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Sensory evaluation is the application of knowledge and skills derived from several different scientific and
technical disciplines, physiology, chemistry, mathematics and statistics, human behavior, and knowledge
about product preparation practices. This research was aimed to evaluate aftertaste sensory attributes of
commercial non-alcoholic beer brands (P1, P2, P3, P4, P5, P6, P7) by several chemometric tools. These
attributes were bitter, sour, sweet, fruity, liquorice, artificial, body, intensity and duration. The results
showed that the data are in a good consistency. Therefore, the brands were statistically classified in sev-
eral categories. Linear techniques as Principal Component Analysis (PCA) and Linear Discriminant Anal-
ysis (LDA) were performed over the data that revealed all types of beer are well separated except a partial
overlapping between zones corresponding to P4, P6 and P7. In this research, for the confirmation of the
groups observed in PCA and in order to calculate the errors in calibration and in validation, PLS-DA tech-
nique was used. Based on the quantitative data of PLS-DA, the classification accuracy values were ranked
within 49-86%. Moreover, it was found that the classification accuracy of LDA was much better than PCA.
It shows that this trained sensory panel can discriminate among the samples except an overlapping
between two types of beer. Also, two types of artificial networks were used: Probabilistic Neural Net-
works (PNN) with Radial Basis Functions (RBF) and FeedForward Networks with Back Propagation (BP)
learning method. The highest classification success rate (correct predicted number over total number
of measurements) of about 97% was obtained for RBF followed by 94% for BP. The results obtained in this
study could be used as a reference for electronic nose and electronic tongue in beer quality control.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The evaluation is a process that analyzes elements to achieve
different objectives such as quality inspection, design, marketing
exploitation and other fields in industrial companies. In many of
these fields the items, products, designs, etc., are evaluated accord-
ing to the knowledge acquired via human senses (sight, taste,
touch, smell and hearing), in such cases, the process is called
sensory evaluation. In this type of evaluation process, an important
problem arises as it is the modeling and management of uncertain
knowledge, because the information acquired by our senses
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throughout human perceptions involves uncertainty, vagueness
and imprecision. Sensory evaluation is a scientific discipline used
to evoke measure, analyze and interpret reactions to those charac-
teristics of foods and materials as they are perceived by the senses
of sight, smell, taste, touch and hearing. This definition represents
an obvious attempt to be as inclusive as is possible within the
framework of food evaluation.

As the definition implies, sensory evaluation involves the mea-
surement and evaluation of the sensory properties of foods and
other materials. Sensory evaluation also involves the analysis and
the interpretation of the responses by the sensory professional;
that is, that individual who provides the connection between the
internal world of technology and product development and the
external world of the marketplace, within the constraints of a
product marketing brief. This connection is essential such that
the processing and development specialists can anticipate the im-
pact of product changes in the marketplace (Haseleu, Intelmann, &
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Hofmann, 2009; Yin & Ding, 2009). Similarly, the marketing and
brand specialists must be confident that the sensory properties
are consistent with the intended target and with the communica-
tion delivered to that market through advertising. They also must
be confident that there are no sensory deficiencies that lead to a
market failure.

Although the brewing of beer has a history extending back
some 800 decades, it is only in the past 150 years that the under-
lying science has been substantially unraveled (Bamforth, 2000).
Brewing and aging of beer are complex processes during which
several parameters have to be controlled to ensure a reproducible
quality of the finished product (Rudnitskaya et al., 2009; Arrieta,
Rodriguez-Mendez, de Saja, Blanco, & Nimubona, 2010). These in-
clude chemical parameters that are measured instrumentally and
taste and aroma properties that are evaluated by the sensory pan-
els. Sensory quality and its measurement are complex issues which
have received a large amount of attention in the sensory literature.

Brands of non-alcoholic beer are presently being marketed and
sold. It is typical that a non-alcoholic beer has a restricted final
alcohol by volume content lower than 0.5% (Porretta & Donadini,
2008). Non-alcoholic beers can offer several opportunities that
can be exploited by marketers. This is true especially in a context
where more strict regulations are likely to ban or restrict alcoholic
products from classical usage situations. This is the case of wherein
administrators are enforcing a renewed battle against alcohol mis-
use and abuse. A list of positivities for a beer with a zero alcohol
level is summarized as follows: (a) no restriction for sale by hours
and by places of consumption; (b) no warning on labels for sensi-
tive consumer subgroups such as pregnant women; (c) health ben-
efits of beer can be promoted; (d) no social judgment in the case of
heavy drinking out of the home; (e) no excise duty or a reduced
one is charged (Porretta & Donadini, 2008).

The consumer’s perception of non-alcoholic beer quality is usu-
ally based on a reaction to a complex mix of expectations, which
are associated with the effects of some sensory attributes such as
color, foam, flavor and aroma, mouthfeel and aftertaste. Many of
these perceptions are outside the control of the brewer, but for
those factors directly influenced by the brewing and packaging
processes, the control of beer flavor and aroma are the most signif-
icant. Whilst the various analytical and microbiological methods
referred to earlier provide fairly objective tools for identification
and quantification, the very nature of the differing responses by
the senses to different flavors and aromas makes this identification
and quantification difficult. Despite this fundamental limitation,
brewers and flavor analysts have developed robust procedures that
enable sensory analysis to be a valuable tool in the monitoring and
control of beer quality.

