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 

Abstract— Complexity, costs, and waiting lists issues demand a 

simplified alternative for sleep apnea-hypopnea syndrome (SAHS) 

diagnosis. The blood oxygen saturation signal (SpO2) carries 

useful information about SAHS and can be easily acquired from 

overnight oximetry. In this study, SpO2 single-channel recordings 

from 320 subjects were obtained at patients’ home. They were 

used to automatically obtain statistical, spectral, non-linear, and 

clinical SAHS-related information. Relevant and non-redundant 

data from these analyses were subsequently used to train and 

validate four machine-learning methods with ability to classify 

SpO2 signals into one out of the four SAHS-severity degrees (no-

SAHS, mild, moderate, and severe). All the models trained (linear 

discriminant analysis, 1-vs-all logistic regression, Bayesian multi-

layer perceptron, and AdaBoost), outperformed the diagnostic 

ability of the conventionally-used 3% oxygen desaturation index. 

An AdaBoost model built with linear discriminants as base 

classifiers reached the highest figures. It achieved 0.479 Cohen’s  

in the SAHS severity classification, as well as 92.9%, 87.4%, and 

78.7% accuracies in binary classification tasks using increasing 

severity thresholds (apnea-hypopnea index: 5, 15, and 30 

events/hour, respectively). These results suggest that machine 

learning can be used along with SpO2 information acquired at 

patients’ home to help in SAHS diagnosis simplification.   

 
Index Terms— At-home oximetry, ensemble learning, machine 

learning, neural networks, sleep apnea severity 

I. INTRODUCTION 

HE Sleep Apnea-Hypopnea Syndrome (SAHS) has 

become a major focus of investigation over the last 

decades. The reasons for such interest include its severe 

consequences for health and quality of life of affected people, 

as well as its high prevalence [1]. Recent studies estimated that 

moderate to severe SAHS is present in 6% women and 13% 

men in the United States [2]. Patients suffer from recurrent 

episodes of complete absence of breathing (apneas) and 

significant airflow reduction (hypopneas) while sleeping, 

causing oxygen desaturations, arousals and, eventually, sleep 

fragmentation [3]. These undesirable effects lead to daytime 

symptoms such as hypersomnolence, cognitive impairment, 
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and depression, which increase the risk for occupational 

accidents, absenteeism, and motor vehicle collisions [4], [5]. 

Furthermore, a significant number of pathological conditions 

have been related to SAHS, including hypertension, cardiac 

failure, and stroke [1]. Recently, an increase in cancer incidence 

has been also suggested [6]. 

 In spite of its high prevalence, SAHS is considered an 

underdiagnosed condition [7]. Hence, its diagnostic protocol 

plays a key role to avoid time delays in reaching diagnosis and 

accessing treatment. Nocturnal in-lab polysomnography (PSG) 

is the gold standard to establish SAHS and its severity [1], [3]. 

It includes monitoring and recording multiple biomedical 

signals from patients (electroencephalogram, 

electrocardiogram, airflow, blood oxygen saturation, etc.) [3], 

which increases its complexity. PSG also requires an overnight 

stay of patients in a specialized sleep unit, outside their usual 

sleep environment, where clinicians attend them and ensure the 

proper functioning of the test. Therefore, the need for these 

dedicated facilities and human resources leads to increased 

costs [8], [9]. Once PSG is finished, SAHS is offline diagnosed 

by computing the apnea-hypopnea index (apneas and 

hypopneas per hour of sleep, AHI) [10]. Thus, all the 

biomedical signals recorded during the night need inspecting, 

which implies a significant time consumption. 

Complexity, cost, and consumed time lead to a limited PSG 

availability, which is not able to cope with the high prevalence 

of SAHS [11]. This results in restricted access to diagnosis and 

treatment and, consequently, increased waiting lists [11]. In this 

regard, nocturnal pulse oximetry (NPO) has become a useful 

tool to overcome several PSG limitations. Single-channel blood 

oxygen saturation (SpO2) from NPO measures the percentage 

of oxygen in the hemoglobin of blood, whose healthy value 

ranges between 96% and 100%. However, apneic events cause 

recurrent drops from these values (oxygen desaturations) [1], 

[3]. Moreover, SpO2 can be easily acquired by using a single 

sensor placed in a finger. Hence, NPO is a simple, portable, and 

non-invasive test, which is widely used in clinical practice [12]. 
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A number of studies have evaluated the SpO2 signal acquired 

during in-lab PSG as diagnostic alternative. The 3% oxygen 

desaturation index (ODI3), commonly used in clinical practice, 

as well as other univariate and multivariate automatic analyses, 

have been already tested [13]-[17], with the latter exhibiting 

higher performance [18], [19]. In spite of the promising results 

showed, none of these studies was focused on determining 

SAHS presence and its severity, nor was conducted involving 

SpO2 recordings obtained at home. The simplification of the 

diagnostic test has as final goal to move it to patients’ natural 

sleep environment, that is, their homes, while providing as 

accurate diagnostic information as possible. In this regard, 

some studies assessed univariate analyses applied to at-home 

SpO2 recordings. Nevertheless, they were focused on ODI3 

estimation and evaluation, and none of them conducted 

multivariate analyses [20]-[22]. Hence, there is still a need for 

further evaluation of machine-learning approaches applied to 

SpO2 signals acquired under environmentally realistic 

conditions and focused on establishing both the presence and 

severity of SAHS. 

