1 > 2+ 1/g, for
every n > ngz. Assume t, > 2+ 1/p for a certain n > n3 and a certain p € {qn,...,knt1 — 1}
by (2.34) we have that

log(p + 1)(p+ Dtpy1 =2+ (p+ 1) log(p)t, > 2+ (2 + 1/p)(p + 1) log(p).
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Then it is enough to prove that

24 (24 1p)p+ 1)logp) > log(p-+ Do+ 1) (24 7).

or, equivalently,
2p > (2p° + 3p) log(1 + 1/p) — log(p).

Since log(1+1/p) < 1/p, the last inequality is always true for p large enough, which proves (2.37)).
We observe that for n > ng > nz and p € {qn, ..., kntr1 — 1} we have that

tp(p+1)log(p+1) > 2+ 1/p)(p+1)log(p+1) > (2+1/p)(1 +1/(3p)) > 2 = &y

We conclude that ¢, > ¢, for n large enough and p € {qn,...,kn+1 — 1}. Using these mono-
tonicity properties of the sequence (t,)p>1 we conclude that
(m) = 2 = lim #, = liminft, < lmsupt, — lim £, — — = p(m)
plm) = 5 = Y 1y, = Haiulty < T supty = L ty, = 7 = p(m).
Finally, let us see that we have §(m) = (M) = 2. We will show that m,/p® is almost increasing
if and only if o € (0,2]. We have that m,/p® is almost increasing if and only if there exists
M > 1 such that for every p € N and all £ > p we have that
my, {4

< M,
my p

or, equivalently, using (12.24)),

m
ﬁj exp(a(H, — Hp) — afeg — gp)) < M.

Since lim;,_, €, = 0, using the definition of m,, we have that m,/p® is almost increasing if and
only if, there exists M > 1 such that for every p € N and all £ > p we have that

L
| 3 S <m

k=p+1

If o € (0,2], we observe that, for every k € N, a — & < 0. Then for every p € N and all £ > p

we see that
¢

o 3 S c1=m
k=p+1

If o > 2, we see that for every n € N and every k € {¢, + 1,...,kn+1} we have that o — &, =
o — 2> 0. Then taking p = ¢n = 2°"2 and £ =k, = 23" and using again (2.24) we sce that

exp | D0 SR ) = exp(a = 2)(3" 10g(2) = £, — 24,

but the right hand side is unbounded as n — oo, then m,/p® is not almost increasing. Conse-
quently, m,/p® is almost increasing if and only if a € (0, 2] and, by Proposition [2.1.10} it means
that f(m) = 2. Similarly, we see that a(m) = 3.

O
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Remark 2.2.27. In a more general framework, given £ : [1,00) — (0, 00) locally integrable we

can consider the function
* d
s =ew ([Te ), e
1 u

that is a nondecreasing function.

If € is bounded, then w is automatically O-regularly varying, by Theorem[1.2.25] In particular,
given four mutually distinct positive values 0 < 8 < p < p < a < 00, for all @ > b > 1 we define

[ @, for te[29", 20"
§t) = { B, for te [Qb“n,QanH).

With a technique similar to the one employed in the last example, in which « = a = 3 and
8 = b =2, one can prove that

b—1Da+(a—0b)p
a—1

_a(b—1)a+ (a—b)B
) p(m) - b(a o 1) )

p(m) =

then taking
a—p a.:bp—ﬁza—up—ﬁ
a—p p=0 a—pu—p

we obtain
Blw)=8, ww)=p pw) =p aWw) =«

Finally, for the corresponding nondecreasing sequence, that is, m,, := w(p) for p large enough,
since w € ORV, by Lemma [2.1.34] we know that

Blm) =5, pm)=p, pm)=p, a(m)=a.

In a similar way, one can construct sequences for which v(M) = S(m), w(M) = p(m) €
(0,00), but that a(m) = oo. For instance, for all ¢ > 4 and n > 2 we can define
. 2, for te [2A(=DY? 9(nh?y
SO=0 0 g te 22 922,
The corresponding sequence M is a (dc) weight sequence with v(M) = 2, w(M) € (0,00) and
a(m) = co.

Such an example can also be constructed indirectly by considering the dual sequence of the
sequence M in [57, Example 3.3| introduced before in Example [2.1.20, For this sequence, we
have that f(m) = 0, u(m) = 2, p(m) = 3 and a(m) = 4, so since m is O-regularly varying by
Theorem [2.1.43| for the dual sequence D™ we have that 3(d) = 1/4, u(d) = 1/3, p(d) = 1/2 and
a(d) = oo.

These sequences are not strongly regular (see Remark [2.1.19]), but nevertheless the values
~(M) and w(M) are meaningful, as it will be explained in the next chapter. Unfortunately, as it

will be mentioned in the following chapter, not much information is available for the surjectivity
of the asymptotic Borel map in these kind of situations.
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Chapter 3

Injectivity and surjectivity of the
asymptotic Borel map

From the sequences of positive real numbers considered in the previous chapters we will define
classes of holomorphic functions in unbounded sectors of the Riemann surface of the logarithm.
In this context, the study of properties of the asymptotic Borel map, sending a function f into its
asymptotic expansion, appears as a natural problem. The injectivity and surjectivity of the Borel
map will be examined in three instances: in Roumieu-Carleman ultraholomorphic classes and in
classes of functions admitting (uniform or nonuniform) asymptotic expansion at the origin. It
will be shown that the solution depends on the opening of the sector, injectivity is possible if
the sector is wide enough whereas surjectivity is only attainable in narrow regions. This issue is
closely related with the summability theory presented in the next chapter: injectivity provides
uniqueness and surjectivity existence of the sum of a formal power series.

Injectivity had been solved in two cases by S. Mandelbrojt and B. Rodriguez-Salinas in the
1950’s, respectively, and we completely solve the third one by means of the theory of proximate
orders (see Theorem [3.2.15). Sanz’s growth index w(M) turns out to put apart the values
of the opening of the sector for which injectivity holds or not. The first section ends with
Theorem in which it is proved that the Borel map is never bijective as an outcome of the
injectivity theorems.

In the case of surjectivity, only some partial results were available by J. Schmets and M.
Valdivia and by V. Thilliez at the very beginning of this century, resting on results from the
ultradifferentiable setting and disregarding questions about the optimality of the opening of
the sector, that was only established for the Gevrey case M, = (p!*)pen, . This last author
introduced the growth index (M) for this problem. We considerably extend here their results,
proving that (M) is indeed optimal in some standard situations, for instance for strongly regular
sequences, putting now apart the values of the opening of the sector for which surjectivity holds
or not.

From the information in Section we know that for strongly regular sequences the value of
theses indices w(M) and (M) is generally different. However they coincide for a large class, the
ones admitting a nonzero proximate order (see Section[2.2)), which contains most of the sequences
appearing in the applications.

The results gathered in this chapter can be found in [4§].
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3.1 Asymptotic expansions and ultraholomorphic classes

In this section, we introduce three different classes of ultaholomorphic functions. We will study
their relations and their elementary properties. Next the asymptotic Borel map will be defined
from these classes into the algebra of formal power series. Finally, some helpful notation regarding
the injectivity and surjectivity of the Borel map will be considered.

3.1.1 Basic definitions

The functions appearing below are defined in regions of the Riemann surface of the logarithm
R, some of them already introduced in the first chapter. We consider bounded sectors

S(d,v,r) :={z € R:|arg(z) — d| < %, |z| <},
respectively unbounded sectors
S(d,y) :={z e R:|arg(z) —d| < % ,

with bisecting direction d € R, opening vm (v > 0) and (in the first case) radius r € (0,00). For
unbounded sectors of opening 7 bisected by direction 0, we write S, := S(0,7).

In some cases, it will also be convenient to considered more general domains. A sectorial region
G(d,~) with bisecting direction d € R and opening v 7 will be an open connected set in R such
that G(d,v) C S(d,v), and for every 8 € (0,7) there exists p = p(f) > 0 with S(d, 8, p) C
G(d,~). In particular, sectors are sectorial regions. If d = 0 we just write G.

A bounded (respectively, unbounded) sector T is said to be a proper subsector of a sectorial
region G (resp. of an unbounded sector S) , and we write T < G (resp. T =< S), if T C G
(where the closure of T is taken in R, and so the vertex of the sector is not under consideration).

For an open set U C R, the set of all holomorphic functions in U will be denoted by H(U).
Finally, C][z]] stands for the set of formal power series in z with complex coefficients.

As in the previous chapters, M = (M),),en, is a sequence of positive real numbers with
My = 1. We consider the following three classes of functions defined for arbitrary sectorial
regions, so also for sectors.

Definition 3.1.1. Given a sectorial region G, we say f € H(G) admits the formal power series
f=3"panz" € C[[z]] as its M—asymptotic exzpansion in G (when the variable tends to 0) if
for every T < G there exist Cp, A7 > 0 such that for every p € Ny one has

p—1
‘f(z) - Zanz"‘ < CrALM|2|P, zeT.

n=0
We will write f ~ym f in G, and Ap(G) will stand for the space of functions admitting
M—asymptotic expansion in G.

Definition 3.1.2. Given a sectorial region G, we say f € #(G) admits f = Yoo anz" € C[[2]]
as its uniform M—asymptotic expansion in G (of type 1/A for some A > 0) if there exists C' > 0
such that for every p € Ny one has

p—1
‘f(z) - Zanz”‘ < CAPM,|zP, zeG.

n=0

We will write f ~j fin G, and Af{ﬂ(G) stands for the space of functions admitting uniform
M—asymptotic expansion in G (of some type).
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Definition 3.1.3. Given a constant A > 0 and a sectorial region G, we define

A a(@) = {f €HEG) : flgga = sup HOEN_ oy
’ ’ 2€G,peNy App!Mp

(An,a(G), || llyg.a) is a Banach space, and Aw(G) 1= Ua>oAm,4(G) is called a Carleman ultra-
holomorphic class of of Roumieu type in the sectorial region G.

The functions considered in this chapter are complex-valued, but most of the following results
are also valid if they take values in a complex Banach algebra. From the conditions introduced
in Chapter [I] for the sequence M we obtain some elementary properties of the classes.

Remark 3.1.4. For any sequence M, the classes Ay (G), Al (G) and Ay (G) are complex vector
spaces. If M is (Ic), they are algebras and if M is (dc), they are stable under taking derivatives.

Moreover, if Ml & L the corresponding classes coincide.

In our results we will mainly consider sectors but some of them can be extended to sectorial
regions, specially when dealing with the class Ay (G). For a sector S, bounded or not, since the
derivatives of f € Am, 4(S) are Lipschitzian, for every n € Ny one may define

f®0):= lim f®(z)ecC. (3.1)

z€8,z—0

We recall now the relation between this Roumieu-Carleman ultraholomorphic class and the
concept of asymptotic expansion. that is obtained as a consequence of Taylor’s formula and
Cauchy’s integral formula for the derivatives (see [7, [3I] for a proof in the Gevrey case, which
may be easily adapted to this more general situation).

Proposition 3.1.5. Let M be a sequence, S a sector and G a sectorial region. Then,

(i) if f € Ap.a(S) then f admits f := > peNo ]%f(p) (0)zP as its uniform M—asymptotic ex-
pansion in S of type 1/A where (f)(0)),en, is given by (B:1). Consequently, we have
that

Aui(S) € Aj(S) S Aw(S).

(ii) f € Am(G) if and only if for every T < G there exists A7 > 0 such that f|p € Ay a, (T).
In case any of the previous holds and f ~p Z;io apz?, it is plain to check that for every
bounded proper subsector T of G and every p € Ny one has

(p)
oy =ty 1)
ieT p:

and we can set fP)(0) := play.

(iii) if S is unbounded and 7" << S, then there exists a constant ¢ = ¢(7,S) > 0 such that
the restriction to T', fr, of functions f defined on S and admitting uniform M—asymptotic
expansion in S of type 1/A > 0, belongs to Anca(T).

(iv) if f € Ap(G) its M—asymptotic expansion f is unique.
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3.1.2 The asymptotic Borel map

In this context, it is natural to consider the following map.

Definition 3.1.6. Given a sectorial region G and f € AM(G), we define the asymptotic Borel
map as the map sending a function f € A (G) into its M—asymptotic expansion f and we write

B(f):= [

One may accordingly define classes of formal power series

Clllua = {f = > s €€l el = sup A'& <oof.

(Cl[=l]m,4 | [y, 4) is a Banach space and we put C[[2]]m := Ua>0Cl[]]m,A-
Remark 3.1.7. Given f € Ay (G) it is straightforward that B(f) € C[[z]]u, so
B: Au(G) — C[[2]]m.

If G = S is a sector, using Proposition (i) we see that the asymptotic Borel map is also
well defined on Ap(S) and Afy(S).

If M is (Ic), B is a homomorphism of algebras; if M is (dc), B is a homomorphism of differential
algebras. Finally, note that if M ~ L, then C[[z]]m = C[[2]]L.

A fundamental role in the discussion about the injectivity and surjectivity of the asymptotic
Borel map gathered in this chapter will be played by the flat functions.

Definition 3.1.8. A function f in any of the previous classes is said to be flat if B(f) is the
null power series, in other words, f ~pg 0.

One may express flatness in Ap(G) by means of the associated functions defined in Sec-

tion [LT3l

Proposition 3.1.9 ([97], Proposition 4). Given a sequence M, a sectorial region G and f €
H(G), the following are equivalent:

(i) f € Au(G) and f is flat,
(ii) For every bounded proper subsector T" of G there exist ¢, co > 0 with

1f(2)| < cremm/e2l:)) — ¢ hy(e]2]),  zeT.

In the Gevrey case of order «, thanks to the estimates in Example [1.1.22] we recover the
classical result that characterizes flatness in terms of exponential decrease bounds of order 1/«

. . -1/«
that is, in terms of e~ I*! e

Remark 3.1.10. In the results gathered in the next sections we will only deal with weight
sequences, that is, (Ic) such that lim,_,. m;, = co. The requirement of (Ic) condition is justified
in Remarks [3.1.4 and [3.1.7 Moreover, A. Gorny and H. Cartan proved that this is not a
restriction in the ultradifferentiable setting (see [53), p. 104]).

For a (Ic) sequence M, since m is not decreasing, if lim, ,~, m,, # oo, then lim,_,, m, < 0o
and also limy, oo (M,)'/P < 0o (see Lemmall.1.7). Then there exists A > 0 such that the function
hyvi(t) = 0 for all t € [0, A]. Hence by Proposition if f € Au(G) and f is flat, we have
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that f(t) = 0 for every t € (0, A] which, by the identity principle, implies that f(z) identically
vanishes in G. Consequently, the Borel map is always injective.

On the other hand, in the same situation, the Borel map is never surjective: we consider
a holomorphic function at the origin L(z) whose Taylor expansion at 0 is given by a lacunary
series L € C{z} C C[[2]]p, whose domain of convergence is a disc of radius R where R < |z|
for some z € G. We have that L ~y; L on a region G’ C G, so by the injectivity of the Borel
map it cannot exist another function E € Ay (G) C Ay (G’) with E ~y L. Since L cannot be
analytically continued to G, the Borel map is not surjective, which justifies the consideration of
the limit condition for m.

By using a simple rotation, we see that the injectivity and the surjectivity of the Borel map
in any of the previously considered classes do not depend on the bisecting direction d of the
sectorial region GG, so we limit ourselves to the case d = 0. Moreover, in this dissertation we will
restrict our study to the unbounded sectors Sy, and include comments on what can be said, to
our knowledge, for more general sectorial regions. So, we define

Iy :={y>0; B:Au(S,) — C[[z]]m is injective},
Iy ={y>0; B:AY(S,) — C[[z]]m is injective},
Iy :={y>0; B:Au(S,) — C[[z]]m is injective}.

Whenever v > 0 belongs to any of these sets, we say that the corresponding class is quasianalytic.

Hence, nonquasianalyticity amounts to the existence of nontrivial flat functions in the class.
We easily observe that, by restriction and the identity principle, if v > 0 is in any of those

sets then every 7/ > v also is. Consequently, Iy, Iﬁ and Iy are either empty or unbounded

intervals contained in (0, 00), which we call quasianalyticity or injectivity intervals.

Similarly, we define

Sui={y>0; B:Au(S,) — C[[z]lm is surjective},
Sy ={y>0; B:AY(S,) — C[[z]]m is surjective},
Sui={y>0; B:Au(S,) — C[[z]lm is surjective}.

It is also plain to check that if v > 0 is in any of those sets then every 0 < v < v also is, so
Swm, Sy and Sy are either empty or left-open intervals having 0 as endpoint, called surjectivity
intervals. Using Proposition [3.1.5|(i), we easily see that

Iv 2 I D I, (3.2)
Su € Sig € Su. (3.3)

Remark 3.1.11. In the literature, a set of conditions different from those presented in the
previous chapters appears when dealing with ultraholomorphic or ultradifferentiable classes of
functions, specially if they are given in terms of bounds for the derivatives. In particular, some
authors (H. Komatsu [52], H.-J. Petzsche [77], J. Bonet, R. Meise and S.N. Melikhov [17] and
others) define the classes replacing the sequence M by M = (p!M,)pen, in the estimates of
Definitions [3.1.1] [3.1.2 and [3.1.3] that is,

p—1
sup M < 00, or )f(z) - Zanz"

2€G,peNy AP M,

<cartepp
p.

n=0

for z in the corresponding region. In this situation, the following conditions, with the notation
of H. Komatsu, are considered for M:
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(M.1) Lz% < L, 1L, for every p € N,
(M.2) There exists A > 0 such that

Lypii < AL, Ly, k,p € Ny,

(M.3) There exists B > 0 such that

o

Ly L
< Bp—"-, peN.
Z Lyt Lyt

k=p

Note that L satisfies (M.3) if and only if £ has (1) of H. -J. Petzsche (see Remark 2.1.23). Let
us clarify the relation between these two approaches: If M is (lc), then M satisfies (M.1), if M
has (mg), then M satisfies (M.2) and if M is (snq), then M satisfies (M.3). On the other hand, if
M satisfies (M.2) or (M.3), then the sequence M := (M, /p!),en, has (mg) or (snq), respectively.

However, if M is (M.1), M is not necessarily (Ic). If this is the case, we say that M is strongly
logarithmically convez, for short (slc).

In this same context, instead of considering the class of formal power series C[[z]]n, some authors
considered the classes of sequences

Ama = {M = (tn)nen, € CN : |1elyga = Séll\l?o A"Z:L'ML < OO}'
(A4, | ‘M,A) is again a Banach space, and we put Ay := UasoAm,a. There is a bijection
between them sending a formal power series f =Y 2 yanz" into the sequence of derivatives at
the origin, (app!)pen, (see Proposition [3.1.5](ii)). This map is an isomorphism of Banach algebras
if M is (Ic). Due to the fact that the product considered in these algebras is the classical for
formal power series, we have found reasonable the choice of the notation C[[2]]m.

Even if the relation between the sequences M, M and M is known, we need to impose certain
conditions in order to establish the connection between the associated functions wy(t), wg(t)

and wg;(¢). This is one of the major concerns when mixing the results from the two different

approaches.

3.2 Injectivity of the asymptotic Borel map. Impossibility of bi-
jectivity

In 1912, G.N. Watson [105] determined the injectivity interval jl’l\jla for the Gevrey sequence
Ma = (p!“)pen, by proving that if a function f has global exponential decrease bounds of order
1/a on a sector Sy, the function f is too flat and must be 0. The modern proof, contained in
most of the books, is a smart but easy consequence of Phragmén-Lindel6f principle. Extensions
of these results were obtained by S. Mandelbrojt and B. Rodriguez-Salinas (see Theorems

and B.2.3).

In this section, these classical results which deal with the classes Ay and A?M will be presented
and we will reformulate them in terms of the growth index w(M) thanks to its relation with
the exponent of convergence of m. Finally, the problem for the class Awm will be solved by
constructing, via proximate orders, flat functions in sectors of optimal opening. As a consequence,
we will obtain the first surjectivity result stating that the Borel map is never bijective.
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3.2.1 Classical injectivity results

The quasianalyticity intervals Iy and ff\‘ﬂ were determined in the literature in the 1950’s. We will
rephrase the corresponding results by means of Sanz’s growth index w(M) (see Subection [I.1.4).
This index was proved to coincide with the lower order of the sequence p(m) which is closely
related to the exponent of convergence of m (see Theorem and Proposition . Hence,
if M is (Ic), then m and m = ((p+1)my)pen, are nondecreasing and, by the results we have just
mentioned, we see that

[e.9]

w(M) = p(m) = sup{p > 0; Z (m;)l/# < oo},
=0
> 1

In order to simplify some statements and to avoid trivial situations (see Remark [3.1.10)), we will
frequently assume that M is a weight sequence, i.e., is (Ic) with lim,_,o, m, = co. The first result
we recall is due to S. Mandelbrojt in 1952.

Theorem 3.2.1 ([72], Section 2.4.IIT). Let M be a weight sequence, ¢ > 0, H(c) := {z € C :
Re(z) > ¢} and v > 0. The following statements are equivalent:

R YA R

(1) Z <mp> diverges,
p=0

(ii) If f € H(H(c)) and there exist A,C > 0 such that

CAPM,
16 <

, z € H(c), pe Ny, (3.4)

then f identically vanishes.

Observe that a function f is holomorphic in H := H(0) and verifies the estimates if
and only if the function g given by g(2) := f(1/2Y/7) belongs to A%(S,) and is flat. Hence,
the interval Iy is determined by the following equivalence (i) < (i), as an easy consequence of
Theorem and (7i7) is a consequence of the above mentioned properties of w(M).

Theorem 3.2.2 ([72]). Let M be a weight sequence and v > 0. The following statements are
equivalent:

(i) B: AY(S,) — C[[z]Jm is injective,
(i) D252q(myp) ™17 = oo,
(iii) Either v > w(M), or v = w(M) and Z;’;O(mp)fl/w(M) = 0.

Quagianalyticity for the classes of functions with uniformly bounded derivatives in an un-
bounded sector was characterized in 1955 using Theorem by Rodriguez-Salinas [87], al-
though it is frequently attributed to B. I. Korenbljum [54].

Theorem 3.2.3 ([87], Th. 12). Let M be a weight sequence and v > 0 be given. The following
statements are equivalent:

(i) The class Am(S,) is quasianalytic,
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(i) > ((1)1/(%1) diverges.

ot 1)m,
Similarly, by Proposition [2.1.26] we deduce that Theorem may be stated as follows.

Theorem 3.2.4. Let M be a weight sequence and v > 0 be given. The following statements are
equivalent:

(i) The class Ap(Sy) is quasianalytic,
(i) 3202 ((p + 1)my) YO = oo,

)71/(w(M)+1)

(i) v > wM), or v = w(M) and Z ((p + 1)m,, diverges.

p=0

Finally, regarding Awm a partial version of Watson’s Lemma can be easily obtained as a
consequence of Theorem [3.2.2]

Theorem 3.2.5. Let M be a weight sequence, v > 0 be given and G, a sectorial region. The
following statements hold:

(i) If v > w(M), then Aw(G,) is quasianalytic.
(i) If v < w(M), then Ay (G.) is nonquasianalytic.

Proof. (i) Assume that v > w(M). We take f € Aw(G,) with f ~p 0, and consider a proper
bounded sector T' < G, where T = S(0,8,r) with v > § > w(M). By the definition of
M—asymptotic expansion, there exist Cp, Ar > 0 such that

1f(2)] < CrARM |2, z€T, peN,.

We consider the transformation z(w) = 1/(w + (1/7)'/#)? which maps the right half-plane H =
H(0) into a region D C T', and the holomorphic function g : H — C defined by g(w) := f(z(w)).
As for every w € H we have |w + (1/r)#| > |w]|, we deduce that

CrAyM,  _ CrAhM,
|(w+ (1/r)V/E)B = w7

Hence g verifies the bounds in Theorem [3.2.1}(ii). Since g > w(M), by the properties of the

growth index
o 1 1/B
S () =
myp

p=0
Consequently, by Theorem we obtain that g = 0 and by the identity principle f = 0, so
Am(G) is quasianalytic.
(ii) Assume that v < w(M), what implies, by the properties of the growth index, that

5"

lg(w)| = [f(z(w))] < w € H, péeNo.

p=0 p
Then, by Theorem there exist f € H(H), not identically zero and constants A, C' > 0 with
CAPM,
@< pp  z€H pel.
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The function w — w™/7 maps the sector S, into H. We consider the function g(w) = f(w='/7),
holomorphic in §,, and we have that

lg(w)] = |f(w™/7)| < CAPMplwl’,  we S, peN.

Consequently, ¢ # 0 and g ~y 0 in Sy. We observe that the restriction of g to Gy C S, is a
nontrivial flat function, and we deduce that Ay (G.,) is nonquasianalytic. O

Remark 3.2.6. From Theorem or we deduce that if M and L are weight sequences
with M ~ L then w(M) = w(LL), what we have already proved directly (see Remark [2.1.32)).

Remark 3.2.7. For any weight sequence M, the information from the previous results can be
summarized as follows:

(i) If w(M) = oo, by Theorem [3.2.4] we see that Iy = 0 and (3.2) implies Iyy = Ity = Iy = 0.
(ii) If w(M) = 0, by Theorem we observe that Iy = (0,00) and, by (3.2), we have that
Iy = Ity = In = (0,00).

(iii) If w(M) € (0,00), we have the situation described in Table where 3772 5 0, denotes
the series 3 ((p + l)mp)_l/(w(M)H) and )2, (mp)_l/w(M) is abbreviated to Y7 iy
(note that 3 20y < 0 implies Y72 11y < 0o by applying Theorems and and
using that Am(Sy) C Af(Sy) ).

2 peg Op = 00 Dpe0Op =00 | D20 0p < 00
S gty = 0 S oty < 00 | T 1y < 00
I | [w(M),00) [w(M), %) (w(M), )
I | [w(M), 0) (w(M), ) (w(M), %)
I | (w(M),00) or [w(M),00)? | (w(M), o) (W(M), %)

Table 3.1: Injectivity intervals for a weight sequence with w(M) € (0, 00).

In conclusion, we see that the only injectivity interval not determined by the previous results is
Iy, and only when w(M) € (0,00) and > o (mp)_l/“(M) = oo. Indeed, it only rests to decide
whether w(M) € Iy or not. In the next subsection, we will show the existence of nontrivial flat
functions in the class AM(SW(M)), and so one always has w(M) ¢ Iy and Iy = (w(M), 00).

Example 3.2.8. We consider the sequence M, g = (p!a b o logﬁ(e + m))pENo’ a>0,8€eR,

we have that w(M, g) = o (See Example 2.1.20). Hence, Table contains all the information
about the injectivity intervals deduced from the classical results for the sequences M, g.

Please note that even if the Gevrey case M, = (p!a) belongs to the first column of

p€Ng
Table all the information is known because the function f(2) := exp(—1/21/%) ~p, 0 and
f € Awm,(Ga), so Iy, = (a,00). As mentioned before, we will find such functions for any
sequence M using proximate orders.

Watson’s Lemma is proved below for the class Ay for arbitrary sectorial regions, regarding
the other two classes the following information is available.
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B<a a<fB<a+l]|[p>a+1
Iy, , | [ov, 00) [, 0) (a, 00)
Iy | la,o0) (ar, 00) (ar, 00)
I, , | (a,00) or [a,00)? | (v, 00) (a, 00)

Table 3.2: Injectivity intervals for the sequence M, g with a > 0, 5 € R.

Remark 3.2.9. Theorem holds true for bounded sectors S(0,,r) with similar arguments.
IfF>2 2 (mp)_l/7 < oo the restriction to S(0,~,r) of the nontrivial flat function defined in S,
given by Theorem solves the problem. Hence, we only need to modify the proof of (ii)=(i).
We proceed as in Theorem , by considering the transformation z(w) = 1/(w + (1/r)/7)7,
which maps H into a region D contained in S(0,7,7): given a flat function g € A% (S5(0,,7)),
the function f(w) := g(z(w)) is defined in H and, by Mandelbrojt’s theorem, it identically
vanishes.

For more general regions, including sectorial regions, the solution was also given by Mandel-
brojt [72], Sect. 2.4.1] and the answer depends on the way the boundary of the region approaches
the origin.

Remark 3.2.10. The problem of quasianalyticity for classes of functions with uniformly bounded
derivatives in bounded regions has also been treated. In the works of K. V. Trunov and R. S.
Yulmukhametov [101} [108] a characterization is given, for a convex bounded region containing
0 in its boundary, in terms of the sequence M and also of the way the boundary approaches 0.
In particular, for bounded sectors, if v+ < 1, d € R and r > 0, it turns out that the class
An(S(d,v,7)) is quasianalytic precisely when condition (ii) in Theorem is satisfied.

3.2.2 New injectivity results

In [88], J. Sanz shows how one can construct nontrivial flat functions in the class .,ZtM(Sw(M))
for strongly regular sequences M (see Definition such that dy(t) is a proximate order
(see (2.15))) using a function V € MF (v, dw(t)) (see Definition [1.2.17). Under these conditions
for M, by Theorem and Remark we know that dy(t) is a nonzero proximate order.
Moreover, by Remark we know that one may equivalently assume that M is a weight
sequence and dyy(t) is a nonzero proximate order

Theorem 3.2.11 (Watson’s Lemma, Coro. 4.12 [88]). Suppose M is a strongly regular such
that dy(t) is a nonzero proximate order, and let v > 0 be given. The following statements are
equivalent:

(i) AM(SV) is quasianalytic, i.e., it does not contain nontrivial flat functions (in other words,
the Borel map is injective in this class).

(ii) v > w(M).

At it was pointed out in [88, Remark 4.11], it is enough to ask that M admits a nonzero
proximate order and, by Remark [2.2.18] it suffices to verify that M, originally strongly regular,
is a weight sequence admitting a nonzero proximate order.

A better understanding of the connection between proximate orders and sequences has been
achieved (see Section [2.2)) allowing us to extend this last result for arbitrary weight sequence.
In fact, the admissibility of a proximate order p(t) guarantees that the associated function wy
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is bounded above and below by a constant times the function t”*) (see Definition . These
bounds are needed for most of the results in [60], 88], but by suitably using the notion of regular
variation we will see that the upper bounds are enough for the construction of flat functions.
The existence of a proximate order such that we have the upper bounds is guaranteed for each
nonnegative, nondecreasing continuous function of finite upper order (see Definition by
the following classical result.

Theorem 3.2.12 (|32], Ch. 2, Th. 2.1). Let w : (a,00) — (0, 00) be a nonnegative, nondecreasing
continuous function with p(w) = limsup,_, . log(w(t))/log(t) < co. Then, it exists a proximate

order p(t) with lim;_, p(t) = p(w) such that

t
lim sup i(t)) € (0, 50). (3.5)
t—00

It was a particular version of this last result which motivates the introduction of the notion
of proximate order for the study of the growth of entire functions. In that version, w(t) =
max (0, log(max|,— [ f(2)[)) and the converse is also available, that is, given a proximate order

it is possible to construct an entire function such that (3.5)) is valid for the previous choice of w
(see [63, Th. 25, Th. 26]).

The next property, easily deduced from the regular variation of the functions in the class
MF (v, dy(t)), will be employed.

Proposition 3.2.13 ([65], Property 2.9). Let p(t) be a proximate order with lim;_, p(t) = p >
0,v>2/pand V € MF(y,p(t)). Then, for every a € (0,1/p) there exist constants b > 0 and
Ry > 0 such that

Re(V(z)) > bV (|z|), 2z € Sa, |2| > Ro,

where Re stands for the real part.
We have all the ingredients for the main result in this section.

Theorem 3.2.14. Suppose M is a weight sequence with w(M) € (0,00). Then, w(M) does not
belong to Iy.

Proof. For brevity, put w := w(M). By Theorem [2.1.30] the associated function wyy(t) is of finite
order p := p(wy) = 1/w > 0, and by Theorem [3.2.12] there exist a nonzero proximate order p(t)
with im0 p(t) = p=1/w > 0, A1 > 0 and ¢; > 0 such that

wy(t) < AptP® | > . (3.6)

Take now a function V' € MF(2w, p(t)). The proof will be complete if we show that G(z) :=
exp(=V(1/z)), which is well defined and holomorphic in the sector S,,, belongs to Aw(S.,)
and it is flat, for what we will apply Proposition [3.1.9] It is enough to work in subsectors
S(0,8,r9) < Sy, where 0 < f <w and 79 > 0. If z € S(0, 3,70), we have 1/z € Sg. On the one
hand, according to (VI) in Theorem combined with (3.6)), there exist A2 > 0 and ¢, > 0
such that

wM(t) S AQV(t), t Z tg. (37)
On the other hand, Proposition [3.2.13| provides us with constants b > 0 and Ry > 0 such that

Re(V(Q)) = 0V ([C]), ¢ €55, [¢] = Ro. (3-8)
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Choose a positive constant ¢ such that ¢ > (A2/b)¥. By property (I) in Theorem [1.2.16], we have

Jim 20 <i)1/w <

so there exists R1 > 0 such that
bV (t) > AV (t/c), t> Ry. (3.9)

Let Ry := max(Ry, Ry, cts) and r := Ry'. Then, using (3.8), (3.9) and (B.7), for z € S(0, 3,7)

we have

—Re(V(1/2)) < =0V (1/l2]) < A2V (1/(c|z])) < —wm(1/(cl2])),

and so
1G(2)| = e Re(V(1/2)) « o—wm(1/(cl2]))

We are done whenever r > rg. If r < rg, by compactness there exists K > 0 such that the
inequality
IG(2)| < Kewm/(elz)

is valid throughout S(0, 8, 7¢). O

Combining this with the partial version of Watson’s Lemma, Theorem [3.2.5] obtained before,
we have the following final statement in this respect.

Theorem 3.2.15 (Watson’s Lemma). Let M be a weight sequence, v > 0 and G, a sectorial
region. The following statements are equivalent;:

(i) Awm(G,) is quasianalytic.
(i) v > w(M).
Hence, the question mark in Table can be deleted and the answer for that cell is Iy =
(w(M), 00), what completes the study of injectivity for unbounded sectors.
3.2.3 Impossibility of bijectivity

Our first surjectivity result is a consequence of the injectivity Theorems [3.2.2] [3.2.4] and [3.2.5]
It answers in the negative whether bijectivity is possible.

Theorem 3.2.16. Let M be a weight sequence. Then,
SMﬂfngﬁﬂfl\%IgMﬂfM:@.
In other words, the Borel map is never bijective.

Proof. In all three cases we will show that surjectivity for any v > 0 implies noninjectivity.

(i) Let us see that Sy N Iy = 0. Suppose B : Ay(S,) — C[[z]]m is surjective. Since the
geometric series Y00 2" € C[[2]]u, then there exists f € Ap(S,) such that f(z) ~ 3200, 2™
The function g(z) := f(z) = > .2 2" = f(z) —1/(1 — z) is holomorphic in S, \ {1} and, by the
identity principle, cannot vanish identically. Moreover, g € Awi(S(0,7,1/2)) and g(z) ~ 0, and
so the Borel map is not injective in A (S(0,7,1/2)) and, by Theorem , v < w(M). Again
by Theorem we conclude that B : Ay (S,) — C[[z]]n is not injective.