One of the most important sensory attributes in beer to con-
sumers is known Aftertaste attributes. Although there are some re-
searches on alcoholic beer sensory evaluation in the literature
(Daems & Delvaux, 1997; Langstaff, Guinard, & Lewis, 1991;
Mejlholm & Martens, 2006), but there is not any work on aftertaste
sensory evaluation of non-alcoholic beer. So, the current research
focuses on the sensory evaluation of aftertaste attributes of com-
mercial non-alcoholic beer brands.
2. Materials and methods

2.1. Samples

One-hundred and fifty samples of commercial non-alcoholic
beers of different types were provided. Samples from different pro-
duction batches which were brewed within intervals of 1–
2 months were available for the seven brands. Samples were kept
in dark bottles of 500 mL, which were stored in a dry dark cool
room (1 �C) before the experiments. Each bottle was opened prior
to the measurements and used the same day.

2.2. Panel of judges

A panel of seven judges consisting of students and staff were se-
lected on the basis of interest and availability. All persons had pre-
vious experience on sensory-analysis panels. All the meetings were
made in the English language (the panelists speak English fluently).
The training of the panel took place in six sessions of 1 h each. Dur-
ing these sessions, the panel trained on all the non-alcoholic beer
of the study.

2.3. Experimental design and procedure

The judges assessed the 150 commercial beers in duplicate in
three sessions over a 3-week period. In each session, from four to
six beers were randomly presented to the panelists. The testing
sessions took place in a room at a controlled temperature (25 �C).
Beer was cooled down to 10 �C and served in dark glasses
(Rudntskaya et al., 2009). Selection of a scale for use in a particular
test is one of the several tasks that need to be completed by the
sensory professional before a test can be organized. Determining
test objective, subject qualifications, and product characteristics
will have an impact on it and should precede method and scale
selection. Nominal scale was considered for this research. In such
scales, numbers are used to label, code, or otherwise classify items
or responses. The only property assigned to these numbers is that
of non-equality; that is, the responses or items placed in one class
cannot be placed in another class. Letters or other symbols could
be used in place of numbers without any loss of information or
alteration of permissible mathematical manipulation. In sensory
evaluation, numbers are frequently used as labels and as classifica-
tion categories; for example, the three-digit numerical codes are
used to keep track of products while masking their true identity.
It is important that the product identified by a specific code not
be mislabeled or grouped with a different product. It is also impor-
tant that the many individual servings of a specific product exhibit
a reasonable level of consistency if the code is used to represent a
group of servings from a single experimental treatment.

The beer samples were coded and served in a random manner.
Panel members scored the beer samples for aftertaste attributes by
marking on a 9 cm line, where 0 to 9 represented poor to excellent.
These attributes consisted of bitter, sour, sweet, fruity, liquorice,
artificial, body, intensity and duration. For eliminating fatigue
and carrying over effects of beer taste, the judges applied water
to rinse the mouth and ate a piece of bread between subsequent
samples (Rudnitskaya et al., 2009).

2.4. Data analysis

In this study, for analyzing the results obtained, several che-
mometric tools were addressed. The use of chemometrics im-
plies the use of multivariate data analysis that is based on the
fact that complex systems need multiple parameters to be de-
scribed and thus more information about the analyzed system
can be retrieved by using a multivariate approach. One of the
drivers for the use of chemometrics is the potential of simple
objective measurements coupled with multivariate data analysis
methods to replace expensive sensory information. A critical
question that should be addressed is to what extent an analyti-
cal method coupled with soft modeling can ever give results that
agree with sensory studies. There is a tendency for studies to of-
fer optimistic views of the ultimate use of a particular method.
Description and explanation of the chemometric tools used are
presented at the following text. Matlab v7.6 (The Mathworks
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Fig. 1. Architecture of a Probabilistic Neural Network.
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Inc., Natick, MA, USA) and The Unscrambler 9.2 (Camo, Norway)
and SPSS 13 were the softwares used for data analysis in this
study.

Intensity scores (average scores of seven panelists and three
replicates) for each nine attributes was calculated from the sensory
sheets for each of the beer samples. Statistical analysis was done
applying the analysis of variance (ANOVA). The F test was used
to determine significant effects of beer brands and assessors, and
the Duncan’s multiple ranges test was used to separate means at
a 5% level of significance.

Based on this statistical analysis, the seven non-alcoholic beer
brands were ranked in point of view of each attribute and the cat-
egories for each attribute were developed. The polar plots for each
panelist and each brand showing aftertaste attributes mapping
were prepared as well.

There are many possible techniques for classification of data.
Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) are two commonly used techniques for dimen-
sionality reduction of data and allow plotting the measurements
in a graph in order to see the discrimination capability of the
sensory panel. Linear Discriminant Analysis easily handles the
case where the within-class frequencies are unequal and their
performances have been examined on randomly generated test
data. This method maximizes the ratio of between-class variance
to the within-class variance in any particular data. The use of
Linear Discriminant Analysis for data classification is applied to
classification problem in food recognition (Ghasemi-
Varnamkhasti, Mohtasebi, Siadat, Ahmadi, et al., 2011).