In this study, we hypothesize that the SAHS diagnostic 

process may be simplified by the use of a machine-learning 

approach and the information contained in the at-home SpO2 

signal. Accordingly, our main goal is the assessment of 

machine-learning approaches with ability to automatically 

establish SAHS and its severity, with single-channel at-home 

SpO2 as the only source of training information. Thus, first we 

propose a comprehensive characterization of SpO2 by means of 

automatic extraction of spectral, non-linear, and statistical 

features already evaluated in previous in-lab studies, as well as 

ODI3. As highlighted in preceding works, these features are 

expected to provide useful and complementary information 

about SAHS [13], [14], [18], [23]. However, such a 

comprehensive approach has not been already tested using at-

home recordings and may lead to obtain features that offer 

similar information, that is, redundant features. A novel feature-

selection step is included to avoid this issue. We propose a 

combination of the fast correlation-based filter (FCBF) and 

‘bootstrapping’ to find an optimum set of features consistent 

through a variety of samples [24], [25]. The performance of the 

FCBF is independent of subsequent analyses or methodologies 

[25], which provides us with the additional advantage of 

conducting a fair evaluation of the optimum set of features 

regardless the different machine-learning algorithms adopted. 

Thus, we finally propose a comprehensive assessment of the at-

home SpO2 usefulness by training and validating up to four new 

machine-learning derived models, ranging from simple to 

complex ones: linear discriminant analysis (LDA), logistic 

regression (LR), multi-layer perceptron Bayesian neural 

network (BY-MLP), and the ensemble learning method 

adaptive boosting (AdaBoost), arranged along with LDA as 

base classifiers (AB-LDA). Preliminary studies of our own 

group have been already conducted regarding BY-MLP and 

AdaBoost, providing signs of the usefulness of the machine-

learning approach for at-home SpO2 recordings [26], [27]. 

Nonetheless, the comprehensive approach conducted in the 

current study has led to the use of different SpO2 information to 

train the models, as well as LDA instead of classification and 

regression trees as base classifiers for AdaBoost. In addition, 

these works showed limitations such as lack of proper 

validation and the use of a BY-MLP model only trained for 

binary classification. By contrast, we follow a multinomial 

approach to find new models with ability to not only predict the 

presence of SAHS but also assign each subject under study into 

one of its four severity degrees (no SAHS, mild, moderate, and 

severe). 

II. SUBJECTS AND SIGNALS 

The study involved 320 adult subjects referred to the Hospital 

Universitario Rio Hortega in Valladolid (Spain) due to SAHS 

suspicion. All of them were diagnosed through an in-lab 

overnight PSG (E-series, Compumedics). A physician 

computed AHI following the rules of the American Academy 

of Sleep Medicine (AASM) [10], which was used as the gold 

standard. Participants with an AHI < 5 events per hour (e/h) 

were considered as no-SAHS subjects. Those showing an AHI 

in the ranges [5, 15) e/h, and [15, 30) e/h, were diagnosed as 

mild and moderate SAHS patients, respectively. Finally, 

subjects with AHI ≥ 30 e/h were diagnosed as severe. Each 

participant also conducted an at-home NPO. This was randomly 

carried out within the 24 hours before or after PSG to minimize 

the night-to-night variability effect [20]. Participants were 

divided into two sets: a training set composed of the first 60% 

consecutive subjects (ntr=193, 19 no-SAHS, 31 mild, 35 

moderate, 108 severe) and a test set composed of the remaining 

40% (ntest=127, 10 no-SAHS, 24 mild, 21 moderate, 72 severe). 

All of them gave an informed consent. The Ethics Committee 

of the Hospital accepted the protocol (approval number: CEIC 

7/13). Table I displays demographic and clinical data of the 

subjects (mean ± standard deviation). No statistically 

significant differences (p-value>0.01) were found in age, body 

mass index (BMI), or AHI. 

SpO2 signals were acquired during NPO (overnight length) by 

the use of a portable oximeter (Nonin WristOx2 3150, sampling 

rate 1 Hz). Artifacts due to movements were automatically 

removed during preprocessing. Thus, the SpO2 values equal to 

zero, as well as the differences between consecutive SpO2 

samples ≥4%, were considered artifacts [15]. Figure 1 shows 

examples of SpO2 recordings from each SAHS severity degree 

(no-SAHS, mild, moderate, and severe). Different patterns are 

observed, showing a tendency of higher amount of baseline 

falls (desaturations) in SpO2 as SAHS severity increases. 

However, a comprehensive analysis is required to predict the 

class of each recording. 

TABLE I  

DEMOGRAPHIC AND CLINICAL DATA OF THE SUBJECTS UNDER STUDY 

 All Training Test 

# Subjects 320 193 127 

Age (years) 54.8  13.5 54.2  12.8 55.6  14.4 

Men (%) 74.1 76.7 70.0 

BMI (kg/m2) 29.2  5.5 29.3  5.4 29.1  5.5 

AHI (e/h) 39.2  29.4 38.9  28.7 39.6  30.6 
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III. METHODOLOGY 

A three-stage methodology was conducted. First, statistical, 

spectral, and non-linear features were obtained from the SpO2 

recordings. These were used because of its reported usefulness 

in the in-lab SpO2 evaluation. Additionally, 3% ODI was also 

computed due to its importance in clinical practice. Hence, 16 

parameters composed the initial feature set. Then, an automatic 

selection stage was used to discard redundant features and 

obtain an optimum set of among them. The FCBF selection 

algorithm, along with a bootstrap technique, was used for this 

purpose. Finally, the optimum set of features fed four machine-

learning approaches to obtain LDA, LR, BY-MLP, and AB-

LDA models. Their performances were subsequently evaluated 

using a previously unseen test set. 