(ii) Let us see that St N I = 0. Suppose B : AY(S,) — Cl[[z]]m is surjective. Since
z € C[[2]]u, there exists f € AY(S,) such that f(z) ~y 2 uniformly in S,. The function
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9(2) := f(z) —z is holomorphic in S, and, since f is bounded in S, and z is not, g cannot vanish
identically. Furthermore, g(z) ~ 0 uniformly in S(0,, 1), so there exist C, A > 0 such that for
every z € S(0,7, 1) one has

9(2)] < CAPM,[2[P,  p € No.

Hence, the holomorphic function ¢ : {z € C : Re(z) > 0} — C, defined by ¢ (u) = g(1/u?), is

not identically 0 and
CAPM,
|u|'YP !

[Ph(u)| < p € Ny, Re(u) > 1.

Now, we can apply Theorem [3.2.1/in H(1) and we deduce that > 2, m;1/7 < 00. By Theo-
rem , we conclude that B : A% (S,) — C[[z]]u is not injective.

(iii) Let us show that Sy N Iy = 0. Finally, if B : Aw(S,) — CJ[[z]]m is surjective there
exists f € Awm(S,) such that f®(0) = 41, (see (3.1)) for every p € Ny, where d1, is Kronecker’s
delta. By definition of the class, there exist C, A > 0 (without loss of generality, we may assume
that C > 1 and CAM; > 1) such that

1f®)(2)] < CAPpIM,,  z€ S, pe N (3.10)

We consider the Laplace transform of the function f(z) — z,

oo()
9(z) == /0 : e F(f(t) —t)dt, z2 € Syq1, (3.11)

where the integration is over the half-line parametrized by r € (0,00) — re’?, whose argument
is a real number

™y Ty T
goe( 5 2) such that arg(z)+<p€( 2,2>. (3.12)

This last condition guarantees the exponential decrease at infinity of the factor e=*' which,

together with the linear growth of f(¢) — ¢, ascertains that the function g is well defined and
holomorphic in Sy41. We proceed now to estimate |g(z)|. Firstly, parametrizing we have that

l9(2)] <

e’e} X oo .
—re'¥ ; ; el - -
/ e " TEf(re'?)e? dr — / e "¢ Fre'f e’ dr
0 0

oo )
_rete

/ e "¢ rdr

0

In the first integral we use (3.10) for p = 0 and compute the remaining integral, and in the
second one we integrate by parts, and get that

C 1 i C 1
< . - reTEdr| < . — 3.13
99 < o + | ], ¢ ' < Retevr) T FIRe(@) (3.13)

for every z € S,11. A different estimation is obtained by integration by parts in (3.11)), taking
into account that f(0) = 0:

< [T ermet et dr +
0

oo(p)
g(z) = 1/ e FH(f(t) — 1) dt, Z € Sy41. (3.14)
0

z
Now we parametrize and split the integral as before, and use (3.10|) for p = 1 to obtain that

CAM, 1 2C AM;
- + - < - .
|z| Re(e¥z) ~ |z| Re(e?z) ~ |z| Re(e*¥z2)

l9(2)| < (3.15)
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Finally, if we iterate the integration by parts in (3.14) and use that f®)(0) = 61, we get for
every p > 2 the identity
1 [oo(e)
9(z) = — e APty dt, 2 € Syur.
zP 0
Using again (3.10) for p > 2, we deduce that
CAPp\M,,
< ——
l9(z)| < |z|P Re(e?#z)
Our aim is to apply Theorem to the function h given by h(w) = g(w*!), w € S1, when
restricted to the half-plane {w : Re(w) > 1}. Note that the estimates in (3.13]) imply for
Re(w) > 1 (and so |w| > 1) that

(3.16)

h(w)] < —— + L <X
Re(e®wr*l) ~ Jwrtl| Re(ewrtl) — Re(ewrtl)
These last estimates and the ones in and can now be summed up for A as
< 2CAPp!M,,
- |w‘p(7+1) Re(ei4ﬁw7+1)’

|h(w) Re(w) > 1, p € Ny.

Now we choose ¢ in order to minimize the value Re(e®?wY*!). We study two cases:
(1) If |arg(w)| < y7/(2(y + 1)), then |arg(w?™)| < ym/2 and, according to (3.12), we may

choose ¢ = —arg(w?*!), and we deduce that Re(e??w™!) = |w[*! > 1. So, for such w
we get
20 APp\M,,
|h(w)| < Tt p € No. (3.17)

(2) If |arg(w)| € [ym/(2(y + 1)), 7/2), the previous choice is not possible, and we choose

- +e if arg(w) € (—%, —72(311)} ,

ks H Y s
7—5 if arg(w)e W’E 5

Pe =

for any ¢ € (0,y7/2). Hence, Re(e®=w 1) = |w| ! cos((y + 1)| arg(w)| — y7/2 + ¢€), and
making € tend to 0 we obtain that
< 20 APp\M,,

= PG [wrt cos((y + 1) arg(w)| — ym/2)’
We observe that in this case

0< 5 — larg(w)| < (y+1)(5 — |arg(w)]) < 7,

|h(w) p € N. (3.18)

and so

fwlcos (3 + 1) arg(w)| = L5) = fwlsin ((7+1) (5 - |arg(w)]))
> |w|sin (g - |arg(w)\) = |w| cos(arg(w)) = Re(w) > 1.

Since we also have |w|? > 1, from (3.18)) we obtain the same estimates (3.17)) given in the

first case.
Since h is not identically 0, by Theorem we deduce that the series > ((p+ 1)ym,,)~1/O+1)
converges, and Theorem implies that B : Am(Sy) — C[[z]]m is not injective. O

Remark 3.2.17. As an easy consequence we have that if w(M) < oo, then
Sm C Sty € Sw € (0, w(M)].
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3.3 Surjectivity of the asymptotic Borel map

In 1895, E. Borel showed that B : C®(R) — CJ[[2]] sending a smooth function f in R into the
formal power series f = »72,(f7(0)/p!)2? is surjective and in 1916, J. F. Ritt extended this

result for fl“(S ), the class of analytic functions in a sector S with uniform asymptotic expansion
at the origin, i.e., B : A%(S) — C[[2]] is also surjective. Several proofs of these results are known,
in [71, Th. 1.1.4.1, Coro. 1.1.4.2] the reader can find a simple one given by B. Malgrange. In
between their generalizations, it is worthy to mention that for an arbitrary closed set F C RN
H. Whitney showed that we can construct a function f € C*°(RY), real analytic in RV \ F, such
that its value at F is determined by a given jet (see [106, 107]).

As it was pointed out before, if f ~u f, then f € C[[z]]m and it is quite natural to restrict
ourselves to study the surjectivity for the case the coefficients of the series have a prescribed
growth in terms of M. Compared to injectivity, very little is known about this situation for the
classes Aw(S), A (S) and Ap(S). The first result in this direction is the Borel-Ritt-Gevrey
theorem where J. P. Ramis, using the technique of the truncated Laplace transform for the
Gevrey sequence M, = (p!®)pen,, proved the following:

Theorem 3.3.1 ([81,82]). Let a > 0. Then B : Ay, (S,) — C[[2]]m
if v <a.

is surjective if and only

a

In 1995, V. Thilliez [93], (1.3)] gave a linear and continuous extension from Cl[[z]]m, 4 to
Awm,.a4(Sy) for v < « for every A > 0, where d > 0 depends only on « and v, employing results
of continuous extension from the ultradifferentiable setting. The first results for arbitrary weight
sequences satisfying (dc) (see Definition were given by J. Schmets and M. Valdivia in [91],
their approach is based on the consideration of some nonclassical ultradifferentiable classes, &, u,
N and L, defined below for r € N, in which the interpolation is done only for a subsequence
(f#P)(0))pen, of their derivatives at 0. They obtain results for the Roumieu and the Beurling
case, this last one will be not be considered below. In that paper, although surjectivity is
studied, the main focus is on the existence of linear and continuous global extension between
the corresponding (LB)-spaces, which is much more demanding, and their main theorem, in the
Roumieu case, is only for sequences with v(M) = oco. In 2003, V. Thilliez proved the following:

Theorem 3.3.2 (|95], Theorem 3.2.1). Let M be a strongly regular sequence and 0 < v < y(M).
Then there exists d > 1 such that for every A > 0 there is a linear continuous operator

TM,A,“{ : CHZ'HM,A — AM,dA(S'y)

such that Bo Tiga, = Tdg 12, the identity map in C[[2]]yg,4. Hence, B : Am(S,) — C[[2]lm

is surjective.

M,A’

This theorem was reproved by A. Lastra, S. Malek, J. Sanz [58] using the technique of
the truncated Laplace transform for a suitable kernel. Finally, in [88, Theorem 6.1] J. Sanz
generalized the Borel-Ritt—Gevrey theorem for strongly regular sequences such that the function
du (see (2.15))) is a proximate order (see also Theorem [.3.21). As it has been shown in the
preceding chapter, although this condition is satisfied for most of the sequences appearing in the
applications, it might be too restrictive (see Remark . These works are the departing point
of this subsection whose main objective, partially but satisfactorily accomplished in the strongly
regular case (see Table , is providing necessary and sufficient conditions for the surjectivity
of the Borel map.

In the previous section, it has been shown that the appropriate value for characterizing the
injectivity of the Borel map is the index w(M) which equals the lower order of the sequence of
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quotients m. We will show that for the surjectivity problem the suitable one is Thilliez’s growth
index (M) which has been proved to coincide with the lower Matuszewska index of m, (m)
(see Theorem [2.1.16]). Please note that we always have y(M) < w(M) (see Proposition [1.1.28).
For a strongly regular sequence such that the function dpy; is a proximate order we have that
(M) = w(M) (see Remark [2.2.7), then this difference was hidden. In Subsection we have
constructed strongly regular sequences for which (M) < w(M) (see Remark [3.3.20) below for the
implications of this fact concerning B).

We recall some convenient properties obtained in Section for y(M). For any sequence M
and every s > 0 one has

V(PP Mp)peny) = v(M) +5, A((My)pen,) = s7(M).

(see Proposition [2.1.11)). We also recall some of the information given in Proposition [2.1.22 and
Remark [2.1.23] for any 8 > 0 we say that m satisfies (y3) if there exists A > 0 such that

o0

Alp+1)
(75) Z 1/5 = m )1/5 ) JAS NO'
E:p p

If M is (Ic), (M) > 0 and using this condition we can state an alternative definition of the index:
v(M) = sup{f > 0; m satisfies (v3)}.

In addition, the next equivalences will be used several times if: M = (P!Mp)pen, is (Ic) and 5> 0
we have that

(i) v(M) > 0 if and only if M is (snq) (see Proposition [2.1.18)).

(ii) y(M) > 1 if and only if m satisfies (y1) (see Remark [2.1.23).

(iii) (M) > B if and only if m satisfies () (using (ii) and Proposition [2.1.11)).

We will start with an arbitrary weight sequence M for which we will obtain some necessary
conditions for the surjectivity of the Borel map. Subsequently, imposing (dc) (see Definition|I.1.5)
we will get some improvements on that conditions for the classes Ay and /If{ﬂ (see Table .
For strongly regular sequences, after applying the sufficient condition provided by Thilliez and
some ramification arguments, we will prove that the surjectivity intervals are either (0,~v(M)) or
(0,7(M)] (see Table [3.4). Finally, in case y(M) = w(M) or if, furthermore, M admits a nonzero
proximate order we will apply the theorems from the previous section to analyze if the value
v(M) belongs to these intervals or not (see Table [3.5)).

3.3.1 Weight sequences

Our first result is based on a theorem by H.-J. Petzsche in the ultradifferentiable setting and we
need to consider the following space.

Definition 3.3.3. We say that f € &y([—1,1]) if f € C>°([-1,1]) and there exists a constant
A > 0 for which

|f(p( )
sup < 00
peNo, ze[~1,1] APP! M,
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Correspondingly, we consider the Borel map B : &u([—1,1]) — CJ[[z]]m sending f into
the formal power series Z;io(f(p) (0)/p!)zP (we warn the reader our notations differ from those

in [77], see Remark [3.1.11]).

All over the paper [77], H.-J. Petszche assumes that M is a weight sequence and that M
satisfies (nq). However, condition (nq) can be suppressed in the statement of the following
theorem, since, if m = ((p + 1)mp)pen, satisfies (71) then M satisfies (snq) and, consequently,
(nq), and there is only one direction that needs to be checked. This can be done by carefully
inspecting his proof.

Theorem 3.3.4 ([77], Th. 3.5). Let M be a sequence such that M is weight sequence. Then,
the Borel map B : &y([—1, 1]) — C|[z]]m is surjective if and only if m satisfies (71).

We are ready to give the first connection between the growth index (M) with the surjectivity
intervals which holds for arbitrary weight sequences.

Lemma 3.3.5. Let M be a weight sequence. If Sy # (), then M has (snq) or, equivalently,
(M) > 0.

Proof. Let f = Z;io ap?? € C[[2]Jm. Since there exists v > 0 such that B : Ay(S,) — C[[z]Jm
is surjective, we may take a function fi € flM(S.y) such that B(f) = f A suitable rotation shows
that also B : Am(S(m,v)) — C[[2]]m is surjective and so there exists a function fo € Am(S(m,7))
such that B(fy) = f. It is plain to check (by a recursive application of the Mean Value Theorem)
that the function

h(.’E) = fl(x)a S (07 1]7 h(l’) = fg(l’), (S [_170); h(O) = @o,

belongs to C®([~1,1]) and hP)(0) = pla, for every p € N (see Proposition [3.1.5). Moreover,

considering suitable subsectors of S, (respectively, S(m,v)) containing (0, 1] (resp., [-1,0)), and

again by a double application of Proposition (ii), one obtains a constant A > 0 such that
|pP) ()]

sup — " < oo.
peNo, ze[—1,1] APpIM)

Hence, we deduce that the Borel map B : &y([=1,1]) — C][z]]m is also surjective. Since M
is a weight sequence, M also is, so by Theorem m]this surjectivity amounts to the fact that
the sequence of quotients of M = (p'M,)pen,, namely m, satisfies the condition (1), which is
precisely condition (snq) for M (see Remark [2.1.23)). O

No other result concerning the surjectivity of the Borel map is present in the literature
without adding some additional condition on the weight sequence M in this ultraholomorphic
setting.

Our next results, Theorem and Theorem [3.3.14] are inspired by statements of J.
Schmets and M. Valdivia [91), Section 4| in the Beurling case. Although we do not treat this case
here, some of their proofs can be adapted to, or suitably modified for, our Roumieu-like spaces.

While the aforementioned authors impose condition (dc) on the sequence M, i.e., there exists
A > 0 such that Mp,y1 < APM, for every p € Ny, we will show that, in some cases, one can
obtain some information without it.

In the course of our arguments we will need to introduce suitable ultradifferentiable classes
(the notations again differ from those in [91]):

For a natural number r € N and a sequence M, we consider the space NV;.nm([0, 00)) of functions
f €C>([0,00)) such that
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(a) fP*+9)(0) =0 for every p € Ny and j € {1,...,r — 1} (this condition is empty when r = 1),

(b) there exists a constant A > 0 for which

|f#7) ()]

sup S < o0
p€Ng, z€[0,00) App!Mp

The subspace of NV, m([0, 00)) consisting of those functions with support contained in [0, 1] will be
denoted by L, ([0, 00)). Similarly, we introduce the space & ([0, 1]) of functions f € C*(][0, 1])
such that

(a) f®+9)(0) =0 for every p € Ng and j € {1,...,7 — 1} (this condition is empty when 7 = 1),

(b) there exists a constant A > 0 for which

|f#7) ()]

sup S < 00
peNg, zef0,1] APPIM

Note that these spaces coincide with the classical ones for » = 1. In this context, it is natural
to consider the next auxiliary sequence.

Definition 3.3.6. Given a sequence M and r € N, its r—interpolating sequence Py = P =

(Pn)nen, is defined by

. . 1/r )
Piryj = (M,: JM,gH) , keNg, je{o,...,r}

Note that with j = r for k and j = 0 for k£ + 1 we obtain the same value. As it was pointed out
in [91]], a simple computation leads to

(1) Pim =M,

(ii) Py, = My, for every k € Np,

(ili) prrsj = (mg)'/" for all k € Ng and j € {0,...,r — 1},
(iv) If M is a weight sequence, then P also is.

We also deduce the following relation for their injectivity indices.

Lemma 3.3.7. Let M be a sequence and r € N. Then

w(M) = rw(P).
Proof. Fix j € {0,...,7 — 1} , the lemma is deduce from the next calculation
1/r 1 . .
w(M) = lim inf log m = rliminf 710g(mk) = rliminf 8 pkrﬂ, log(kr +j)
k—oo logk k—oo  logk k—oo log(kr+j) log(k)
1 ,
= rliminf M.

k—oo log(kr + j)
(|

The introduction of this r—interpolating sequence is motivated by the following estimates,
independently obtained by A. Gorny and H. Cartan (see [72 Sect. 6.4.1V]).
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Lemma 3.3.8. If f € C"([-1,1]) for some r € N and

Qo:= sup |f(z)], and @Q,:= sup |f(r)($)|a
3:6[—1,1] ;I:E[—l,l}

then

sup |F9()] < (8er /) max(Qy ", QI (r/2)/ Qo).
ze[—1,1]

for every j € {1,...,7 —1}.

We will employ the integral representation for the reciprocal Gamma function, usually referred
to as Hankel’s formula (see [, p. 228]):

1 1
:,/ w *e¥dw
I(z)  2mi ),

for all z € C where ~4 is a path consisting of a half-line in direction —¢m/2 (for any ¢ € (1,2))
with end point wg on the ray arg(w) = —¢n/2 then the circular arc |w| = |wg| from wy to the
point w; on the ray arg(w) = ¢ /2 (traversed anticlockwise), and finally the half-line starting
at wy in direction ¢m/2. Now, for every 3 € (1,3/2) and any t € S(g_1)/2, we define

Ppe =B+ 2arg(t)/me ((B+1)/2,38-1)/2) € (1,7/4).

Hence, the change of variables u = ¢/w maps 74, , into dg which is a path consisting of a segment

from the origin to a point uy with arg(ug) = B7/2, then the circular arc |u| = |ug| from wug to
the point u; on the ray arg(u) = —fm/2 (traversed clockwise), and finally the segment from u;
to the origin. Therefore, for every z € C and all £ € S(g_1)/2 we have that
==t -1 d
= / wlet/u Y (3.19)
(2)  2miJs, u

Our first result is obtained as a consequence of the next proposition and the proof is inspired
by Theorem 4.6 in [91].

Proposition 3.3.9 ([91], Prop. 5.1). Let M be a sequence such that M is a weight sequence and
r € N. If the restriction map
B, : Lypa([0,00)) — C[[z]]m

sending f to the formal power series Z;io(f(pr) (0)/p!)zP is surjective, then m satisfies ().
Theorem 3.3.10. Let M be a weight sequence.
(i) Let @ >0, a ¢ N, be such that B : Ay(Ss) — C[[2]]m is surjective. Then, v(M) > |a].
(ii) If we have that Sy = (0,00), then v(M) = oo.

Proof. (i) Consider first the case o € (0,1). Then, it suffices to apply Lemma to obtain
that M has (snq), or equivalently v(M) > 0 = |«], as desired.

Suppose now that a > 1 and put » = |«], a positive natural number. Firstly, for M =
(Mp/p!)pen, we will prove that the restriction map B, : €TM([O, 1]) — C[[z]]; is surjective.
Since a ¢ N, we may choose two numbers 1, 52 with

. a3

Universidad de Valladolid



126 CHAPTER 3. INJECTIVITY AND SURJECTIVITY OF THE ASYMPTOTIC BOREL MAP

Given g = Zp o apz? € Cl[z ]]v, we write b, := app! for all p € Ny, and there exist Cp, Ag > 0
such that
|bp| < CoApp!M, = CoAGM,,  p € No.

Hence, the formal Laplace transform of g, defined by f := L§ = > peo bp2? belongs to C[[z]]m.

By hypothesis, there exists 1) € Ap(S,) such that B(y) = f. Hence, given B2 and R > 1, there
exist C, A > 0 such that for every p € Ny one has

p—1
)w(z) - Zbkz’f) < CAPM|2PP, 2 € S(0,1B, R"). (3.20)
k=0

The function ¢ : S,/ — C given by ¢(u) = ¢(u"), is well defined and holomorphic in S, .,
which contains Sg, as a proper unbounded subsector. Moreover, according to (3.20) for p = 0,
for every w € S(0, B2, R) one has

lp(u)] = |¥(u")] < CMo. (3.21)

We consider now a path dg, in S(0, B2, R) like the ones used in the classical Borel transform,

made up of a segment d; from the origin to a point ug with |ug] = Ry < R and arg(ug) = 701/2,

then the circular arc ds, traversed clockwise on the circumference |u| = Ry and going from ug to

the point u; on the ray arg(u;) = —m31/2, and finally the segment 3 from u; to the origin.
Define the function f : S(,_1)/2 — C given by

—1
iy L
10 = 3 J, e

Observe that ¢(u) is holomorphic and bounded at 0 in S(0, 82, R), and for every t € SBi-1)/2
one may easily check that ¢/u runs over a half-line in the open left half-plane and tends to infinity
as u runs over any of the segments d; or d3 and tends to 0. Hence, f is holomorphic in the sector
S(p1—1)/2- We note that, by virtue of Cauchy’s theorem, the value assigned to Ry in the definition
of 6, is irrelevant for the value of f.

Let us fix in the following estimations some ¢t € S(0, (81 — 1)/2, R) and some natural number
p € N. Hankel’s formula for z = kr + 1 allows us to write

prl ok 1 p—1
t) — b = —— b
) Z k(k:r)! 271 Js ( Z K )
k=0 61 o
Z / S bt (3.22)
S o u '

k=0

Taking into account (3.20]), for every u € S(0, B2, R) we have

p—1 p—1
S | - 'wm Sy
k=0 k=0

So, if we choose Ry = [t|/p < R, we may apply (3.23)) and see that

/52 ( Zbku )

< CAPM|ulP". (3.23)

pr
< 7 B1ePCAPM, ('”) . (3.24)
b
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On the other hand, by the same estimates (3.23]) and by the choice made for Ry, for j = 1,3 we

have
p! du
/ et/u (p(u) _ Zbkukzr et
8 =0 u

J

eEimp1/2) | @

tl/p
< CAPM, / P |et/ (s
0 S

pr
< CC AP M, <‘g> : (3.25)

where C] is a constant, independent of both ¢ and p, given by

Itl/p i d
Cy = sup / et/ (s /%) 22
0

t€5(0,(81—1)/2,R), pEN S
t
= sup /| /r eltl cos(arg(t)FmB1/2)/s @
t€5(0,(81—1)/2,R), peN J0 S

t 1
< sup / WP it costn(si—1y/ays 45 _ sup / P costm(r-1)/a)u B
[t|<R, peNJO S peN JO U

1
- / e costr(Br-//u W
0

- u

According to (3.22), (3.24) and (3.25), and using Stirling’s formula, we find that there exist
constants Co, As > 0 such that for every p € N and ¢t € S(0, (51 — 1)/2, R) one has

M,
< 0y Ab (p;;! |t (3.26)

p—1 tk'r
‘f(t) - kz ka
=0

This last estimation also holds for p = 0, in a similar way, taking R = |t| and using the definition
of f and (3.21). Hence one can show that f admits the series Z;io bpt?" /(pr)! as its asymptotic
expansion as t tends to 0 in the sector (if » > 2 observe that for (p — 1)r + 1 < n < pr we have
[t|P" < |t whenever |t| < 1). It is then a standard fact that for every m € Ny and every proper
subsector T of S(0, (81 — 1)/2, R) there exists

lim

(m) () = {bp if m = pr for some natural number p € Ny, (3.27)
t—0, teT

0 otherwise.

Finally, we define the function F': [0,1] — C given by F(t) = f(t) for t € (0,1], F(0) = bo.
Since f is holomorphic in S(0, (81 —1)/2, R) and we have (3.27)), we immediately deduce that F’
belongs to C*°([0, 1]) and

F(m)(O) )by if m =prfor some p € Ny,
~ |0 otherwise.

Moreover, we may take e > 0 such that for every ¢t € (0,1] the disk D(¢,et) is contained in
S(0,(B1 —1)/2, R). Then, Cauchy’s integral formula together with (3.26]) allow us to deduce
that for every p € Ng,

pl e\ 14\ CrABM,
[P (4)| = (f(t) - b ) < (pr)! ( ) 220 = Oy ABM,,.
k=1

(kr)! € (pr)!
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In conclusion, F € ST,M([O’ 1]) and B, (F') = §. So, S is surjective.

Secondly, according to Theorem [3.2.16 the map B : Ap(S,) — C[[2]]m is not injective, this
means by Theorem [3.2.15]that o < w(M), then r = [a] < w(M) because o ¢ N. By Lemma[3.3.7]
and Proposition [2.1.11], if P = P,y we have that

W(P) = w(Pry) — 1 = w(M)/r — 1> 0.

Hence, since P is (Ic), by Proposition ( i), P has (nq) (see Definition , so by the

Denjoy-Carleman theorem (see [38, Ch. 1]) there exists a C*° nonnegative function ¢ in R with
support contained in [—1, 1] and which takes the value 1 in a neighborhood of 0, such that there
exists A > 0 with

(n) (¢
sup ()] < 00.

teR, neNy A"Pn
Applying the Gorny-Cartan estimates of Lemma [3.3.8] for every h € ETM([O, 1]) one can check
that the product ¢h belongs to £ ([0, 00)) and, moreover, (oh)®)(0) = hP)(0) for every p € N.

Since By : € ([0,1]) — C[[2]]; is surjective, we deduce that B, : £ ([0,00)) — C[[2]]

also is. By Proposmonu we conclude that m satisfies (v,.), what amounts toy(M) >r = |«
(ii) Tt is an immediate consequence of (i).

i
J.

O

Corollary 3.3.11. Whenever M is a weight sequence, if v(M) < oo one always has
S € (0, [v(M)] +1].

In case v(M) € N, then Sy C (0,~7(M) 4 1). Note that if 4(M) = oo, the previous theorem does
not provide any relevant information.

Proof. The case Sy = () is trivial. So, we treat the case in which the surjectivity interval is not
empty, what according to Lemma implies v(M) > 0.

Let o € Sy. On one hand, if a ¢ N, by Theorem we have |a] < (M), and so
a—1< |lof < [y(M)/], from where a < |y(M)| + 1. On the other hand, if & € N then
we can apply Theorem for any B € (o — 1,a) (since B € Sy too) and deduce that
a—1=|8] <~yM), hence a < v(M) + 1. We deduce that o < [y(M) + 1] = [y(M)] + 1,
except in case (M) € N, where moreover a cannot coincide with v(M) + 1. The conclusion
easily follows. O

Remark 3.3.12. Summing up, for a weight sequence M and taking into account (3.3) and
Theorem B.2.16] we see that:

(i) if (M) = 0 (equivalently, if M has not (snq)) then Sy = Si = Sy = 0.

(ii) if y(M) € (0, 00) and

(a) v(M) ¢ N, then Sy € Sfy € Sy € (0, [y(M) ] + 1] N (0, w(M)],
(b) y(M) € N, then Sy € Sf C Sy € (0,4(M) + 1) N (0, w(M)].

If w(M) = oo, the second interval in these intersections should be taken as (0, 00).
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3.3.2 Weight sequences satisfying derivation closedness condition

As it has been pointed out in Remark [3.3.12] Corollary [3.3.11] provides also information about
Sty- In order to slightly improve it, one needs to impose (dc), which is a natural condition
on the sequence M, in the sense that it guarantees that the ultraholomorphic classes under

consideration, consisting of holomorphic functions, are closed with respect to taking derivatives
(see Remarks and [3.1.7). We will also need the next result.

Proposition 3.3.13 ([91], Prop. 5.2). Let r € N and M be a sequence such that M = (P! M) pen,
is a weight sequence. If the map B, : N, m([0,00)) — Cl[[z]]m sending f to the formal power
series Z;io(f(p’") (0)/p!)2? is surjective, then the sequence m = ((p + 1)mp)pen, satisfies the
condition (7).

Following the ideas in the proof of Proposition 4.6 in [91], we will be able to deal also with
the case o € N whenever B : A (Sqy) — C[[z]]m is surjective.

Theorem 3.3.14. Let M be a weight sequence satisfying (dc).
(i) Let a > 0 be such that B : A% (S,) — C[[z]Jm is surjective. Then, v(M) > [«].
(ii) Tf we have that Si = (0,00), then Sy = Stt = Syt = (0, 00) and y(M) = oc.

Proof. (i) Consider first the case a € (0,1), then o € St C Sy and a ¢ N, so by Theorem
we conclude that (M) > 0. Note that in this case no use has been made of (dc).

Suppose now that o > 1 and put 7 = |«/, a positive natural number (note that, by Theo-
rem we only would need to consider the case a = r € N but the proof works anyway).
Our aim is to show that B, : N ([0, 00)) — C[[2]];; is surjective.

Given g = > 2 apzP € C[[z ]]v we write b, := app! for all p € Ny and we see that there exist
Cy, Ag > 0 such that

|b,| < CoABPIM,, = CoABM,, p € No. (3.28)
ConsiNder the formal power seriis f= > peo(=1)PTbpz? € C[[z]lm. By hypothesis, there exists
Y € Ajy(Sq) such that B(y) = f, and so there exist C, A > 0 such that for every p € Ny one has

1
‘w(z) - (—1)’%,{;%\ < CAPM|2P, 2z €S (3.29)
0

bS]
|

£
I

The function ¢ : S,/ — C given by o(w) = ¥(w™") — by, is well defined and holomorphic in
Su/r 2 S1. Moreover, according to (3.29) for p = 1, for every w € S one has

CAM,

elw) Y™ = bl < T (3.30)

%=

So, the function f: R — C given by

f(t) — i /1+00ietu (p(U) du
1

27 J1—ooi U

is well defined and continuous on R. By the classical Hankel formula for the reciprocal Gamma
function [3.19, for every natural number p > 2 and every ¢t € R we may write

p—1 kr 14001 p_l kr
t 1 by,
— —1)*p = § . 3.31
(=)0 (kr)! 2w ( u"”’"‘l ) (3:31)

1
k=1 =001 =1
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Since, again by (3.29)), we have

(W) K= ey 1
u _Z(_l) bkukr-i-l

k=1

1

~

= CAPM,
— L <

< (3.32)

for every u € S, we can apply Leibniz’s theorem for parametric integrals and deduce that the

function
tkr

p—1
0= Db

belongs to CP*~1(R). Moreover, all of its derivatives of order m < pr — 1 at t = 0 vanish. This
fact can be checked by differentiating the right-hand side of m times under the integral
sign, evaluating at ¢ = 0, and then computing the integral by means of Cauchy’s theorem. For
that, consider the paths I's, s > 0, consisting of the arc of circumference centered at 1, joining
1+ si and 1 — si and passing through 1+ s, and the segment [1 — si, 1 + si]. It is plain to check
that fl“s u™ Y p(u) — Eg;i(—l)krbku_’”)du = 0, and applying a limiting process when
s — oo leads to the conclusion.
As p is arbitrary, we have that f € C*°(R) and, moreover,

Fm (o) = (=P, it m Z.pr for some p > 1,
0 otherwise.

Finally, we define the function
F(t)y=0bo+ f(—t), t>0.

Obviously, F' € €*°([0,00)) and F®")(0) = b,, p € No; F™(0) = 0 otherwise. In order to
conclude, we estimate the derivatives of F' of order pr for some p € Ng. For p=0and t > 0, we
take into account (3.28)) and (3.30) in order to obtain that

1 [ CAM CAM, [~ 1
(0) < il —t 1 < 1/
O <l o [ e g S [T i e

and so F' is bounded. For p > 1 we may write formula (3.31]) evaluated at —t as

p kr 1+ooz p kr
1 by,
e M GRS

l1—001 —1

Then,
P tkT (pr)
F(I”“) t) = 1) — -
() bp+<f( ) ;bk(kr)l) ()
1 14001 . p krbk
= by +% N ( Z Skr+1 &

l—oc01 —1

and we may apply (3.28)), and (3.32) in order to obtain

CAPTIM, [ 1

(pr) p
[FP(t)| < COAOMP + o o (14 y2)(r+1)/2

dy. (3.34)
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From (3.33)) and (3.34), and since M satisfies (dc), we deduce that there exist C1, A1 > 0 such
that for every p € Ny one has

|F@)(4)] < CLAYM,, = Cy APpINT,, t >0,

and so F' € N -([0,00)) and B,(F) = §. In conclusion, B, is surjective as desired, and by
Proposition [3.3.13| we deduce that m satisfies (7, ), what amounts to y(M) > r = |«a].

(ii) The fact that all the intervals of surjectivity are (0,00) is an easy consequence of (3.3
and Proposition (iil), while v(M) = oo stems from (i). O

Corollary 3.3.15. Whenever M is a weight sequence satisfying (dc), one has
Su C St C (0, [y(M)] + 1)
If moreover (M) € N, then Sy € St € (0, y(M)).

Proof. The arguments are similar to those in the proof of Corollary 3 11L The case Sf{ﬂ =0 is
trivial. Otherwise, Sy # 0 and, by Lemma | y(M) > 0.

Let o € Sf. By Theorem m we have LaJ < y(M), and so a < | +1 < [y(M)| + 1,
which is the first statement. In case v(M) € N, the condition |y(M)] < v(M) does not hold,
and so y(M) ¢ S and the interval Si has to be contained in (0, y(M)). O

Recall that if M has not (snq) the problem is solved (see Remark [3.3.12). Let M be (lc),
(sng) and (dc) (by Lemma [I.1.7] the first two conditions imply that M is a weight sequence).
Then v(M) € (0, 00], and we have the situation described in Table with the corresponding
conventions if (M) = oo or w(M) = co. With the same assumptions, one might be able to at
show least that Sy C Si € (0,7(M)) and Sy € (0,7(M)] but it seems that a technique that
only employs the properties of the spaces &, Nym and L, is not sufficient.

As it was mentioned in Remark [2.2.27] there exist sequences that are not strongly regular

such that v(M),w(M) € (0, 00), so these values refer to some concrete openings in the injectivity
and surjectivity problems.

(M) e N v(M) € R\N
Su € (0,7(M)) SM C (0, [Y(M)| +1) N (0, w(M)]
St S (0,7(M)) € (0, [v(M)] +1) N (0, w(M)]
Sw € (0,9(M) +1) N (0, w(M)] SM € (0, [y(M)] + 1] N (0, w(M)]

Table 3.3: Surjectivity intervals when M is (Ic), (snq) and (dc).

3.3.3 Strongly regular sequences

We need to impose more conditions on the sequence M in order to get extra information about
surjectivity. We recall that M is said to be strongly regular if is (lc), (snq) and (mg). As
commented before, the first two conditions are natural in this context and moderate growth
condition (mg), which is stronger than (dc), is our additional assumption. A quite complete
study of strong regularity has been presented in Section 2.1 we just remember that for these
sequences 0 < y(M) < w(M) < oo (see Remark 2.1.19).

The main known result regarding surjectivity for strongly regular sequences was provided by
V. Thilliez (see Theorem [3.3.2)). Except in the classical Gevrey classes, no information about
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the optimality of v(M) was provided. Our next attempt will be to obtain as much information
as possible in this direction. The following result rests on Theorem and a ramification
argument. As usual, Q denotes the rational numbers and I the irrationals.