In this study, Principal Components Analysis (PCA) is used as a
data reduction methodology. The objective of PCA is to reduce the
dimensionality (number of variables) of the dataset while retaining
most of the original variability (information) in the data. This is
performed through the construction of a set of principal compo-
nents which act as a new reduced set of variables. Each principal
component is a linear combination of the original variables and
they are all orthogonal to each other. For a given data set with N
variables, the first principal component has the highest explana-
tory power (it describes as much of variability of the data as possi-
ble), whereas the Nth principal component has the least
explanatory power. Thus, the n first principal components are sup-
posed to contain most of the information implicit in the attributes.

For the confirmation of the groups observed in Principal Com-
ponents Analysis and in order to calculate the errors in calibration
and in validation, PLS-DA technique was used. This technique is a
frequently used classification method and is based on the PLS ap-
proach (Barker & Rayens, 2003). The basics of PLS-DA consist firstly
in the application of a PLS regression model on variables which are
indicators of the groups. The link between this regression and
other discriminant methods such as LDA has been shown. The sec-
ond step of PLS-DA is to classify observations from the results of
PLS regression on indicator variables. The more common used
method is simply to classify the observations in the group giving
the largest predicted indicator variable.

By the way, the mean ratings of the seven beer brands for nine
attributes rated were then analyzed by Principal Component Anal-
ysis (PCA). PCA results are confirmed with a more powerful pattern
recognition method. Then, the results were confirmed with the
prediction made with Probabilistic Neural Networks (PNN) with
radial basis activation function. Also, confusion matrix obtained
in validation and the success rates were included.

We decided to implement an algorithm for LDA in hopes of
providing better classification compared to Principal Components
Analysis. The prime difference between LDA and PCA is that PCA
does more of feature classification and LDA does data classifica-
tion. In PCA, the shape and location of the original data sets
changes when transformed to a different space whereas LDA
does not change the location but only tries to provide more class
separability and draw a decision region between the given clas-
ses. This method also helps to better understand the distribution
of the feature data.

LDA results are confirmed with the prediction made with Radial
Basis Function (RBF) and Back Propagation networks (BP). Also,
confusion matrices obtained in validation and the success rates
were included.
2.5. Probabilistic Neural Networks (PNN)

Probabilistic Neural Networks possess the simplicity, speed and
transparency of traditional statistical classification/prediction
models along with much of the computational power and flexibil-
ity of back propagated neural networks (Dutta, Prakash, & Kaushik,
2010; Hsieh & Chen, 2009; Specht, 1990). A PNN can be realized as
a network of four layers (Fig. 1).

The input layer includes N nodes, each corresponding to one in-
put attribute (independent variable). The inputs of the network are
fully connected with the M nodes of the pattern layer. Each node of
the pattern layer corresponds to one training object. The 1 � N in-
put vector xi is processed by pattern node j through an activation
function that produces the output of the pattern node. The most
usual form of the activation function is the exponential one:

oij ¼ exp �kxj � xik2

r2

 !

where r is a smoothing parameter. The result of this activation
function ranges between 0 and 1. As the distance ||xj � xi|| between
the input vector xi and the vector xj of the pattern node j increases,
the output of node j will approach zero, thus designating the small
similarity between the two data vectors. On the other hand, as the
distance ||xj � xi|| decreases, the output of node j will approach
unity, thus designating the significant similarity between the two
data vectors. If xi is identical to xj, then the output of the pattern
node j will be exactly one. The parameter r controls the width of
the activation function. As r approaches zero, even small differ-
ences between xi is identical to xj will lead to oij � 0, whereas larger
values of r produce more smooth results.

The outputs of the pattern nodes are passed to the summation
layer that consists of K competitive nodes each corresponding to
one class. Each summation node k is connected to the pattern
nodes that involve training objects that belong to class k. For an in-
put vector xi, the summation node k simply takes the outputs of the
pattern nodes to which it is connected with to produce an output
fk(xi) as follows:
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fkðxiÞ ¼
1

Mk

X
8xjyk

oij

where yk is the class label corresponding to the summation node k
and Mk is the number of training objects that belong to this class.
Assuming that all data vectors are normalized to unit length (i.e.,
||x|| = 1), fk(xi) can equivalently be written as:

fkðxiÞ ¼
1

Mk

X
8xjyk

exp
xjxT

i � 1
r2

� �

and the outputs of the summation nodes can be easily transformed
to posterior class membership probabilities:

Pðyi ¼ kjxiÞ ¼
fkðxiÞPK
k¼1fkðxiÞ

On the basis of these probabilities, a classification rule is em-
ployed at the decision layer, which consists of a single node, to as-
sign the input vector xi to a particular class. The obvious approach
is to assign xi to the class where it is most likely to belong (i.e., the
class with the maximum P(k|xi)). In a two class case with y = {0, 1}
it is possible to define a cut-off probability point c, such that xi is
assigned to class 0 if and only if P(yi = 0|xi) P c. The specification
of this cut-off point is based on the prior probabilities of class
membership and the misclassification costs.