A. Feature extraction 

1) Common statistics: First-to-fourth order statistical 

moments were extracted from SpO2 in time domain: mean 

(Mt1), standard deviation (Mt2), skewness (Mt3), and kurtosis 

(Mt4). These features characterize central tendency, dispersion, 

asymmetry, and peakedness of a given time series [13], [18], 

[19]. Previous in-lab studies reported statistically significant 

lower values of Mt1, Mt3 and Mt4, as well as higher values of 

Mt2, in the SpO2 signals from SAHS positive subjects [18]. 

2) Non-linear measures: Central tendency measure (CTM), 

Lempel-Ziv complexity (LZC), and sample entropy (SampEn) 

were also extracted from SpO2 time series. These 

methodologies have previously shown its utility to characterize 

the stochastic components present in biomedical signals [23], 

[28]. Particularly, CTM, LZC and SampEn have shown 

promising results to respectively quantify the variability, 

complexity, and irregularity caused by SAHS in SpO2 in-lab 

recordings [14], [23], [29]. Higher LZC and SampEn values 

[14], [29], as well as lower CTM values [23], have been reported 

in the SpO2 of SAHS subjects. 

3) Spectral analysis: The recurrence of the apneic events 

leads to analyze SpO2 in the frequency domain too. The power 

spectral density (PSD) of the SpO2 signals were estimated by 

the Welch’s non-parametric periodogram [30]. Up to 8 spectral 

features were obtained from the PSDs of each SpO2. Thus, first-

to-fourth order statistical moments were also extracted from 

PSDs (Mf1-Mf4). As in time domain, these have been already 

used to characterize central tendency, dispersion, asymmetry, 

and peakedness in the PSDs of in-lab SpO2 recordings [18], 

[19]. Higher Mf1 and Mf2, as well as lower Mf3 and Mf4, have 

been reported for SAHS subjects [18]. Two additional full-

spectrum features were also obtained: median frequency (MF), 

and spectral entropy (SpecEn). MF is the frequency for which 

50% of the spectral power is below it [23]. Consequently, upper 

values imply that the power is more concentrated in high 

frequencies. Significantly higher MF have been reported for 

SAHS patients in the case of SpO2 recordings obtained in a 

laboratory [18]. SpecEn has been commonly used with 

biomedical signals to measure the flatness of the spectrum, with 

higher SpecEn values due to larger number of spectral peaks or 

higher dominance (or peakedness) of these [31]. Its past 

application to in-lab SpO2 recordings showed statistically 

significant higher SpecEn values in SAHS patients [32]. 

Finally, two features were extracted from the spectral band of 

interest of the SpO2 (0.014-0.033 Hz.) [17], [18]: peak 

amplitude (PA) and relative power (PR). Both of them were 

found significantly higher in SAHS patients in previous in-lab 

studies [17], [18]. 

4) Oxygen desaturation index (ODI3): ODI3 counts the 

number of drops from the SpO2 baseline greater than or equal 

to 3%, divided by the number of hours of recording. It is a 

clinical parameter widely used to help in SAHS diagnosis [15], 

[33]. Since desaturations are involved in the hypopnea 

definition [10], it is expected that higher values of ODI3 be 

found in SAHS patients. 

B. Feature selection: the fast correlation-based filter 

An automated feature selection stage was implemented to 

avoid redundant information when training the machine 

learning models [25]. Our approach focused on the FCBF 

algorithm [24], which relies on symmetrical uncertainty (SU) as 

a normalization of the information gain (IG) between variables. 

FCBF is a filter method and, consequently, it is independent of 

the machine-learning algorithms later applied [25]. It is 

composed of two steps. First, a relevance analysis is carried out 

by ranking the 16 extracted features (Fi, i=1,2,…,16) according 

to the values of SU between each of them and a target variable 

Y, (SUi,Y). SU is in the range 0-1, with SU = 0 indicating that the 

two variables are independent, and SU = 1 that knowing one it 

is possible to completely predict the other [24]. Hence, the 

higher the value of SUi,Y, the more information shares a feature 

Fi with the target variable Y and the more relevant is that 

feature, i.e., the higher SUi,Y the higher rank of Fi. SUi,Y is 

computed as follows [24]: 
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Fig. 1 Overnight SpO2 (%) examples of no-SAHS (AHI < 5 e/h), mild 

SAHS (5 ≤ AHI < 15 e/h), moderate SAHS (15 ≤ AHI < 30 e/h), and 

severe SAHS (AHI ≥ 30 e/h) subjects. 
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being IG (Fi | Y) = H(Fi) – H(Fi | Y), and H the well-known 

Shannon’s entropy. Y has to be chosen in relationship with each 

specific problem. Therefore, in this study, it is a continuous 

variable composed of the AHI values of each subject (we only 

used the training group in the selection process). The second 

step is a redundancy analysis where SU between each pair of 

features, Fi, Fj, (SUi,j, j=1,2,…16, j ≠ i) is computed. The 

process starts from the most relevant features to the less relevant 

ones, that is, SUi,j is first computed between the most relevant 

feature and each of the remaining, which are also compared in 

the order of the ranking [24]. Then, if SUi,j (between two 

features) is higher or equal than SUi,Y (between the feature with 

the highest rank and the target variable) the corresponding less-

ranked feature Fj is eliminated from the selection process due 

to redundancy with Fi. The optimum group of features is the set 

not discarded at the end of the process. 