Theorem 3.3.16. Let M be a strongly regular sequence, and let » € Q, » > 0 be given. The
following assertions are equivalent:

(i) r <~(M),

(ii) there exists d > 1 such that for every A > 0 there is a linear continuous operator

TM,Aﬂa : (CHZHM,A — -AM,dA(Sr)

such that Bo TM,A,'y = Id(C[[z} the identity map in (C[[ZHM,A,

I, 4
(iii) the Borel map B : Ap(S,) — C[[z]]m is surjective,
(iv) the Borel map B : A% (S,) — C[[z]]m is surjective.

Proof. (i) = (ii) = (iii) This is Theorem

(iii) = (iv) Trivial by contention.

(iv) = (i) In case r € N, we use Theorem [3.3.14] (i) and we conclude.

Otherwise, we write r = p/q with p,q € N relatively prime, ¢ > 2. Consider the sequence
M? = (M)nen,, which also turns out to be strongly regular (see [95, Lemma 1.3.4] or, alter-
natively, Proposition and Remark [2.1.19). We will prove that B : A (S,) — Cl[2]ma
is surjective, so, again by Theorem [3.3.14](i), we see that p < v(MY). Hence, we get that
r=p/q <y(M), as desired.

Let us prove the aforementioned surjectivity. Given f = > %0 ajz’ € Cl[z]lma, there exist
C, A > 0 such that |a;| < CAjM]‘-] for every j € Ny. Let us define a new formal power series
9= bjz) with coefficients

bgj = aj, j € No; by, = 0 otherwise.
The log-convexity of M implies that M]q < My; for every j, so we have that
|bgs| < CAjM;'J < C(Al/q)quqja

and consequently, g € C[[z]]m. By hypothesis, there exists a function g € AQ{M(ST) such that
B(g) = g, and so there exist Cy, A; > 0 such that for every z € S, and n € Ny one has

n—1
=) bal | < CLAT M|z, (3.35)

Jj=0

Consequently, the function f: S, — C given by f(w) = g(w'/9) is well-defined and holomorphic
in S,. Moreover, for every w € S, and n € Ny one deduces from (3.35) that

gn—1

Zajwj = |g(w*/9) Zb w/ NV | = |g(w!/9) Zbk 1ayk

< clA‘{"quml/qw”. (3.36)

JAVIER JIMENEZ GARRIDO



3.3. SURJECTIVITY OF THE ASYMPTOTIC BOREL MAP 133

We apply now the property (mg) of M: by Remark [1.1.10} there exists Ag > 0 such that for all
n € Ny we have My, < AjM,l. We may use this fact in (3.36]) and obtain that

n—1
Flw) = 3 ajud| < Cu(AAY)" Ml
j=0
So, f € AKM(SIJ) and B(f) = f, what shows the surjectivity as intended. O

This result has several important consequences.

Corollary 3.3.17. Let M be a strongly regular sequence with v(M) € Q. Then, Sy = 5’&1 =
(0,7(M)).

Proof. By Theorem and (3.3)), we have (0,7(M)) C Sy C S, while (iii) = (i) in The-
orem |3.3.16| ensures that, v(M) being rational, it cannot be the case that y(M) € Sy, and so
St € (0,7(M)). O

Corollary 3.3.18. Let M be a strongly regular sequence, and let t € R, ¢ > 0 be given. Each
assertion implies the following one:

(i) ¢ < (),
(ii) the Borel map B : Ay (S;) — C[[2]]m is surjective,
(iti) the Borel map B : A (S;) — C[[2]]m is surjective,
(iv) the Borel map B : Ay (S;) — C[[z]]m is surjective,
(v) for every & € T with & < ¢, the Borel map B : .,ZlM(Sg) — C[[#]]m is surjective,
(i) £ < ().
Hence, (0,v(M)) C Sy C Si4 € Sy C (0,v(M)).

Proof. Only (v) = (vi) needs a short proof. For every ¢ € N we have that ( = &g ¢ N,
we will show that B : Apa(S¢) — C[[2]]ma is surjective so, by Theorem .(i), we see that
|¢] < v(M%). Then v(M) > [£q|/q > &€ — 1/q. Since q is arbitrary, making ¢ tend to oo we
deduce that & < (M) for every irrational £ < ¢, so t < v(M).

The proof of the surjectivity follows the same ramification argument used in (iv) = (i)
of Theorem [3.3.16, where the asymptotic relations obtained for bounded subsectors of S¢ are
transformed into the analogous ones for the corresponding bounded subsectors of S;. ]

Remark 3.3.19. The situation for strongly regular sequences is summed up in Table The
conjecture is that, at least for strongly regular sequences, one always has Sy = (0,~7(M)] and
Sm = S = (0,7(M)). The main difference with the injectivity problem, in which the belonging
of the value w(M) to the injectivity interval depends on the convergence of a series, might lie in
the fact that the value of (M) completely characterized (snq) condition, that is, yv(M) > 0 if
and only if M has (snq), whereas for w(M) we remember that if w(M) > 0 then M is (ng), but
if M is (nq) then only w(M) > 0 is known.
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(M) € Q Y(M) el
Swu | (0,9(M)) | (0,7(M)) or (0,~(M)]
St | (0,9(M)) | (0,7(M)) or (0,y(M)]
Sut (0,7(M)) or (0,y(M)]

Table 3.4: Surjectivity intervals for strongly regular sequences

Remark 3.3.20. A question which was open for some time is: Are (M) and w(M) always equal
for strongly regular sequences? After some trial and error, a strongly regular sequence has been
constructed with y(M) = 2 < w(M) = 5/2 (see Example[2.2.26)). In fact, given any pair of values
0 < v <w < oo we are able to provide a strongly regular sequence M such that v(M) = ~ and
w(M) = w (see Remark [2.2.27). This means that for opening ar with « in the interval (v, w), the
Borel map is neither injective nor surjective and the corresponding injectivity and surjectivity
intervals for this sequence are either [w, 00) or (w,00) and (0,~) or (0,7], respectively.

3.3.4 Sequences admitting a nonzero proximate order

In this final subsection, taking into account that the Borel map is never bijective, Theorem
we will deduce more information regarding the surjectivity intervals. In order to be able to infer
from that result whether or not (M) belongs to Sy and S, strongly regularity is not enough
and we need to assume y(M) = w(M). Then,

(i) > (mp)_l/“(M) = 00, we know that I}y = Iy = [w(M), 00) = [y(M), 00), and then
Su = Sig = (0,7(M)),  (0,7(M)) S S C (0,7(M))].

(i) If 3200 (my) VM < 0o and 32000 ((p + 1)my,) /T = o0 we know that Iy =
[v(M), 00) and I = (v(M), 00), and so

Su = (0,7(M)),  (0,7(M)) € S € Su C (0,7(M)).

Hence, the information we have for strongly regular sequences with (M) = w(M) is summarized
in the first two rows of Table Note that for nonuniform asymptotics this assumption does
not produce any improvements and we will need to go one step further.

Our final result was given by J. Sanz, Theorem 6.1 in [88] for strongly regular sequences M
such that dyy is a proximate order. For nonuniform asymptotics, he proved that Sy = (0,~(M)]
employing the truncated Laplace transform technique where the classical exponential kernel was
replaced by a function ey (see Remark which is constructed using proximate orders and
Maerogiz’s functions. As it is deduced from [88, Remark 4.11.(iii)] and Remark this
construction is also available whenever M is a weight sequence admitting a nonzero proximate
order. We recall that if M admits a nonzero proximate order then it is strongly regular and
~(M) = w(M) € (0,00) but, as explained in the previous chapter, the converse does not hold, so
this is the most regular situation we will consider.

Theorem 3.3.21 (Generalized Borel-Ritt-Gevrey theorem). Let M be a weight sequence ad-
mitting a nonzero proximate order and v > 0 be given. The following statements are equivalent:

(i) v < wM) =~y(M),
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(ii) For every f = > pen, apz” € Cl[z]]m there exists a function f € Awi(S,) such that
f ~M fv
i.e., B(f) = f. In other words, the Borel map B : Ay (S,) — C[[z]]m is surjective.
Hence, S = (0, 7(M)] = (0, w(M)].

Table [3.5] gathers the information about surjectivity in case M admits a nonzero proximate
order. For the sequence Mag = (I ologP (e + m))pENo’ a > 0, f € R, the information is
summarized in Table note that the Gevrey case always belongs to the first column.

y(M) €1
] e
S (0,4(M))
% (0.7(M)) or (0,(M)]
M (0,7(M)]

B<a <B<La+l|B>a+1
Sitas | (0,0) | (0,0) (0, ) or (0,0
S, | (0,0) | (0,a) or (0,0] | (0,a) or (0,0]
Sutys | (0,0] | (0,0] (0,0

Table 3.6: Surjectivity intervals for the sequences M, g, « > 0, 5 € R.
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Chapter 4

Multisummability via proximate orders

The method of summation of formal power series by means of Borel and Laplace operators was
introduced by E. Borel in the ‘simplest’ case of level 1, and the extension of the method to any
level k is quite straightforward but technical. In 1981 multisummability notion was created in
a somewhat different and more general form by J. Ecalle [27], using what he called acceleration
operators. In 1992, W. Balser [5] reformulated this method for the Gevrey case by means of the
iterated Laplace integrals. This iteration of a finite number of k—summability procedures, which
has been proved to be stronger than any of them, is based on the fact that a convenient Borel
transform of the series is itself summable. Six different approaches to multisummability can be
found in the book of M. Loday [64].

The technique of multisummability (in Balser’s sense) has been successfully applied to the
study of formal power series solutions at a singular point of linear and nonlinear (systems of)
meromorphic ordinary differential equations in the complex domain (see, to cite but a few, the
works [6], [7, @l 19, [73] 85]), of partial differential equations (for example, [8, [10] 36l [69, [76]), as
well as of singular perturbation problems (see |11} 23], 59|, among others).

Nevertheless, it is known that nonGevrey formal power series solutions may appear for dif-
ferent kinds of equations. For example, V. Thilliez has proven some results on solutions within
these general classes for algebraic equations in [97]. Also, G. K. Immink in [40] [4I] has obtained
somie results on summability for solutions of difference equations whose coefficients grow at an
intermediate rate between Gevrey classes, called of 17 level, that is governed by a strongly regu-
lar sequence. More recently, S. Malek [70] has studied some singularly perturbed small step size
difference-differential nonlinear equations whose formal solutions with respect to the perturba-
tion parameter can be decomposed as sums of two formal series, one with Gevrey order 1, the
other of 17 level, a phenomenon already observed for difference equations [20].

All these results invite one to try to generate summability tools so they are able to deal with
formal power series whose coefficients’ growth is controlled by a general strongly regular sequence,
so including Gevrey, 11 level and other interesting examples. These generalized summability
methods have been developed by A. Lastra, S. Malek, J. Sanz in [60, [88], 89] and will be briefly
presented in the first section.

The aim of this chapter is to put forward the corresponding multisummability theory, in
Balser’s sense, in this context by suitably combining the methods created from different sequences
My, M, ..., M, instead of different Gevrey levels ki, ko, ..., k,. In the second section, we will
analyze the main difficulties of this general approach, such as the comparability of different
sequences, the properties of the product and quotient sequences and the extension of the classical
tauberian theorems. The definition of a meaningful multisummability notion depends on the
existence of these tauberian results that will be valid if the growth indices w(M) of the sequences
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are mutually distinct. In this situation, supplementary summability kernels will be constructed
from some given kernel e; for Ml; —summability in the third section. They will provide Laplace
and Borel-like transforms for the quotient and the product of two moment sequences me;, me,
allowing us to recover the multisum of a formal power series.

4.1 M-—summability

For a given sectorial region G of wide opening and a weight sequence M, i.e., (lc) with quotients
tending to infinity, Watson’s Lemma in Ay (G), Theorem ensures that every function f
in such a class is determined by its asymptotic expansion f. This fact motivates the concept,
developed by A. Lastra, S. Malek, J. Sanz in [60] 88, 89], of summability of formal (i.e. divergent
in general) power series with controlled growth in their coefficients in the framework of general
Carleman ultraholomorphic classes in sectors, described in the preceding chapter, so general-
izing the by-now classical and powerful tool of k—summability of formal Gevrey power series,

introduced by J.-P. Ramis [81], [82].

Definition 4.1.1. Let d € R and M be a weight sequence. We say f = > >0 w2’ € C[[2]] is
M—summable in direction d if there exist a sectorial region G = G(d, ), with v > w(M), and a
function f € Ay (G) such that f ~p f.

By Remark we have that f € C[[z]]u, according to Theorem [3.2.15, f is unique with
the property stated, and will be denoted f = Sy qf, the M—sum of f in direction d.

The aim of this section is to briefly recall the suitable tools developed in [60, 88, R9], where
the ideas in the theory of general moment summability methods put forward W. Balser in [7]
were followed, in order to recover f from f by means of formal and analytic transforms, in the
same vein as in the classical theory for Gevrey case, so-called k—summability.

4.1.1 M-—summability kernels

Balser’s moment summability methods, equivalent in a sense to k—summability, rely on the
determination of a pair of kernel functions e and E with suitable asymptotic and growth prop-
erties, in terms of which to define formal and analytic Laplace- and Borel-like transforms. The
definition of k—summability kernels in |7, Section 5.5] is extended for strongly regular sequences
as follows, where the case w(M) < 2 is mainly treated and indications will be given below on
how to work in the opposite situation.

Definition 4.1.2. Let M be a strongly regular sequence with w(M) < 2. A pair of complex
functions e, F are said to be kernel functions for M—summability if:

(1) e is holomorphic in S,y

(11) z7te(2) is locally uniformly integrable at the origin, i.e., there exists ¢y > 0, and for
every zo € S, there exists a neighborhood U of zp, U C S, such that the integral

foto t~tsup,cy le(t/z)|dt is finite.

(111) For every € > 0 there exist ¢,k > 0 such that

k
e(2)] < chug <|) B R (41)

where hyp and wyp are the functions associated with M defined Subsection [1.1.3]
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(rv) For z € R, x > 0, the values of e(x) are positive real.

(v) If we define the moment function associated with e,

mo()) = / Pledt,  Re() > 0,
0
from (I) — (IV') we see that m, is continuous in {Re(\) > 0}, holomorphic in {Re(A) > 0},
and me(x) > 0 for every x > 0. Then, the function E given by

n

E(Z):ij(n)’ z € C,

n=0

is entire, and there exist C, K > 0 such that

C

B < 3 &7

= CemlZ/E) 5 e C. (4.2)
(V1) 271E(1/2) is locally uniformly integrable at the origin in the sector S(m,2 —w(M)), in the

sense that there exists tyg > 0, and for every zg € S(7,2—w(M)) there exist a neighborhood
U of 29, U C S(m,2 —w(M)), such that the integral fgo t~Lsup,ey |E(2/t)|dt is finite.

We recall that if M is strongly regular w(M) € (0, 00) (see Remark [2.1.19)) and the sectors in
the above definition are meaningful.

Remark 4.1.3. (i) According to Definition 4.1.2(V), the knowledge of e is enough to deter-
mine the pair of kernel functions. So, in the sequel we will frequently omit the function F
in our statements.

(ii) In case w(M) > 2, condition (V1) in Definition does not make sense. However, we note

that for a positive real number s > 0 the sequence of 1/s—powers M(1/5) .= (M;/S)p

cNg 18
also a strongly regular, w(M(/9)) = w(M)/s (see Proposition [2.1.11] and Theorem [2.1.16
and Remark [2.1.19)) and, as it is easy to check,

hagaso (8) = (hua(t9))5, ¢ >0,

So, following the ideas of Section 5.6 in |7, p.90], we will say that a complex function e is a
kernel of M—summability if there exist s > 0 with w(M)/s < 2, and a kernel € : S,y /s — C
for M(1/%) —summability such that

e(z) := é(z'/%) /s, z € Sy,

If one defines the moment function m. as before, it is plain to see that me(\) = mg(sA),
Re(A) > 0. The properties verified by € and mg are easily translated into similar ones for e,
but in this case the function

n 0 n
=0

B(z) = 7;) me(n) - nz me(sn)

does not have the same properties as before, and one rather pays attention to the kernel
associated with €,

BE) = 2t ~ 2 o) )
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which will behave as indicated in (V) and (V1) of Definition for such a kernel of
M1/%) —summability.

It is worth remarking that, once such s and € as in the definition exist, one easily checks
that for any real number ¢ > w(M)/2 a kernel & for M('/Y) —summability exists with e(z) =
—( 1)t

e(z+/")/t.

Remark 4.1.4. (i) Note that Definition can be given for arbitrary weight sequences

(i)

with w(M) € (0,2). If, moreover, M is (dc) and there exists an M—summability kernel,
one can show, following the ideas in [58, [88], that M satisfies (snq), so this condition is
obtained automatically and, furthermore, v(M) = w(M).

However, (mg) seems not to be deduced from the definition of the kernels but it turns
out that for the proofs below (mg) is essential. In any case, since the existence of such
kernels is only guaranteed for a subfamily of strongly regular sequences, the ones admitting
a nonzero proximate order (see (ii) in this remark), the definition in [60] has been kept.

The existence of such kernels have been proved in [60], by taking into account the construc-
tion of nontrivial flat functions in AM(SM(M)) accomplished by J. Sanz in [88], whenever the
function dp(t) is a nonzero proximate order (see and Theorem which can be
extended whenever the sequence M admits a nonzero proximate order. In Remark
we have explained that this condition holds for the strongly regular sequences appearing
in the applications but it is strictly stronger. We recall that a weight sequence M admits
a nonzero proximate order if there exists a nonzero proximate order p(t) and constants A

and B such that
A <log(t)(p(t) — dm(t)) < B, for t large enough,

or, equivalently, if
1P(t)

wi(t)
In this situation we know that lim; . dy(t) = limyseo p(t) = 1/w(M) (see Subsec-
tion [2.2.4). Then, for such a sequence and for every V € M F(2w(M), p(t)) they consider
the function ey defined in S,y by
ev(2) = 2 exp(~V(2)).

Since V' is holomorphic in Sy, ar) and real in (0, 00), the same is true for ey, so (1) and (1v) in
Definition hold. Property (1) in that Definition has been obtained, as in [88, Lemma
5.3], as a consequence of Proposition which ensures that for every ¢ € (0,w(M))
there exists b > 0 such that for any z € Syn)—e,

lev(2)] < |z[exp(=Re(V(2))) < [z] exp(=bV(|2])) < [z exp(—Abwm(|2])) < 2], (4.4)

because wyr(]z]) > 0. Similarly for (111), using in addition Lemma [1.1.24] also as in [88|
Lemma 5.3], we see that there exist constants ¢,k > 0 such that

lev (2)] < |z exp(—Abwm(|2])) < cexp(—wm(|z]/k))

for every z € S, Then, the moment function associated with ey,

my (\) :z/ t’\_lev(t)dt:/ e VO,
0 0

is well defined in {Re(\) > 0}, continuous in its domain, holomorphic in {Re(A) > 0} and
my (z) > 0 for every x > 0. Moreover, we have the following result of L.S. Maergoiz.

et < < eP, for t large enough.
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Proposition 4.1.5 ([65], Th. 3.3). The function
- n

Ev(z)znz_;)mv(n), z € C,

is entire and there exist constants C1, K1 > 0 such that for every z € C one has

[Ev(2)] < Crexp(K1V([2])).

Consequently, by the admissibility condition, for every 2z € C and suitably large constants
C,K > 0, we have that

By (2)] < Cexp(Kuw(|2]))
and so condition (V) in Definition is satisfied. Finally, we take into account the

following.

Proposition 4.1.6 ([65], (3.25)). Let p(t) be a proximate order with p > 1/2, v > 2/p
and V € MF(v,p(t)). Then, for every € > 0 such that ¢ < 7/2(2—1/p) we have, uniformly
as |z| — oo, that (in Landau’s notation)

1 us
E = — — < <. 4.
v =0(5),  gteslugsl<n (45)

In this case p = 1/w(M) and this information easily implies that also condition (Vi) in
Definition is fulfilled, so ey is a kernel of Ml—summability.

iii) In Balser’s theory for Gevrey sequences My, = (p!*/*),cn, (see [7, Sect. 5.5]), the classical
/ pENp
example of kernels is given by ej(z) = kz* exp(—2"), the moment function is T'(1 + \/k)
and the Borel kernel F is a Mittag-Lefler function.

Next, we recall the following key result by H. Komatsu that characterizes the growth of a
entire function in terms of its Taylor coefficients and it was useful in the proof of Proposition
and will be employed afterwards.

Proposition 4.1.7 ([52], Prop. 4.5). Let wp(t) be the function associated with a weight se-
quence M. Given an entire function F(z) = > > ja,2", z € C, the following statements are
equivalent:

(i) There exist C, K > 0 such that |F(z)| < Ce*nEED - e C.
(ii) There exist ¢,k > 0 such that for every n € Ny, |ay| < ck™/M,,.

The following result is key for the development of a satisfactory summability theory because
it ensures that the classes of functions and formal power series defined from M and m, coincide.
In the proof, the estimates, for the kernels e and E appearing in (4.1) and (4.2)), respectively,
are crucial

Proposition 4.1.8 (|88], Prop. 5.7). Let e be a kernel function for M—summability, and m, =
(me(p))pen, the sequence of moments associated with e. Then M ~ m,.

Remark 4.1.9. (i) As mentioned in Remark in the Gevrey case of order o > 0, M, =
(P'Y)peny, it is usual to choose the kernel

1
e1/a(2) = 2V exp(—zY), z € Sy
a
Then we obtain that me, (A) = I'(1 4+ a)) for Re(A) > 0. Of course, the sequences M, and
me, = (Ma(p))pen, are equivalent.

o
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(ii) Indeed, for any kernel e for M—summability, up to multiplication by a constant scaling
factor, one may always suppose that m.(0) = 1. One may also prove that the sequence
of moments me = (me(p))pen, is also (Ic), which is a consequence of Hélder’s inequal-
ity. Then the strong regularity is deduced from the equivalence between M and m, (see

Proposition (1.1.20)).

Bearing this fact in mind, in Definition .1.2] one could depart not from a weight sequence
M, but from a kernel e, initially defined and positive in direction d = 0, whose moment
function m.(\) is supposed to be well-defined for A > 0, and such that the sequence m,
is strongly regular. With this approach, w(M) will be replaced by w(m,) and the function
wy(t) by wm, (t) in the definition of the kernels.

(iii) In a more general framework (see O. Blasco [15]), departing from a continuous and piecewise
continuously differentiable nondecreasing function ¢ : [0, 00) — [0, 00) with log(t) = o(¢(t))
as t — 0o, we can construct two sequences:

i) the moment sequence M,(¢) = tpeﬂb(t)dt, so e(t) = te=?® for all p € Ny.
P
0

(ii) the Legendre sequence: Ly(¢) = supsqtPe®® for all p € Ny (compare with the
log-convex minorant in Proposition |1.1.23]).

We have that both sequences are (Ic) and we have that

L VL
pfi < M, < 71\/L2p+1, peN.

Hence, if the lower Matuszewska index of ¢ is positive, 5(¢) > 0, we deduce that it exists
H > 1 such that ¢(t) < ¢(Ht) + H and, as in the proof of Lemma [1.1.24] we see that L
has (mg) and we conclude that M ~ L.

4.1.2 Generalized Laplace and Borel transforms

In this subsection, it will be shown how Laplace- and Borel-like transforms are defined from the
M—summability kernels, summarizing their main properties. The first definition resembles that
of functions of exponential growth of order 1/k, playing a fundamental role when dealing with
Laplace and Borel transforms in k—summability for Gevrey classes. For convenience, we will say
a holomorphic function f in a sector S is continuous at the origin if lim,_,o .er f(2) exists for
every T < S.

Definition 4.1.10. Let M be a weight sequence, and consider an unbounded sector S in R.
The set O™(S) consists of the holomorphic functions f in S, continuous at the origin and having
M—growth in S, i.e. such that for every unbounded proper subsector T' of S, we write T' << S,
there exist r, ¢,k > 0 such that for every z € T with |z| > r one has

C
P € g = celeim), (4.6)

(k/1z])

Remark 4.1.11. Since continuity at 0 has been asked for, f € O™(S) implies that for every
T << S there exist ¢, k > 0 such that for every z € T with |z| < r one has (4.6).

We are ready for the introduction of the e—Laplace transform. Given a sector S = S(d, «),
a kernel e for M—summability and f € O(S), for any direction 7 in S we define the operator
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T¢ - sending f to its e—Laplace transform in direction 7, defined as

oo(T) du
(Terf)(2) = /0 e(u/z)f(u)z, larg(z) — 7| < w(M)7/2, |z| small enough, (4.7)

where the integral is taken along the half-line parametrized by t € (0,00) — te’”. We have the
following result.

Proposition 4.1.12 ([60], Prop. 3.11). For a sector S = S(d,a) and f € OM(9), the family
{T.+f}+ins defines a holomorphic function T¢ f in a sectorial region G(d, a + w(M)).

We now define the generalized Borel transforms.

Definition 4.1.13. Suppose w(M) < 2, and let G = G(d, ) be a sectorial region with o > w(M),
and f : G — C be holomorphic in G and continuous at 0. For 7 € R such that |7 — d| <
(o — w(M))m/2 we may consider a path J,u)(7) in G like the ones used in the classical Borel
transform, consisting of a segment from the origin to a point zp with arg(zp) = 7+w(M)(7+¢)/2
(for some suitably small € € (0, 7)), then the circular arc |z| = |z9| from 2y to the point z; on
the ray arg(z) = 7 — w(M)(7 + ¢)/2 (traversed clockwise), and finally the segment from z; to
the origin.

Given kernels e, E' for M—summability, we define the operator T sending f to its e—Borel
transform in direction T, defined as

—1
(Te - f)(u) := 9 E(u/z)f(z:)%7 u € S(71,e0), o small enough.
T S (1) <

Proposition 4.1.14 ([60], Prop. 3.12). For G = G(d,«) and f : G — C as above, the family

{T;Tf}Ta

where 7 is a real number such that |7 — d| < (o — w(M))7/2, defines a holomorphic function
T f in the sector S = S(d, a — w(M)). Moreover, T, f is of M—growth in S.

Remark 4.1.15. In case w(M) > 2, choose s > 0 and a kernel & for M(1/*) —summability as in
Remark (ii), and let 77 _ be defined as before, where the kernel under the integral sign is

the function E given in 1} Then, if ¢ is the operator sending a function f to the function
f(2%), we define T_ . by the identity

(Z)S © TeTT = Té_ﬂ' ° ¢57
in the same way as in [7, p. 90].

One can compute the e—transforms of a monomial.

Proposition 4.1.16 ([60], p. 1187). Given A € C with Re(\) > 0, the function fy(z) = 2*
belongs to the space OM(S) and we have that

T.fra(2) = /OOO e(t)2A MM Ladt = me(N) 2,

Universidad de Valladolid



144 CHAPTER 4. MULTISUMMABILITY VIA PROXIMATE ORDERS

The last proposition justifies the forthcoming definition of formal Laplace and Borel trans-
forms.

Definition 4.1.17. Given a sequence M and a kernel of Ml—summability e, the formal e—Laplace
transform T : C[[z]] — C[[z]] is given by

R o0 [e.9]
Te( Z ap??) = Z me(p)ayz?.
p=0 p=0

Accordingly, we define the formal e—Borel transform T : C[[z]] — C][[z]] by

Te_(Zapzp) ::i _.p
P

—~ 2= me(p)

The operators T, and Tg are inverse to each other.

The next result lets us know how these analytic and formal transforms interact with general
asymptotic expansions. Given two sequences of positive real numbers M = (Mp)pen, and M/ =
(M) pen,, we consider the sequences M - M = (M, M, )nen, and M'/M = (M, /M) pen, -

Theorem 4.1.18 ([60], Th. 3.16). Suppose M is a sequence and e is a kernel of Ml—summability.
For any sequence M of positive real numbers the following hold:

(i) If f € OM(S(d,«)) and f ~pp f, then Tof ~paw Tof in a sectorial region G(d, o+ w(M)).

(ii) If f ~yp f in a sectorial region G(d, @) with o > w (M), then T, f ~MY /M T f in the sector
S(d, a0 — w(M)).

Note that if both sequences are weight sequences, M - M’ is again a weight sequence, but
M'/M might not be. This last theorem motivates the study of the quotient and the product
sequence achieved in Subsection [4.2.2]

4.1.3 M-summability and e—summability

With the tools presented in the previous subsections, we are ready to give a definition of summa-
bility in a direction with respect to a kernel e of M—summability. We recall that m. is also
strongly regular and equivalent to M (see Proposition and Remark , so, on one hand,
C[[z]]m = C[[2]]m, and, on the other hand, it makes sense to consider the space O™¢(S) for any
unbounded sector S and, moreover, O™ (S) = OM(S) (see (L.7)).

Definition 4.1.19. Let e be a kernel of Ml—summability. We say f = szo apzP is e—summable
in direction d € R if:

. A a
i) feCl?]lm,s0g9:=1T, f= P__»P converges in a disc and

(ii) g admits analytic continuation in a sector S = S(d, ¢) for some € > 0, and g € O™¢(S).

The next result states the equivalence between M—summability and e—summability in a
direction, and provides a way to recover the Ml—sum in a direction of a summable power series
by means of the formal and analytic transforms previously introduced.

Theorem 4.1.20 ([60], Th. 3.18). Given a weight sequence M, a direction d € R and a formal
power series f = ZpZO apz?, the following are equivalent:
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(i) fis Ml—summable in direction d.

~

(ii) For every kernel e of M—summability, f is e—summable in direction d.

~

(iii) For some kernel e of M—summability, f is e—summable in direction d.

In case any of the previous holds, we deduce from the Watson’s Lemma that we have (after
analytic continuation)

Suaf =TT f) (4.8)

for any kernel e of M—summability.

Remark 4.1.21. In case M = M) /5, the summability methods described are just the classical
k—summability and e—summability (in a direction) for kernels e of order k£ > 0, as defined by
W. Balser.

Finally, we will present some basic properties of M—summable series. As a consequence of
Watson’s Lemina and the basic properties of asymptotics, we have that:

Lemma 4.1.22. Let M be a weight sequence, the following holds:

(i) Let f be convergent. Then for every d, the series f is M—summable in direction d and
Sm,af(z) = Sf(z) for every z where both sides are defined, where S maps each convergent
power series to its natural sum.

(i) If f is M—summable in direction d for every d € (a, B) with a < 3, then

~ ~

8M,d1f(z) = SM,de(Z)v dlv d2 € (Oé, B)
where both functions are defined.

(iii) Let f be M—summable in direction d, there exists ¢ > 0 such that f is M—summable in
all directions d with |d — d| < e.

(iv) For d = d+2m, the M—summability of f in direction d is equivalent to the M—summability
of f in direction d. Moreover, we have that

Syp.af (2) = Suaf (ze7™),
where both functions are defined.

Remark 4.1.23. In particular (i) in the last Lemma says that our summability method is
regular, that is, if the ordinary sum exists, then the sum in (4.8)) also exists and with the same
value.

From Lemma [4.1.22|(iv), we know that we can identify directions d that differ by integer

multiples of 27. By Lemma 4.1.22|(iii), we know that the set of directions for which the formal
power series is not M—summable is closed, specially interesting is the case in which this set is
finite (mod 2m).

Definition 4.1.24. Let C{z} 4 be the set of formal power series f which are M—summable in di-
rection d. Let C{z}y be the set of M—summable formal power series f which are M—summable in

every direction except for a finite set of directions (mod 2), denoted by sing(f) = {d1,...,dmn}.

Please note that C{z} C C{z}m 4 C C[[z]]m. We have the following properties of these sets.
Ouly the proof of (i) is indicated due to its importance in the proof of the tauberian results.
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Proposition 4.1.25. Let M be a weight sequence. Then,
(i) If f € C{z}y and sing(f) = 0, then f is convergent.
(ii) C{z}m,d, C{z}m are algebras. Moreover, if M is (dc) they are differential algebras.

Proof. (i) Using Lemma (ii), we know that f(z) := SM,df(z) is well-defined (indepen-
dent from direction d). By Lemma [£.1.22](iv) we know that f is single-valued, then f can
be expanded into a convergent power series about the origin. By the uniqueness of the
asymptotic expansion, we deduce that f coincides with this convergent power series.

O

4.2 Tauberian theorems

Classical Tauberian theorems ([71, Th. 2.2.4.2] and |7, Th. 37|) serve to compare the processes
of k—summability for various k; these theorems are strongly related to multisummability. In
this section, we will see what can be said about the connection between the algebras C{z}m
and C{z}r for two given sequences M and L. For this purpose in the first subsection we will
thoroughly examine the comparability notion introduce at the beginning of the dissertation.
Secondly, we will analyze the properties of the quotient and the product sequences of M and L.
Finally, with all these tools, we will formulate our main results, generalizing the Gevrey case if
wM) < w(L), and if w(M) = w(L) showing that such a generalization is not possible for our
definition of summability. The results in this section are stated for a couple of sequences but can
be easily extended for a finite set of sequences My, M, ..., M.

4.2.1 Comparison of sequences

In this subsection, we want to see whether or not it is possible to compare two different sequences
in such a way that the Tauberian theorems are available, so a multisummability notion, that
generalizes the Gevrey situation, can be formulated. The example at the end of the subsection
will show that, in general, we can not always determine which of two given weight sequences,
i.e., (lc) with quotients tending to infinity, M and L is greater, not even for sequences whose
quotients are regularly varying which implies the admissibility of a nonzero proximate order (see
Remark . Hence, it will be natural to impose some comparability condition between M
and LL in the forthcoming results.

Let M and L be sequences, we recall (see Definition [1.1.12)) that M 3 L if there exists some
positive constant A > 0 such that

M, < APL,, for all p € Ng.

We say that M and L. are comparable if M = 1L or . 3 M holds. If both conditions hold,
we say that M is equivalent to L, and we write M ~ L. We also remind that if M ~ L then
the corresponding classes of functions are the same (see Remark and w(M) = w(lL) (see
Remark. Since equivalent sequences define the same classes, we are particularly interested
in comparable but not equivalent sequences, i.e., L X M and L % M, which is true if and only if

L.\ /P Lo\ /P
inf <p> =0, and sup <p> < 00,
peN \ M, peN \ M)
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or, equivalently, if

L.\ /P L.\ /P
lim inf <p> =0, and limsup <p> < 00.

p—00 P p—+00 P

In other words, we want to avoid noncomparable sequences, that is,

M.\ /P M.\ /P
lim inf <p> =0, and limsup <p> = 00. (4.9)

p—00 P p—+00 Lp

For the construction of our example of noncomparable sequences, we need to characterize
in terms of the corresponding associated functions (see (1.4)). For any weight sequence M
admitting a nonzero proximate order, by Lemma and Remark we know that the
associated function wyy(t) is O-regularly varying with all the Matuszewska indices and the orders
coinciding with 1/w(M) € (0, 00) and we deduce the next Lemma.

Lemma 4.2.1. Let M be a weight sequence admitting a nonzero proximate order. Then for any
A > 0 there exist t4, F, F' > 0 such that

U.)M(Et) < AwM(t) < wM(Ft), t>1a,
and for any B > 0 there exist constants tp, G, H > 0 such that
GwM(t) < wM(Bt) < HwM(t), t>1p.