2.6. Radial Basis Function (RBF)

A Radial Basis Function network is a neural network ap-
proached by viewing the design as a curve-fitting (approxima-
tion) problem in a high dimensional space. Learning is
equivalent to finding a multidimensional function that provides
a best fit to the training data, with the criterion for ‘‘best fit’’
f(
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Fig. 3. Architecture of
being measured in some statistical sense. Correspondingly,
regularization is equivalent to the use of this multidimensional
surface to interpolate the test data. This viewpoint is the real
motivation behind the RBF method in the sense that it draws
upon research work on traditional strict interpolations in a mul-
tidimensional space. In a neural network, the hidden units form
a set of ‘‘functions’’ that compose a random ‘‘basis’’ for the in-
put patterns (vectors). These functions are called Radial Basis
Functions. Different types of Radial Basis Functions could be
used, but the most common is the Gaussian function
(Riverol-Canizares & Pilipovik, 2010; Tudu et al., 2009; Vrankar,
Kansa, Ling, Runovc, & Turk, 2010).

RBF networks have three layers: Input layer – There is one
neuron in the input layer for each predictor variable. In the case
of categorical variables, N � 1 neurons are used where N is the
number of categories. The input neurons (or processing before
the input layer) standardize the range of the values by subtract-
ing the median and dividing by the interquartile range. The in-
put neurons then feed the values to each of the neurons in the
hidden layer. Hidden layer – This layer has a variable number
of neurons (the optimal number is determined by the training
process). Each neuron consists of a Radial Basis Function cen-
tered on a point with as many dimensions as there are predictor
variables. The spread (radius) of the RBF function may be differ-
ent for each dimension. The centers and spreads are determined
by the training process. When presented with the x vector of in-
put values from the input layer, a hidden neuron computes the
Euclidean distance of the test case from the neuron’s center
point and then applies the RBF kernel function to this distance
using the spread values. The resulting value is passed to the
summation layer. Summation layer – The value coming out of
a neuron in the hidden layer is multiplied by a weight associated
with the neuron (W1, W2, . . . ,Wn), as shown in Fig. 2, and passed
e) y 
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Table 1
Statistics on aftertaste attributes of non-alcoholic beer.

Attribute Non-alcoholic beer brand Mean Standard deviation*

P1 P2 P3 P4 P5 P6 P7

Bitter 2 (0.272)** 2.04 (0.23) 1.33 (0.384) 1.43 (0.417) 4.05 (0.448) 1.95 (0.23) 1.19 (0.262) 2 0.968
Sour 0.19 (0.262) 0.09 (0.162) 0.67 (0.272) 0.09 (0.162) 0 (0) 0.23 (0.37) 0.33 (0.33) 0.23 0.22
Sweet 0.95 (0.23) 0.19 (0.262) 0.23 (0.418) 1.9 (0.37) 1.14 (0.179) 0.14 (0.179) 0.24 (0.371) 0.69 0.671
Fruity 0.95 (0.3) 0.28 (0.355) 0.86 (0.178) 0 (0) 0.95 (0.126) 0.09 (0.162) 2.09(0.252) 0.75 0.72
Liquorice 0.62 (0.23) 0.09 (0.163) 0.14 (0.262) 0.09 (0.163) 0.05 (0.126) 0.19 (0.262) 0.14 (0.178) 0.19 0.194
Body 4.76 (0.252) 1.43 (0.317) 4.05 (0.3) 4.14 (0.325) 5.24 (0.371) 2.28 (0.23) 4.09 (0.499) 3.71 1.362
Artificial 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.28 (0.3) 0.24 (0.252) 0.07 0.128
Duration 5.81 (0.262) 5.19 (0.378) 4.05 (0.126) 2 (0.192) 3.90 (0.163) 1.95 (0.126) 1.71 (0.356) 3.52 1.658
Intensity 5.86 (0.325) 5.05 (0.23) 4.05 (0.405) 1.86 (0.262) 3.95 (0.356) 2 (0.192) 2.05 (0.405) 3.54 1.607

* Standard deviation was the square root of the error variance of ANOVA.
** The numbers in parenthesis are standard deviation.

Table 2
Variance analysis of the interaction effects of assessor, non-alcoholic beer brands on
bitterness sensory evaluation.

Source of variations Degree of
freedom

Sum of
square

Mean
square

F

Assessor 6 6.09 1.01 3.11b

Beer brand 6 118.09 19.68 60.27a

Assessor � beer brand 36 7.80 0.21 0.66b

Error 98 32 0.33 –

a Corresponding to confident of interval 95%.
b Corresponding to no marked difference.

Table 3
Classification of non-alcoholic beer brands based on Duncan’s multiple range test.

Attributes Categories (class)*

A B C D E F

Bitter P5 P1, P2, P6 P3, P4 P7
Sour P3 P7 P6 P1 P2, P4 P5
Sweet P4 P5 P1 P3, P7 P2 P6
Fruity P7 P1, P3, P5 P2 P6 P4
Liquorice P1 P6 P3, P7 P2, P4 P5
Body P1, P5 P3, P4, P7 P2, P6
Artificial P6 P7 P1, P2, P3, P4, P5
Duration P1 P2 P3, P5 P4, P6 P7
Intensity P1 P2 P3, P5 P4, P6, P7

* The classes are in descending order, i.e. Classes A and F have the greatest and the
lowest values of an attribute, respectively.
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to the summation which adds up the weighted values and pre-
sents this sum as the output of the network. Not shown in this
figure, it is a bias value of 1.0 that is multiplied by a weight W0

and fed into the summation layer. For classification problems,
there is one output (and a separate set of weights and summa-
tion unit) for each target category. The value output for a cate-
gory is the probability that the case being evaluated has that
category. These parameters are determined by the training pro-
cess: The number of neurons in the hidden layer, the coordinates
of the center of each hidden-layer RBF function, the radius
(spread) of each RBF function in each dimension and the weights
applied to the RBF function outputs as they are passed to the
summation layer (Pretty, Vega, Ochando, & Tabares, 2010).