In order to find a more generalizable optimum set of features, 

FCBF was used along with a bootstrap procedure [34]. Thus, 

the feature values from the original training set were resampled 

with replacement and uniform probability to form B=1000 new 

training sets derived from the bootstrap process [35], [36]. 

Then, the FCBF algorithm was applied to each of them and, 

typically, different optimum sets of features were obtained. As 

might be expected, those features considered non-redundant 

more often than redundant formed the final optimum set, i. e., 

those selected more than 50% of the B times. 

C. Multinomial classification 

After feature selection, each subject under study (sk, 

k=1,2,…K, K=320), was characterized by a pattern, xk, which is 

a vector whose components are the corresponding values of the 

optimum selected features. These patterns were used in a 

multinomial classification approach to predict SAHS severity, 

that is, to assign the subjects to one out of the four SAHS 

severity degrees: no-SAHS, mild, moderate, and severe. Four 

machine-learning models were obtained (LDA, LR, BY-MLP, 

and AB-LDA), which were trained and evaluated with the 

patterns from the training and test groups, respectively. 

1) Linear discriminant analysis (LDA) 

LDA is a pattern recognition technique that assigns a pattern 

xk into one out of l classes, Cl. It relies on the assumption that 

the conditional class density function of each class, p(xk | Cl), 

follows a multivariate normal distribution with identical 

covariance matrices, , for all the classes [37]. A discriminant 

score yl is computed for each class using [38]: 

),(ln
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where l is the mean vector for class Cl and p(Cl) its 

corresponding prior probability. Classification is conducted by 

assigning a pattern xk to the class with the highest score yl (xk). 

2) Logistic regression (LR) 

LR is a classic machine learning approach that computes the 

posterior probability of class membership for a given pattern, 

xk, by the use of the logistic function [39]: 
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where Cl represents all the possible classes, 0, 1, …, M 

are the coefficients of the model corresponding to the 

interceptor and each feature, xk xk1,..., xkM, and M is the 

maximum number of independent variables (features) used. 

Coefficients  are estimated through the maximum likelihood 

method [39]. The model assigns a new pattern into the class 

with the highest posterior probability. 

LR is a standard for classification methods that has been 

successfully tested in SAHS contexts involving in-lab SpO2 

features. However, its nature is essentially binary (l=1,2) [39]. 

Therefore, for our multiclass problem (l=1,2,3,4), it is evaluated 

following the well-known 1-vs.-all strategy. 

3) Multi-layer perceptron neural network: the Bayesian 

approach (BY-MLP) 

Artificial neural networks (ANN) are pattern recognition 

methods inspired by the human brain. MLP is an ANN whose 

architecture is arranged in several layers: input, hidden layers, 

and output [40]. Each layer is composed of computing units 

called perceptrons or neurons that are massively interconnected 

with units from other layers [40]. Particularly, each unit from 

one layer is connected with all the units from the following 

layer. The input layer was composed of one unit for each input 

feature. In our case, additionally, one single hidden layer has 

been used for simplicity, since it has been shown that this 

configuration can provide universal approximations [40]. 

Finally, as multinomial classification is intended, four units 

composed the output layer, which provided a posterior 

probability for each of the four classes. 

The output units in our MLP architecture are represented by 

the next expression [40], [41]: 
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where M is the number of features of the input pattern xk, N is 

the number of units in the hidden layer, wmn is the weight that 

connects the feature m of the input pattern with the hidden unit 

n, bn is the bias associated to hidden unit n, wnl is the weight that 

connects the hidden unit n with the output unit l, bl is the bias 

associated to output unit l, and gn(∙) and gl(∙) are the activation 

functions of the hidden and output units. 

N is a tuning parameter to be optimized using the training set. 

Additionally, we have used the logistic expression for both gn(∙) 

and gl(∙), as a common choice for the activation functions in 

classification problems involving MLP [37]. Moreover, in the 

classic MLP approach, the weights and biases connecting the 

units in the different layers (wmn, wnl, bl, bn) are computed using 

the backpropagation algorithm during the training process, i.e., 

following a maximum likelihood optimization approach [40]. 

However, previous studies involving in-lab SpO2 data showed 

higher performance of the Bayesian approach [41]. This 

alternative method models the posterior distribution of the 

whole set of weights and biases (w), given a training set Trs, 

according to the Bayes’ theorem: 
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where p(Trs | w) is the likelihood of the training set, p(w) is the 

prior probability function of the weights, and p(Trs) is known 

as the evidence, which acts as a normalization factor [39]. The 

probability of membership of a pattern xk to the class l can be 

obtained as follows [40]: 

,d)|(),(),|(  wwwxx slsl TrpyTrCp  (6) 

which can be solved following the approximations and 

assumptions explained in the literature [36], [39]. Finally, the 

pattern xk is assigned to the class with the highest probability. 

4) AdaBoost ensemble learning (AB-LDA) 

AdaBoost is an ensemble learning method that combines 

multiple base classifiers of the same type to complement each 

other [36]. This combination relies on the weighted votes of the 

single classifiers, which are usually simple ones to preserve the 

generalization ability of the method [36], [37]. Hence, LDA 

base classifiers were used along with AdaBoost in this study. 

AB-LDA has already proven to be helpful to detect SAHS 

severity when used together with airflow features obtained 

during in-lab PSG [42]. 