The characterization of comparability in terms of the associated function is stated below in
the most regular case, i.e., for a sequence M admitting a nonzero proximate order, because these
are the ones used to develop the summability theory, but Lemma {4.2.1] is still valid if weaker
conditions are satisfied by M (see [90, Lemmma 3.18] by G. Schindl). Hence, the next proposition
also holds for simpler but less regular sequences, for instance strongly regular, and examples of
noncomparability can be constructed in a similar way.

Proposition 4.2.2. Let M and L be two weight sequences such that M admits a nonzero
proximate order. We have that

M 1/p
lim inf (p> ~0  ifandonlyif limint ) g

P—00 D t—oo  wy(t)

and

1/p
t
lim sup <p> = 00 if and only if  limsup w(?) =
pP—00 Lp t—o00 WM(t)

Proof. If we suppose that lim inf; o wy, (t) /wp(t) > 0, then there exists A > 0 such that wy,(¢) >
Awn(t) for every t > ty. By Proposition [1.1.23] we have that

M 1/p M. 1/p M 1/p
liminf [ =2 = lim inf P > lim inf P .
e\, P\ supyso (9 /) pioo \ supyo (/A0

By Lemma there exists £ > 0 such that Awyp(t) > wm(Et) for ¢ large enough. It is
easy to check that the supremum for ¢t > 0 of the function f,m(t) = tPe~Awm(®) ig attained in
[mp/a],00), so for p large enough we have that

Sup(tp/eAwM(t)) < sup(tp/ewM(Et)),
>0 t>0
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and we deduce that
M 1/p
lim inf <p> > FE > 0.
p—oo \ Ly
Now, if we suppose that liminf, , (Mp/Lp)l/p > 0, then there exists B > 0 such that
M, > BPL, for every p € N. Consequently, wy(t) > ww(Bt) for every t > mg and, using
Lemma we have that

B
lim inf w(t) > lim inf wi(Bt)

>G> 0.
oo wnel) = 1o wll) ©

The same arguments lead to the other equivalence. ([l

We will use the construction of sequences from proximate orders, described in Subsec-
tion in order to build noncomparable sequences from noncomparable proximate orders.
The main advantage of this procedure is that it may be more suitable to work with proximate
orders rather than directly with sequences.

Definition 4.2.3. Two proximate orders pi(t) and pa(t) are said to be noncomparable if the
functions Vi (t) = tP1®) and Va(t) = t*2(®) satisty that

Vi)
=0 and lim su =
5o Va(t) ponc Val(t)

If p1,p2 > 0 are the corresponding values of their limit at infinity and p; # po, using the
property (C) of proximate orders (see Remark , one can show that the proximate orders
are comparable.

Example 4.2.4. We consider the following functions
p1<t) =1, te (0, OO)7

sin(logy(?))

logy(t)
The function p;(t) is evidently a nonzero proximate order and it is easy to check that po(t)
verifies conditions (A), (B) and (C). Since

p2(t) =1+ t € (e,00), logy(t):=log(log(t)).

s cos(logy(t))logy(t) — sin(logy(t))
[0

we see that

cos(log,(t)) B sin(logz(t))> —0
log, (t) (logy(t))? 7

so pa(t) is a nonzero proximate order. We consider the sequences

. / T
Jim pa(¢)tlog(t) = lim (
rn, = exp(exp(7/2 4 27wn)), sn = exp(exp(37/2 4 27wn)), n € N.
We write Vi (t) = tP*®) and Va(t) = t2®) and we observe that

]
00 Vi (57

=0, lim

Hence, the proximate orders p;(t) and pa(t) are noncomparable.
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We fix v > 0, Vi € MF(v, p1(t)) and Vo € MF(v, pa(t)) and we consider the sequences Uy
and Uy (see Definition [2.2.11)) defined from the corresponding inverse functions Uy (t) and Us(t).

These sequences Uy and Uy are regularly varying of index 1, so the functions dy, (t) are nonzero
proximate orders. According to Theorem [1.2.16(VI) and Remark [2.2.13[for j = 1,2 we see that

(t) wy (t)

Wy,
0 < lim inf Y

—L = < limsu < 00.
e Vit) T et V(D)
Since p1(t) and pa(t) are noncomparable, we deduce that
t t
lim inf wu, (1) =0, and  limsup wu, (1) =
t=oo Wi,y (t) p—oo WU, (t)

Finally, by Proposition [£.2.2] we conclude that U; and Uy are noncomparable.

4.2.2 Product and quotient of sequences

In the study of multisummability in this general context there naturally appear the product se-
quence M- L := (M, Ly)pen, and the quotient sequence M/ := (M,,/Ly)pen, of two sequences M
and L. In this subsection, some elementary properties of these sequences will be obtained and the
connection with the comparability notion in the last subsection will be established. Since many
of these properties are stated in terms of the sequence of quotients, note that the corresponding
ones for M - L. and M/IL are m - £ = (mp¥p)pen, and m/€ = (my/l,)pen,, respectively.

Proposition 4.2.5. Suppose given two weight sequences M and L, each one admitting a nonzero
proximate order. Then, M - L is a weight sequence and it admits a nonzero proximate order. In
this situation, we have that w(M - L) = w(M) + w(L).

Proof. This is immediate using Theorems [2.2.6] and [2.2.17] and the stability of (l¢), regular
variation and the index of regular variation for the product. ]

Recall that, for sequences admitting a nonzero proximate order, the orders and the Ma-
tuszewska indices are all equal to w(M) € (0,00) (see Remark [2.2.18)).

Remark 4.2.6. We observe that the product sequence of two sequences also preserves some
weaker properties. In particular, if M and IL are strongly regular sequences then M- L is strongly
regular and w(M)+w(LL) < w(M-L). However, the equality w(M-L) = w(M)+w(LL) is not always
valid, such an example can be constructed with the techniques described in Remark

Remark 4.2.7. If there exists a > 0 such that the sequences of quotients associated with M,
and L, satisfy
a_lfp <my, < alp, p € No,

then M ~ L. Consequently, if (¢,)pen, and (myp)pen, are equivalent in the classical sense, that
is, limp o0 £,/m;, = 1, then we also have that M ~ L.

The main difficulty when dealing with the quotient sequence is to ensure that it satisfies
(Ic). Applying Theorem [1.2.41] of R. Bojanic and E. Seneta, we will solve this problem, if the
sequences considered are regular enough, by switching M/ILL for an equivalent sequence.

Proposition 4.2.8. Given two weight sequences M and L, each one admitting a nonzero prox-
imate order, assume that w(L) < w(M). Then it exists a weight sequence A equivalent to M/L
whose sequence of quotients is regularly varying with index w(M) — w(L).
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Proof. By Theorem [2.2.6] and [2.2.17, we know that there exist weight sequences L/ and M’
equivalent to I and M, respectively, whose sequences of quotients (%)peNO and (m;)peNo are
regularly varying with indices w(L) and w(M).

Applying Theoremthere exist sequences of positive real numbers (£})pen, and (mj)pen,
equivalent in the classical sense to (£},)pen, and (my,)pen,, respectively, i.e, limy o0 £,/0, = 1
and limy, o mj,/my = 1, and satisfying (1.15). It is plain to check that the sequence b = (b, :=
my) /1) pen, is regularly varying of index w(M) — w(L). By (L.15), we observe that

bpr1 _ Mps1 by (1+W(M) N (1>> 1
= = —~ 4ol = .
by my Ll p p)) 1+w(l)/p+o(1/p)

We take a € (w(L),w(M)), then there exists pg € N such that

bp+1 < a) 1
s (142 —— =1, > Do.
bp p) (1+a/p) b=ro

We define the sequence a, := by, for p < pg and a, := b, for p > py. The sequence a is
nondecreasing and regularly varying of index w(M) — w(L) and a ~ b.

Consequently, the corresponding sequence A is a weight sequence with A ~ B = M" /I” (see
Proposition [1.1.15). Since m’/€' ~ m"” /€", we have that m’/€' ~ m” /£" so A ~ M'/L’. Finally,
using that I and M are equivalent to I and M, we conclude that the proposition holds.

O

Remark 4.2.9. If w(L) < w(M), using the above proposition, we change M for the equivalent
sequence A - L which is (Ic) and admits a nonzero proximate order. Without loss of generality,
we can always assume that M/L is (lc) and that its sequence of quotients is regularly varying of
positive index.

Some information about the behavior of these sequences can be obtained even if the conditions
on M and L are relaxed. In particular, we observe that the indices w(M-L) and w(M/L) can be
computed from w(M) and w(LL).

Remark 4.2.10. Assume that M and LL are weight sequences, such that L satisfies (2.23)), which
is guaranteed in case L admits a nonzero proximate order (see Remark [2.2.18]), then

1 ] 1
w(M-L) = lim inf log(1myty) = lim inf og(1my) + lim 0((y)
p—oo log(p) p—oo  log(p) — p—oo log(p)

.. log(my/ly) .. log(myp) . log(4,)
M/L) =1 f—————2 =1 f lim — =w(M) —w(L) € R.
WMD) =Bty e Tegp) Tt Toa(p) WM el €

=wM) + w(L) € [0, o0],

Finally, the following proposition shows that L. = M and L % M (comparability but not
equivalence) can be characterized in terms of the quotient sequence.

Proposition 4.2.11. Given two sequences M and L, we have that

(i) if the sequence of quotients of M/ tends to infinity, then lim, ;oo (M,/L,)"/P = co and
L <M and L % M.

(ii) Assume that M/LL is (Ic). Then

(ii.a) L 2 M and L % M if and only if lim,_,(M,/L,)"/? = .
(ii.b) L 3 M and L % M if and only if the sequence of quotients of M/IL tends to infinity.
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(i)

Assume that L is a weight sequence satisfying (2.23)), i.e., w(L) = p(€) = p(£) and that
w(L) < w(M). Then the sequence of quotients of M/LL tends to infinity, L S M and L % M
and limy,_, oo (M,/Ly)Y/P = oco.

Proof. (i) If m/¢€ tends to infinity, then for any K > 0 it exists pg € N such that m,/¢, > K

(ii.a)

(ii.b)

(iii)

for every p > pg. Hence, we deduce that

MNP KPpo M, \ P
()" ()
p Po

Taking limit inferior in both sides we see that liminf, . (M,/L,)'/? > K. Since this is
true for any K > 0 we conclude that

M 1/p M 1/p
lim <p> = liminf <p> = 00
P—00 Lp P—00 Lp

which implies that . < M and L % M.

If limy, 00 (M, /L,)/P = 00, we immediately get that I < M and L 5 M.

Conversely, using Lemma m(vi), if M/L is (Ic), we obtain that ((M,/Ly)"/P)yen is
nondecreasing. Hence, from the fact that I < M and IL % M we show that ((M,/L,)"/?),en
tends oo.

Since M/L is (lc), it is immediate from (ii.a) and Lemma [I.1.7](vii).
We have that
1 log (¢
lim inf 08(my) = w(M), lim 08(6) =w(L).
p~oo log(p) p—oo log(p)

Since w(L) < w(M) we can fix 0 < ¢ < (w(M) — w(LL))/2 and we observe that it exists
po € N such that for every p > py we get that

w(M)—e
My p _ wM)—w(L)—2
> P = e

b T p
then lim, o m,/l, = co. From (i), we see that lim, . (M,/L,)"/? = oo, L = M and
L % M.

(]

Remark 4.2.12. By the previous proposition, if L satisfies (2.23]), which is valid whenever LL
admits a nonzero proximate order, we have seen that if w(L) < w(M), M and L are comparable
but not equivalent.

Consequently, in our framework, comparability conditions need only to be assumed when
w(M) = w(L). In this situation, according to the last result, it is natural to assume that M/L
is a weight sequence or, equivalently, that M//LL is (Ic) and L. £ M and L % M, which can not
be deduced from the regularity of Ml and LL (see Example . Note that this is not a weird
condition.
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4.2.3 Tauberian theorems

Assuming a basic comparability hypothesis, justified in the previous subsections, and that one
of the sequences is regular enough in order to employ summability techniques, we are ready to
clarify the relation between C{z}y and C{z}r. First, we observe that if a formal power series
is summable for two different sequences, then its sums agree, extending what was proved for
k—summability by J.-P. Ramis and J. Martinet |83, Ch. 2, Prop. 4.3| (see also [7, Lemma 8§|
and [64, Coro. 5.3.15]).

Proposition 4.2.13. Let L. and M be weight sequences such that L admits a nonzero proximate
order and M/L is (Ic). If w(L) < w(M), or if w(L) = w(M) assuming in addition that L 3 M
and IL % M, then for every f € C{z}m N C|[2]]L, we have that

(i) singy(f) C singy(f) and f € C{z}y N C{z}L.
(i) For every d & singy(f), (SL.af)(2) ~L f on G(d, ) with a > w(M),
(iii) (S]L’df)(z) = (SMdf)(z) for every z where both functions are defined.

Proof. By Proposition [4.2.11} from the hypothesis in both situations w(L) < w(M) or w(LL) =
w(M), we deduce that M/L is a weight sequence. Then, Watson’s Lemma is available.

(i) Since f € C{z}y, we have that singy(f) is finite. Let d be a nonsingular direction of
M—summability. We write f(z) := Smq f(z). We choose a kernel of L—summability, that
exists by Remark , and we consider g := T f. Since f is defined on a sectorial
region G(d, o) with a > w(M) > w(L), by Proposition 4.1.14] g is holomorphic in a sector
S(d, o0 —w(L)) with L—growth on this sector.

On the other hand, f € C[[z]]L, hence we have that § := Ty f € C{z}. By Theo-

rem (.1.18}(ii), we have that g ~y1, § on S(d, a — w(IL)) and, since g € C{z}, SG ~m1 §
in a disc, and then in a sectorial region of opening m(av — w(L)). By the Watson’s Lemma,

Theorem we have that
B: AM/JL(G’Y) — Cl[2]Im/L

is injective for every v > w(M/L) = w(M) — w(L) (see Remark [4.2.10)). Since g is holomor-
phic in a sector of opening 7(a — w(L)) > m(w(M) — w(LL)), g is unique and, consequently,
it is an analytic extension of § := f with L—growth in the sector S(d a — w(L)).

1o
Using Theorem [4.1.20, we see that f is L—summable in direction d. We conclude that
singy (f) C singy(f), then f € C{z}v.

(ii) From (i), we know that § = Tﬂj f converges in a disc and admits analytic continuation
g in a sector S = S(d,a — w(L)), g € O%(S) and we have that S§ ~ Tﬂjf in S with
M’ = (1)pen,- Then, in Theorem .(i), we obtain that the function f := S]L,df =TLg
is holomorphic in a sectorial region G(d, «) and f ~p, f there.

(iii) With the notation in (i), we have that
(Staf)(2) = (TLg)(2) = (TLTL, f)(2) = f(2) = (Sw.af)(2)
for every z where these functions are defined.

O
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As a consequence of the last proposition, a generalization of the classical Tauberian result
for k—summability of J.-P. Ramis (see [84, Th. 3.8.1], [7, Th. 37] and [64, Coro. 5.3.16]) can be
stated when the indices w(L) and w(M) are distinct.

Theorem 4.2.14. Let L and M be weight sequences such that L admits a nonzero proximate
order, M/LL is (Ic) and w(L) < w(M). If f € C{z}m N C[[z]]L, then f is convergent.

Proof. Using Proposition [4.2.13, we know that f € C{z}y N C{z}p and
(St.af)(z) = (Swaf)(2),

for every z where both functions are defined. Given 6 € singy(f) = {01,02,...,0p}, we can
take d ¢ singy(f) such that |d — 0] < & := m(w(M) — w(L)). Then (Sy.af)(2) = (SLaf)(z) is
defined in a sectorial region G of opening mav > ww(M) bisected by direction d. We observe that
f= (Shdf)(z) is a holomorphic function defined in a sectorial region G contained in G, bisected
by direction 6, and of opening

ar —|d—0| > ar —§ = ar — mw(M) + 7w(L) > 7w(L).

By Proposition 4.2.13}(ii), we have that f ~y, f in this region, then f € C{z}y, . Since smgL(f) C

singyg(f), we deduce that sing; (f) = 0 and, by Proposition [4.1.25] we conclude that f € C{z}.
U

Remark 4.2.15. Regarding the last two results, in the case w(L) < w(M), if M also admits a
nonzero proximate order, the logarithmic convexity of the sequence M/IL does not need to be
assumed since it is automatically guaranteed (see Remark [4.2.9)).

Finally, we will show that this theorem is not valid when the indices coincide.
Theorem 4.2.16. Let L and M be weight sequences with L <M and w(LL) = w(M). Then
C{z}lmNC{z}L = C{z}L.
Moreover, if I admits a nonzero proximate order, L % M and M/L is (lc) we have that
C{z}m NC[[z]]lL = C{z}m N C{z}L = C{z}L.

Proof. 1f f is L—summable in direction d, then it exists o > w(L) = w(M) and [ holomorphic
in G = G(d, a) such that f ~i f in G. Since L < M, we deduce that f ~y f in G, and we
conclude that f is M—summable in direction d. Then C{z}rd C C{z}m,aq and, consequently,
C{z}L C C{z}m-. The last statement is obtained immediately using Proposition 0

Example 4.2.17. With the notation and computations in Examples|l.1.4[and [1.1.30] we deduce
that C{z}wm, , N C[[z]lm, ,, = C{z}m, , . but C{z}tm, , N C[[z]lm,, , = C{z} for any a > o' >0
and every 3 > 3.

Remark 4.2.18. In order to generalize this result and to put forward a satisfactory multisumma-
bility theory when the indices coincide we would need to redefine the notion of M—summability
according to the classical theorem of S. Mandelbrojt [72, Sect. 2.4.1]. In this new tentative defini-
tion, as it will be specified in the conclusions of the dissertation, the sectorial regions are replaced
by regions of uniqueness whose boundary is tangent to the boundary of the sector S,,ny) near 0.
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4.3 Multisummability

Whenever the Tauberian Theorem is available it makes sense to give a definition of mul-
tisummability in this context. In the recent book of M. Loday-Richaud [64, Ch. 7], several
equivalent definitions of multisummability are provided together with a careful study of their
peculiarities. In this dissertation, since the M—summability tools are defined using moment
summability methods, the approach of W. Balser [7, Ch. 10] has been chosen, that is, the de-
composition into sums. Due to a ramification inconvenience, this splitting definition is only
compatible with the others if the corresponding indices w(M;) are all smaller than 2.

Definition 4.3.1. Let M; and My be weight sequences, i.e., (Ic) with quotients tending to
infinity, admitting a nonzero proximate order (see Definition[2.2.1)) such that w(M;) < w(Ms) < 2
and di,dy € R such that |d; — da| < w(w(Ma) — w(My))/2. A formal power series f(z) =
>_p>0 apz’ € Cl[z]] is said to be (My, Ma)—summable in the multidirection (di,dz), if there exist

a formal series fl(z) which is M;—summable in d; with M;—sum f; and a formal series fQ(Z)
which is Mls—summable in do with Ms—sum fo such that

f=Hh+F.

Furthermore, the holomorphic function f(z) = fi(2) + f2(2) defined on G(di, 1) for some
a1 > w(My) is called the (Mg, Ma)—sum of f in the multidirection (di,d2) and we write f(z) =
(S(MLMQ)v(deQ)f)(Z) and f € C{Z}(MlvMQ)v(dlde)'

Remark 4.3.2. In the conditions of the previous definition, there always exists a sectorial region
G = G(dy, 1) with a; > w(M;) such that

fean f on G. (4.10)
However, since the region is not wide enough, f is not the sole function in between the ones

satisfying (4.10). Hence, this condition is weaker than the multisummability notion, because the
next proposition shows that the multisum is unique and the splittings are essentially unique.

Proposition 4.3.3. In the conditions of Definition {.3.1} assume that there exist two pairs of
formal power series f1, fo and g1, go such that
f=h+Ffr=un+0
Then there exist ag > w(My) and 4; € C[[2]] such that u; is M; —summable on a sectorial region
G(da, a2) and ) R
g1 = fr — 1, and  ga =11 + fo.
Moreover, we have that the (M, My)—sum of f is unique, that is,
f1(2) + fa(2) = f(2) = 91(2) + 92(2),
in a sectorial region G(dy, 1) with ag > w(Mj).
Proof. We define @y := fi — g1, 50 @11 € C{z}m,.q,, in particular iy € C[[z]]y, - We observe that
G2 — fo = 1y, then 4y € C{z}m,.4,- By Proposition |4.2.13|(ii), there exists as > w(My) such that
@1 is Mj—summable in G(dz, ag).
Furthermore, by Lemma [4.1.22|(ii), (Sm,,4,%1)(2) = (Sm,.do01)(2) on a sectorial region G =
G(dy, 1) with a; > w(My) and, using Proposition 4.2.13|(iii), for all z € G we conclude that
f1(2) = 91(2) = (Suy,a, (F1 = §1))(2) = (Swty.a21) (2)
= (Sip,dp 1) (2) = (St a2 (92 — S2))(2) = 92(2) — fa(2).
g
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Remark 4.3.4. Similarly to the classical situation, this definition can be recursively extended
for a finite set of sequences My, My, ..., My with w(M;) < w(Ms) < -++ < w(Mg) < 2 (see [7,
Ch. 10| and [64, Ch. 7]).

The rest of this section is devoted to recover the multisum by means of some suitable integral
transform.

4.3.1 Moment-kernel duality

The main aim of this subsection is to prove that a kernel e of Ml—summability is uniquely
determined by its sequence of moments m,, similarly to the result of W. Balser for the moment
summability methods [7, Sect. 5.8].

For bounded functions on sectors, the following auxiliary lemma shows that the domain of
holomorphy of their e—Laplace transform is not an arbitrary sectorial region, as it is shown in
Proposition 4.1.12] but an unbounded sector.

Lemma 4.3.5. Let a kernel function e(z) of M—summability with corresponding operator T =
T, be given. Given f a function defined in a sector S = S(d, «), assume that for every 0 < 5 < «,
there exists a constant Cg > 0 such that we have that

[f) <Cs, ueS(df)
Then g = T'f is holomorphic in S(d, o + w(M)).

Proof. We have that f € O™(S) with S = S(d, ). Let 7 € R be a direction in S, i.e., such that
|7 — d| < ma/2. For every u,z € R with arg(u) = 7 and |7 — arg(z)| < w(M)m/2 we have that
u/z € S, so the expression under the integral sign in (D makes sense. We fix a > 0, and
write - _ -
oo(T du ae'” du oo(T du
o) = [ et = [ T+ [ e

aelT

u

Since f is bounded at the origin following direction 7 and by Definition [£.1.2](11), it is straight-
forward to apply Leibniz’s rule for parametric integrals and deduce that the first integral in the
right-hand side defines a holomorphic function in S(7,w(M)). Regarding the second integral, we
take 8 < a such that |7 — d| < f7/2 and we fix 0 < v < w(M). We have that u/z € S, for
arg(u) = 7 and z such that |7 — arg(z)| < y7/2. The property in Definition [£.1.2}(111) provides
us with constants ¢,k > 0 such that

le(u/2)] < chy(k|z[/[u]),  arg(u) =7, z€S(1,7),

then
1 cC
e/ @] < Thulklal /), arglw) =7,z € S(r,)
For any zp € S(7,7) we fix a bounded neighborhood U of 2y contained in S(7,~). We have that
|z| < r for every z € U, and from the monotonicity of hy we deduce that

L e(u/2) fw)] < S haalr lul)

u |l
By the definition of hy, we have that hyp(kr/|u|) < Mikr/|ul, so the right-hand side of the last
inequality is an integrable function of |u| in (a, c0), and again Leibniz’s rule allows us to conclude
the desired analyticity for the second integral.

Consequently, g is holomorphic in S(7,7) for every |7 — d| < ma and every 0 < v < w(M).

As in the proof of Proposition [£.1.12], we see that the value of g(z) is the same in the intersection
of these regions and we have that g is holomorphic in S(d, a + w(M)). O
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Remark 4.3.6. Moreover, if f(z) ~yr > oo anz"™, by Theorem (i), we deduce that g =
Tef ~vr Yy @nMe(n)z™ on a sectorial region G(d, «+w(M)). Since the notion of asymptotic
expansion only depends on the behavior of the function on bounded subsectors, we can say that
G ~MMY Y meg @nMe(n)z" on S(d, @ + w(M)), whenever g is holomorphic in S(d, o + w(M)).

As it happens in the Gevrey case, since the moment function m.(A) is the Mellin transform of
e(z) (see [L00, Sect. 1.29]), there is a duality between m.(A) and e and the next lemma shows how
one can recover e(z) from its moment sequence m., thanks to the inversion formula. However,
observe that, as it was mentioned in [7], we shall not be concerned with the harder question
of how to characterize such m to which a kernel e(z) exists. The following lemma generalizes
Lemma 7 in [7].

Lemma 4.3.7. Let a kernel function e(z) of M—summability with corresponding operator T =
T, be given. For f(u) := (1 —u)~!, we have that ¢ = Tf is holomorphic in S(m,2 + w(M)),
is M—asymptotic to g(z) = > o m(n)z" there and g(z) — 0 as |z| — oo uniformly for z €
S(m,2 4 ) for every v < w(M). Moreover,

g(2) — g(ze¥™) = 2mie(1/2), z € S,y (4.11)
Proof. The function f(u) is defined in the sector S(m,2) and continuous at the origin. For every
1 < 8 < 2, we have that

1

[fu)] < 11— ul = sin(m — B /2)’

u € S(m, B).

Hence, by Lemma [4.3.5] we have that ¢ is holomorphic in S(7,2 + w(M)). Since f is convergent
at 0, we have that f(z) ~w > onog 2™ with M’ = (1),en, and, by Remark [1.3.6, we deduce that
g~ D om(n)z" on S(m, 2+ w(M)).

The behavior at infinity can be again read off from the integral representation as follows. We
fix a direction 7 € (0,27), 7 # m, and we consider a direction 0 € (—7mw(M)/2, 27 + 7w (M)/2)
such that |7 — 0] < 7y/2 < 7w(M)/2. For every z € S(7,~) with arg(z) = 6, we have that

_ [T i dT:/Cxa ity ds
9(2) A eQde >M1—m”> , ST ey

We split the integral into two parts and we see that

/1/|Zl/2 i(r—6) ds 1 /1/‘2'1/2 le(se'(T=0))|
e(se ) — | < - , ———~ds.
0 s(1—slzle’)| 7 infocscoo{[1 — slzle|} Jo 5
If 7 € (0,7/2) U (37/2,27), we have that
inf {|]1— T} = | si
inf_{]1 — sfzfe"[} = | sin(r)] #0,
and if 7 € [7/2,37/2] (T # m), we observe that
inf {|1—s[z[e"[} =1>|si :
inf_{[1— slzle[} = 1> [sin(r)] £ 0
Consequently, we have shown that
1/]2|'/2 , 1 1/]2]'/2 ,
/ e(se’70) ds — | < 1 / sup ]e(sel¢)|@. (4.12)
0 s(1—slzlem) |~ [sin(7)] Jo |$l<m/2 s
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Using Definition M(H), we see that the integral in the right hand side is convergent. Subse-
quently, it tends to 0, uniformly as |z| goes to infinity in S(7,~).

On the other hand, since the function e is uniformly bounded in S, for every |7 — 6| < 77y/2,

there exists ¢ > 0 such that
/OO ds
<c _—_
1/|z\1/2 8|1 — S|Z|€ZT‘

- -0y ds

e(se’ ) | p

1/|21/2 s(1 — s|zlem)
We have that |1 — s|z|e| > |s|z| — 1| = |s|2|'/2|z|"/? — 1|. Since always s|z|'/? > 1, if |2|'/2 > 1
we see that |1 — s|z|e’| > s|z| — 1. We observe that if |2| > 4, we have that 1/|z|'/2 > 2/|z|,
then s > 2/|z|, and consequently, s|z| — 1 > s|z|/2. Hence, for every z € S(7,~) with |z| > 4 we

see that
/ e(se’m 9))*
12172 s(1 — s|zle'm)

The right hand side of this inequality tends to 0 as |z| goes to infinity. By (4.12)) and (4.13)), we
see that g(z) — 0 as |z| — oo uniformly for z € S(7,7v). By a compactness argument, we see
that g(z) — 0 as |z| — oo whenever z € S(m,2 + w(M)) uniformly for z € S(7, 2+ 7).
Let 6 € R be a direction such that |§| < 7w(M)/2 and z € R with arg(z) = 6. There exists
€ (0, 7w(M)/2) such that:

2c ds 2c
< — = . 4.13
=~ | | ‘z|1/2 52 |Z|1/2 ( )

1. For every u € R with arg(u) = ¢ we have that u/z € S, ).
2. For every u € R with arg(u) = 27 — ¢ we have that u/ze*™ € S, ).

Then, since f is single-valued, we have that

B omin oo() e(u/z)du_ oo(2m—e) e(u/(ze*™))du
ox) —gleetnhy = [ QG [T A

O elufin D el
_/0 (1 —-u)u /0 (1—ww

We denote by ~, the arc of radius r > 1 from 7e® to re~* clockwise. We observe that

10 € 10
/ 1u/z )du ’/ (re'/z) zd&‘ </ le(re?/z)|do - 2€ChM(k\z|/r) o 2k
Ir - U —€

(1—re? lr—1]  — r—1 —r-1
Hence, we deduce that

—€

If we compute the residue of h,(u) = e(u/z)/(u(l —u)) at u = 1, we see that

lim M(u —1) = —e(1/2).

u—1 (1 — u)u

According to the Residue theorem, we conclude that

g(z) — g(ze2™) = 2mie(1/2).
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Remark 4.3.8. Let e and € be two M—summability kernels whose moment sequence m =
(m(n))nen, is the same. By the above lemma, for f(z) = 1/(1 — z), we have that Tof ~u
Yoo om(n)z" and Tef ~m Yoo m(n)z™ on S(m, 24+w(M)). Observe that, according to Watson’s
Lemma, Theorem T.f = Tef. By ([A.11)), we deduce that e(z) = e(z).

Remark 4.3.9. Since g(z) — 0 as |z| — oo uniformly for z € S(m,2 + ) for every v < w(M),
by (4.11)) we also deduce that e(z) — 0, |z| — 0, uniformly for z € S, for every v < w(M), which
does not follow immediately from Definition
4.3.2 Strong kernels of M—summability

In order to recover the multisum of a formal power series, we need to combine a kernel e; of
M —summability with a kernel es of My —summability. The idea is to define new kernels eg * eo
and e <eg whose sequences of moments are m, -m., and me, /m,, , respectively. This construction
is based on the one given in the Gevrey case by W. Balser [7, Sect. 5.8]. Nevertheless, in this
general situation, a stronger notion of summability kernel should be considered which will not
suppose a significant restriction (see Remark [£.3.13)).

Definition 4.3.10. Let M be a strongly regular sequence with w(M) < 2. A pair of complex
functions e, F are said to be strong kernel functions for M—summability if:

(1) e is holomorphic in S,y
(11.B) It exists a > 0 such that for every 7 € (0,w(M)), there exist C;,e; > 0 such that

le(2)| < Cr|z]“, for all z € S, with |z| < e;.

(111) For every € > 0 there exist ¢,k > 0 such that

e(2)| < chy * = ce—wmlll/k) for all z € S, Mv)—es
(M)

K
where hyp and wyp are the functions associated with M defined by (1.4).
(1v) For z € R, x > 0, the values of e(x) are positive real.

(v) If we define the moment function associated with e,
me(N) ::/ t*Le(t)dt,  Re(\) >0,
0
from (I) — (IV) we see that me(A) is continuous in {Re(\) > 0}, holomorphic in {Re(\) >
0}, and me(z) > 0 for every > 0. Then, the function E given by

E(z):zmj(n), z€C,

n=0

is entire, and there exist C, K > 0 such that

C
|E(z)| < ———— = CeMA/K) - for all z € C.
) ha(K/|2))
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(V1.B) It exists 8 > 0 such that for every 7 € (0,2 — w(M)), there exist K., M; > 0 such that

K,
K

|E(2)] <

for all z € S(m,7), with |z| > M.

Remark 4.3.11. In case w(M) > 2, condition (vI.B) makes no sense and, in the same way as
in [7, p. 90] and in Remark suitable adaptations should be made. For simplicity, we will
omit this situation from now on.

Lemma 4.3.12. Let M be a strongly regular sequence with w(M) < 2. Let e and E be a pair of
complex function satisfying Definition [4.3.10} then they fulfill the conditions in Definition 4.1.2]

Proof. We only have to check that e and E satisfy conditions (11) and (V1) in Definition 4.1.2]
respectively. We take 29 € Sy, we fix ro > 0 and 79 € (0,w(M)) such that U := B(z0,70) C
Sr,- By condition (11.B), we have that

le(2)] < Colz]%, z € 85,, |z| < ep.

For ¢t € (0,e0(|z0] — r0)) and for every z € U we observe that t/z € S;, and |t/z| < e¢. Then

o (|zo0]—70) dt zo(l20l=r0) (1 gt Chel
/ sup |e(t/z)|— < / ( 0 < Z0%
0 0

zeU -

|z0| — 7r0)® o

We fix T > 0, if £9(|z0] — 70) > T condition (11) is immediately satisfied. If eo(|zo| — r0) < T we
define Dy := {t/z; z € U, t € [e0(|20| — 70),T]} C S, by condition (1), e is continuous on Sy,
and, since Dy is contained on a compact subset of Sy, , we have that sup,¢p, [e(w)| = Ko < oo.
Then

su t/z —< + < 0.
Sup e T < =t el = 1o)

/T dt _ Coeg TK,
0

Analogously, we will verify condition (vi). We take zyp € S(m,2 — w(M)), we fix rop > 0 and
70 € (0,2 —w(M)) such that U := B(z,79) C S(m, 7). By condition (VI.B), we have that

| )‘— ’ ‘ﬁﬂ ZGS(WaTO)7 ’Z‘ZM()

For 0 <t < (|zo0| — 70)/Mp and for every z € U we observe that z/t € S(m,79) and |z/t| > M.

Fhen (120/—r0) /M (120/—r0) /M
20|—T0 0 Zo|—To 0 K(]dt KO
/ sup | E(:/0|% < [ S
0 2€U 0 (J20| —ro)Pt My B
and, since F is entire, we conclude as before. [l

Remark 4.3.13. In general, thanks to Remark one can only guarantee that e tends to 0 in
the regions considered in (11.B) but it seems not possible to ensure that it has power-like growth,
likewise for E.

However, either the classical kernels in the Gevrey theory ex(z) = kz* exp(—2z*) (see [7]), or
the new ones ey (z) = zexp(—V(z)), constructed for sequences admitting a nonzero proximate
order (see Remark [4.1.4), using the functions V' defined in [65] (see [60, Th. 4.8, Prop. 4.11]),
satisfy conditions (11.B) and (VI.B) (see ([{.4), (4.5)).

Moreover, if we want to proof the integrability conditions (11) or (VI) in some concrete exam-
ple, we end up showing estimates similar to those appearing in (11.B) and (VI.B).
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Remark 4.3.14. This stronger notion need to be considered to assure that the convolution and
the acceleration kernels, defined in the forthcoming subsections from two given kernels e; and
ea, also satisfy adequate integrability properties which seem not to be preserved in the standard
situation.

Remark 4.3.15. We observe that once condition (I11.B) or (VI.B) is satisfied for some values
a and 3, it is possible to replace « for any 0 < o/ < «a and S for any 0 < 8’ < 8 and the
corresponding conditions hold.