2.7. Back Propagation (BP)

Since the real uniqueness or ‘intelligence’ of the network exists
in the values of the weights between neurons, we need a method of
adjusting the weights to solve a particular problem. For this type of
network, the most common learning algorithm is called Back Prop-
agation (BP). As shown in Fig 3, the multiplayer perceptron (MLP)
model using the Back Propagation (BP) algorithm is one of the
well-known neural network classifiers which consist of sets of
nodes arranged in multiple layers with connections only between
nodes in the adjacent layers by weights. The layer where the inputs
information is presented is known as the input layer. The layer
where the processed information is retrieved is called the output
layer. All layers between the input and output layers are known
hidden layers. For all nodes in the network, except the input layer
nodes, the total input of each node is the sum of weighted outputs
of the nodes in the previous layer. Each node is activated with the
input to the node and the activation function of the node (Chen,
Chen, & Kuo, 2010).

The input and output of the node i (except for the input layer) in
a MLP mode, according to the BP algorithm, is:

Input : Xi ¼
X

WijOi þ bi ð1Þ
Output : Oi ¼ f ðXiÞ ð2Þ

where Wij: the weight of the connection from node i to node j, Bi:
the numerical value called bias, F: the activation function.

The sum in Eq. (1) is over all nodes j in the previous layer. The out-
put function is a non-linear function which allows a network to solve
problems that a linear network cannot solve. In this study the Sig-
moid function given in Eq. (3) is used to determine the output state.

FðXiÞ ¼ 1=ð1þ expð�XiÞ ð3Þ

Back Propagation (BP) learning algorithm is designed to reduce
an error between the actual output and the desired output of the
network in a gradient descent manner. The summed squared error
(SSE) is defined as:

SSE ¼ 1=2
X

pi

X
Opi � Tpi

 !2

ð4Þ

where p index the all training patterns and i indexes the output
nodes of the network. Opi and Tpi denote the actual output and the
desired output of node, respectively when the input vector p is ap-
plied to the network.

A set of representative input and output patterns is selected to
train the network. The connection weight Wij is adjusted when
each input pattern is presented. All the patterns are repeatedly pre-
sented to the network until the SSE function is minimized and the
network ‘‘learns’’ the input patterns (Zhu et al., 2010). An applica-
tion of the gradient descent method yields the following iterative
weight update rule:

DWijðnþ 1Þ ¼ gðdiOi þ aDWijðnÞ ð5Þ

where D: the learning factor, a: the momentum factor, di: the node
error, for output node i is then given as
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di ¼ ðti � OiÞOið1� OiÞ ð6Þ

The node error at an arbitrary hidden node is

di ¼ Oið1� OjÞ
X

k

dkWki
(a) (

(e) (

(g)

(c)

Fig. 4. Polar plots of the panelists response to aftertaste attributes of seven non-alcoholi
brand P6, (g) brand P7.
Each neuron is composed of two units. First unit adds products
of weights coefficients and input signals. The second unit realizes
non-linear function, called neuron activation function. Signal e is
adder output signal, and y = f(e) is output signal of non-linear ele-
ment. Signal y is also output signal of neuron.
b)

f)

(d)

c beer brands: (a) brand P1, (b) brand P2, (c) brand P3, (d) brand P4, (e) brand P5, (f)
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3. Results and discussions

3.1. Statistical analysis

Results from the ANOVA showed significant differences
(p < 0.05) between the seven beer brands (P1, P2, P3, P4, P5, P6,
Fig. 5. PCA plots of aftertaste sensory evaluation for non
P7) for all sensory attributes. Statistics on non-alcoholic beer attri-
butes are given in Table 1.

No important interactions between panelists and samples were
observed. For example, about bitter attribute analysis of variance is
shown in Table 2.
-alcoholic beer: (a) score plot and (b) loading plot.
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Therefore, Duncan’s multiple ranges test was performed for
means comparison among the beer brands. This statistical test
was used for all nine attributes to develop the categories. The cat-
egories are given in Table 3. It is clear from this table that the prod-
ucts with similar letter have not significant difference for a specific
aftertaste attribute.

An awareness of these categories could be of interest to brew-
ers; for example about bitter, the information obtained on bitter-
ness value could give an insight into process control to brewer,
since the causes of bitter taste is: content and alpha strength;
length of hop boil; presence of dark malts, alkaline water and it
can be reduced by lower alpha hops, hops added at stages through
Fig. 6. PLS-DA score plot corresponding to t
boil, filtration, high temperature ferment. So, a brewer can check
the beer production line that whether bitterness value of the beer
processed is within the categories considered or not. Then, beer
production manager decide about these items: How long hops are
boiled, type of hop, fermentation temperature (high temperature
and quick fermentation decrease bitterness), filtration reduces
bitterness.