AdaBoost is an iterative process. At each p iteration, it assigns 

a weight, wk
p, to every training pattern, xk. The pth base classifier 

is trained using the corresponding weighted patterns. Then, the 

performance of the classifier is assessed by the error, p. This 

error is subsequently used to determine the corresponding 

weighted vote, p, of the pth classifier [36]. Those classifiers 

with smaller p contribute more to the final decision (higher p). 

At the end of each iteration, the weights of the misclassified 

patterns are updated (wk
p+1) [36]. Then, the weights of all 

patterns are normalized to maintain their original distribution 

[43]. By reweighting those patterns that have been misclassified 

during a particular iteration, the base classifiers trained during 

the next ones give them more importance, being more likely to 

be rightly classified [36], [43]. AdaBoost.M2 is the algorithm 

version for multinomial classification. In such a case, p is 

defined as [43]: 
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where l is a categorical variable representing the multiple 

classes, ltrue is the actual class of xk, and hp is the confidence of 

the prediction of the base learner for a pattern xk and a given 

class. The final classification task is conducted by returning the 

class l with the highest sum of the votes from all classifiers, 

taking into account the weight of their corresponding 

predictions p as follows [43]: 

 ,ln pp    (8) 

where p is defined as (1 - p)/p [43]. Additionally, the 

shrinkage regularization technique has been proposed to 

minimize overfitting [44]. It is based on adding a learning rate 

to the iterative process by redefining p as (p), where 

ranges 0-1 and has to be experimentally chosen. The number 

of base classifiers (Q) to be used is another parameter to be 

experimentally chosen in the AdaBoost.M2 algorithm. 

D. Statistical analysis 

As features did not pass the Lilliefors normality test, the 

Kruskal-Wallis non-parametric method was used to evaluate 

differences among SAHS severity groups (p-value<0.01 to 

minimize the chances of type I errors). The overall 

performances of the proposed machine-learning methodologies 

in the multinomial classification task were assessed by the use 

of Cohen’s kappa, since it is able to measure the agreement 

between the actual SAHS severity levels and the predicted ones 

while avoiding the effect of agreement due to chance [36]. 

Additionally, the diagnostic performance for each of the AHI 

cutoffs that define the SAHS severity degrees where evaluated 

in a binary fashion in terms of sensitivity (Se, percentage of 

subjects above the cutoff rightly classified), specificity (Sp, 

percentage of subjects below the cutoff rightly classified), and 

accuracy (Acc, percentage of all subjects rightly classified). 

As mentioned above, a bootstrap procedure was included in 

the feature selection stage for the sake of the generalization 

ability of the optimum set of features chosen. Moreover, the 

bootstrap 0.632 algorithm was also used in a similar way to 

optimize the tuning parameters of BY-MLP and AB-LDA 

methods. Thus, B = 1000 training groups are formed by 

resampling with replacement from the original training group, 

following a random uniform probability. Consequently, 

repeated patterns from xk are most likely to be included in each 

new group; in the same number, several patterns are not used. 

While the former compose the bootstrap training groups, the 

latter form a bootstrap test group for each of them. To select the 

optimum parameter values (hidden neurons (N) in BY-MLP; 

learning rate () and number of base classifiers in AB-LDA 

(Q)), a range of these were evaluated. It is known that using 

only results from the bootstrap test groups would lead to 

pessimistic estimations [36]. Therefore, Cohen’s  was 

computed for each model configuration as follows [36]: 

BtestBtraining   632.0368.0  (9) 

where Btraining and Btest are Cohen’s  of each new bootstrap 

training and bootstrap test groups, both derived from the 

original training group. The final parameters were chosen 

according to the highest averaged over the 1000 groups. 

IV. RESULTS 

A. Single features separability 

Figure 2 displays the violin plots from all the extracted 

features in the training set split in the four SAHS-severity 

degrees. As in the case of boxplots, 25 percentile, 50 percentile 

(median), and 75 percentile are showed (horizontal gray lines). 

In addition, the data distribution (histogram) for each feature is 

also showed as the lateral outlines of each box, which are 

vertically symmetrical. The p-values after Bonferroni 

correction were also included. Only one feature (MF) did not 

reach statistically significant differences (p-value<0.01) among 

SAHS degrees. Consequently, all the proposed approaches 

(statistical, spectral, non-linear, and clinical) contributed with 

features that reached significant statistical differences, i.e., 
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showed separability among groups. Additionally, clear 

tendencies over the severity groups can be observed in those 

features with p-values<10-15 (denoted as p-value << 0.01). 

Thus, Mt2, Mf1, Mf2, PA, SampEn, and ODI3 showed higher 

figures as severity increased, whereas CTM was higher as 

severity decreased. However, similar distributions are present 

in these features in all severity groups, including CTM, which 

only differs in the direction of its tendency. By contrast, Mt1, 

Mt3, Mt4, Mf3, Mf4, SpecEn, PR, and LZC showed higher p-

values but different data distributions among and within groups. 

B. Optimum set of features 

Fig. 3 displays the histogram of features selected by the FCBF 

algorithm over the B = 1000 resampled bootstrap training sets. 

Only ODI3 and SpecEn were selected more than half of the 

times, i.e., were considered non-redundant more often than 

redundant. ODI3 and SpecEn, therefore, formed the optimum 

set of features used to train the machine-learning models. By 

contrast, Mt1, Mt2, Mf1, Mf2, PA, PR, and LZC were redundant 

all the times. Additionally, MF were only selected 0.5% of the 

times. Fig. 4 shows a scatter plot facing ODI3 and SpecEn by 

 
Fig. 3.  Histogram of features selected over B=1000 bootstrap sets. 