4.3.3 Convolution kernels

In this subsection, we consider two strong kernels e; and eo satisfying the properties in Defi-
nition for two sequences M; and My with corresponding operators Tej,T6; and moment
functions me; (A) for j =1,2. We will find a pair of operators 7,7~ such that T' coincides with
T,, o T, for a suitable class of functions containing the monomials. Hence, we will deduce that
the moment function m(\) associated with T' equals me, (A)me,(A). The kernel that defines the
operator 1" will be obtained as a Mellin convolution of the kernels e; and es, which justifies its
name.

First, we prove an auxiliary lemma that connects the associated function of two weight
sequences M; and My with the associated function of their product sequence My - My, This will
be essential when dealing with functions in the classes O™, OM2 and OM1Mz,

Lemma 4.3.16. Let M;, j = 1,2, be weight sequences, for every s, > 0 we have that

ele Moy (7‘) S ele (5) ewMQ (T/s) . (4 14)

Proof. We write M; = (M1 p)pen, and My = (Map)pen,. For every s, > 0, we observe that

rP sP (r/s)P sP r/s)P
ewml,MQ(r) = sup = sup ( / ) < sup sup ( / ) — GWMI(S)GWM2(T/S).
peNo M1pMap  peng Mip Map ™ peng Mip peny Map

O

Remark 4.3.17. We say that a weight sequence M is normalized if mg = M; = 1, which by
log-convexity implies that m, > 1, M, < M, 1 and M,, > 1 for all p € Ny.

Given two normalized weight sequences I and M, then
min(wy,(t), wm(t)) > wr.m(t) for t > 0. (4.15)

which follows directly from the definition of the associated functions since L, < L,M, and
M, < L,M, for all p € Ny.

For arbitrary weight sequences, is satisfied for ¢ large enough. However, normalization
is not a significant restriction since my, > 1 for p large and we can modify the first terms of a
sequence according to Remark getting a normalized weight sequence M’ with m’ ~ m.
This assumption simplifies in a considerable way the proofs of the forthcoming results.

Remark 4.3.18. The results until the end of the chapter might be valid for normalized strongly
regular sequences such that we can associate with them a strong kernel. Nevertheless, the
existence of such kernels has only been proved for sequences admitting a nonzero proximate
order which, as it was pointed out in Remark [2.2.18] are the ones appearing in the applications.
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In the second place, the following proposition shows the convergence of the double inte-
gral (4.16) that will ensure that the operators T" and T, o T, coincide.

Proposition 4.3.19. Let M;, j = 1,2, be normalized weight sequences admitting a nonzero
proximate order. We consider strong kernels e; for M;—summability, its moment function m;
and T, the corresponding Laplace-like operators. If f € OMiM2(G(d, ~)), then it exists a
sectorial region G(d,y+w(M;) +w(Ms)) such that for every zp € G(d, v+ w(M;)+w(My)) there
exist a neighborhood Uy C G(d, v+ w(M;) +w(Mz)) of zp and directions 6 and ¢ (depending on

20) such that we have
/oo(Ger) /

for every z € Uy. Consequently, T,, o T,,(f)(z) is holomorphic in the sectorial region G(d,~vy +
w(M;) + w(Ms)) and we observe that

S0 oo(@) w\ du
ToTNE = [ 1w (/0 e(wu/z)ezu/w)fu)d.

61 62( )f( )dudv < 00, (4.16)

u v

u
Proof. We write My = (M p)pen, and My = (Map)pen, and, for simplicity, wi = w(M;) and
we = w(My).

We fix 1 € (d — (w1 + w2 +v)7/2,d + (7 + w1 +w2)7/2), we choose directions 7 € (0,w1),
72 € (0,ws), 73 € (0,7), 6 and ¢ with |6 — d| < 737/2 and |¢| < 772/2 such that

|0+ ¢ — tho| < 771 /2. (4.17)

Then, it exists ¢ > 0, such that 1o — &,%9 + €] C (d — (w1 + w2 + ¥)7/2,d + (v + w1 +

wa)m/2) and (4.17) remains true if we replace ¢y by ¢ for every ¢ € (Yo — &,%0 + €). By
Definition 4.3.10| (11.B), for e; and ez we know that there exist a1, s > 0 (not depending on 7p
and 72), and constants C1,Cy > 0, €1,e2 € (0,1) such that

ler(w)] <Cijw|™,  we Sy,  |w[<e, (4.18)
lea(w)] <Calw|*?,  weE Sy, |uw<e. (4.19)

Using condition (111), for e; and es, there exist dy, ds, k1, k2 > 0 such that

ley(w)| < dy ekl gy e 9 (4.20)
lea(w)| < dg e~ wm2kelvl g e g (4.21)

Since f € OMiM2(8(d, ~)), we see that there exist d3, k3 > 0 such that
|f(w)] < dgermmaslel 0y e §(d, 73). (4.22)

Now, we define k4 := max(eg, Az/ks) where As is the constant appearing in for My and
s =2. We fix zp € S(d,y+ w1 + WQ), with arg(zo) € (¢0 —¢&,10 + ¢€) and ’ZU‘ < k1/(ksksAr),
where A; is the constant appearing in for Mj and s = 1. We consider Uy := B(zo, po)
centered in zg such that Uy C S(vo, &, k1/(ksksA1)).

In order to prove (4.16)), parametrizing the integral and using Tonelli’s Theorem, it is enough

to show that . 0+ .
[ ) (e Garens) & <
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for every z € Up. We fix @ < min(ay, 1) and

so = min(1, k2/(k3A12),e1(|20] — po)),

where Aj 5 is the constant appearing in ([1.8]) for M - My and s = 2. For all s < sg, we observe
that

1) = [ ea ()| e rd:</0+/ /) L)|1Fee L

We split the integral into three parts I;(s) for j = 1,2, 3 defined below. Since r/(se’®) € S, and
r/(5€?)| < gq for all r € (0,e25), by (#.19) and (#.22), we have that

(0 < [ i
eld — 0

s92 r

Using that wy,m, (k3r) is nondecreasing we see that

Codzes?
L(s) < 27322 exp(w, s, (ksgas)). (4.23)
By (4.21)) and (4.22)), we see that
€258% €258%
I)(s) := / ‘ ( )‘ |f(re |* < d2d3/ e~ wmy (k2r/8) cwmy -y (k?”")ﬁ.
€98 €'t £98 r
Using again that wy, v, (ksr) is nondecreasing and that
sP s
exp(—wm, (kar/s)) = hu, (s/(kor)) = inf My, < My1— (4.24)
peNg (k?z ) k‘QT‘
we get that
dad3 M. 2% dr _ dyds M
Ir(s) < %22’18 exp(le.Mz(k‘gsgsa))/ 2 < %exp(wMI.MQ(kgegsa)). (4.25)
€28
By (4.21) and (4.22) again, we can see that
o0 dr
R = —wp, (k2r/s) Jwm, M, (kar) &7
I3(s) == /628"‘ ( 1¢>>‘ |f(re | "< dads /628& e M2 M1 My -

Using (4.15)) and Lemma [1.1.24] for wyy, ., we see that

I3(s) < dads /OO e_le‘M2(kQT/S)ewMI'MﬂkW@ < dods /OO 6’_2“’M1‘M2((k”)/(SAL?)H“Ml'W(ki”’")ﬁ.
- r

r

28% £98%

Since wp, .M, (t) is nondecreasing and s < sop < ka/(k3A12), we have that

I(s) < d2d3/ G*WMl-MQ(ksT)ﬁ.

€95 T
Finally, by the definition of wyy, .m, (t) we obtain

> Ml’lMQ’ldr _ dod3z My 1 Moy

I3(s) < dad
3( )_ 203 e ksr? k3egs™

(4.26)
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Consequently, by (4.23)), (4.25)) and (4.26)), for all s < sp we see that

Codsey? dadz My 1 dadz My 1 Ma )y
I(S) < 7042 2 eXp(WMl-Mz (k35230)) + Kes exp(le.M2 (k35288)) + kseos®
as

Now, for every s > so we split the 1ntegral 1nto two parts I;(s) for j = 1,2. Since r/(se'?) € S,
and ]r/(se“b)] < gg for all 7 € (0,e2s), by (4.19) and ( -, as before we get that

( )‘ |f(re |7 = Cale /82 102 gty g (Ksr) 7 dr
qu — 0

s92 r

Using (4.15) and the monotonicity of wyy, (£), we see that

a2
~ 02d3€2

I1 (S) < . exp(le (kgé‘gs)). (4.28)
By (4.21) and (4.22)) again, we can see that
7 > dr
Ir(s) == / ( )’ |f(re ’* < dzds/ e ot (kar/s) guon vty (Rar)
€98 et €98 r

Applying Lemma [1.1.24] to wy, and by (4.14) we can show that

f2(8) < dyds /oo e~ 2wmy (kQT/(sAQ))ele (kgAzs/k:g)ewM2 (kgr/(sAz))@‘
£28 T
Using the definition of wy, (t), as in (4.24)), we deduce that

To(s) < dodgesrn (k3Azs/k2) / e Uar/(sA2) 9T G2d3 A9 Mo o gz k),
- eos r koeo

Together with (4.28)), for all s > s we get that

dze? dods As M.
Cadsey explwn, (k3e25)) + 2032 Man

I(s) <
(S) - a9 koeo

xp(wn, (k3A2s/k2)).
Since k4 = max(e2, A2/k2) and wy, (¢) is nondecreasing, for every s > sy we have shown that
I(s) < by exp(ww, (k3kas)). (4.29)

Consequently, for any z € Uy and any s € (0,59) we have that se®*9) /> € S and s/|z| <
so/|z| < e1 and, by (4.18)) and (4.27), we deduce that

S0 i(0+¢) S0
Ji(z) == / e1 (se )‘I(s)ds < C1 / (ars*t + agso‘l_a)%.
0 0

z
Since a < aq, for every z € Uy we see that

/so
0
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z s = ai1(]zo| — po)™ (a1 — a@)(|zo| — po) (4.30)

1(0+¢) a1 al—a
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In the same way, applying (4.20) and (4.29), we get that

oo st (0+0)
Ja(2) ::/ el ( .
50

By Lemma |1.1.24] for wyy, and since |z| < ki/(ksks A1) for every z € Uy, we deduce that

ds > ds
1)< <d1b1/ exp(—na, (sh1 /|21) + o, (hahas))

S0

') ds S dS
Ja(2) < diby / exp(~2une, (sh /(12| A1) + s, (shas) = < diby / exp( e, (ksks)
S0 S0
Using the definition of wyy, (¢), as in (4.24)), we get that
Mi 1
< = 4.31
he) < ol (431

From (4.30) and (4.31)), we see that (4.16] holds.
Hence, by the Leibniz’s rule we deduce that the double integral

/ M/ 61 eg( )f( )dj‘i” (4.32)

defines a holomorphic function in Uy. One can easily show, as in the proof of Proposition 4.1.12
that the value of such function does not depend on the directions ¢ and 6, so it defines a
holomorphic function in a sectorial region G(d,y + w1 + w2) and we observe that

ro @ = [ et = [T e (2 e (4)

u v

where 6 and ¢ (depending on z) are chosen as in the beginning of the proof. Finally, since the
double integral in (4.32)) converges for any z € G(d, vy + w1 +wa), applying Fubini’s Theorem and
making the change of variables v = wu, we see that

%o (0) 5o(9) o\ du
T oTuDE) = [ ( | ety ) =

0

Remark 4.3.20. In the proof of the last proposition, we have shown that for any f € OMiM2(g)
we have T,,(f) € OM1(S(d, v+ w(Mz))) (see ([#.27)+(.29)), which extends the classical Gevrey

result.

Finally, we construct the convolution kernel of two strong kernels and we prove that it is also
a strong kernel of M - My —summability.

Proposition 4.3.21. Let M;, j = 1,2, be normalized weight sequences admitting a nonzero
proximate order. Assume w(M;)+w(Mz) < 2 and consider strong kernels e; of M; —summability,
its moment function m,; and T¢, T; the corresponding Laplace or Borel operators.

1. We define the convolution of e; and e, denoted e * eq, by

e1 * eg(z) == Te, (e2(1/u))(1/2).

Then, e x e9 is a strong kernel of M - My —summability whose moment function is m()\) =
Mey (A)Mey (). Moreover if Ey and E are the kernels associated by Definition 0L(v)
with e; and e * eq, respectively, we have that

E(z) =T, E1(z2).

JAVIER JIMENEZ GARRIDO



4.3. MULTISUMMABILITY 165

2. The function e; * eo is the unique moment summability kernel with moment sequence
(m(p) = me, (P)mes (P))pen, -

3. Let T, = T, denote the Laplace-like integral operator associated with e; % eg. If S is an
unbounded sector and f € OM1M2(S) then

(T€1 * Tez)f = T€1 OTez(f)'

4. We consider f(u) = (1 —u)~!. We define g(2) := ((T¢, o T,) f)(2) and

(1)) o 82 =9l

27
Then, e is well defined in Sy, )4+w(,) and e(2) = e1 * e2(2).

Proof. For simplicity we write w1 = w(M;) and wy = w(Ms). We observe that w(M; - M) =

w1 + wy (see Remark [4.2.10)).

1. Let us show that the function ej * ea(z) = T¢, (e2(1/u))(1/z) has the necessary properties
for a strong kernel function of M -My—summability, as listed in Definition [4.3.10] Since the
function ez(1/u) is holomorphic in S,,, and bounded on every sector Sz with 0 < 5 < ws,
by Lemma we have that T, (e2(1/u))(2) is holomorphic in S, 44, which proves (1).

Regarding the integrability condition (11.B), we fix 7 € (0, w; +w3) and we take 71 € (0,wq)
and 7 € (0,w2) such that 7 < 7 + 7. By Definition (11.B) for e; and ey we
know that there exist ay, s > 0 (not depending on 71 and 72), and constants Cq,Cs > 0,
e1,e2 € (0,1) such that

le1(z)] <Cq|z|*, z €55, |z| < e, (4.33)
|62(Z)| SCQ|Z’Q2, z € Sry, |Z| < €. (4'34)

We fix z € S; with |z| < (e162)? and we choose |0 < 772/2, such that ze? € S;,. We have
that

oo(6) 1\ du
ler x ea(z)| = ‘/0 e1(uz)ey <u) ”

81/‘Z|1/2 . 1 d S . 1
S/ 61(T€Zez)€2 ( .9> & —i—/ el(re’92)62 ( .9>
0 ret r e1/|2|1/2 re’

Ifr < 51/\z|1/2, we have that \reiaz] < sl\z\l/Q < e2e9 < g1, and if r > 61/\z|1/2, we see

that |1/(re?)| < |2|'/2 /ey < e9. Applying (#.33) and (£.34), we obtain

1 dr LC &
= ret? rl-a 2 e1/]2|1/2

By condition (111) for e; and ez, we know that there exist constants Dp, Ds such that
le1(w)| < Dy for every w € Sy, and |ea(w)| < Dy for every w € S,,. We deduce that

dr

r

dr

e1/|=|/?
e v ea(a)] < Calel™ | e

el(rewz)‘

C1 Dyt CoD
le1 % ea(z)] < ZEZEL |pfen/2 4 Z2ELpje2/2,
(6%)

aq 1

Comnsequently, condition (11.B) is satisfied with a = min(a;/2, as/2).
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By condition (111) for eq, for every € > 0, there exist ¢,k > 0 such that
lea(1/u)] < ce™@ma(k/lul) U E Spy—e-

Then, by Proposition u we have that ea(1/u) ~y, 0 in S,,. By Remark we see
that eg * e2(1/2) = Te, (e2(1/u))(2) ~mym, 0 in Sw, 4w, which implies, again by Proposi-
tion [3.1.9] that for every ¢ > 0 there exist ¢, k, 7 > 0 such that

e * ea(2)| < cemwmma(Zl/F), 2 € Sui4ws—e; 2| > 7. (4.35)

By condition (11.B) for e; * ea, we know that |e1 x ea(2)| < C for 2z € Sy, 4wy—e With 2] < 6.
Since e; * ez(z) is continuous, (4.35) holds for every z € Sy, tw,—e and we conclude that
condition (I11) is satisfied.

Condition (1v) holds immediately because for x > 0 we have that

e1 * eg(x) = /000 el(wy)eQ(l/y)C;y

Since e; and ey are positive real over the positive real axis, we deduce e; x ea(x) also is.
Let us show that
Meyxes ()‘) - mel(/\)m62 ()‘> (4-36)

We have that

o) = [P e aie = [T [T amen/n L.

We make the change of variables t = zy and s = 1/y and we get

My ren (A / / (s1)* e (Dea(s)dtds = me, (Amey (A).
Consequently, using property (V) of e; and ey, we deduce that me, 4, () is continuous in
{Re(\) > 0}, holomorphic in {Re(A) > 0} and me(x) > 0 for every = > 0.
We define the function E by

E(z) = S z € C.

g Terxes (n)’

If we compute the radius of convergence of this series, using (4.36]), we see that

r = liminf {/Me xe,(n) = hm mf Vme, (n)me, (n

n—oo

hence F is entire. We see that (me e, (D))pen,, again by (4.36), is equivalent to the
sequence M - Mly, then, by Proposition [4.1.7] we see that there exist C, K > 0 such that
|E(z)] < Ce#mma(KI2D) 2 ¢ €, then (V) holds.

Finally, regarding condition (v1.B), we need first to show that
BE(u) = (T, E1)(u), uweCn (4.37)

We fix u € C*, write 7 = arg(u) and consider a path d,,(7) (see Definition [4.1.13). Since
E, is entire and d,,(7) compact, we have that

IZZ [me, (n)] < Er(|z]) < Cry, 2 €0uy(7), N €Ny,
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and by condition (V1.B) for Es, |Ea(u/z)z7Y| is integrable on §,,(T), so we can apply
Dominated Convergence Theorem. Therefore, we can exchange integral and sum and, by
Proposition 4.1.16] we see that

[e.e] [e.e]

(TE)(u) = ) (T, (2" /mey (n)(w) = Y | ———— = E(u).

n=0 n=0 Meyxes (n)

We fix 7 € (0,2 — (w1 + w2)), we take 71 € (0,2 —w;) and 7 € (0,2 — wg) such that
T+2€ (0,71 +72—(2—ws — 7)) and we can choose € € (2—wy — 79,71 +72 —2—7). By
(vi.B) for By and Es, we know that there exist 81,82 > 0 (not depending on 7p and 73),
and constants K1, Ko > 0, My, My > 1 such that

K

[ E1(2)] _W, z€S(mm), || > My, (4.38)
K>

|Ea(2)] < EES z € S(m, 1), |z| > Ma. (4.39)

We fix uw € S(m,7) with |u| > M;My. We write ¢ = arg(u) € (0,27) and we may consider
a path dy,(¢) (see Definition [£.1.13). We can write 6w, (¢) = 81 + d2 + 03 (01 and &3 are
segments in directions 01 = ¢+ (7/2)(w2 +¢) and 03 = ¢ — (7/2) (w2 +€), respectively, and
o is a circular arc with radius R = |u|/Ma, that can be chosen in this way because Ej is
entire). Then, using (4.37), we see that

Blu) = — B (Y) B (e) %.

270 J 5.0y (6)
u : dr 01 uMo |u|e?
B () 81 o) [ 2 [ (225 ()
2 7’6101 1\re r + 0 2 ’U|619 1 ‘2\42
U : dr
E (—)E ( 193> ay. 4.4
2 T6193 1|l7€ ( 0)

,
First, we study the second integral in (4.40)). By condition (v) for Es, we know that there
exists a constant Hs such that |Fy(z)| < Hj for every z € D(0, M3 + 1) and we deduce

that o "
1 7
/ B (iu\e> ' .
03 03 M

Using the upper bounds of € we see that 2—7—ws —e > 2—71 and 247+ wr +e < 2474,
then [03,01] C ((7/2)(2 =7 —wa —€),(7/2)(2 4+ 7+ wa + €)) and we get that

We have that

01

‘ i0
B, (M261<¢—9>) By <‘“j\|;2> ‘ d6 < H,

|u]ei9/M2 S 5(71',7'1), if 4 € [93,91}. (4.41)
Since |u| > Mj M we have that |ue®|/My > My and by (4.38), we deduce that
01 ’u|6i6 HQKlMﬁl
H By | —=—)|d) < ————2 > M Ms. 4.42
o, |2 (5 ) o< B iz s

We study now the first and the last integral in ({.40). If r € (0, |u|/M2), we observe that
|u/rei| > My. Since wy + 79 < 2and 11 —2 — 7 < —w; — 7 < 0, using the bounds for &,
we have that

wo +¢€ € (2—7’2,T2+W2+T1 —2—7‘) - (2—7’2,2)
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and we deduce that arg(u/re) = (7/2)(we +¢) € ((7/2)(2 — 72),7) and arg(u/re) €
(=7, —(7/2)(2 — 72)). Then for j = 1,3 we see that u/re®® € S(r, 1) and, by ([#.39), we

show that
Eg( u_)El (M"a‘) dr K2 / 72
retf; r lulB2 /o

/IUI/M2
0

Since |u| > M Ma, we can write (0, |u|/M2) as the disjoint union of the intervals (0, M;)
and [Mj, |u|/Ms). By condition (v) for Ej, we know that there exists a constant H; such
that |E1(z)| < Hy for every z € D(0, My + 1), then

Ko /Iu/Mz 5
r
lul Jo

If r > My, by (4.41)), we can use (4.38) and we obtain

KyHI MY | K /|u|/M2 By (rez‘@-) @<K2H1M162 K1 Ky /|u|/M2rﬁz—/31dT.
ulP28y [l rT o ulB, |l

&G%>w<@mmﬁ&/wmﬁ

- dr
2By (re® )| <
r - ‘u|6252 |u|52 r r|\re r

My

r 2

My My r

According to Remark [£.3.15] we may assume that 81 < £, and we conclude that

Ko Hy MY? ]GPQ‘/WVMQW%_&dr<<ﬁ@£hﬂﬁb K1 K>
|u|P2 By |u|P2 M r = |ulf2pB |u|81 (B _51)M262—61'

Then for j = 1,3 and for every u € S(m, 7) with |u| > M; M, we have that
o\ dr _ KoHy M2 K K
<“>&0w)l<211, 122 (4.43)

/u/Mz
E < + .
0 v By BBy — Br) MY

Consequently, by (4.42)) and (4.43)), condition (VI.B) is satisfied with f = min(f, 52), for
every u € S(m, ) with |u| > M; Ms.

reti

Uniqueness follows from Remark (4.3.8]

We take f € OMM2(§(d o). Since e; * ey is a kernel of M;My—summability, by Proposi-
tion [£.1.12] we know that T, ¢, (f) is holomorphic in a sectorial region G(d, o+ w1 +ws).
We fix z € G(d, a + w1 + w2), there exists § with |§ — d| < wa/2 such that if arg(u) = 6,
then u/z € Sy, +w, and there exists ¢ with |¢| < mwa/2 such that if arg(w) = ¢, then
wu/z € S,,. We have that

0o(0) U
T s TG = [ erseafu/2)f() T

oo () oo() w \ du
_/0 f(u) </0 ’ eﬂwu/z)w(l/w)i}) %

We conclude, using Proposition [4.3.19] that this last expression is equal to T¢, o Te, (f)(2).

. We consider f(u) = (1—u)~! and we define g(z) := ((Tr, o T.,) f)(2). By Lemma we

know that T, f is holomorphic in S(m,2 + w2) and T¢, f(z) — 0 as z — oo uniformly on
every sector S(m, 2+ ) with v < wyp. Moreover, T, f ~niy D pe g ma2(n)z" on S(m,2 + ws).
Then we deduce that T, f is bounded on every sector S(m, 24+7) with v < wo. We can apply
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the T¢, transform to T, f and, by Lemma |4.3.5, we have that g = T¢, T, f is holomorphic
in S = S5(m,2+ w1 +wsz). Then, the function

1)) o 9 =)
is holomorphic in Sy, 4,. Since f € OMiMz2(g Y then, by statement 3, (T, *T,)(f) =
(Te, o Tey)(f) and, by Lemmma [4.3.7, we deduce that

e(l/z) = 9(z) — g(ze*™) (T, * Te,)(f)(2) — ((‘T61 « To,) f)(ze2m)

211 21

=ej xea(l/2).

O

Remark 4.3.22. We know that M - Ms is a weight sequence with quotients tending to infinity
admitting nonzero proximate order (see Proposition . Consequently, we can construct a
kernel e of M -My—summability (see Remark. However, we do not have any control on the
corresponding moment sequence of e apart from being equivalent to M - Ms. Last proposition
guarantees that the moment sequence associated with e * ez is (1M, (n)Mey(N))nen,, Which is
important because it ensures good behavior of formal and analytic Borel-Laplace operators for
asymptotics.

Remark 4.3.23. Note that OM1M2(8) ¢ OM2(S). Consequently, T;, o T,, extends the operator
T, * Te,. The opposite situation occurs for the acceleration operator that will be presented in
the next subsection, whose main advantage is that it extends the composition operator.

4.3.4 Acceleration kernels

In the same conditions as in the previous subsection, assuming in addition that w(M;) < w(My),
we will construct a pair of operators T, T such that T" extends T, oT,. This new operator will
be called the acceleration operator from ez to e; because it will send a function f € O™2(S) into
a function with greater growth T'f € OM1(S). According to this property, the kernel associated
with T will be called acceleration kernel and its corresponding sequence of moments will be

Mey (A)/Mey (A)-
Our first result is the analogous version of Proposition {4.3.19|that guarantees that the oper-
ators T' and T, o T, coincide for a large enough class of functions.

Proposition 4.3.24. Let M, j = 1,2, be weight sequence admitting a nonzero proximate order.
We consider strong kernels e; of M;—summability. Let T, T%l be the corresponding integral
operators. Assume that w(M;) < w(Ms) < 2.

If f e OM2(S(d,)), then for every zy € S(d,~ +w(Ms) —w(M;)) there exist a neighborhood
Uop C S(d,y+ w(Mz) —w(M;)) of zp and a direction ¢ with |d — ¢| < 7y/2 (depending on zp)

such that we have
/ /OO(¢>)
0wy (arg(zo0)) 40

for every z € Uy, where d,, (arg(z9)) is a path as considered in Definition 4.1.13] Moreover, the
function
F(z):= /
dw
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Eq(z/v)ea(u/v) f(u) | <o (4.44)

oo(9)
( ())/0 Er(z/v)ex(u/v) f(u)——
arg(z

1
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is holomorphic in S(d, « + w(Ms) — w(M;)) and

21 w U

_ B oo (¢) -1 dw\ du
TooTuNE) = [ 1) ( L oy FrCE 02 (1) ) =

Proof. For simplicity we write w1 = w(Mi) and wo = w(Mz), My = (M p)pen, and My =
(M2,p)pen,- We observe that w(My/M;) = wy — w1 (see Remark {.2.10)).

We fix zg € S(d, @ + wg — wy), since wy — w; > 0 we can consider directions 71 € (0,2 — wy),
7o € (0,w2), 73 € (0,7) with 2 — 77 —w; < 79+ 7 — 2+ 73 — 7. Then, we can choose

e€-mn—w,m+m—2+73—7) C(0,ws —w1),
and ¢ > 0 with |¢ — d| < 737/2 such that
larg(z0) —¢| < (me+ T —2—e+ 713 —7)7/2. (4.45)

We observe that we can take py > 0 small enough such that B(zo, po) C S(d,y + ws — w1) and
the inequality remains valid if we replace arg(zg) by arg(z) for every z € B(zp,pp). We
write 61 = arg(z0) + (w1 + €)7/2 and 63 = arg(zp) — (w1 + €)7/2, since T2 < 2 we observe that
the value of € guarantees that 2 —w; —e > 0 and wy +71 —24¢ > 0. Then, by suitably reducing
the radius pg, we also have that

|arg(z) — arg(zo)| < d :=min((2 —wy1 —&)7/2, (w1 + 11 — 2+ €)7/2) /2, (4.46)
for every z € Uy = B(zo, p1) with p; < po, which implies
—m < arg(z) — 01 < (1 —2)7/2, (2—7)m/2 < arg(z) — b3 < 7. (4.47)
Moreover, from (4.45)) we deduce that
|0 — ¢ < |0 —arg(z0)| + |arg(20) — ¢| < (w1 + 71 =2+ T2+ 73— Y)7/2 < em/2  (4.48)

for every 6 € [03, 6,].
By Definition 4.3.10L(v1.B) for E; and (11.B) for ez we know that there exist 81, a2 > 0 (not
depending on 71 and 73), and constants K1,Cy > 0, M > 1, g9 € (0,1) such that
K,
<
=R
lea(2)] <Co|z|*2, z €85, |z| < es. (4.50)

|Ev(z) z € S(m,m), |z| > M, (4.49)
By condition (111) for es, there exist da, ko > 0 such that
lea(w)] < dyemwmalk2lvl e 5
and since f € OM2(S(d,~)), we see that there exist ds, k3 > 0 such that
|f(w)| < dgerkslvl e S(d, 7). (4.51)

We fix sp = min(1, ka/(k3Az2), (|20 — p1|/M)) and 8 < min(f;, 1), where Ag is the constant
appearing in for My and s = 2. We consider a path §,, (arg(zo)) (see Definition £.1.13). We
can write d,, (arg(zp)) = 01+02-+093 (01 and J3 are segments in directions 6, = arg(zo)+(wi+¢&)7/2
and 03 = arg(zp) — (w1 + €)7/2, respectively, and d is a circular arc with radius R = sg).
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In order to prove (4.44)), parametrizing the integral and using Tonelli’s Theorem, it is enough
to show that

50 . oo . .
5@ = [T B [ leatre e T < oo i= 13,
0 0

r s

01 . o0 . ood
Rz = [ 1B /50 [ leatret® s fre®) a0 < o
03 0
for every z € Uy. For s < sp and 0 € [03, 61] we consider

&
.

I(s,0) := /000 ‘62(70@"45*9/3”(7«@@)

By (#.48) we show that re’?~%/s € S, for all 6 € [03,61] and every s < so. Then, splitting the
interval into three parts (0,e25), (g2, £25”), (€257, 00) as in the proof of Proposition [4.3.19[ and

using (4.50), (4.51), Lemma [1.1.24] and that wy, (¢) is nondecreasing, we get that

02d3632 d2d3M2 1 d2d3M2 1 a9
—L 972 k Pt bl Pt bl
- exp(wn, (k3g250) )+ = e Taeas? 5

I(s,0) < xp(wir, (kseash )+ =tay+ 5. (452)

Applying (4.47), we see that z/se'¥ € S(m,71) for i = 1,3 and every z € Uy and since |z/s| >
|z|/so > M, we can apply (4.49) and (4.52)) and we see that
P ( ag) ds Kraysh' Kiagsy' ™"

al e

‘]"(Z)SKl/o A\ 3) S S B —pp T BBl =AY

for i = 1,3 and every z € Up. Using that E; is entire we have that |Ej(w)| < H; for every
w € B(0, (|20 + p1 +1)/s0), and (4.52)) shows that

JQ(Z) < <a1 + CL;) (91 - 03>H1 (4.54)
50

for every z € Up. Using (4.53) and (4.54) we see that (4.44) holds. Hence, by the Leibniz’s rule
the double integral

oo(¢)
Ei(z/v)es(u/v ) — —
/lswl (arg(20)) /0 1( / ) 2( / )f( )

is a holomorphic function in the neighborhood Uy of 2y for every zp € S(d,a + wo — wq). If
z € UgNUy, with U the corresponding neighborhood of 21, the choice of § > 0in guarantees
that lims_,0 | E1(2/se)|1(s,0) = 0, uniformly for § between ; and 0 = arg(z1) 4 (w1 +¢)7/2 for
¢ = 1,3. This fact ensures that we can apply Cauchy’s theorem to deform the path of integration
from 9., (arg(zp)) to du, (arg(z1)), and we deduce that

J.

defines a holomorphic in the sector S(d, o + w2 —w1). We observe that

TN =gy [ BT
wq (arg(z

oo(¢)
™ ))/0 Ei(z/v)ea(u/v) f(u)—— (4.55)
arg(z

1

" 2mi

-1 °o(¢) U du dv
= E p— —_—
211 éwl(arg(z))/o 1(Z/U)€2 (’U) f(u) u v ’
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where ¢ and d,, (arg(z)) are chosen as in the beginning of the proof. We write n = arg(z) — ¢
and we make the change of variables v = wu. Then the path 4, (arg(z)) is transformed into
the path 0y, (7). We can write 0y, (7) = 71 + 72 + 73 (71 and 73 are segments in directions

T'=n+ (7/2)(w1 +¢) and 05 = n — (7/2)(w1 + €), respectively, and 79 is a circular arc with
radius R = so/|ul, the path d, (1) stays inside S,,. We have that

T T, 2WZ/;1 L/“mﬁ By (= fuwm)es (1/w) f(u) 2.

Finally, since the double integral in (4.55)) converges for any z € S(d, & +ws —w1), we can apply
Fubini’s theorem and we can interchange the integration order, then we see that

oo (9) _ w
T o Tulhl) = [ fw<¥/(())<mm@wmi>i.
VYwq (arg(z)—

27

We are ready to prove the main result, essential for the construction of the multisum.

Proposition 4.3.25. Let M, ej, m,;, and TeJ,T ,j = 1,2, be as in Proposition [4.3.21} Assume
that w(M;) < w(Mz) < 2.

1. We define the acceleration from es to e1, denoted e < eg, by

(e1 ge2)(2) = T¢, (e2(1/u))(1/2).

Then, e <eg is a strong kernel of My /M — summability whose moment function is m()\) =
Mey (A)/Me, (N). Moreover, if F5 and E are the functions associated by Definition 0L(v)
with es and ej < eq, respectively, we have that

E(u) = Te, (EBa(u)).

2. The function e; < e is the unique moment summability kernel with moment sequence
(m(p) = Mgy (p)/mel (p))pGNO'

3. Let A., ., denote the Laplace-like integral operator associated with e; <es. If S is an
unbounded sector and f € O™2(S), then

Aeyenf = Te; o Te, (f).
4. We define g(z) := (T} o T.,)f)(2) with f(u) = (1 —u)~! and

o(2) — g(ze")
211

e(l/z) =
Then, e is well defined in S,,w,)—wv,) and e(z) = ey dez(z).

Proof. For simplicity we write w; = w(Mj) and we = w(Mz). We observe that w(My/M;) =
wo — w1 (see Remark 4.2.10)).

JAVIER JIMENEZ GARRIDO



4.3. MULTISUMMABILITY 173

1. Let us show that the function (e1<e2)(z) = T, (e2(1/u))(1/2) has the necessary properties
for a strong kernel function of My/M;—summability, as listed in Definition |4.3.10}

Since the function ea(1/u) is holomorphic in S,,, continuous at the origin and wy > wy,
by Proposition 4.1.14| we have that T} (e2(1/u))(z) is holomorphic in S, ., which proves
requirement (1).