The polar plots of the average scores of the panelists for nine
aftertaste attributes in seven non-alcoholic beer brands are shown
in Fig. 4, in terms of relative response changes. The contour of these
polar plots differs from one sample to another, illustrating the dis-
crimination capabilities of the panel. These contour could be com-
he classification of non-alcoholic beers.



Table 4
Quantitative data of PLS-DA for each non-alcoholic beer brand.

Beer Calibration Validation (prediction)

Slope Offset Correlation RMSEC Slope Offset Correlation RMSEP

P1 0.550 0.064 0.7416 0.2347 0.528 0.067 0.708 0.247
P2 0.648 0.050 0.805 0.207 0.628 0.052 0.780 0.218
P3 0.302 0.099 0.550 0.292 0.271 0.106 0.490 0.305
P4 0.719 0.040 0.848 0.185 0.702 0.042 0.829 0.195
P5 0.726 0.039 0.852 0.183 0.712 0.041 0.835 0.192
P6 0.536 0.066 0.732 0.238 0.497 0.071 0.691 0.253
P7 0.773 0.032 0.879 0.166 0.743 0.035 0.859 0.178
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pared and correlated to the fingerprint obtained from electronic
nose and electronic tongue (the analytical tools) in such a way,
the sensors of these systems are replaced by the panelist. Such
works have done by some researchers (Lozano et al., 2007;
Rudnitskaya et al., 2009).

3.2. Classification

To carry out beer prediction, the responses have been analyzed
using Principal Component Analysis technique. Principal Compo-
nent Analysis (PCA) is a well known technique which provides in-
sight into the structure of a dataset. PCA produces a set of new
orthogonal variables (axes), the principal components, which are
linear combinations of the original variables (Ding, Tian, & Xu,
2010). The maximum amount of variance in the original dataset
(information) is contained in the first principal component. The
components that account for a large variation in the data are used
as the new axis to obtain plots of the samples (score plots). Together
with samples also the original variables may be displayed in the
same plot by the values of their coefficients of the eigenvector equa-
tions, named loadings. The loadings indicate the relative contribu-
tion of the variables to each principal component: the higher the
loading of a variable on a principal component, the more the vari-
able has in common with this component. The chemical meaning
of a component can be derived from the variables forming it.

By means of this technique we tried to separate the non-
alcoholic beer brands in different classes. The PCA results of the
aftertaste sensory evaluation are illustrated in Fig. 5. It can be seen
that all types of beer are well separated except a partial overlap-
ping between zones corresponding to P4, P6 and P7. It shows that
this trained sensory panel can discriminate among the samples ex-
cept an overlapping between three brands of beer. As shown in
Fig. 5, the scores plot and correlation loadings plot show that beers
of P4 and P5 have strong body and sweetness, while brand of P1
has much duration. Much artificial variation could be found for
P6 and P7 as well. Samples in one spot of the 2-vector score plot
has, in general, much of the properties of the variables pointing
in the same direction in the loading plot, provided that the plotted
PCs describe a large portion of the variance.

In this study, prediction models based on PLS-DA were con-
structed as well. Fig. 6 shows the result of the PLS-DA calculated
for the beer brands. Also, quantitative data of PLS-DA for all brands
are given in Table 4. As observed, both the calibration and valida-
tion values for brands of 4, 5, and 7 involved a good-quality mod-
eling performance (slope near 1, off-set near 0 and large
correlation between aftertaste attributes and categorized vari-
ables). Moreover, as seen in Fig. 6, the relative location of the sam-
ples retains the general structure of the PCA score plots shown in
Fig. 5, confirming the previous observations.

Fig. 7 illustrates the attributes for each panelist. As seen in the
figure, P4, P6 and P7 could be distinguished for the panelists as
found in Fig. 5 for PCA.

LDA can be considered, as PCA, as a feature reduction method in
the sense that both, LDA and PCA, determine a smaller dimension
hyper plane on which the points will be projected from the higher
dimension. However, whereas PCA selects a direction that retains
maximal structure among the data in a lower dimension, LDA se-
lects a direction that achieves maximum separation among the gi-
ven classes. The results obtained by LDA provided a more
appropriate classification compared to PCA. Fig. 8 shows the plot
of the discriminant scores for all the beer samples. In this method,
the variance between beer categories as well as the variance within
beer categories is maximized. It merely looks for a sensible rule to
discriminate between them by forming linear functions of the data
maximizing the ratio of the between-group sum of squares to the
within-group sum of squares. The linear functions are constrained
to be orthogonal. Once the linear functions have been found, an
observation is classified by computing its Euclidean distance from
the group centroids, projected onto the subspace defined by a sub-
set of the linear functions. The observation is then assigned to the
closest group. To assess the performance of this method, the group
centroids are estimated using a ‘leave one out’ cross validation
method. Each observation is removed in turn from the data set
and the group centroids calculated without reference to the miss-
ing data point. The excluded observation is then classified using
these new group centroids. The data point is then replaced and
the next observation removed from the data set. This process is re-
peated until all observations have been left out in turn. Thus, the
percentage of observations correctly classified can be ascertained
by comparing the true class membership with that estimated by
LDA. This provides a good indication of the reliability of the classi-
fication method (Zhao, Wang, Lu, & Jiang, 2010).