 
Fig. 4.  Scatter plot facing ODI3 and SpecEn for the four SAHS severity 

degrees. Dashed lines show examples of regions in which each of the 

classes prevails. 

 
Fig. 2 Violin plots of each extracted feature divided by SAHS-severity degree (only training set). Numbers in x-axis represent the severity of SAHS: 1 stands 

for no-SAHS, 2 for mild, 3 for moderate, and 4 for severe. All p-values from Kruskal-Wallis test were corrected using the Bonferroni criterion. 
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SAHS-severity degree. No simple boundaries are observed. 

However, it can be appreciated examples of regions in which 

each of the classess prevails. 

C. Classification models training 

BY-MLP and AB-LDA models needed optimum tuning 

parameters to be chosen (number of neurons in the hidden layer, 

N; and number of base classifiers, Q, and learning rate, , 

respectively). The bootstrap 0.632 method, applied to the ODI3 

and SpecEn values from the original training set, was used for 

this purpose. Fig. 5 (a) and (b) show Cohen’s  according to 

equation (9), and averaged over the 1000 derived bootstrap 

training and test sets. The optimum value for N (BY-MLP) was 

12, whereas optimum Q and AB-LDA) were 200 and 1, 

respectively. Q = 200 was chosen for the sake of model 

simplicity since the third decimal place did not change onwards. 

After the optimization of these tuning parameters, the ODI3 and 

SpecEn values from the whole original training set were used to 

obtain the specific new LDA, LR, BY-MLP, and AB-LDA 

models, whose diagnostic performance were evaluated using 

the test set only. 

D. Diagnostic performance 

Table II shows the confusion matrices for the LDA, LR, BY-

MLP, and AB-LDA models and ODI3, evaluated in the test set. 

Using ODI3, 69 subjects (54.3 %) were rightly assigned to their 

actual SAHS-severity group (main diagonal of the matrix). By 

contrast, 82 (64.6%), 85 (66.9%), 80 (63.0%), and 89 (70.1%) 

subjects were rightly classified by the LDA, LR, BY-MLP, and 

AB-LDA models, respectively. Hence, all of them 

outperformed single ODI3 when considering the exact number 

of subjects rightly classified. ODI3 showed clear overestimation 

of severity in no-SAHS group (7 out of 10 subjects) as well as 

underestimation of SAHS degree in severe patients (33/72 

subjects). Interestingly, the LR, BY-MLP, and AB-LDA 

models significantly decreased these two undesirable effects. 

However, LR performed poorly when predicting moderate 

SAHS.  

A complementary analysis can be derived from Table III. It 

displays Cohen’s  to show the overall performance of ODI3 

and the machine-learning models in the four-class 

classification. It also shows Se (%), Sp (%), and Acc (%) values 

obtained from confusion matrices when conducting a binary 

evaluation of the 3 clinically useful cutoffs that define the 

SAHS-severity groups (5 e/h, 15 e/h, and 30 e/h). AB-LDA 

reached the highest  (0.479), as well as the highest Acc values 

for all AHI cutoffs: 92.9%, 87.4%, and 78.7%, respectively. 

Moreover, all machine-learning models but LDA outperformed 

ODI3 in terms of  LDA, however, reached higher binary Acc 

than ODI3 in the three AHI cutoffs. Additionally, ODI3 showed 

higher Sp (%) than the models for the AHI cutoffs 15 e/h and 

30 e/h. 

       
(a)                                    (b) 

Fig. 5. Averaged Cohen’s  for different (a) number of hidden neurons, N, (BY-MLP) and (b) number of base classifiers, Q, and learning rate, , (AB-LDA). 

TABLE II. Confusion matrices for the multinomial machine learning classifiers and ODI3 in the test set. 1: No SAHS (AHI < 5 e/h); 2: Mild SAHS (5 ≤ 

AHI < 15 e/h); 3: Moderate SAHS (15 ≤ AHI < 30 e/h); 4: Severe SAHS (AHI≥30 e/h) 

Estimated  

severity    → 

ODI3 LDA LR (1 vs. all) BY-MLP AB-LDA 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

A
ct

u
a
l 

se
v
er

it
y
 1 3 7 0 0 2 8 0 0 8 2 0 0 8 2 0 0 5 5 0 0 

2 2 17 5 0 1 12 2 9 5 9 0 10 4 9 1 10 1 14 2 7 

3 1 9 10 1 0 5 0 16 2 2 0 17 2 1 4 14 1 2 6 12 

4 0 10 23 39 0 4 0 68 2 2 0 68 2 2 9 59 2 2 4 64 

TABLE III. Binary diagnostic ability of the machine-learning classifiers and ODI3 in the test set for the AHI cutoffs = 5 e/h, 15 e/h, and 30 e/h.  

 
ODI3 LDA LR (1 vs. all) BY-MLP AB-LDA 

5 15 30 5 15 30 5 15 30 5 15 30 5 15 30 

Se (%) 97.4 78.5 54.2 99.1 90.3 94.4 92.3 91.4 94.4 93.2 92.5 81.9 96.6 92.5 88.9 

Sp (%) 30.0 85.3 98.2 20.0 67.6 54.5 80.0 70.6 50.9 80.0 67.6 56.4 50.0 73.5 65.5 

Acc (%) 92.1 80.3 73.2 92.9 84.3 77.2 91.3 85.8 75.6 92.1 85.8 70.9 92.9 87.4 78.7 

 0.351 0.341 0.468 0.363 0.479 
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V. DISCUSSION 

We have evaluated four new machine-learning models trained 

to automatically stablish both SAHS presence and its severity 

by the only use of non-redundant SpO2 information obtained at 

patient’s home. All of them outperformed the commonly used 

clinical index ODI3 when assessing the total number of subjects 

rightly classified into one out of the four SAHS-severity 

degrees. Additionally, our AB-LDA proposal achieved the 

highest diagnostic ability in the overall performance (70.1% 

accuracy, 0.479 ), as well as when conducting a binary 

evaluation of the AHI cutoffs 5 e/h (92.9% Acc), 15 e/h (87.4% 

Acc), and 30 e/h (78.7% Acc). 