Regarding the integrability condition (11.B), we fix 7 € (0,ws — wy) and we take 71 €
(0,2 —w1) and 7 € (0,ws) such that 247 € (0,7 + 7 — (2 —w; —71)) and we can choose
e€(2—w — 7,7 + 72 —2— 7). By Definition [£.3.10}(v1.B) for E; and (11.B) for ez we
know that there exist 51, a2 > 0 (not depending on 71 and 72), and contants Kj,Cy > 0,
M; > 1, &2 € (0,1) such that

|E1(2) z € S(m, ), |z| > My, (4.56)

1

<
=R
lea(2)| <Chl2|*2,  z€ 8., |z <eo. (4.57)

We fix z € S, with |z| < e2/M?, then |z| < 1. We write ¢ = arg(z) € (—7n7/2,77/2) and
we may consider a path &,, (—¢) (see Definition[4.1.13)). We can write 0y, (—¢) = 01402403
(61 and 03 are segments in directions §; = —¢+ (7/2) (w1 +¢) and O3 = —¢p — (7/2) (w1 +¢€),
respectively, and dy is a circular arc with radius R = 1/(|2|M;), that can be chosen in
this way because eg is holomorphic in S,,,, that is unbounded, and the path J,, (—¢) stays
inside S,). Then, by definition, we see that

-1 1 du
= — Fi | — 1 —
erdea(z) 271 /(;WI(_@ ! <uz> e2 ( /u) U

1 1/(1z| M) 5 1 1
< — - -
‘el 462(2” — 2T /0 L (zrewl) €2 (7“6191)
o 2| My 2| My
o, [ () (5|
3
1/(|z|Mn) 1 1
E - . e
+/0 ! <zrele3) 2 <T€Z€3>

First, we study the second integral in (4.58)). By condition (v) for £y, we know that there
exists a constant Hy such that |Ey(w)| < H; for every w € D(0, M;+1). Using the bounds
for ¢, we see that

We have that

dr

r

r

d’“) . (4.58)

[03,61] € (7/2)(=7 —w1 =€), (7/2)(T + w1 + ).

Employing the upper bound for &, we obtain that 7+ w; + & < 72 — (2 —wy — 71), then we
deduce that
|z|Mie™® € S,,, 65 6] (4.59)

Since |z| < |2|'/2 < e9/M, we have that |ze ™ M;| < 5 and, by ([@57), we conclude that
o M M

/ B ('z’ 1) es <|Z| 1) ‘ 0 < HyCy|z|*> M2 mry. (4.60)
03

it cif
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We study now the first and the last integral in (4.58). If » € (0,1/(]z|M1)), we observe
that |1/(zre®)| > M;. Since w1 + 7 < 2 and 72 < 2, using the bounds for ¢, we have that

wte€e—m,mtwi+n—-2-7)C(2-7,2)

and we deduce that arg(1/(zre?)) = (n/2)(wy +¢) € ((7/2)(2 — 11),7) and also that
arg(1/(zre)) € (—m, —(7/2)(2 —71)). Then for j = 1,3 we see that 1/(zre%i) € S(m, )

and, by (4.56)), we show that
1
2\ e

(|z[pMr)~1 1 1
/0 Er (zrewj) “ <rei91)

Since |z| < 1, we can split (0,1/(|z|M;)) as the union of the intervals (0,1/(]z|*/2M)) and
[1/()2)"/2M1),1/(|2|My)). By condition (111) for e, we know that there exists a constant
Dy such that |ex(w)| < Do for every w € Sy,. If r > 1/(|2|Y/2My), then 1/r < o, by ([E59),
we can apply and we obtain

(P 1 1

According to Remark [4.3.15] we may assume that ag < 1. Then for j = 1,3 and for every
u € S, with |z < e3/M# we have that

(lz|M1)~* 1 1
/0 B <zrei9i> “ <7“ei9j)

Consequently, by (4.60) and (4.61)), condition (11.B) is satisfied with o = min(/1/2, ).

By condition (111) for eg, for every € > 0 there exist ¢, k > 0 such that

dr

r

(|2|M1)~1
ﬁ < K1’2‘51/ B
0

T

B1/2 (|My) 2
@ S l{1|2|ﬂD2+K102‘z’51/ Tﬂl*QZﬁl
r My 61 (J21/2 M)~ r

dr < K1D2|z|'81/2 n KCo|z|*2
o Miglﬁl (b1 —042)M161_a2

(4.61)

lea(/u)] < co Dy s,

Then, by Proposition we have that ey(1/u) ~pg, 0 in S, .

By Theorem 4.1.18) we see that e; <ea(1/2) = T, (e2(1/u))(2) ~m, 1, 0 in S,,,_w, which
implies, again by Proposition that for every € > 0 there exist ¢, k,r > 0 such that

ler <dea(z)| < ce @Mz (121/K) 2 € Suy—wi—e |z| > r. (4.62)
By condition (11.B) for ej <ea, we know that |eg <ex(2)] < C for z € Sy, —w,—e With |z] < 6.

Since e; < eg(z) is continuous, (4.62) holds for every z € Sy,—u,—e and we conclude that
condition (I11) is satisfied.

For z > 0 we have that

— 1 R 1 1 \dr
e 62(1') :277'('2 (/0 El <.T’I”€i01> €2 <7«€7§6’1 ) 7
% 1 1 0 1 1 \dr
f, 5 (e ) 2 (e a0+ [ () = ()
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with 01 = (7/2)(w1 +¢) and 3 = —(7/2)(w1 + €). Since E; and eg are positive real over
the positive real axis and holomorphic in S,,,, we deduce that

-9 R 1 1 dr
w50 5 ([ 8 () () 5
03 1 1 0 1 1 dr
— E | —— —— | idf E . — | — .
f, o o) e ()04 [, () = () )

Since #; = —63, we observe that e; <ez(z) = e; <ea(z), then (1v) holds.

Let us show that
Mej<es (A) = Me, ()\)/mel (A) (463)

for Re(A) > 0. We have that

Meraes(N) = / T2 e ) (2)da

i |, ™ 1/w1 E1< )eg(l/w‘fj‘dx.

We make the change of variables ¢ = 1/(zu). Then the path d,, (0) (with radius R = 1/x,
that can be chosen in this way because ez is holomorphic in S,,) stays inside S,,, and
it is transformed into A, (0), with Ay, (0) = Az + Ag + A; (As is the line in direction
03 = —(7/2)(wy + €) from infinity to €3, A, is a circular arc with radius R = 1, and A;
is the line from €1 in direction #; = (7/2)(w; + €) to infinity) and we get

1 © dtdx
erqes(A) =—— A E t .
Me« 2( ) 27”-/0 x /AWI(O) 1( (l‘) t T

We make the change of variables 2t = s, we see that

1 [ dt ds
eraes(A) =— A By (t) — =2
m 1462( ) 271,1/0 s ez (8) /Awl(o) 1( )t)\+1 s

Using condition (V1.B) for E; and Cauchy’s theorem to deform the path of integration and
replace A, (0) by the disc D(0,1), we obtain

© 1 dt \ ds
_ A
Meyqes (A) —/0 s7ez (s) <2m. /D(o,l) Ey (¢) t,\+1> s

By Cauchy’s formula for E7, we see that

o 1 ds
e1<e A) = A N
Messes ) = [ Pea(5) 2
Finally, by condition (v) for e we show that (4.63)) is satisfied.
We deduce that me, e, () is continuous in {Re(\) > 0}, holomorphic in {Re(\) > 0} and
Me, e, () > 0 for every z > 0. We define the function E4 by

’VL

i z € C.
p=

m61<162 p)
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If we compute the radius of convergence of this series, using (4.63) and that wy < wa (see

Proposition [4.2.11].(iii)) we show that

r = liminf {/me, e, (p) = liminf ey (P) = 00,

p—0o0 p—o0 m€1 (p)

hence Eg is entire. We see that (me,<e, (P))pen,, again by (4.63), is equivalent to the
sequence My /Mj. Then, by Proposition we see that there exist C, K > 0 such that
|Ea(2)] < Cexp(wy, /i, (K12])), for all z € C, then (v) holds.

Finally, regarding condition (v1.B), we need first to show that
Eq(u) = (Te, E2)(u), ue C". (4.64)

We prove this equality for u € (0,00), and we conclude using the identity principle since
E,(u) is entire and, by Proposition 4.1.12] (7¢, E2)(u) is holomorphic in a sectorial region
G(0,2 + wy).

We fix u € (0,00), we have that
* dz
(Te, E2) (u / (z2)—.
0 z

Since e and EQ are positive over (0,00), then we can exchange integral and sum and
applying (4.63) we see that

mmaw= [0 Q) res - [T () L am T

n=0
= ST ey () 1) = Y s = ),
n=0 n—p teidez

Now, we fix 7 € (0,2 — wa + w1), and we take 71 € (0,w;) and 72 € (0,2 — wy) such that
Ty < T < 71 + T2. By Definition [£.3.10](11.B) for e; and (v1.B) for E> we know that there
exist a1,B2 > 0 (not depending on 71 and 79), and constants C1,Ks > 0, e1 € (0,1),
My > 1 such that

le1(2)| <Cil2|™,  z€ 8, [z <en, (4.65)

Ky
|Ea(2)] < S z € 9(m, 1), |z| > Mo. (4.66)
We fix w € S(m,7) with |u| > My/ey. If w € S(m,72), we define 6, := arg(u) so we have

that ,
10,

€ S, e e S(m,m). (4.67)

If arg(u) € ((w/2)(2 — 1), (7/2)(2 — T2)], we define 0, := arg(u) + &, with

ey € ((1/2)(2 — 12) — arg(u), min((7/2)(2 + 12) — arg(u), (7/2)11)).

This interval is not empty since arg(u)(2/7) > 2 —7 > 2 — 1o — 71, then (7/2)(2 — ) —
arg(u) < mym/2. We observe that arg(e® /u) = e, € [0, (7/2)11) and we also have that
e € S(m, 1) and we deduce (E.67).
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Analogously, if arg(u) € [(7/2)(2 + 72), (7/2)(2 + 7)) we choose 6, := arg(u) — &, with
eu € (=(7/2)(2 + 72) + arg(u), min(—(7/2)(2 — 72) + arg(u), (7/2)71)),

and we also obtain (4.67)) for this choice of 6,. By (4.64)), since |u| > Msy/e; we have that
°0(0u) dz M retfu
E < E
[ aC)me® < [la (M) mare|©
lulet mwu ) dr ) Tewu
+/ e1 < )EQ(?”@ZH“) — —|—/ e1 < )EQ( )| —
Mo u r \U|81 u
If r < |uler, we have that |re® /u| < ey, by [.67) we can apply ([.65) and we obtain
M> d |uler d
Bafu)] <21 / ro T+/ re :
lul*r \ Jo T M, r

o) 70y, ) d
ACoRE
[ule1 u

y
By condition (111) for e, and (v) for Fy we know that there exist constants Dy, Hy such
that |e;(w)| < Dj for every w € Sy, and |E2(w)| < Ha for every w € D(0, Mz + 1). We

deduce that
dr oo
r /U€1
If r > Ms, by we can apply and we have

CiHa M5 C1K» /|u|elra1 pdr D
o ful ™ ul*r S, T Bolulfee

dr
r

[Ea(u)] =

dr
r

Ey(re')

Ey(re')| —

dr
r

aq

[Eq(u)] < Ex(re')

Ep(re')| —

CLH, M5 | Cy /lwl

arlul®r ful*r fyp

|Ea(u)| <

According to Remark [4.3.15] we may assume that g > B35, then

01H2M26¥1 ClKgsal —h2 DlKQ
o |ul* (a1 — B2)|ul?2 ﬁ2|u]525'182.

[Eq(u)] <

Consequently, condition (VI.B) is satisfied with § = min(aq, 82).
2. Uniqueness follows from Remark [£.3.§]

3. We take f € OM2(S(d,a)) € OM2/Mi(S(d,)). Since e; < eg is a kernel of My/M;—
summability, by Proposition we know that Ac, ¢, (f) is holomorphic in a sectorial
region G(d,a +ws —wy). We fix z € G(d, o + wa — w1), there exists ¢ with |d — ¢| < T /2,
such that if arg(u) = ¢, then u/z € S,,,—,,. We write n = arg(z/u) = arg(z) — ¢ and
we consider a path ¢, (n) chosen as in Proposition , what is possible because eg is
holomorphic in S, and the path 4, () stays inside S,,. We have that

Acyeo(f)(2) = /0 o F(u) (2‘; /5 " E (ﬁ) ez<1/w>fz”> %“

We conclude, using Proposition [4.3.24] that this last expression equals T, o T, (f)(z).
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4. We consider f(u) = (1 —u)~! and we define g(2) := ((T.; o Ts,)f)(z). By Lemma m

€1
we know that T, f is holomorphic in S(m,2 4 w2). Moreover, Te, f ~n, Yo m2(n)z™ on
S(m,2 4 wz), then it is continuous at the origin. We can apply the T transform to T¢, f
and, by Proposition 4.1.14] we have that g is holomorphic in S = S(7,2 4wy —w1). Then,
the function i
o i
e(1/2) == 9(2) — g(ze™™)

211 ’

is holomorphic in S,,_y,. Since f € OM2(S,, ), by statement 3 we have A., ¢, (f) =
(T7, o T.,)(f) and, by Lemma 4.3.7, we deduce that

o(1/2) = LI _ A DD AaesNCTD 1),

O

Remark 4.3.26. Note that OM2(S) C OM2/Mi(S).  Consequently, A, ., extends the op-
erator Te_11 o Tg,. Moreover, by the Proposition 3 and Proposition for every
f € OM2(S(d,v)) we deduce Ae, o, f € OM1(S(d, v +w(Mz) — w(M;))) which justifies the name
of the operator.

Remark 4.3.27. We know that My /M is equivalent to a weight sequence admitting nonzero
proximate order (see Proposition . As indicated in Remark a strong kernel of
My /M; —summability, according to Remark can be constructed but it may not behave
well for the asymptotic relations.

Remark 4.3.28. From the uniqueness of the convolution and the acceleration kernels we deduce
some basic properties:

e1 % ey = e * €1, e1 % (e1 dez) = ey, e1 < (e1 x e2) = eq, ea < (€1 % eg) = ej.

4.3.5 Multisummability through acceleration

In order to describe the procedure to recover the multisum of a formal power series presented
below, we need to analyze the behavior of asymptotics under the operator A, ., defined in
Proposition 4.3.25[ and to extend what was known for the Gevrey case (see [7, Th. 55 and 56]).

Theorem 4.3.29. Let My, ej, me;, and Tej,Te;7 j = 1,2, be as in Proposition 4.3.21] Assume
w(M;) < w(Mz) < 2. Let A, ¢, denote the Laplace-like integral operator associated with ej <es
(see Proposition |4.3.25) and M’ be any sequence of positive real numbers. Then,

(i) If f € OM2/Mi(S(d, ) and f ~yp f, then A, o, f ~M- (M /My ) Ae, o, f in a sectorial region
G(d,a + w(Ms/My)), where

Acver | D_ape” | =2 )
p=0 p=0 MelP

(ii) If, moreover, f € OM2(S(d, ), then A, ¢, f € OM1(S(d, o + w(Ma/Mj))) and
Te, (Ae1,62f) =T, I

Proof. (i) By Proposition 4.3.25| ej <es is a strong kernel of My/M;— summability. Then, the
conclusion follows applying Theorem [4.1.18
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(ii) By Proposition 4.3.2513, we know that
A81,€2f - (Te_l © T€2)f-

By Proposition [£.1.12] T¢, f is holomorphic in a sectorial region G(d, o + w(Msy)). Since
w(Msz) > w(Mj), by Proposition (T, o Te,)f is holomorphic in the unbounded
sector S = S(d,a + w(My) — w(My)) and it is of Mj;—growth in S. We observe that
w(Ma/M;) = w(Ms) — w(M;) (see Remark [4.2.10), then A, ., f = (T, o T.,) f € OM1(S).
We can apply T¢, to Ae, e, f, and we get

Te1 (A61,ez f) = T€1T6:T82f = T62f~
(|

In a natural way, we define /16—1,62 <Z;i0 apzp) 1= 3 o2 o(apme, (p)/me, (p))2P. With the tools
presented in the previous subsections and in the conditions of Proposition [4.3.25] we are ready
for giving a definition of multisummability in a multidirection with respect to the multikernel

(e1,€2).

Definition 4.3.30. In the conditions of Proposition 4.3.25] we say that f = Zp>0 apz? is

(e1,e2)—summable in the multidirection (di,ds) with [di — do| < w(w(Ms) — w(Mjy))/2 and
dl, do € R if:

i) g:=1,f= I _pis My /M —summable in direction ds.
p>0 mel (p)

(ii) The sum Sy, /4, admits analytic continuation g in a sector S = S(dy, ¢) for some € > 0,
and g € OM1(9).

In this situation we can define the corresponding multisum by:

8(61,62),(d1,d2)f 1= Te, 0 Aey ey © A;,ez ° Te:f'

The next result states the equivalence between (M, My)—multisummability and (e, e2)—
multisummability in a multidirection, and provides a way to recover the multisum by means
of the formal and analytic acceleration operators previously introduced (see [7, Ch. 10] for the
Gevrey case).

Theorem 4.3.31. Given M, My weight sequences admitting a nonzero proximate order with
w(Mp) < w(Ms) < 2, directions di,ds € R with |dy — da| < 7(w(M2) —w(M;))/2 and a formal
power series f, the following are equivalent:

(i) fG C{Z}(I\/Jh,Mb)v(dl,dﬂ'

(ii) For every pair of strong kernels, e; of Mj—summability and ez of May—summability, fis
(e1, e2)—multisummable in multidirection (dy, d2).

iii) For some pair of strong kernels, e; of Mj—summability and ey of My —summability, s
g
(e1, ez)—multisummable in multidirection (di, d2).

In case any of the previous holds, we deduce that the (M, My)—sum of f on the multidirection
(di1,ds) is given by
S(M1,M2),(d1,d2)f - Tel © A€1,82 © T(:‘_Qf'

for any pair of kernels eq, es.
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Proof. For simplicity we write w; = w(M;) and wy = w(Mz). We observe that w(Msy/M;) =
wy — w1 (see Remark [£.2.10)).

(1) = (ii) With the notatlon in Deﬁnltlon we write f = fi + fo. We put g g - f
and we observe that A61 029 = Agles elf f By Theorem we know hy = T;f
converges in a disc, admits analytlc contmuatlon hs in a sector 52 S (dg,e2) for some g9 > 0,
and hy € OM2(S,). Since f1 € Cl[z]]m,, we see that hy = T f1 defines an entire function h
and, by Proposition u, we have that hy is of Mg/Ml—growth on Ss.

Hence, h := Te; f converges in a disc, admits analytic continuation h in the sector So where
h is of My/M;—growth there because OM2(Sy) € OM2/Mi(Sy). By Theorem , this means
that the formal power series Ael,egTeE f= T,jl f=gis My /M —summable in direction da, so
Definition [4.3.30](i) is valid.

On the other hand, we observe that
SMQ/Ml,dgg = A61,82Ae_1762g = Ael,egAe_heQ (gl + §2)

where ¢ := Te_lfl and go := Te_lfg. Since fl € C{z}m,.4,, we have that ¢g; = Te_lfl converges
in a disc, admits analytic continuation g; in the sector S; = (dq,e1) for some g1 € (0,e2) and
g1 € OM1(Sy). Moreover, thanks to the convergence, A61762A5762g1 = Sg1. Regarding g§o, we
observe that X

Ae17€2 ;,62@2:‘(461752 e1,e2 elfQ 61,62 62f2

Since ﬁg =T o fg converges in a disc and admits analytic continuation hy € 0M2(52>, by The-
orern we see that Ae, e, ho = T, Te,he. Furthermore, T, Te,ho is holomorphic in the
sector S(da,ws — wy + €2), which contains the sector S because |di — da| < m(we — wy)/2,
and T, T.,hy € OM1(9)), so Sm, /My ,d.9 can be written as the sum of two functions Aelmﬁg
and §g; whose analytic continuations in Sy, T, Te,ho and g1, have M —growth there, that is,
Definition (i) holds.

(ii) = (iii) Trivial.

(iii) == (i) By Definition .3.30}(i), ¢ = Sm,/m,,a,9 15 holomorphic in a sectorial region G =
G(dg, o) with a > wy —wy and g ~pg, /v, §in G. Let T be a subsector of G, bisected by direction
ds and of opening 73 with 8 € (wg — w,2), such that T C G and let v denote the positively
oriented boundary of T. Decomposing ¥ = 71 + Y2 where 7; is the circular part and -y, is the
radial part, we define

1
gj(2) := 2/ de, forall zeT, j=1,2.
v

™ ), w— 2
J

Since g is continuous at the origin, by Cauchy’s Formula, we can write g = g1 + g2. By Leibniz’s
rule we see that g; is holomorphic at the origin. Hence, g2 = g— g1 ~m, M, g2 where g2 := g—gi
and g; is the formal power series of g; at the origin.

We define f; := T,,§1 and we immediately observe that fi € C[[z]]y,. By (ii) in Defini-
tion [4.3.30] g admits analytic continuation in a sector S; = S(dy,€) for some ¢ > 0, and this an-
alytic continuation has M; —growth there. Again by the Leibniz’s rule, we can see that g is holo-
morphic in S(da, 8) and we can prove that tends to 0 as |z| — oo therein, so go € O1(S(ds, B)).
Since |d; — da| < w(w2 — w1)/2, we may assume, by suitably reducing ¢, that S; C S(d2, §).
Hence, g1 = g — g2 has an analytic continuation to S; and has M; —growth there, this means by
Theorem that f1 is M; —summable in direction d;.

Now, we consider f2 = Telgg7 we can apply Theorem [¥.1.18[(i) to go and we deduce that
Te, 92 ~M, f2 on a sectorial region G(da,5 + wi). Since [ 4+ w; > we, this means that f2
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is Miy—summable in direction do. Consequently, we can write f = T;lg = fi+ fo, s0 f €
C{z}(Mth),(dl,dz)'
In case any of the previous equivalent conditions holds, we have seen that by Theorem [4.3.29]

f2 :T32T€2f2 T€1A€1 €2 32f27

and, thanks to the convergence of Te_l fl, we have shown that

fl el elfl TelAel,EQ e1,e2 elfl TelAel,egTe_Qfl-

Hence, we conclude that S(M17M2)7(d17d2)f = 8(61762)7@17(12)]?.
O

Remark 4.3.32. Classical multisummability theory can be also stated in a cohomological form.
In this general context, this approach is also possible and one can provide a version of the relative
Watson’s Lemma (see [64, Th. 7.2.1] for the Gevrey case), which is the cohomological equivalent
of the Tauberian Theorem. Apart from the Watson’s Lemma and the Borel-Ritt Theorem, a
Ramis-Sibuya-like result given by A. Lastra, S. Malek and J. Sanz in [61, Lemma 3] is necessary
for the proof (for a reference on the classical version of Ramis-Sibuya theorem, the reader may
consult to [39, Theorem XI-2-3|).

The main reason why the analytical point of view have been chosen is that an explicit
construction of the acceleration kernels and operators can be given with the corresponding explicit
expression for the multisums. This cohomological version and the results of this chapter are
included in our work [42].
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Chapter 5

A Phragmén-Lindelof theorem via
proximate orders and the propagation
of asymptotics

In 1999, A. Fruchard and C. Zhang [29] proved that for a holomorphic function in a sector
S which is bounded in every proper subsector of S, the existence of an asymptotic expansion
following just one direction implies global (nonuniform) asymptotic expansion in the whole of S.
Moreover, a Gevrey version of this result is provided with a control on the type, namely:

Theorem A ([29], Theorem 11). Let f be a function analytic and bounded in an open sector
S = S(d,~,r) of bisecting direction d € R, opening 7y and radius r, with v, > 0. Suppose f has
asymptotic expansion f = >0y anz™ of Gevrey order 1/k (k > 0) and type (at least) R(6y) > 0
in some direction 0y with |0y — d| < 7y/2, i.e., for every 0 > 0 there exists C' = C(d) > 0 such
that for every z € S with arg(z) = 0y and every nonnegative integer p we have that

= . 1 ’ P
1f(2) — nz:;)anz |<C (R(eo) +5> 1+ %)\ P (5.1)

Then, in every direction 6 of S, f admits f as its asymptotic expansion of Gevrey order 1/k and
type R(0) given as follows:

. 1/k
R(6) (75“1(’“(9—“)))) if 0e (o,

sin(k(a/ —a)

R(0) = R(0o) if 0 € a5,

. 1/k
sin(k(0—p .
R(0) (meG=8) " it 6e18.5).

Here, « = d — 7y/2 and 8 = d + 7y/2 are the directions of the radial boundary of S, o/ =
min(6o, o + g55) € (v, 0], and ' = max(o, 8 — 5;) € [0, B).

We warn the reader that there is no agreement about the terminology in this respect: while
most authors adhere, as we will do, to the convention that the asymptotics in (5.1)) is Gevrey of
order 1/k, others (for example, Fruchard and Zhang or W. Balser in [6]) say this is of order k.
Moreover, the notion of type is not standard, compare to the definition by M. Canalis-Durand [22]
for whom the type in case one has is (1/R+06)*. It should also be mentioned that the factor
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I'(14p/k) could be changed into (p!)'/* without changing the asymptotics, but this would affect
the base of the geometric factor providing the type (by Stirling’s formula, see [22, pp. 3-4]) in
any case. As it will be explained below, our interest in the type will be limited, and so we will
choose a simple approach in this respect, see Definitions and 5.1.2]

The proof of this result is based on the classical Phragmén-Lindeldf theorem and on the so-
called Borel-Ritt-Gevrey theorem. This last statement provides the surjectivity, as long as the
opening of the sector is at most 7/k, of the Borel map sending a function with Gevrey asymptotic
expansion of order 1/k in a sector to its series of asymptotic expansion, whose coefficients will
necessarily satisfy Gevrey-like estimates (see Section . Also, the injectivity of the Borel map
in sectors of opening greater than w/k (known as Watson’s lemma) plays an important role
when specifying conditions that guarantee the uniqueness of a function with a prescribed Gevrey
asymptotic expansion of order 1/k in a direction (see Section [3.2).

The main aim of this chapter is to extend these results for other types of asymptotic ex-
pansions available in the literature. This possibility was already mentioned in [62], where A.
Lastra, J. Mozo-Fernandez and J. Sanz generalized the results of Fruchard and Zhang for holo-
morphic functions of several variables in a polysector (cartesian product of sectors) admitting
strong asymptotic expansion in the sense of H. Majima [67, 68|, considering also the Gevrey case
as introduced by Y. Haraoka in [34].

The asymptotics we will consider are those associated with a general ultraholomorphic class
of functions, as the ones studied in the previous chapters, defined by constraining the growth of
the sequence of their successive derivatives in a sector in terms of a sequence M = (M),)pen, of
positive numbers (Ng = {0,1,2,...} = {0} UN), which will play the role of (I'(1 + p/k))pen, in
. The possibility of extending to this more general framework the results on the injectivity
or surjectivity of the Borel map, gathered in Chapter [3] and a Phragmén-Lindel&f-like state-
ment, obtained below applying the relation between weight sequences, proximate orders and the
property of regular variation established in Chapter [2] are the keys to our success.

As in the Gevrey case, the study of the type as the direction moves in the sector is possible,
although some information is lost in general (see Remark . This is due to the fact that the
classical exponential kernel appearing in the finite Laplace transform providing the solution of
the Borel-Ritt-Gevrey theorem in the Gevrey case is now replaced by ey (z) (see Remark
whose behavior at infinity is only given by some asymptotic relations, which is not enough for
an accurate handling of the resulting type.

This chapter, whose contents may be found in our work [46], is organized as follows. In Sec-
tion several lemmas of a Phragmén-Lindeldf flavor are obtained. A paradigm is Lemmal[5.1.6
where exponential decrease is extended from just one direction to a whole small (in the sense of
its opening) sector adjacent to it. Section contains several versions of Watson’s lemma on the
uniqueness of a function admitting a given asymptotic expansion in a direction, and in the final
Section we characterize the functions with an asymptotic expansion in a sectorial region as
those asymptotically bounded and admitting such expansion in just one direction in the region.

5.1 M-—flatness extension

As in the previous chapters M = (M),),en, always stands for a sequence of positive real numbers,
and we always assume that My = 1. In most of the statements, Ml will be also assumed to be a
weight sequence, that is, (I¢) with lim, o, m, = co. The reader is referred to Chapters (1| and
for the information involving sequences, proximate orders and regular and O-regular variation
and to Chapter [3|for the notation and results concerning the ultraholomorphic classes of functions
defined in sectors and sectorial regions.
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We are going to consider two definitions useful for our purposes regarding the asymptotic
expansions. First, we recall the notion of type for the functions in Ay (S) previously considered.

Definition 5.1.1. Given a sector S, we say f € H(S) admits f = Yoo panz™ € C[z]] as its
uniform M—asymptotic expansion in S (of type 1/A for some A > 0) if there exists C' > 0 such
that for every p € Ny one has

p—1
HORDITIS
n=0

We will write f ~ fin S, and A?M(S ) stands for the space of functions admitting uniform
M—asymptotic expansion in S (of some type).

< CAPM,|zP,  z€S.

Secondly, we need to settle on the concept of asymptotic expansion in a direction.

Definition 5.1.2. Let f be a function defined in a sectorial region G = G(d,~), and 6 be a
direction in G, i.e. |0 —d| < my/2. We say f has M—asymptotic expansion f = > 7 janz" in
direction 0 if there exist rg, Cg, Ag > 0 such that the segment (0, 7’9610} is contained in G, and for

every z € (0,r9e"] and every p € Ny one has

p—1
‘f(z) — Z anz"‘ < CoAY Mp|z|P.

n=0

In this case, we say the type is 1/A4y. Of course, the definition makes sense as long as the function

is defined only in direction 6 near the origin, i.e. in a segment (0, ’rew] for suitable r > 0.

Remark 5.1.3. In the conditions of Definition if f is the null series we say that f is
M—flat in direction 6. As in Proposition this can be characterized in terms of wy and it
amounts to the existence of 79, Cyp, Ag > 0 such that the segment (0, rge?] is contained in G, and
for every z € (0,7r9¢”] one has

1f(2)] < Cpe—m1/(Aol2]))

Suppose moreover that f is bounded throughout the (bounded or not) sectorial region G. Since
the function e~“® is nonincreasing in [0, 00), it is obvious that f is M—flat in direction ¢ if
and only if there exist Cy > 0 and the same constant Ay > 0 as before, such that for every z € G

with arg(z) = 6 one has .
1f(2)] < Cpem/(Aol2]) (5.2)

This fact will be used later on.

In getting the Phragmeén-Lindel6f-like results contained in this section, similarly to the
M—summahbility theory presented in Section a fundamental role is played by the functions
V e MF(v,p(t)) for a given v > 0 and a given nonzero proximate order p(t). Using the char-
acterizations established in Section we know that the possibility of associating a function V'
with a weight sequence M in a suitable way (see Remark depends on the regularity of the
function dy(t) = log(wm(t))/ log(t) defined for large ¢, where wyy(t) is the associated function
introduced in Section . If dp(t) is a nonzero proximate order or, less restrictive, if it can
be approximated by one in the sense of Definition that is, Ml admits a nonzero proximate
order, this possibility is available.

Remark 5.1.4. If M admits a nonzero proximate order p(t), for every v > 0, thanks to (VI) in
Theorem [1.2.16] we know that there exist V€ M F(v, p(t)) and positive constants A, B, to such
that

AV () <t™M® = uu(t) < BV(t),  t> 1. (5.3)
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It is worth recalling that weight sequences admitting a proximate order are strongly regular
and all the Matuszewska indices and orders are positive real numbers and coincide (See Re-
marks [2.2.7 and [2.2.18)). Then it is a matter of convention how we name this value, (M), w(M),
f(m), p(m), p(m) or a(m). Since we mainly deal with quasianalyticity results, the notation
w(M) is the choice. Furthermore, from this point on we will assume that

M is a given weight sequence admitting a nonzero proximate order.

In Subsection [2.2.4] it has been shown that this is not a strong assumption for strongly regular
sequences, since it is satisfied by every such sequence appearing in applications. However, as it
has also been proved, there are strongly regular sequences which do not satisfy it.

We are ready for proving an important lemma about the extension of M—flatness from
a boundary direction into a whole small sector for functions bounded there and admitting a
continuous extension to the boundary (considered in R, i.e., disregarding the origin). First, we
recall a classical version of Phragmén-Lindeldf theorem needed in the proof.

Theorem 5.1.5 (Phragmén-Lindel6f theorem, [I00], p. 177). Let f be a function holomorphic
in a sector S = S(d,~, p), continuous and bounded by C' in the boundary 9S. Suppose there
exist K, L > 0 and w > ~ such that

F()] < KM
for every z € S. Then f is bounded by C' in the sector S.
Now we obtain an analogue of Phragmén-Lindeldf theorem for Mi—flat functions in a sector.

Lemma 5.1.6. Let 0 < v < w(M) be given. Suppose f is a bounded holomorphic function in
S, that admits a continuous extension to the boundary 0S,, and that is M—flat in direction
d = 7y/2. Then for every 0 < d < 7, there exist constants k1(9), k2(d) > 0 with

F)] < haem @02 i arg(2) € [—my/2 4 6,77/2).
Proof. For simplicity, we denote w := w(M). We fix 0 < § < 7y. Since v < w, we have that

T 1 7 1) T 1) 1 7
§<5—5(5)-—;(§W+§)<F, —*+7<a—a(5).—a(—w—ﬂ"}/+—)<

Then we take €, > 0 (depending on ¢) such that
cos(f) +e<—n<0.

Since M admits a nonzero proximate order p(t), by Remark there exist a function V' €
MF (2w, p(t)) and positive constants A, B, ¢y such that (5.3)) holds. According to Remark
and specifically to (5.2)), there exist ¢1, ¢y > 0 with

F(2)] < el nW@ED it arg(z) = /2. (5.4)

Choose dz > 0 such that cgl/w > ds, and take a € R with

cos (arg(“) - arg(z)) te<2 (5.5)
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for every z € S, (where the closure is taken in R, and so the vertex of the sector is not under
consideration).

We observe that arg(a/z) € [wa,wf] C (—7w/2, 7w) for every z € S.,. Taking into account
the comments at the beginning of Subsection and using property (I) of the functions in
MF (2w, p(t)), we see that

. Vie/z) pilars(a) —arg(2))/w

11m
[21=0 |a <V (1/]2])

uniformly for arg(z) € [—ny/2,7v/2]. Consequently,

1 L/Z) = cos(largla) — argl(z w
i e (o ) = o) st )

uniformly for arg(z) € [—7my/2,7y/2], and we deduce that

2]

la| /“V (1) (cos ((arg(a) — arg(z))/w) —¢)) < Re (V (g)) , (5.6)
la|V/“V <1> (cos ((arg(a) — arg(z))/w) + £) > Re (V (g)) : (5.7)

2|

for |z| < s1 small enough and arg(z) € [—my/2,7y/2]. For convenience, we choose s; < 1/(toc2).
Consider the function
F(z) = f(z)e" (/2.

The function V(a/z) is holomorphic in S(arg(a),2w) D S,, so F(z) is holomorphic in S, and
continuous up to 9S5,. Our aim is to apply the Phragmén-Lindel6f theorem to this function
in a suitable bounded sector S(0,7, s3).

If arg(z) = —my/2, we have that arg(a) — arg(z) = Bw. Then, since f is bounded in S, by a
constant K > 0, by using we see that for |z] < s1,

F(2)] < KeRe(V(a/2) < feeleos(®)+2)lal“V1/I) < feo=nlal/*V(1/I2).