3.3. Artificial neural network methods

A Probabilistic Neural Network (PNN) was used for prediction
purposes. The PNN was composed by three layers: the input one
had three neurons, corresponding to the three principal compo-
nents; the hidden layer, with radial basis transfer functions, had
the same number of neurons that number of training vectors and
a competitive layer in the output (Duda, Hart, & Stork, 2001). Leave
one out (LOO) cross validation method was applied to the network
in order to check the performance of the network. LOO consists of
training N distinct nets (in this case, N is number of measurements)
by using N � 1 training vectors; while the validation of the trained
net is carried out by using the remaining vector, excluded from the
training set. This procedure is repeated N times until all vectors are
validated (Bishop, 1999). Also, Radial Basis Function (RBF) and Back
Propagation (BP) methods were performed. As stated earlier, this
study was organized in three sessions. So, the confusion matrix
for the neural networks studied for overall session and individual
session are shown in Table 5–8 (for individual sessions, PNN re-
sults are presented here). The success rate (correct predicted num-
ber over total number of measurements) for each table is shown.
For instance, in session 3, the results were more acceptable with
success rate of 82%. In this session, all the beer brands correspond-
ing to P1, P2, P3 and P6 are well-classified. The network only con-
fuses one sample of P7 and P4 and one of P5 that classify like P1.
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Fig. 7. Polar plots of the panelists’ response to aftertaste attributes of seven non-alcoholic (the numbers around the plots are the beer brands).
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The highest success rate to classify the beer brands was ob-
tained in RBF approach as 0.9727 as seen in Table 9.

The BP network topology was formed by three layers: the input
layer has two neurons corresponding to the first two components,
a variable number in hidden layer, and seven neurons in the output
layer corresponding to the seven beer brands. The network
processes the inputs and compares its outputs against the desired
outputs. Errors are then propagated back through the system,
causing the system to adjust the weights that control the network.
This process occurs over and over as the weights are continually
tweaked. During the training of a network the same set of data is
processed many times as the connection weights are always
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Fig. 8. Score plots of seven different non-alcoholic beer brands by LDA.

Table 5
Confusion matrix for the PNN prediction for whole sessions.

Real/predicted P1 P2 P3 P4 P5 P6 P7

P1 18 1 1 0 1 0 0
P2 0 21 0 0 0 0 0
P3 0 0 20 0 0 0 1
P4 0 0 0 9 0 2 10
P5 1 0 0 0 20 0 0
P6 0 0 0 2 0 19 0
P7 0 0 0 8 0 1 12

Success rate 0.80952381

Table 6
Confusion matrix for the PNN prediction for session 1.

Real/predicted P1 P2 P3 P4 P5 P6 P7

P1 5 1 1 0 0 0 0
P2 1 6 0 0 0 0 0
P3 1 0 5 1 0 0 0
P4 0 0 0 3 0 1 3
P5 0 0 0 0 7 0 0
P6 0 0 0 1 0 6 0
P7 0 0 0 3 0 1 3

Success rate 0.714286

Table 7
Confusion matrix for the PNN prediction for session 2.

Real/predicted P1 P2 P3 P4 P5 P6 P7

P1 7 0 0 0 0 0 0
P2 0 7 0 0 0 0 0
P3 0 0 7 0 0 0 0
P4 0 0 0 2 0 1 4
P5 0 0 0 0 7 0 0
P6 0 0 0 0 0 5 2
P7 0 0 0 4 0 1 2

Success rate 0.755102

Table 8
Confusion matrix for the PNN prediction for session 3.

Real/predicted P1 P2 P3 P4 P5 P6 P7

P1 7 0 0 0 0 0 0
P2 0 7 0 0 0 0 0
P3 0 0 7 0 0 0 0
P4 0 0 0 3 0 1 3
P5 1 0 0 0 6 0 0
P6 0 0 0 0 0 7 0
P7 0 0 0 4 0 0 3

Success rate 0.81632653

Table 9
Confusion matrix for the RBF prediction for whole sessions.

Real/predicted P1 P2 P3 P4 P5 P6 P7

P1 21 0 0 0 0 0 0
P2 0 21 0 0 0 0 0
P3 1 0 20 0 0 0 0
P4 0 0 0 19 0 1 1
P5 0 0 0 0 21 0 0
P6 0 0 0 0 0 21 0
P7 0 0 1 0 0 0 20

Success rate 0.97278912

Fig. 9. Success rate values in different neurons number in hidden layer in Back
Propagation method.

Table 10
Confusion matrix with 14 neurons in hidden layer for the RBF prediction for whole
sessions.

Classification P1 P2 P3 P4 P5 P6 P7

P1 20 0 0 0 1 0 0
P2 1 20 0 0 0 0 0
P3 1 0 20 0 0 0 0
P4 0 1 0 20 0 0 0
P5 1 0 0 1 19 0 0
P6 1 0 0 0 0 20 0
P7 0 0 0 0 1 0 20

Success rate 0.945578231
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refined. The samples were divided into two groups training set and
the testing set. In the training of the network, different number of
neurons in the hidden layer has been tested in two proofs. The
result is shown in Fig 9. The optimal number turned out to be 14
neurons by several times tested. The classification success is
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100% for the training set in total and 97% for the testing set in total.
The result of the testing set is shown in Table 10.