According to Fig. 2, all the extracted features but MF reached 

statistically significant differences among SAHS severity. 

These features were initially chosen due to the usefulness 

reported in previous in-lab studies [13], [14], [18], [23]. It is not 

surprising, therefore, that the vast majority of them showed 

statistically significant separability over the four classes, while 

highlighting the convenience of the three analytical approaches 

adopted (statistical, spectral, and non-linear). However, 

contrary to previous studies mainly focused on binary 

evaluations, a tendency can be observed over the severity 

groups in some features. Particularly, those showing p<<0.01. 

Thus, Mt2, Mf1, Mf2, PA, SampEn, and ODI3 showed 

increasingly higher values with SAHS severity. By contrast, 

CTM reduced its values as SAHS severity got worse. In order 

to explain these behaviors notice that SpO2 is ideally constant 

over time around 96%-100% saturation. Deviations are due to 

non-desirable drops in blood saturation, which are commonly 

present in SAHS [10]. In this regard, Mt2 (standard deviation in 

time domain), SampEn, and CTM would be respectively 

characterizing the increasing degree of dispersion, irregularity, 

and variability of the SpO2 data as more apneic-related 

desaturations are present. On the other hand, desaturations, as 

amplitude variations, increase the total spectral power of the 

SpO2 signal, whereas a high degree in its recurrence may imply 

that this increased spectral power affects more discrete 

frequencies. Consequently, Mf1 (mean of the PSD) and Mf2 

(standard deviation of PSD) would be measuring higher 

spectral power, and higher amount of frequencies affected by it, 

as more apneic events were present. In addition, the spectral 

band of interest of the SpO2 signal (0.014-0.033 Hz.) has been 

defined as the range of frequencies in which recurrence of 

desaturations are more likely to happen [17], [18]. Therefore, 

the more apneic-related desaturations, the higher the value of 

the PSD in that band, i.e., the higher the PA feature. Finally, 

desaturations are involved in hypopnea definition [10]. Hence, 

increasing of ODI3 is a natural tendency as more of these events 

happen. 

The bootstrap FCBF method showed that, over 1000 

repetitions of the algorithm, most of the features were found 

redundant more often than non-redundant. Hence, only ODI3 

and SpecEn were selected. This criterion to choose the final 

optimum set may be relaxed by including features with a 

selection rate below 50%. However, 8 out of the 16 features 

were selected less than 0.5% of times and 12 were less than 10% 

of times. Therefore, regardless the selection rate chosen, it has 

been shown that a high degree of redundancy in SAHS 

information is present in the features usually extracted from 

SpO2 recordings.  

As previously mentioned, those features considered non-

redundant using a selection rate of 50% (ODI3 and SpecEn) fed 

four new machine-learning models that outperformed the 

diagnostic ability of single ODI3 when determining SAHS 

severity. This highlights the utility of the joint use of these two 

selected features. Violin plots from ODI3 and SpecEn (Fig. 2), 

as well as its scatter plot (Fig. 4), are also coherent with this 

idea. While ODI3 violin plot showed low class separability 

between class 1 (no-SAHS) and class 2 (mild SAHS), clear 

differences could be found for these classes in SpecEn. 

Similarly, the ODI3 vs. SpecEn scatter plot showed clear regions 

in which class 1 and class 4 (severe–SAHS) prevailed, which 

are the classes where the machine-learning approaches most 

improved single ODI3 classification. ODI3, indeed, 

underestimated SAHS degree in severe patients (Table II). 

Therefore, a diagnostic test only supported by ODI3 would not 

be effective in a significant proportion of subjects (46%) that 

would benefit more from a quick diagnosis and access to 

treatment. Furthermore, single ODI3 also overestimated SAHS 

degree of 70% of no-SAHS subjects. By contrast, our machine-

learning models were able to minimize both undesirable effects. 

The AB-LDA model reduced the ODI3 overestimation to 50% 

of no-SAHS subjects, and only underestimated SAHS in 11.1% 

of severe ones. 

Table IV summarizes previous studies aimed at automatically 

diagnosing SAHS by using SpO2 signals acquired at patients’ 

home. Olson et al. used a large sample (793 subjects) to conduct 

a direct validation of several univariate clinical indexes derived 

from at-home NPO as a surrogate for AHI [20]. The highest 

performance was reached using delta index, which achieved 

only moderate diagnostic ability. Chung et al. also conducted a 

direct evaluation of ODI3 obtained at home, using a sample size 

of 475 subjects [21]. However, these were surgical patients 

rather than common SAHS suspects. They reported 87.0%, 

TABLE IV. Comparison with state-of-the-art studies focused on at-

home automatic detection of SAHS by the use of the SpO2 signal. 

Studies 
# of 

subjects 
Method Valid. 