Now, observe that V(1/|z|) > 0 (property (III)), so we deduce that |F(z)| < K for every z with
|z| < s1 and arg(z) = —my/2.

If arg(z) = my/2, we have that arg(a) —arg(z) = aw. Then, from (5.4), (5.3), (5.5) and (5.7)

we see that, if |z| < sq,

F(2)] < exe/(ealz) pleos(@)+e)lal/“V1/12]) < ¢, o= AV(1/(ealel))+24a/V (1/]2])

Using property (I) of the functions in M F (2w, p(t)) we have that

VO/lD) _ i
=0 V(1/]z]) S

Then, for |z| < sy < s1 small enough we have that V(1/(c2|z])) > d2V(1/|z|), and we conclude
that
|F(2)] < cle(_AdﬁQ‘“'Uw)v(l/‘Z'), for |z| < s, arg(z) = my/2.

Since |a| has been chosen small enough in order that —Ady + 2|a|'/% < 0, we deduce that
|F(z)| < 1 for every |z| < sp and arg(z) = my/2.
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For z € S, with |z] < s1, by using (5.5)) and (5.7) we have that

Re (v (g)) < 2la|/eV (;’) .

As 7 < w, there exists u > 0 such that v < p < w. By property (VI), we know that
log(V'(t))/log(t) is a proximate order equivalent to p(t), hence tending to 1/w at infinity. Then,
we can apply Remark [1.2.8} there exists 0 < s3 < sp small enough such that for every z € S5,

’Z| < 53,
1
(v (4)) <2 ()

Since f(z) is bounded in Sy, we have that
|F(2)] < K exp(2|a|'/*|z|~1/H), for all z € S,, with |z| < s3,
and, in particular,
|F(2)] < Kexp(2]a\1/‘”s3_1/“), for every z € S, with |z| = s3.
By applying Phragmén-Lindel6f theorem to the function F'(z) in S(0,, s3), we obtain that
|F(2)] < Ko := max(K, c1, K exp(2|a|/“s5 /"))

for |z|] < s3 and arg(z) € [-7y/2,7v/2].
Consequently, using (5.6)), if |z| < s3 and arg(z) € [-7y/2,7y/2] we have that

1£(2)] < KoeReCV(@/2) < g o= (cos((arg(a)—arg(2)) /) =e)lal/*V(1/|2])

Assuming that arg(z) € [—my/2 + 6§, 7y/2], we deduce that

4]

cos((arg(a) — arg(z))/w) > cos (;T - 2w> = —cos(f) >n+e>0.

Then, for ro := nja|/“ > 0 we find that for every z with arg(z) € [~my/2+6,77/2] and |z| < s3
we have that
£ (2)] < Koe 2V (/IED,

Choose ko > 0 such that (1/k2)"/* < r9/B. Property (I) of the functions in M F (2w, p(t)) implies
that, for z with |z| < s4 < min(ss, 1/(tok2)), small enough, and arg(z) € [—7y/2 + §,7v/2], we
have

1f(2)] < Koe—BV(l/(kﬂZ\)) < Koe_wM(l/(k2|z|)).

We take ky := Koewm(/(k251)) > K, Then, since wpm(t) is nondecreasing, if |z| > s4 and
arg(z) € [—mv/2+ 6, 7y/2] we have

17(2)] < K < Ko = kye«m(/(k2s0) <, g1/ (ka]=])

which concludes the proof. O
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Remark 5.1.7. Some comments are in order concerning the statement or proof of the previous
result.

By a simple rotation, one may easily check that the validity of Lemma [5.1.6| and of the
subsequent results in this chapter does not depend on the bisecting direction of the sector where
the function f is defined. Moreover, one could slightly weaken the hypotheses by considering a
function f holomorphic in S, that admits a continuous extension to the direction d = 7y/2, in
which it is M—flat, and that is bounded in every (half-open) sector

{zeR:arg(z) € (—5 +6,—=]}, 0>0.

Indeed, we may give a more precise information about the type. Following the previous proof,
one notes that

=00 () = (i) = Gt —) = () i) =

w

and ko may be made arbitrarily close to the last expression at the price of enlarging the constant
k1 = ki1(0). So, the original type ¢y is basically affected by a precise factor when moving to a
direction § = —my/2+49 with 0 < § < 7. It is obvious that k2(J) explodes at least like 1/sin“(9)
as 6 — 0. This means that the type of the null asymptotic expansion tends to 0 as the direction
in the sector approaches the boundary d = —7y/2, in the same way as in the Gevrey case (see
Theorem .

Moreover, the constant 2 in 6/(2w) could be any number greater than 1 and, by suitably
choosing the value ¢ in the proof, the constant 2B /A appearing before can be made as close to
B/A as desired, so the only indeterminacy in the previous factor is caused by the values A, B
involved in (5.3). In the common situation that the function d () is indeed a proximate order,
the constants A and B can also be taken as near to 1 as wanted, what makes the expression even
more explicit.

Finally, note that, by using Theorem one may change M by an equivalent sequence L
such that dp, is a proximate order. However, this fact does not improve the proof, since again
Theorem will be applied to obtain a function V' € M F (2w, dy,(t)) and we will work with
the same type of estimate that we have in (5.3).

The following lemma shows that imposing v < w(M) is only a technical condition in order
to apply Phragmén-Lindel6f theorem

Lemma 5.1.8. Let v > 0 be given. Suppose f is a bounded holomorphic function in S, that
admits a continuous extension to the boundary 05, and that is M—flat in direction d = 7vy/2.
Then for every 0 < § < 7y, there exist constants k1(9), k2(4) > 0 with

()] < knem /=D it arg(2) € [—my/2+ 6, mv/2].

Proof. For simplicity we write w = w(M), and put 6y := 7y/2. We can obviously choose a
suitable natural number m and directions 6; € (—7y/2,7v/2), j = 1,2,...,m, such that

0; :=0;_1 —mw/2, 0;>-my/24+6, j=1,....,m—1,
Om € (—7v/2,—v/2+ ), Om—1 — Oy < Tw/2.

We fix 0 < ¢ < mw/4. Since §y — 01 + ¢ < 3rw/4 < 7w, we can apply Lemma to the
function f restricted to the sector S; = {z € R : arg(z) € [#1 — ¢,6p]}. We deduce that there
exist constants ky 1, ko1 > 0 with

]f(z)| < k1716_wM(1/(k271‘ZD)7 if arg(z) S [91,60].
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By recursively reasoning in the sectors
Sj={2z€eR:arg(z) € [0j —¢€,0;_1]}, 7=2,3,...,m—1,

and finally in the sector
S =1z €R : arg(2) € [, O]},

we obtain constants £y ;, k2 ; > 0 such that
£(2)] < ey gm0/ sz i arg(2) € [6;,6,-4).
Then for k1 := max; k1 ; and ko := max; ks ; we have that
£ (2)] < kyem @/ B2l it arg(2) € [—my/2 + 6, m7/2).
O

In the next result we impose M—flatness in both boundary directions of the sector, and
conclude uniform M—flatness throughout the sector.

Lemma 5.1.9. Let v > 0 be given. Suppose f is a bounded holomorphic function in S, that
admits a continuous extension to the boundary 955, and that is M—flat in directions d = 7y/2
and —d. Then there exist constants k1, ko > 0 with

|F(2)] < kpem @/ Ral2D) 5f arg(2) € [~y /2, /2], (5.8)
Proof. By Lemma [5.1.8} there exist constants ki 1, k21, k1,2, ko2 > 0 such that
[F(2)] < Rygemen@/E2tD) o if ang(2) € 0,77/2]
and
| (2)] < kygem@/(R22l2) it arg(2) € [—7y/2,0].
We conclude taking ki := max{ki 1, k1 2} and kg := max{kg 1, k2 2}. O

Remark 5.1.10. By carefully inspecting its proof, we see that Lemma holds true in any

bounded sector S(d,~,r) and, consequently, Lemma and Lemma are also valid in
bounded sectors.

We show next that, as Remark [5.1.10| suggests, it is also possible to work in sectorial regions.

Proposition 5.1.11. Let v > 0 be given. Suppose f is holomorphic in a sectorial region G,
bounded in every T' < G, and M—flat in a direction 6 in G. Then, for every T' < G, there
exist constants k1(T'), ko(T) > 0 with

1£(2)| < ke~ @@/ GR2lzD)  forall z e T, (5.9)

Proof. By suitably enlarging the opening of the subsector, we can assume that 6 is one of the
directions in 7T'. There exist R, c1,co > 0 with

£ (2)] < cremwmll/(ealzl) it arg(z) =60 and |z| <R. (5.10)

If 6; < 02 are the (radial) boundary directions of 7', we consider ¢ > 0 such that —7vy/2 < 6; — 9
and 03+ < my/2. There exists 0 < r < R such that the sectors S;1 = {z € R: |z| <r, arg(z) €
61 —0,0]} and Sy = {z € R : |2] < r, arg(z) € [#,02 + 6]} are contained in G,. Taking into
account and Remark , we can apply Lemma to the restriction of f to each
sector and we conclude that f is M—flat uniformly for arg(z) € [0y, 62] and |z| < r. Since wy(t)
is nondecreasing, by suitably enlarging the constant k1 we obtain (5.9)). O

JAVIER JIMENEZ GARRIDO



5.1. M—-FLATNESS EXTENSION 191

Example 5.1.12. Boundedness of the considered function is necessary in any of the previous
results in this section. The next example shows that having an M—asymptotic expansion in a
direction d does not guarantee its validity in any sector containing that direction. Our inspiration
comes from a similar example in W. Wasow’s book [104) p. 38], which concerned the function
f(z) = sin(e/#)e"1/2,

By Remark for every v > 0 there exists V € MF(v, p(t)) such that we have (5.3). We
consider the function

f(z) =sin(e¥(1/2)e~V1/2), z € 8,.

Since sin(e"(1/2)) is bounded for real z > 0, we see that f is M—flat in direction 0. If we compute
the derivative of f in S, we see that
!
£(2) = V'(1/z) (Sin(eV(l/z))er(l/z) B COS(eV(l/z))>

22

_VI(1/z) V(1/2) (. v Z
= 2V (1/z) > (sm(eV(l/ ))e V(1/z) _ COS(€V(1/ ))) ‘

Since for z > 0 we have lim,,(1/2)V'(1/2)/V(1/z) = 1/w(M) (by property (VI), see [65,
Prop. 1.2]) and lim, o V(1/2)/z = oo (property (III)), we deduce that lim,_,o f'(2) does not
exist. By Proposition (ii), f can not have M—asymptotic expansion in any sectorial region
containing direction 0. Consequently, f is not M—flat in any such sectorial region. We note
that, in particular, the example of Wasow corresponds to the Gevrey case of order 1, i.e., to the
sequence M = (p!)pen, -

Remark 5.1.13. At this point it is worth saying a few words about a situation which, although
not usually considered in the theory of asymptotic expansions, plays an important role in the
general framework of ultradifferentiable or ultraholomorphic classes, namely that of the so-called
Carleman classes of Beurling type. We will not give full details here, but let us say that a function
f, holomorphic in a sectorial region G, has Beurling Ml—asymptotic expansion f =3 ganz"
in a direction 0 in G if there exists 79 > 0 such that the segment (0,75¢%] is contained in G, and
for every Ap > 0 (small) there exists Cy > 0 (large) such that for every z € (0,7ge] and every

p € Ny one has
p—1
‘f(z) - Z anz"’ < CoAYM|2|P.
n=0
Following the idea in Remark [5.1.3] one can prove that f, bounded throughout G, is Beurling
M—flat in direction 6 if and only if for every co > 0 (small) there exist ¢; > 0 (large) such that
for every z € G with arg(z) = 0 one has

1F(2)] < creem/lezlzD) (5.11)

Then, the following analogue of Lemma is valid: Given 0 < v < w(M), suppose f is a
bounded holomorphic function in S, that admits a continuous extension to the boundary 95,
and that is Beurling M—flat in direction d = 7y/2. Then for every 0 < § < 7y and every kg > 0,
there exists a constant k; = k1(0, k2) > 0 such that

| (2)] < ke M/ G2BD) it arg(2) € [—my/2+ 6, my/2).

The proof of this statement follows the same lines as that of the original lemma, by carefully

tracing the dependence of the different constants involved in the estimates. Indeed, the constants

1/w

A, B, o, f,e,n are determined in the same way. Choose 7 > 0 such that ro/B > k, '", and
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a point a with the specified argument and modulus (ro/n)“. Take a positive da such that
dy > 2]a|'/* /A, and then ¢ > 0 such that ¢y < dy. By definition of Beurling M—flatness in
direction 7 /2, there exists ¢; > 0 such that holds for arg(z) = ym/2. Then, the desired
estimates hold for the same k1 > 0 obtained in the proof of that lemma.

Note that also Lemma[5.1.8] Lemma[5.1.9)and Proposition [5.1.1T]will be valid in this Beurling
setting.

5.2 Watson’s Lemmas

Given a weight sequence M admitting a nonzero proximate order, we will now obtain several
quasianalyticity results by combining those in Subsections and with the results on the
propagation of null asymptotics in Section

Remark 5.2.1. In a similar way as in the proof of Proposition (see [O7]), it is easy to
deduce that, given a bounded holomorphic function f in a sector S, that admits a continuous
extension to the boundary 95, the fact that f € AE‘M(SW) and f is M—flat amounts to the
existence of constants ki, ko > 0 such that holds.

In the first version, an immediate consequence of previous information, we assume the func-
tion is flat at both boundary directions.

Lemma 5.2.2. Let v > 0 be given, such that either v > w(M), or v = w(M) and the series
Z;io(mp)_l/ «(M) diverges. Suppose f is a bounded holomorphic function in S, that admits a
continuous extension to the boundary 0S5, and that is M—flat in directions d = 7y/2 and —d.
Then f =0.

Proof. By Lemma [5.1.9) we know that (5.8)) holds for suitable k1, k2 > 0. The previous remark
implies that f € Af;(Sy) and f ~pm 0, and by Theorem we deduce that f = 0. 0

In the second, improved version we assume only that the function is flat in one of the boundary
directions.

Lemma 5.2.3. Assume the same hypotheses as in Lemma [5.2.2] except that now f is M—flat
only in direction d = 7y/2. Then f = 0.

Proof. For simplicity we write w = w(M). The argument is simple if v > w: We fix w < p < 7
and 0 = (y—u)m > 0. By Lemma we know that there exist constants k1(9), k2(d) > 0 with

£ (2)] < kyem @/ B2l it arg(2) € [my/2 — pr, my/2).

Then, Remark implies that f € A¥%(S), with S = {z € R : arg(z) € (7y/2 — pm,7y/2)}
and f ~u 0. Since 1 > w, we can apply Theorem to the function f in S, using a suitable
rotation, and we deduce that f = 0.

If v = w we fix § = 7w/8 > 0. Lemma [5.1.8] ensures there exist k1(8), k2(5) > 0 with

1f(2)| < kpe @@/ (R2l2D) i are(2) € [—3nw/8, nw/2). (5.12)

As in the proof of Lemma [5.1.6] since M admits a nonzero proximate order p(t), there exist
V € MF (2w, p(t)) and positive constants A, B, to such that we have (5.3). Choose g2 > 0 such

that k‘z_l/w > @9, and take a € R such that

W Ag\“
arg(a) = L 0<|al < (22> .
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We observe that for every z with arg(z) € [—mw/2, 7w /2] one has
arg(a/z) € [—mw/4,3nw/4] C (—mw/2, 7w).
Using property (I) of the functions in M F (2w, p(t)), we see that

( Via/2)

lim Re | ————"—
|al <V (1/]2])

) = cos(ars(a) = ang(2)) /)

|z|]—0

uniformly for arg(z) € [—mw/2,7w/2]. We fix 0 < & < 1 such that
cos(3m/4) + e < cos(br/8) +e < —1/3 < 0.

We deduce that we have (5.6) and (5.7) for arg(z) € [-mw/2,7w/2] and |z| < s1, small enough
and subject to the restriction s; < 1/(tokz2). Consider the function

F(z) = f(2)e" (/) for arg(z) € [—mw/2,mw/2].

Then we see that F(z) is holomorphic in S,, and continuous in S,,.
If arg(z) € [~7mw/2, —37w/8], we have that arg(a/z) € [57w/8,3mw/4]. Then, since f(2) is
bounded by K > 0 in S, and using (5.7) for |z| < s1, one has

IF(2)| < KeRe(V(@/2) < fgeleosGn/9)+)lal V(112D < fro—lal/*V1/12)/3,

Using property (I) of the functions in M F (2w, p(t)) we see that

o VWal/BBI)(A/202) _ 4 oy
|z[—0 (’a‘l/w/(33))V(1/‘z‘) (1/2) < 1.

We define bs := (|a|/(3B)¥)/2. Then for |z| < s2 < min(sy,b2/t), small enough, we have that

|F(z)| < Ke BV /1) if |z| < so, arg(z) € [-mw/2, —3rw/8|.
Using , we see that
|F(2)] < Kemm®2/ED it 2] < 5y, arg(z) € [~mw/2, —37w/8). (5.13)
We define C' = max{Re(V (a/2)) : |z| > s2, —w/2 < arg(z) < —37mw/8} and we take
¢1 := K max{exp(C), 1} < 0.
Then, since wy(t) > 0 we have that
|F(2)] < e1 < epemlbe/IZ) if |z| > s, arg(z) € [-mw/2, —37w/8]. (5.14)

Since ¢; > K, from and we deduce that F' is M—flat uniformly for arg(z) €
[—7w/2, —3mw/8].

If arg(z) € [—3mw/8, mw/2], we have that arg(a/z) € [~mw/4, 57w/8]. Using (5.3)), and
(65-12)), for |z| < s1 we see that

F(2)] < ke~ =1/ (kal=D) gleos(arg(a/z) ) +2)|a/V (1/|2l) <, o= AV(1/kalz])+20al <V (/).

Now, property (I) of the functions in MF (2w, p(t)) lets us write

V(1/ks|z])

—1/w
im =k
0 V(/lz) P

i
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s0, for |z| < s3 < s2 small enough, we have that V(1/ka|z|) > g2V (1/|2]). We conclude that
|F(2)] < kpeARFAal VAN ip ) < s arg(z) € [~3mw/8, mw/2).

Since |a| has been chosen small enough in order that —Agy + 2|a|'/* < 0, proceeding as before,
we find that F(z) is M—flat uniformly for arg(z) € [—3nw/8, 7w/2].

Consequently, F' verifies estimates of the type in S, and, by Remark Fe fl{\‘A S
and F ~y 0. Since Z;io(mp)_l/w(lw) is assumed to be divergent, we can apply Theorem [3.2.2
to the function F(z) in Sy, and deduce that F(z) =0 and f = 0. O

In the proof of Lemma we need to distinguish two situations: in case v > w(M) we
have been given an M—flat function f in a wide enough sector (what entails uniqueness), while
in case 7 = w(M) an M—flat function F' in a sector of opening mw(M) has to be constructed in
order to apply Theorem what is possible thanks to the additional assumption on the series
> po(mp) M0,

It is interesting to note that in the Gevrey case the aforementioned series diverges, so the
previous result extends Lemma 5 in [29]. Indeed, in that instance the very divergence of the series
allows one to treat the case v > w(M) by restricting the function to a sector with v = w(M), an

argument which is not available in our general situation.

Remark 5.2.4. In most situations we can obtain converse statements to Lemma [5.2.2 and
Lemma[5.2.3] Observe that if v < w(M) and we take v < pu < w(M), by Theorem we know
there exists a nontrivial flat function f € Aj;(S,). Then (the restriction of) f is a bounded
holomorphic function in S, that admits a continuous extension to the boundary 95, and that
is M—{flat in directions d = 7y/2 and —d.

Analogously, if v = w and 3°7° (((p + 1)m,) Y@M+ converges, we deduce that the series

Z;io(mp)_l/ «(M) converges too. Hence, by Theorem there exists a nontrivial flat function
f € Am(S,ar)- Since the derivatives of f are Lipschitzian, one may continuously extend f to
the boundary of S, ) preserving the estimates, and again obtain that f is M—flat in directions
mw(M)/2 and —mw(M)/2.

However, the converse of Lemma and Lemma fails in case v = w(M), the series
Z;io(mp)_l/w(M) converges and Y% ((p + 1)ym,,) " @M+ diverges (for instance, this is the
situation for the sequence M 35, see Example [I.1.4[i)). Although nontrivial flat functions in
AKQ(SM(M)) exist in this situation, there is no warranty that they can be continuously extended

to the boundary of the sector.

Finally, we provide a version of Watson’s Lemma for functions in sectorial regions which are
M—flat in a direction.

Proposition 5.2.5. Let v > 0 be given with v > w(M). Suppose f is holomorphic in a sectorial
region G, bounded in every T' < G, and M—flat in a direction 6 in G,. Then f = 0.

Proof. Using Proposition [5.1.11] we know that for every T' < G, we have (5.9)) for suitable
k1, ks > 0 depending on T and for every z € T'. Then, Proposition implies that f € Ay(G~)
and f ~p 0, and Theorem [3.2.15|leads to the conclusion. ]

Remark 5.2.6. By Theorem , if v < w(M) we can find a nontrivial function f € Ap(G,)
such that f ~u 0, so it is bounded on every proper bounded subsector T' of G, and M—flat in
any direction 0y € (—my/2,7y/2). Consequently, in this situation we have a complete version of
Watson’s Lemma.
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5.3 Asymptotic expansion extension

From the generalized version of the Borel-Ritt—Gevrey, Theorem [3.3.21] for a weight sequence
M admitting a nonzero proximate order we may generalize Theorem 1 in [29].

Theorem 5.3.1. Given v > 0, suppose f is holomorphic in a sectorial region G5, it is bounded
in every T < G5, and it admits f € C[[z]] as its M—asymptotic expansion in a direction
0 € (—my/2,7v/2). Then, f € Am(G,) and f ~u f in G,.

Proof. We distinguish two cases:

1. Sectorial regions of small opening: If v < w, we take v < 1 < w. By the Borel-Ritt-Gevrey
Theorem we know that there exists a function fy € AM( 1) such that fo ~ f in
Sy- Then the function g := f — fo is holomorphic in G, bounded in every proper bounded
subsector of G, and it is M—{flat in direction #. Using Proposition we see that ¢ is
M—flat in G,.

Then, for every proper bounded subsector T' of G, there exist positive constants A(T),
B(T), C(T), D(T') > 0 such that

p—1
_Zanzn|§|g ‘+|f0 Zan
n=0
< ACPM,|z|P + BDpMp|z]p < 2max(A, B) max(C?, D?)Mp|z|?,

for every z € T and every p € Ny. Consequently, f € AM(GV) and f ~y f in G.

2. Sectorial regions of large opening: If v > w, we may choose natural numbers ¢ and m, and

forallj=—¢,...,—1,0,1,...,m we may consider directions §; € (—7ny/2,7y/2) such that
0y =0, 6 :=0;_1 + mw/8, j=1,...,m, TY/)2 = Oy, < TW/8,;
0; =011 —Tw/8, j=-1,...,=1, —my/2+60_; > —mw/8.

There exists pg > 0 such that Sy = S(6o, 7w/4, po) C G,. We apply the first part in the
sector Sy and we see that f € Awy(So) and f ~y f in Sp. In particular, f admits f as its

M—asymptotic expansion in directions #; and 0_; for |z| < po. Repeating the process we
see that f € Ay(G,) and f ~y f in G,.

O
The proof of our last statement is now straightforward.

Corollary 5.3.2. Given v > 0 and 0 € (—77y/2,77/2), we have that

Au(G,) = {f € H(G,) : f is bounded in every proper bounded subsector T' of G.,

and f admits M—asymptotic expansion in direction 6}.
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Conclusiones y trabajo futuro

El objetivo de esta tesis era explorar ciertas propiedades de las clases ultraholomorfas de funciones
vy su aplicacion a los desarrollos asintoticos y la teoria de multisumabilidad, analizando qué
resultados del caso Gevrey pueden ser extendidos a este marco general. Una primera meta
alcanzada con éxito en el Capitulo [2|es la descripcion de las relaciones entre diversas propiedades
de las sucesiones peso y las nociones de orden aproximado, variaciéon regular y O-variacion regular.
De ese capitulo, el Teorema merece mencion especial porque caracteriza la forma de las
sucesiones para las que la teoria de sumabilidad desarrollada en |60 [88), 89] esté disponible.

El tercer capitulo esta dedicado al estudio de la inyectividad y sobreyectividad de la aplicacién
de Borel asintética. El resultado principal de este estudio, completado para la inyectividad
y sucesiones peso generales y casi finalizado para la sobreyectividad y sucesiones fuertemente
regulares, es la existencia de dos indices w(M) y (M), uno para cada problema y en general
distintos (ver el Ejemplo , que miden la apertura limite de los sectores para los que la
aplicacion de Borel es inyectiva o, respectivamente, sobreyectiva. Puesto que para todos los
ejemplos en las aplicaciones el valor de estos indices coincide, esta division ha resultado dificil
de detectar. Finalmente, en los Capitulos {] y [5| se acentta el significado de estos resultados
relativos a los desarrollos asintéticos. En esta direccion, el Teorema Tauberiano {.2.14] clarifica
cuando tiene sentido la herramienta de multisumabilidad en este contexto. En ese caso, se ha
proporcionado una construccién explicita y detallada de los ntcleos de aceleracién, lo que nos
permite recuperar la multisuma de una serie de potencias formal. Por dltimo, se ha probado que,
como sucede en el caso Gevrey, se puede extender un M—desarrollo asintético de una funcion
holomorfa en el origen en una direccién a la regién donde dicha funcién estd acotada.

Esta tesis representa un primer paso hacia una mejor comprensién de las condiciones que se
asumen frecuentemente para las funciones y sucesiones peso mediante la nocién de O-variacion
regular, expresando propiedades cualitativas en términos de ciertos valores cuantitativos. Estos
hallazgos y técnicas presentes podrian ayudar a resolver otros asuntos en el contexto ultra-
holomorfo y ultradiferenciable. Ambos estan estrechamente relacionados, como se ha resaltado
mediante el estudio de la aplicacion de Borel, lo que ha potenciado nuestro entendimiento sobre
su conexion. Una consecuencia adicional que emerge de este trabajo es la aplicacién poten-
cial al estudio de ciertas ecuaciones, particularmente ecuaciones en diferencias, del método de
multisumabilidad, que proporcione un tratamiento unificado del problema.

Este analisis de clases ultraholomorfas de funciones se ha ocupado principalmente de aque-
llas definidas por medio de una sucesion peso, de tipo Roumieu, y en el caso de una variable.
Sin embargo, algunos de los resultados podrian ser validos también para clases ultraholomorfas
definidas mediante una funcién peso, o incluso una matriz peso, como ha sido recientemente
considerado por A. Rainer y G. Schindl. Ademas, las clases de tipo Beurling son adecuadas
para el estudio de problemas similares, o se podrian considerar clases de funciones de varias vari-
ables complejas definidas en polisectores (productos cartesianos de sectores) o en regiones més
generales. Al mismo tiempo, el estudio presente ha utilizado solo parcialmente la informacion
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disponible proveniente de la teoria de variacion regular o de O-variacién regular, por lo tanto
se podria profundizar en algunas de las conclusiones del segundo capitulo. Finalmente, merece
la pena mencionar que, aunque los métodos de M—sumabilidad se han aplicado en [60) [61], su
desarrollo permanece atn en un plano bastante teérico.

Antes de terminar, y a la luz de los resultados obtenidos en esta tesis, sus implicaciones y
sus limitaciones, se listan a continuacion algunas lineas de investigacién futura.

m En primer lugar, parece que todavia se puede explotar la conexién entre sucesiones peso y
la O-variacién regular, establecida en la Secciéon para dilucidar el significado de otras
condiciones que aparecen frecuentemente cuando se consideran clases ultraholomorfas o ultra-
diferenciables de funciones. En esta misma direccién, se podria analizar la nocién, también
clasica, de E-variacion regular (véase [I3 Sect. 2.1]), que se encuentra entre la variacion reg-
ular y la O-variacion regular. Adjunto a este concepto interviene un par adicional de indices,
los de Karamata, distintos en general de los 6rdenes y de los indices de Matuszewska. Por
lo tanto, es natural el andlisis de si estos también describen propiedades significativas de las
sucesiones peso. Una linea diferente, mencionada en la Observacion [2.1.33] tiene que ver con la
consideracion de clases ultraholomorfas y ultradiferenciables definidas por medio de funciones
peso. Hemos mostrado en [45], 47] que los requerimientos impuestos sobre estas funciones
tienen una interpretaciéon en términos de propiedades o indices de O-variacién regular. Sin
embargo, como ocurre en el caso de sucesiones peso, parece que no hemos explotado todavia
toda la informacion que se puede obtener a partir de estas potentes herramientas.

m La sucesién dual introducida en la Subseccion [2.1.5 sugiere la existencia de cierta dualidad
entre los espacios correspondientes. La dualidad clasica en espacios de Orlicz, construidos
a partir de una funciéon monoétona y de O-variaciéon regular cuya inversa ‘por la derecha’
determina el espacio dual (ver [86]), apoya esta conjetura. Puesto que la funcién de conteo
vm puede verse como una suerte de inversa de la funcion escalonada fum(x) = m|z|, puede
esperarse dicha dualidad.

m Uno de los objetivos mas evidentes que alcanzar es el estudio completo de la sobreyectividad de
la aplicacion de Borel. Como se sefialé en la Observacion , se espera que Sy = (0,~v(M)]
y Sy = 5’11{41 = (0,7(M)), al menos para sucesiones fuertemente regulares. En este caso, solo
queda determinar si el valor v(M) pertenece o no a alguno de estos intervalos.

Cuando M no es fuertemente regular, se debe observar que solo se tiene informacién acerca de
la extensiéon méaxima de los intervalos de sobreyectividad pero, hasta donde sabemos, perfec-
tamente podrian ser vacios. Por lo tanto, se deberia dedicar algin esfuerzo a la construcciéon
de operadores de extension bajo la condicién necesaria (snq) junto con, posiblemente, alguna
otra condicién mas débil que (mg).

m La existencia de ntcleos de M—sumabilidad ha sido probada tinicamente para sucesiones peso
que admiten un orden aproximado no nulo (ver la Observacion . Es un problema abierto
el determinar si tales nucleos existen para sucesiones fuertemente regulares arbitrarias. Es-
trechamente relacionado con este, se podria también intentar caracterizar las sucesiones que
pueden ser escritas como momentos de un nicleo de Ml—sumabilidad; observemos que la solu-
cion de este problema no se conoce ni siquiera en el caso Gevrey, como ha senalado W. Balser |7,
p. 94|. Se coment6 en la Observacion que, para una sucesion peso M que satisfaga (dc),
con 0 < w(M) < 2 y para la que exista un niicleo de M—sumabilidad, se puede deducir que
no solo M es (snq), sino que de hecho v(M) = w(M). Un asunto interesante seria el estudio
de las posibles implicaciones o equivalencias entre diferentes propiedades de este tipo, como la
existencia de nicleos de M—sumabilidad, la existencia de funciones planas ‘buenas’ en sectores
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optimos, y el hecho de que M satisfaga algin conjunto especifico de propiedades entre (snq),
(dc), (mg), 0 < y(M) = w(M) < oo, etc.

m El lector puede haber advertido que, incluso habiéndose establecido un método de suma-
bilidad para la sucesion M, g, paraddjicamente no se sabe si la serie de potencias formal
Z;io (p!a fn:O logﬁ (e + m))zp es M, g—sumable. Este problema fundamental surge del he-
cho de que en el método de M, g—sumabilidad la sucesién es reemplazada por la sucesion
de momentos m,, construida a partir de una funcién de Maergoiz V. Este fenémeno, que
es especialmente molesto cuando se consideran métodos de sumabilidad de momentos, es en
general una debilidad del método de sumabilidad de Borel, puesto que no hay ningtn pro-
cedimiento sisteméatico para encontrar informacion acerca del comportamiento global de una
funcién analitica, tal como su prolongacién analitica o la posicién de sus singularidades, en
términos de sus coeficientes de Taylor en un punto. Por ejemplo, en un trabajo reciente de
0. Costin y X. Xia [24] se ha probado la 1—sumabilidad de la serie aparentemente ingenua
Z;io pPH12P v la prueba requiere de herramientas y conceptos sofisticados como la analiz-
abilidad de sus coeficientes y el uso de trans-series. Valdria la pena clarificar si esto es posible
en el caso anterior, y si la variacién regular puede arrojar algo de luz en este asunto.

m Es relevante verificar si es posible redefinir la nocién de M—sumabilidad de modo que el
Teorema Tauberiano esté disponible para dos sucesiones peso M and L, comparables
pero no equivalentes y con w(M) = w(L). Puesto que el Lema de Watson [3.2.15|para desarrollos
asintoticos no uniformes se verifica para regiones sectoriales arbitrarias, es posible que se
hayan de considerar desarrollos asintéticos uniformes. En esta situacion, gracias a un teorema
de S. Mandelbrojt [72] Sect. 2.4.I], podemos determinar regiones de casianaliticidad para la
sucesion mas pequena, digamos L, que no tienen esta propiedad para la mas grande, M, por
lo tanto el Teorema Tauberiano deberia ser cierto en este contexto. Sin embargo, dado que
el indice de crecimiento de la sucesion cociente es w(M/L) = 0, para recuperar la multisuma
se deberia proporcionar una nueva definicién de nicleo de sumabilidad, definido solamente en
el eje real positivo. Ademas, la funcion asociada wyy/1, puede ser de variaciéon répida, por lo
que las funciones de Maergoiz no son ttiles y la construccién de nicleos requiere considerar
un procedimiento distinto.

m Las técnicas de multisumabilidad desarrolladas en el Capitulo [] nos permitiran trabajar al
mismo tiempo con M— y con k—sumabilidad. Esto lleva a considerar las propiedades de
sumabilidad de las soluciones en serie de potencias formal de diferentes tipos de ecuaciones.
En el estudio de ecuaciones en diferencias aparece el llamado nivel 11 (véanse los trabajos de
G. I. Immink [40] 41]), que corresponde a la sucesion M; _;. Siempre que los otros niveles
de la solucién formal, aparte del 17, sean distintos de 1, podremos aplicar nuestro método de
multisumabilidad. No obstante, existe una situacién interesante en la que se necesita aplicar
un proceso de aceleracién para la sucesion Gevrey de orden 1 y la sucesion My _q, y para el
que es imprescindible resolver previamente el asunto planteado en el apartado anterior.
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Conclusions and future work

This thesis had the aim of exploring certain properties of ultraholomorphic classes of functions
and their application to asymptotic expansions and multisummability theory, analyzing which
results from the Gevrey case can be extended to this general framework. A first objective suc-
cessfully accomplished in Chapter [2]is the description of the relations between several properties
of the weight sequences and the notions of proximate order, regular and O-regular variation.
From that chapter, Theorem deserves a special mention because it characterizes the shape
of the sequences for which the summability theory developed in [60] 8], 89| is available.