All together, among the methods used, Radial Basis Functions
(RBF) showed the greatest accuracy in beer classification. This ap-
proach has attracted a great deal of interest due to their rapid
training, generality and simplicity. When compared with tradi-
tional multilayer perceptrons, RBF networks present a much faster
training, without having to cope with traditional Back Propagation
problems, such as network paralysis and the local minima. These
improvements have been achieved without compromising the gen-
erality of applications.

The results obtained in the current study could be correlated
with biomimetic-based devices such as electronic nose and tongue
systems (Ghasemi-Varnamkhasti, Mohtasebi, Rodriguez-Mendez,
Lozano, et al., 2011; Ghasemi-Varnamkhasti, Mohtasebi,
Rodriguez-Mendez, Siadat, et al., 2011; Ghasemi-Varnamkhasti,
Mohtasebi, & Siadat, 2010; Wei, Hu, et al., 2009; Wei, Wang, & Liao,
2009). Since sensory evaluation tests are time consuming and
require complex and expensive equipment. Then, e-tongue and
e-nose as innovative analytical tools could be used instead of sen-
sory evaluation. It is hoped that the correlation of these results
with e-tongue and e-nose to be promising. According to the
bibliography, such works have shown a very good correlation with
human gustatory sensation (Kovacs, Sipos, Kantor, Kokai, & Fekete,
2009; Lozano et al., 2007; Uchida et al., 2001). A similar approach is
the adsorption and desorption of beer and coffee on a lipid mem-
brane simulating the bitter reception of the tongue. The measure-
ment of bitter intensities and durations showed good correlation to
sensory experiments (Kaneda & Takashio, 2005; Kaneda, Watari,
Takshio, & Okahata, 2003).

At the end of this paper, this is worth mentioning that bitter-
ness is the most important organoleptic characteristic of non-
alcoholic beer and not only the intensity but also the duration
affects the bitter quality of beer in a sensory evaluation. Bitterness
is one of the flavor items in the matching test and a criterion for the
descriptive ability, used for selection and training of assessors. As
emphasized in the literature (Kaneda, Shinotsuka, Kobayakawa,
Saito, & Okakata, 2000), the time-intensity rating of bitterness pro-
vides a category scaling and additional information, including rates
of increase and decrease of bitterness, persistence of maximum
intensity, changes caused by swallowing, and duration of after-
taste.

The above issues are recommended to be studied in future.
Since practical problems associated with the sensory assessment
of non-alcoholic beer and other foodstuffs are well known, training
and maintaining of the professional sensory panels is necessary for
ensuring reproducibility of the results but expensive. Another
problem is a rapid saturation of the assessors meaning that only
a limited number of samples may be assessed during the same
tasting session (Rudnitskaya et al., 2009). As a consequent, sensory
analysis is notorious for being slow, expensive and sometimes suf-
fering from irreproducibility even when professional panels are in-
volved. It is stated that significant efforts are being directed to the
development of instrumental methods for routine analysis of taste
attributes of foodstuffs and beer in particular (Rudnitskaya et al.,
2009). However, sensory analysis suffers from an objective, unbi-
ased, and reproducible evaluation, this necessitate the statistical
handling of the data. Recently, taste and odor evaluations using
membrane sensors, which are supposed to reflect olfactory and
gustatory characteristics of the human nose and tongue, have been
actively studied (Ghasemi-Varnamkhasti, 2011; Ghasemi-
Varnamkhasti et al., 2010; Hayashi, Chen, Ikezaki, & Ujihara,
2008; Peres, Dias, Barcelos, Sa Morais, & Marchado, 2009;
Rodriguez-Mendez et al., 2004; Rudnitskaya et al., 2006; Wei, Hu,
et al., 2009; Wei, Wang, et al., 2009). An electronic aroma detector
has been introduced for quality control in the brewing industry,
e.g., for differentiation between beers and for recognition of the
presence of important beer aromas and variety/quality parameters.
The results obtained from the current study could be considered as
a reference data in such systems (e-tongue and e-nose). There are
many reports on the correlation of the output of electronic noses
and tongues to sensory data, and in many the sensory part of the
data is implied rather than measured. However, the prospects for
these kinds of devices are very good, and we expect to see many
variants of machine smell/taste/sight systems in the future.

4. Conclusions

The sensory evaluation of non-alcoholic beer plays a relevant
role for the quality and properties of the commercialized product.
In this contribution, we did a sensory evaluation of aftertaste attri-
butes for non-alcoholic beer. We used seven beer brands to evalu-
ate nine attributes by a trained sensory panel. The results showed
that the data are in consistent. Therefore, the brands were statisti-
cally classified in some categories. Effect of panelist was found to
be statistically insignificant. Also, neural network methods showed
a promising result for prediction of beer brands in such a way the
success rate (correct predicted number over total number of mea-
surements) was found to be acceptable. Among the methods used,
Radial Basis Functions (RBF) showed the greatest accuracy in beer
classification.

It is important that a proper grounding in basic experimental
design and statistics is given when training sensory scientists. This
will encourage a wider understanding of possible manipulations of
data, and ultimately result in better products. This study could be
gone on another research in which electronic nose and tongue
would be used to evaluate non-alcoholic beer quality (Ghasemi-
Varnamkhasti, 2011). As found in this study, the results are suit-
able as a reliable reference data to be considered in multi arrays
of sensors and the results on aftertaste sensory evaluation could
be correlated to the data obtained from electronic nose and tongue
in a separate research.
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