The third chapter is devoted to the study of the injectivity and surjectivity of the asymptotic
Borel map. The main outcome of this study, completed for injectivity for general weight sequences
and nearly finished for surjectivity and strongly regular sequences, is the existence of two indices
w(M) and v(M), one for each problem and generally different (see Example[2.2.26)), measuring the
limit opening of the sectors for which the Borel map is injective or, respectively, surjective. Since
for all the examples in the applications the value of these indices coincides, this division has been
hard to detect. Finally, in Chapters[]and [5|the significance of these results regarding asymptotics
is stressed. In this direction, Tauberian Theorem clarifies when the multisummability tool
makes sense in this context. In that situation, an explicit and detailed construction of the
acceleration kernels has been provided, allowing us to recover the multisum of a formal power
series. Finally, it has been shown that, as it happens in the Gevrey case, one may extend the
M—asymptotic expansion at the origin in a direction of a holomorphic function to the region
where it is bounded.

This dissertation represents the first step towards a better insight into the conditions fre-
quently assumed for weight functions and weight sequences through the notion of O-regular
variation, expressing qualitative properties in terms of some quantitative values. These present
findings and techniques might help to solve other issues in the ultraholomorphic and ultradiffer-
entiable settings. Both settings are closely related, as it has highlighted the study of the Borel
map, enhancing our understanding of their connection. An additional implication that emerges
from this work is the potential application to certain equations, particularly difference equations,
of the multisummability method, so providing a unified treatment of the problem.

This analysis of ultraholomorphic classes of functions has been primarily concerned with
those defined by means of a weight sequence, of Roumieu type, and in the one-variable situation.
However, some of the outcomes might be also valid in ultraholomorphic classes defined by means
of a weight function or even a weight matrix, as it has been recently considered by A. Rainer
and G. Schindl. Also, the Beurling type classes are suitable for the study of similar problems,
or one could consider classes of functions of several complex variables defined in polysectors
(cartesian products of sectors) or more general regions. At the same time, the present study
has only partially employed the information available from the regular and O-regular variation
theory, so some of the conclusions in the second chapter might be sharpened. Eventually, it is
worth mentioning that, although M—summability methods have been applied in [60] [61], their
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development remains still on a quite theoretical plane.
Before concluding, and in the light of the results obtained in this dissertation, their implica-
tions and limitations, some possible future lines of research are listed below.

m In the first place, it seems that one may still take advantage of the connection between weight
sequences and O-regular variation, established in Section in order to elucidate the meaning
of other conditions frequently appearing when dealing with ultraholomorphic and ultradiffer-
entiable classes of functions. In this same direction, one might be guided to consider the, also
classical, notion of E-regular variation (see [I3, Sect. 2.1]) which is in between regular and
O-regular variation. Attached to this concept, an extra pair of indices, Karamata indices, gen-
erally different from orders and Matuszewska indices, come into play. Hence, one is tempted
to analyze whether or not they are also describing significant properties of weight sequences.
A different line, mentioned in Remark [2.1.33] has to do with the consideration of ultraholo-
morphic and ultradifferentiable classes defined by means of weight functions. We have shown
in |45 47] that the requirements imposed on these functions have an interpretation in terms
of properties or indices of O-regular variation. However, as for the weight sequence case, it
seems that we have not put to work yet all the information that could be obtained from this
powerful machinery.

m The dual sequence introduced in Subsection [2.1.5] suggests the existence of some duality be-
tween the corresponding spaces. Supporting this conjecture is the classical duality of Orlicz
spaces which are constructed from a O-regulary varying monotone function f whose right
inverse function g determines the dual space (see [86]). Since the counting function vy, can be
seen as a sort of inverse of the step function fm(x) = m |4, such a duality might be expected.

B One of the most evident objectives to be achieved is the complete study of the surjectivity of
the Borel map. As it was pointed out in Remark it is expected that Sy = (0,~v(M)]
and Sy = }1\‘41 = (0,7(M)) at least for strongly regular sequences. In this case, it only rests to
determine whether the value (M) belongs to some of these intervals or not.

In case M is not strongly regular, one should note that we only have information about the
maximal extent of the surjectivity intervals, but as far as we know they could perfectly be
empty. So, some efforts should be concentrated in the construction of extension operators
under the necessary condition (snq) plus possibly some other condition weaker than (mg).

m The existence of Ml—summability kernels has only been proved for weight sequences admitting
a nonzero proximate order (see Remark . It is an open question to determine whether or
not they exist for an arbitrary strongly regular sequence. Closely related to it, one might also
try to characterize the sequences that can be written as the moments of an M—summability
kernel; we note that the solution of this problem is not even known in the Gevrey case, as
W. Balser [7, p. 94 pointed out. It was commented in Remark [£.1.3|that, for a weight sequence
M satisfying (dc), 0 < w(M) < 2 and for which a kernel of M—summability exists, one may
deduce that not only M is (snq), but indeed (M) = w(M). An interesting issue would be the
study of the possible implications or equivalences among different properties of this kind, such
as the existence of kernels of Ml—summability, the existence of ‘fine’ flat functions in optimal
sectors, and the fact that M satisfies some specific set of properties among (snq), (dc), (mg),
0 <~y(M) =wM) < oo, etc.

m The reader may have noticed that even if a summability method for the sequence M, g has been
developed, it is paradoxically unknown if the formal power series Z;io (p!a | logﬁ (e +
m))zp is M, g—summable. This fundamental problem arises from the fact that in the method
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of M, g—summability the sequence is replaced by the moment sequence m,,, constructed from
a Maergoiz function V. This phenomenon, which is specially disturbing when dealing with
moment summability methods, is in general a weakness of the Borel summability method,
since there is not a systematic procedure to find information about the global behavior of
an analytic function, such as the analytic continuation or the position of its singularities, in
terms of its Taylor coefficients. For instance, in a recent work by O. Costin and X. Xia [24] the
1—summability of the apparently naive series Z;‘;O pPT12P has been shown, and their proof
requires sophisticated tools and concepts such as the analyzability of its coefficients and the
use of transseries. It would be worthy to clarify if this could be done in our situation and if
regular variation could bring some light to this issue.

m It is relevant to verify if it is possible to redefine the M—summability notion in such a way
that the Tauberian Theorem is available for two comparable but not equivalent weight
sequences M and L with w(M) = w(LL). Since Watson’s Lemma for nonuniform asymp-
totics holds for arbitrary sectorial regions, one might need to consider uniform asymptotics.
In this situation, thanks to a theorem of S. Mandelbrojt [72, Sect. 2.4.I] we can determine
regions of quasianalyticity for the smaller sequence, say IL, that do not have this property for
the bigger one M, so the Tauberian theorem should be true in this context. However, since
the growth index of the quotient sequence is w(M/L) = 0, in order to recover the multisum a
new concept of summability kernel, defined just over the positive real axis, should be given.
Moreover, the associated function wy;, may be rapidly varying, so Maergoiz functions are
useless and a different procedure has to be considered for the construction of the kernels.

m The multisummability techniques developed in Chapter [d] will allow to us work at the same time
with Ml— and k—summability. This leads to the consideration of the summability properties
of the formal power series solutions of different types of equations. In the study of difference
equations, the so-called level 17 (see the works of G. I. Immink [40, 41]), which corresponds
to the sequence M _1, appears. Whenever the other levels, apart from the 17, of the formal
solution are distinct from 1 we might apply our multisummability method. Nevertheless, there
is an interesting situation in which one needs to apply an acceleration process for the Gevrey
sequence of order 1 and the sequence M; _1, and for which the issue presented in the last
paragraph needs to be previously solved.
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Notation

List of Symbols

€1 * €9
e1 dea

Jiow, P

upper Matuszewska index of the sequence @ = (ap)peN -« -« ovvvoeeiiniio.... 61
upper Matuszewska index of a positive function f....................... ... ... 44
sequences of positive real numbers with the first term equal to 1 ........... .. 29
sequences of quotients of A, I and M, respectively ......... ... ... ... ....... 29
Carleman ultraholomorphic class of Roumieu typein G...................... 109
class of functions admitting uniform M—asymptotic expansion in G.......... 108
class of functions admitting Ml—asymptotic expansion in G................... 108
lower Matuszewska index of the sequence @ = (ap)peN .- voovvioiii ... 61
lower Matuszewska index of a positive function f ............. ... ... ... .... 44
the Borel map for r—interpolating ultradifferentiable classes.................. 125
asymptotic Borel map ... ... 110

algebra of formal power series in z with complex coeflicients.

classes of formal power series with coefficients bounded in terms of Ml........ 110
set of M—summable formal power series in direction d ....................... 145
set of M—summable formal power series .............c. i 145

open disk centered at z with radius r > 0.

function connecting proximate orders to a weight sequence M ................. 84
stable under differential operators or derivation closedness condition........... 30
integration path for the e—Borel transform in direction 7.................... 143
Carleman ultradifferentable class of functions of Roumieu type............... 122
the convolution of the kernels ej and eg....... ... ... ... .. .. .. ... ... ....... 164
the kernel of acceleration from the kernel eg to e ..., 172

auxiliary functions for O-regular variation........... .. ... .. o i 44
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g, g, =@ )penfor r e R\{O} ... 62
~(M) Thilliez’s growth index for Ml ... ... ... .o 38
G(d,v) sectorial region in R bisected by the direction d € R of opening 7y........... 108
G, sectorial region in R bisected by the direction d = 0 of opening 7y ........... 108
H(C) entire functions space.

H(U) holomorphic functions in an open set U C R.

H, p—th partial sum of the harmonic series......... ... .. o i i 96
H H(0) = {# € C: Re(z) > 0}, the open right half-plane of C................... 113
H(c) the open half-plane {z € C:Re(z) >c}. ... 113
Dy, I, Ty Anjectivity Ttervals . ... oot 111
Aa) exponent of convergence of a nondecreasing sequence @ = (ap)peN -« .covn. .. 71
(lc) logarithmic convexity condition .......... ... ... . . i 29
M) logarithmically convex minorant sequence of Ml ......... ... ... ... .. ........ 37
u(a) lower order of the sequence @ = (ap)peN -« ovvoiiiiii 61
w(f) lower order of a positive function f ... ... ... .. 46
M M = (M,/p")pen, for any sequence M. ...............oooiiiiii ... 111
M M = (P'M,)pen, for any sequence Ml.... ... ... ... ... . L. 111
(mg) moderate growth condition......... ... i 29
MF(v,p(t)) Maergoiz’s class of analytic functions in Sy associated with p(¢)............... 43
N natural numbers {1,2,...}.

Np Nu{0}.

U (t) counting function for the sequence of quotients m of a sequence M ............ 72
(nq) nonquasianalyticity condition .......... ... .. i 30
OM(9) set of holomorphic functions of M—growth on S........... ... ... ... ....... 142
ORV class of O-regularly varying functions ............. i i 44
(Py) property used for the definition of y(M)...... ... i 38
R Riemann surface of the logarithm.

p(a) upper order of the sequence @ = (ap)peN -« oo oii 61
o(f) upper order of a positive function f..... ... .. ... 46
RV, R, class of regularly varying functions and regularly varying functions of index p . 40
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S map that sends each convergent power series into its natural sum ............ 145
S(d,~) unbounded open sector in R bisected by the direction d € R of opening 7y.... 43

S(d,~,r) open sector in R bisected by a direction d € R of opening 7y with radius r» > 0 108

S, unbounded open sector in R bisected by the direction d = 0 of opening 7 .... 43
S, 5’&[, Sy surjectivity Intervals ... ... .. 111
(slc) strongly logarithmically convex ........ ..., 111
SM,df M—sum of f in direction d............c..ooooeee 138
(snq) strong nonquasianalyticity condition .......... .. ... ... . 29
TG T is a proper bounded subsector of a sectorial region G ...................... 108
TS T is a proper unbounded subsector of an unbounded sector S................ 108
Te, Te_ formal e—Laplace and e—Borel transform .............. ... ... ... L. 144
T, - e—Borel transform in direction 7......... ... ... 143
T. - e—Laplace transform in direction 7 ....... ... i 142
w(M) Sanz’s growth index for M. ... . o 38
w (), hai(t) associated functions with a sequence Ml... ... ... .. . ... il 36
=S equivalence symbol for sequences. ... ... 33
= comparability symbol for sequences ...... ... 33
~ equivalence symbol for the sequences of quotients ............. ... ... ... ... 34
= comparability symbol for the sequences of quotients........................... 34
~ equivalence in the classical sense between functions at co........... ... ... ... 40
~ equivalence in the classical sense between sequences........................... 48
~M uniform M—asymptotic expansion .......... ... 108
~M M—asymptotiC eXpansion . ... ...ttt e 108
Glossary

acceleration kernel of two strong kernels ....... . .. 172
almost decreasing function . ...... ... ... e 45
almost decreasing SEqUEIICE .. ... ...t ol
almost increasing fUnction . ....... ... 45
almost INCreasing SEQUEIICE . ... ...ttt ettt e e e e e ol
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asymptotic Borel map .. ... 110
asymptotic expansion in a direction ........... .. 185
bidual sequence of a weight sequence ....... ... . . 81
Characterization Theorem for regularly varying sequences .............. ... ... iiiiii... 48
Characterization Theorem for O-regularly varying functions ............ ... .. .. .. .. ... 45
Characterization Theorem for regularly varying functions .............. ... .. .. .. .. .. 40
comparable SEqUETICES ... ... i e 33
conjugate proximate order .......... .. 43
continuous at the origin ... .. . e 142
convolution kernel of two strong kernels ...... ... 164
counting fUNCEION ... .o . e 72
dual sequence of a weight sequence ........ ... 81
(e1, e2)—multisummable formal power series in a multidirection .......................... 179
e—Borel transform . ... 143
e—Laplace transform ... ... 142
e—summable formal power series in a direction .............. ... il 144
equivalent proximate orders ............ .. e 41
equivalent SeqUENCES ... ... 33
exponent, of convergence of a nondecreasing SEqUENCE .............ciiiiiiiiiiiiiii. 71
flat function .. ... 110
formal e—Laplace and e—Borel transform ........... ... . i 144
index of regular variation .......... ... e 40
injectivity and the surjectivity intervals ........... . i 111
logarithmically convex minorant ............. ..o e 37
logarithmically CONVEX SEQUEIICE ... ...\ttt et e 29
(M, My)—multisummable formal power series in a multidirection ........................ 154
M—asymptotic eXpansion . ... . ...ttt 108
e o 142
M—summability kernels . ... 138
M—summable formal power series in a direction ......... ... ... i 138
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Matuszewska indices for positive functions ............ ... .o 44
moderate growth condition ....... ... 29
noncomparable proximate orders ........ .. 148
noncomparable SEqUENCES ... ... ...t 34
NONQUASIANALYTIC .. ot e 30
nonzero proximate OTder . ... ... ... 41
normalized welght SEQUENCE .. ... .. i 160
O-regular variation, O-regularly varying function ....... .. .. ... ... L. 44
O-regularly varying SEqUENCE .. .. ...ttt e ettt 49
Phragmén-Lindelof theorem . ... ... 186
product sequence of tWo SEQUENCES . ... ...ttt 149
PrOXIIAte OTAeT ..o e et e e e 41
quotient sequence of tWO SEqUENCES .. ... ... ... ittt 149
regular variation, regularly varying function .......... ... 39
regularly varying SeqUENCE .. ...ttt 47
Representation Theorem for O-regularly varying sequences .................cciiiiiiii.... 20
Representation Theorem for regularly varying sequences ............. ... ..coiiiiiiio... 48
Representation Theorem for O-regularly varying functions ............ ... ... ... .. .. .. .. 45
Representation Theorem for regularly varying functions ......... ... ... ... ... 40
sectorial region in the Riemann surface of the logarithm ............ ... ... .. ... ... .. ... 108
sequence of QUOTIENES ... ... e 29
SMOOth Variation ... ... ... i 42
stable under differential operators, derivation closedness condition ......................... 30
strong kernels of M—summability ......... .. 158
strong nonquasianalyticity condition ........... ... 29
strongly logarithmically convex sequence ............ .. .. i, 111
strongly regular SeqUENnCe . ... ... 29
type of a uniform M—asymptotic expansion ........... ...t 108
uniform M—asymptotic expansion . ........... .. 108
Uniform Convergence Theorem for O-regularly varying sequences ......................... 49
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Uniform Convergence Theorem for O-regularly varying functions .......................... 45
Uniform Convergence Theorem for regularly varying functions ............ .. ... ... . ... 40
upper and lower orders of a positive function ...... ... . ... 46
WeEIGhE SEQUENCE ..o 32
weight sequence admitting a proximate order ........ .. ... ... 84

JAVIER JIMENEZ GARRIDO



211

Bibliography

1]

2]

3]

4]

[5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

S. Aljanci¢, D. Arandelovic, O-regularly varying functions, Publ. Inst. Math. (Beograd)
(N.S.)22 (36) (1977), 5-22.

S. Aljanci¢, Some applications of O-regularly varying functions. Approzimation and function
spaces (Gdansk, 1979), pp. 1-15, North-Holland, Amsterdam-New York, 1981.

V. G Avakumovié¢, Uber einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci. (1936) 29-30,
107-117.

A. A. Balkema, J. L. Geluk, L.. de Haan, An extension of Karamata’s Tauberian theorem
and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. (2)
30 (1979), no. 120, 385-416.

W. Balser, Summation of formal power series through iterated Laplace integrals, Math.
Scand. 70 (1992), no. 2, 161-171.

W. Balser, From divergent power series to analytic functions, Lecture Notes in Math., 1582.
Springer-Verlag, New York, 1994.

W. Balser, Formal power series and linear systems of meromorphic ordinary differential
equations, Universitext. Springer-Verlag, New York, 2000.

W. Balser, Multisummability of formal power series solutions of partial differential equations
with constant coefficients, J. Differential Equations 201 (2004), no. 1, 63-74.

W. Balser, B. L. J. Braaksma, J.-P. Ramis, Y. Sibuya, Multisummability of formal power
series solutions of linear ordinary differential equations, Asymptotic Anal. 5 (1991), no. 1,
27-45.

W. Balser, M. Miyake, Summability of formal solutions of certain partial differential equa-
tions, Acta Sci. Math. (Szeged) 65 (1999), no. 3-4, 543-551.

W. Balser, J. Mozo-Fernandez, Multisummahbility of formal solutions of singular perturba-
tion problems, J. Differential Equations 183 (2002), no. 2, 526-545.

K. N. Bari, S. B. Steckin, Best approximations and differential properties of two conjugate
functions, (Russian) Trudy Moskov. Mat. Obs¢. 5 (1956), 483-522.

N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia of Mathematics
and its Applications, Cambridge University Press, Cambridge, 1989.

N. H. Bingham, Regular variation and probability: the early years, J. Comput. Appl. Math.
200 (2007), no. 1, 357-363.



212

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
28]

[29]

[30]

[31]

[32]

[33]

O. Blasco, Operators on Fock-type and weighted spaces of entire functions, preprint, in
preparation.

R. Bojani¢, E. Seneta, A unified theory of regularly varying sequences, Math. Z. 134 (1973),
91-106.

J. Bonet, R. Meise, S. N. Melikhov, A comparison of two different ways to define classes of
ultradifferentiable functions, Bull. Belg. Math. Soc. Simon Stevin 14, (2007), no. 3, 425-444.

J. Boos, Classical and modern methods in summability, Oxford University Press, Oxford,
2000.

B. L. J. Braaksma, Multisummability of formal power series solutions of nonlinear mero-
morphic differential equations, Ann. Inst. Fourier (Grenoble) 42 (1992), 517-540.

B. L. J. Braaksma, B. Faber, G. Immink, Summation of formal solutions of a class of linear
difference equations, Pacific J. Math. 195 (2000), no. 1, 35-65.

M. Cadena, M. Kratz, E. Omey, On the order of functions at infinity. J. Math. Anal. Appl.
452 (2017), no. 1, 109-125.

M. Canalis-Durand, Asymptotique Gevrey, available at (last accessed in December 15th,
2017): http://www.dance-net.org/files/events/rtns2010 /materiales/Canalis.pdf.

M. Canalis-Durand, J. Mozo-Fernandez, R. Schifke, Monomial summability and doubly
singular differential equations, J. Differential Equations 233 (2007), 485-511.

0. Costin, X. Xia, From Taylor series of analytic functions to their global analysis, Nonlinear
Anal. 119 (2015), 106-114.

D. Djurci¢, V. Bozin, A proof of an Aljanci¢ hypothesis on O-regularly varying sequences,
Publ. Inst. Math. (Beograd) (N.S.) 62(76) (1997), 46-52.

D. Djuréi¢, R. Nikoli¢, A. Torgagev, The weak asymptotic equivalence and the generalized
inverse, Lith. Math. J. 50 (2010), no. 1, 34-42.

J. Ecalle, Les fonctions résurgentes I-11, Publ. Math. d’Orsay, Université Paris Sud, 1981.

W. Feller, One-sided analogues of Karamata’s regular variation, Enseignement Math. (2)
15 (1969), 107-121.

A. Fruchard, C. Zhang, Remarques sur les développements asymptotiques, Ann. Fac. Sci.
Toulouse Math. (6) 8 (1999), no. 1, p. 91-115.

J. Galambos, E. Seneta, Regularly varying sequences, Proc. Amer. Math. Soc. 41 (1973),
110-116.

F. Galindo, J. Sanz, On strongly asymptotically developable functions and the Borel-Ritt
theorem, Studia Math. 133 (3) (1999), 231-248.

A. A. Goldberg, I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Amer.
Math. Soc., Providence, R.I., 1991.

L. de Haan, On regular variation and its application to the weak convergence of sample
extremes, Mathematical Centre Tracts, 32 Mathematisch Centrum, Amsterdam, 1970.

JAVIER JIMENEZ GARRIDO



BIBLIOGRAPHY 213

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

Y. Haraoka, Theorems of Sibuya-Malgrange type for Gevrey functions of several variables,
Funkcial. Ekvac. 32 (1989), 365-388.

G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.

M. Hibino, Summability of formal solutions for singular first-order linear PDEs with
holomorphic coefficients, in Differential equations and exact WKB analysis, 47-62, RIMS
Kokytaroku Bessatsu, B10, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008.

A. S. B. Holland, Introduction to the theory of entire functions, Academic Press, New York
and London, 1973.

L. Hérmander, The analysis of linear partial differential operators I. Distribution theory and
Fourier analysis, Second edition. Springer Study Edition. Springer-Verlag, Berlin, 1990.

P. Hsieh, Y. Sibuya, Basic Theory of Ordinary Differential Equations, Universitext. Springer,
New York (1999).

G. K. Immink, Exact asymptotics of nonlinear difference equations with levels 1 and 17,
Ann. Fac. Sci. Toulouse T. XVII, no. 2 (2008), 309-356.

G. K. Immink, Accelero-summation of the formal solutions of nonlinear difference equations,
Ann. Inst. Fourier (Grenoble) 61 (2011), no. 1, 1-51.

J. Jiménez-Garrido, S. Kamimoto, A. Lastra, J. Sanz, Multisummability via proximate
orders, in preparation.

J. Jiménez-Garrido, J. Sanz, Strongly regular sequences and proximate orders, J. Math.
Anal. Appl. 438 (2016), no. 2, 920-945.

J. Jiménez-Garrido, J. Sanz, G. Schindl, Log-convex sequences and nonzero proximate or-
ders, J. Math. Anal. Appl., 448 (2017), no. 2, 1572-1599.

J. Jiménez-Garrido, J. Sanz, G. Schindl, Sectorial extensions for some Roumieu ultraholo-
morphic classes defined by weight functions, submitted, available at (last accessed in De-
cember 15th, 2017): https://arxiv.org/abs/1710.10081.

J. Jiménez-Garrido, J. Sanz, G. Schindl, A Phragmén-Lindel6f theorem via proximate orders
and the propagation of asymptotics, submitted, available at (last accessed in December 15th,
2017): https://arxiv.org/abs/1706.08804.

J. Jiménez-Garrido, J. Sanz, G. Schindl, Growth index for weight functions and weight
sequences for the surjectivity of the Borel map, in preparation.

J. Jiménez-Garrido, J. Sanz, G. Schindl, Injectivity and surjectivity of the asymptotic Borel
map in Carleman ultraholomorphic classes of functions defined in sectors, in preparation.

J. Karamata, Sur un mode de croissance reguliére des functions, Mathematica (Cluj) 4
(1930), 38-53.

J. Karamata, Sur un mode de croissance reguliére, Bull. Soc. Math. France 61, (1933),
55-62.

J. Karamata, Bemerkung iiber die vorstehende Arbeit des Herrn Avakumovi¢, mit naherer
Betrachtung einer Klasse von Funktionen, welche bei den Inversionssidtzen vorkommen, Bull.
Int. Acad. Youg. Zagreb (1936) 29-30, 117-123.

Universidad de Valladolid



214

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

58]

[61]

[62]

[63]

H. Komatsu, Ultradistributions, [: Structure theorems and a characterization, J. Fac. Sci.
Univ. Tokyo Sect. TA Math. 20 (1973), 25-105.

P. Koosis, The logarithmic integral I, corrected reprint of the 1988 original, Cambridge
Studies in Advanced Mathematics, 12. Cambridge University Press, Cambridge, 1998.

B. I. Korenbljum, Conditions of nontriviality of certain classes of functions analytic in a
sector, and problems of quasianalyticity, Soviet Math. Dokl. 7 (1966), 232-236.

J. Korevaar, T. van Aardenne-Ehrenfest, N. G. de Bruijn, A note on slowly oscillating
functions, Nieuw Arch. Wiskunde (2) 23 (1949) 77-86.

E. Landau, Sur les valeurs moyennes de certaines fonctions arithmétiques, Bull. Acad. R.
Belgique (1911), 443-472.

M. Langenbruch, Ultradifferentiable functions on compact intervals. Math. Nachr. 140
(1989), 109-126.

A. Lastra, S. Malek, J. Sanz, Continuous right inverses for the asymptotic Borel map in
ultraholomorphic classes via a Laplace-type transform, J. Math. Anal. Appl. 396 (2012), no.
2, 724740,

A. Lastra, S. Malek, J. Sanz, On Gevrey solutions of threefold singular nonlinear partial
differential equations, J. Differential Equations 255 (2013), 3205-3232.

A. Lastra, S. Malek, J. Sanz, Summability in general Carleman ultraholomorphic classes, J.
Math. Anal. Appl. 430 (2015), 1175-1206.

A. Lastra, S. Malek, J. Sanz, Strongly regular multi-level solutions of singularly perturbed
linear partial differential equations, Results Math. 70 (2016), no. 3-4, 581-614.

A. Lastra, J. Mozo-Fernandez, J. Sanz, Strong asymptotic expansions in a multidirection,
Funkcial. Ekvac. 55 (2012), 317-345.

B.Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I.,
1980.

M. Loday-Richaud, Divergent series, summability and resurgence II, Simple and multiple
summability, Lecture Notes in Math., 2154. Springer, 2016.

L. S. Maergoiz, Indicator diagram and generalized Borel-Laplace transforms for entire func-
tions of a given proximate order, St. Petersburg Math. J. 12 (2) (2001), 191-232.

E. Maillet, Sur les séries divergentes et les équations différentielles, Ann. Ec. Norm. Sup.
Paris, Sér. 3, 20 (1903), 487-518.

H. Majima, Analogues of Cartan’s decomposition theorem in asymptotic analysis, Funkcial.
Ekvac. 26 (1983), 131-154.

H. Majima, Asymptotic analysis for integrable connections with irreqular singular points,
Lecture Notes in Math. 1075, Springer, Berlin, 1984.

S. Malek, On Gevrey functional solutions of partial differential equations with Fuchsian and
irregular singularities, J. Dyn. Control Syst. 15 (2009), no. 2, 277-305.

JAVIER JIMENEZ GARRIDO



BIBLIOGRAPHY 215

[70] S. Malek, On singularly perturbed small step size difference-differential nonlinear PDEs, J.
Difference Equ. Appl. 20 (2014), no. 1, 118-168.

[71] B. Malgrange, Sommation des séries divergentes. Expo. Math. 13 (1995), 163-222.

[72] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Collection de
monographies sur la théorie des fonctions, Gauthier-Villars, Paris, 1952.

[73] J. Martinet, J.-P. Ramis, Elementary acceleration and multisummability, Ann. Inst. Henri
Poincaré, Physique Theorique 54 (1991), 331-401.

4 . Matusze ska, OIl a generalization of regularly increasin functions, Studla Math. 24
4] W w g gularly g
(1964), 271-279.

[75] R. Meise, B. A. Taylor, Whitney’s extension theorem for ultradifferentiable functions of
Beurling type, Ark. Mat. 26 (1988), no. 2, 265-287.

[76] S. Ouchi, Multisummability of formal solutions of some linear partial differential equations,
J. Differential Equations 185 (2002), 513-549.

[77] H.-J. Petzsche, On E. Borel’s theorem, Math. Ann. 282 (1988), no. 2, 299-313.

[78] H.-J. Petzsche, D. Vogt, Almost analytic extension of ultradifferentiable functions and the
boundary values of holomorphic functions, Math. Ann. 267 (1984), 17-35.

[79] G. Polya, Uber eine neue Weise, bestimmte Integrale in der analytischen Zahlentheorie zu
gebrauchen, Gottinger Nachr. (1917), pp. 149-159.

[80] A. Rainer, G. Schindl, Extension of Whitney jets of controlled growth, Math. Nachr. (2017),
290, 2356-2374.

[81] J.-P. Ramis, Dévissage Gevrey, Asterisque 59-60 (1978), 173-204.

[82] J.-P. Ramis, Les séries k-sommables et leurs applications, Lecture Notes in Phys. 126,
Springer-Verlag, Berlin, 1980.

[83] J.-P. Ramis, J. Martinet, Théorie de Galois différentielle et resommation, Computer algebra
and differential equations, 117-214, Comput. Math. Appl., Academic Press, London, 1990.

[84] J.-P. Ramis, Y. Sibuya, Hukuhara domains and fundamental existence and uniqueness the-
orems for asymptotic solutions of Gevrey type, Asymptotic Anal. 2 (1989), no. 1, 39-94.

[85] J.-P. Ramis, Y. Sibuya, A new proof of multisummability of formal solutions of non linear
meromorphic differential equations, Ann. Inst. Fourier (Grenoble) 44 (1994), 811-848.

[86] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and
Applied Mathematics, 146. Marcel Dekker, Inc., New York, 1991.

[87] B. R. Salinas, Funciones con momentos nulos, Rev. Acad. Ci. Madrid 49 (1955), 331-368.

[88] J. Sanz, Flat functions in Carleman ultraholomorphic classes via proximate orders, J. Math.
Anal. Appl. 415 (2014), no. 2, 623-643.

[89] J. Sanz, Asymptotic analysis and summability of formal power series, in: Analytic, Algebraic
and Geometric Aspects of Differential Equations - Bedlewo, Poland, September 2015; Eds.
G. Filipuk, Y. Haraoka, S. Michalik. Series Trends in Mathematics, Birkh&auser, 2017.

Universidad de Valladolid



216 BIBLIOGRAPHY

[90] G. Schindl, Characterization of ultradifferentiable test functions defined by weight matrices
in terms of their Fourier transform, Note Mat. 36 (2016), no. 2, 1-35.

[91] J. Schmets, M. Valdivia, Extension maps in ultradifferentiable and ultraholomorphic func-
tion spaces, Studia Math. 143 (3) (2000), 221-250.

[92] E. Seneta, Regularly varying functions, Lecture Notes in Math., Vol. 508. Springer-Verlag,
Berlin-New York, 1976.

[93] V. Thilliez, Extension Gevrey et rigidité dans un secteur, Studia Math. 117 (1995), no. 1,
29-41.

[94] V. Thilliez, Quelques propriétés de quasi-analyticité, Gazette Math. 70 (1996), 49-68.

[95] V. Thilliez, Division by flat ultradifferentiable functions and sectorial extensions, Results
Math. 44 (2003), 169-188.

[96] V. Thilliez, On quasianalytic local rings, Expo. Math. 26 (2008), no. 1, 1-23.

[97] V. Thilliez, Smooth solutions of quasianalytic or ultraholomorphic equations, Monatsh.
Math. 160 (2010), 443-453.

[98] V. Thilliez, Estimates for Weierstrass division in ultradifferentiable classes, J. Math. Anal.
Appl. 440 (2016), 421-436.

[99] S. Tikhonov, On generalized Lipschitz classes and Fourier series, Z. Anal. Anwendungen 23
(2004), no. 4, 745-764.

[100] E. C. Titchmarsh, The theory of functions, Reprint of the second (1939) edition. Oxford
University Press, Oxford, 1958.

[101] K. V. Trunov, R. S. Yulmukhametov, Quasianalytic Carleman classes on bounded domains,
St. Petersburg Math. J. 20 (2009), no. 2, 289-317.

[102] G. Valiron, Sur les fonctions entiéres d’ordre nul et d’ordre fini et en particulier les fonctions
a correspondance réguliére, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3) 5 (1913), 117
257.

[103] G. Valiron, Théorie des Fonctions, Masson et Cie., Paris, 1942.

[104] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover, New York,
1987.

[105] G. N. Watson, A Theory of Asymptotic Series, Philos. Trans. Roy. Soc. A, (1912), 211,
279-313.

[106] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans.
Amer. Math. Soc. 36 (1934), 63-89.

[107] H. Whitney, Differentiable functions defined in closed sets I, Trans. Amer. Math. Soc. 36
(1934), 369-387.

[108] R. S. Yulmukhametov, Quasianalytical classes of functions in convex domains, Math.
USSR-Sb. 58 (1987), no. 2, 505-523.

JAVIER JIMENEZ GARRIDO



	Introducción
	Introduction
	Preliminaries
	Logarithmically convex sequences
	Definition and properties
	Equivalent and comparable sequences
	Associated functions
	Growth indices (M) and (M) 

	Regular variation, O-regular variation and proximate orders
	Regularly varying functions
	Proximate orders and smooth variation
	O-regularly varying functions
	Regularly varying sequences
	O-regularly varying sequences


	Log-convex sequences, O-regular variation and proximate orders
	Log-convex sequences and O-regular variation
	Strongly nonquasianalyticity and moderate growth characterizations
	Orders and Matuszewska indices for sequences
	Logarithmically convex sequences, growth indices and O-regular variation
	O-regular variation of the associated function
	Dual sequence

	Log-convex sequences, regular variation and proximate orders
	A new characterization of regular variation
	Proximate order associated with a weight sequence
	Regularly varying sequences defined from proximate orders
	Sequences admitting a nonzero proximate order
	Examples


	Injectivity and surjectivity of the asymptotic Borel map
	Asymptotic expansions and ultraholomorphic classes
	Basic definitions
	The asymptotic Borel map

	Injectivity of the asymptotic Borel map. Impossibility of bijectivity
	Classical injectivity results
	New injectivity results
	Impossibility of bijectivity

	Surjectivity of the asymptotic Borel map 
	Weight sequences
	Weight sequences satisfying derivation closedness condition
	Strongly regular sequences
	Sequences admitting a nonzero proximate order


	Multisummability via proximate orders
	M-summability
	M-summability kernels
	Generalized Laplace and Borel transforms
	M-summability and e-summability

	Tauberian theorems
	Comparison of sequences
	Product and quotient of sequences
	Tauberian theorems

	Multisummability
	Moment-kernel duality
	Strong kernels of M-summability
	Convolution kernels
	Acceleration kernels
	Multisummability through acceleration


	A Phragmén-Lindelöf theorem via proximate orders and the propagation of asymptotics
	M-flatness extension
	Watson's Lemmas
	Asymptotic expansion extension

	Conclusiones y trabajo futuro
	Conclusions and future work
	Notation
	Bibliography