AHI  

(e/h) 

Se 

(%) 

Sp 

(%) 

Acc 

(%) 

Olson et 

al. [20] 793 

Delta 

index 

(univariate) 

vsa 

5 82.7 54.2 ndb 

15 88.5 39.6 67.1* 

30 92.6 34.1 nd 

Chung et 

al. [21] 475 
ODI3 

(univariate) 
vs 

5 96.3 67.3 87.0 

15 70.0 92.5 84.0 

30 76.0 97.2 93.7 

Schlotthaue

r et al. [22] 
996 

ODI3 

estimation 

(univariate)  

bootstrap+

hold-out 
15 83.8 85.5 nd 

This 

study 
320 

ODI3 

(univariate) 
vs 

5 97.4 30.0 92.1 

15 78.5 85.3 80.3 

30 54.2 98.2 73.2 

AB-LDA 

bootstrap+

bootstrap+

hold-out 

5 96.6 50.0 92.9 

15 92.5 73.5 87.4 

30 88.9 65.5 78.7 
avs: validation study, direct comparison of a metric and the gold standard; 
bnd: not enough data to estimate; *Estimated from reported data. 
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84.0%, and 93.7% Acc for AHI thresholds of 5, 15, and 30 e/h, 

respectively. Schlotthauer et al. used empirical mode 

decomposition (EMD) to carry out an automatic estimation of 

ODI3 in 996 SpO2 recordings obtained during at-home 

polysomnography [22]. They used an initial set (40 recordings) 

to optimize EMD, and a validation set (669 recordings with 100 

bootstrap repetitions) to conduct a receiver-operating 

characteristics analysis. An unseen test set was finally used to 

estimate the diagnostic performance of the proposal, reaching 

83.8% Se and 85.5% Sp (AHI cutoff = 15 e/h). Our machine-

learning approach is fully validated using a first bootstrap stage 

for feature selection, a second bootstrap stage for model design, 

the whole training set for model training, and a previously 

unseen test set for diagnostic ability estimation. Under these 

conditions, our new AB-LDA model outperformed the overall 

diagnostic ability of all the works of the state of the art. ODI3 

from the study of Chung et al. reported the closest diagnostic 

ability to the machine-learning proposal. Nonetheless, patients 

involved in their study were not regular but surgical ones. In 

addition, our ODI3 computed in the same database showed 

evident lower diagnostic ability. 

According to the results in the confusion matrices (Table II), 

several screening procedures could be derived from our models 

to show its clinical usefulness. As an illustrative example using 

AB-LDA, regard this protocol: i) if our model predicts class 3 

(moderate SAHS) or class 4 (severe SAHS) a clinician could 

consider the application of treatment, since 100% of subjects 

predicted as moderate or severe (95 out of 95) have mild SAHS 

at least; ii) if our model predicts class 1 (no SAHS) or class 2 

(mild SAHS), by following a conservative strategy a clinician 

could directly send the patients to undergo conventional PSG. 

A less conservative approach could consider PSG only at the 

persistence of symptoms since, most probably, the subjects 

predicted as class 1 or class 2 are no SAHS or mild SAHS (25 

out of 32). It would maximize avoided PSGs while still taking 

into account the patients that initially missed the treatment, 

especially the 7.5% that is moderate or severe (7 out of 93). In 

either of these two options, this protocol would avoid a 

minimum of 74.8% full PSGs (95 out of 127). Comparing to the 

use of ODI3 alone, only a minimum of 61.4% (78 out of 127) 

would be avoided, while potentially missing 21.5% of moderate 

and severe patients (20 out of 93). 

Several limitations need to be addressed regarding our work. 

First, although our sample size is larger than most of in-lab 

studies [14-16], [18], [19], [45], more subjects would enhance 

the statistical generalization of our results as well as would 

equal the sample size of the few at-home studies found. A 

second limitation concerns to a historical lack of consensus in 

the AHI threshold to determine SAHS and its severity [46]-

[48]. The criterion has changed over the last years, which makes 

the comparison with past works difficult. In this regard, our 

methodology is flexible, since it can be evaluated both in the 

four-class classification task as well as in three out of the most 

common AHI thresholds historically used in a binary way (5 

e/h, 15 e/h, and 30 e/h).  However, it has to be taken into account 

that AHI itself present several drawbacks to accurately predict 

the true health state of SAHS patients and, despite it is accepted 

as the main one among the current diagnostic options [47], it is 

still suboptimal for accurately establishing relationships with 

pathological conditions associated with SAHS [47]. In this 

regard, recent studies have proposed oximetry features as 

clinically helpful to gain insight into the severity of each patient 

[48]. Another constrain of our study is associated with the use 

of the SpO2 signal. Despite its common assessment as 

alternative to PSG, according to the AASM it is possible that 

some apneic events do not cause a specific response in SpO2 

[10]. This could be a reason why both our machine-learning 

models as well as ODI3 are not as accurate as PSG in SAHS 

diagnosis, and why its use should be recommended as screening 

tool. In addition, central apneas have not been differentiated 

from obstructive ones in this study, which could be an important 

future goal. Not using clinically oximetry-based parameters 

such as time under 90% of saturation (CT90) could be another 

limitation. However, previous at-home studies reported very 

low diagnostic ability of CT90 [20], and preliminary tests in this 

study showed that it was highly redundant with the features 

used. Moreover, regarding the high redundancy showed in the 

oximetry-based features, the use of other analyses could be 

useful to find helpful data. Thus, recent studies have pointed to 

cardiac information as promising complementary information 

[49], [50]. Therefore, a future objective could focus on 

evaluating the use of non-redundant SpO2 features along with 

oximetric-based cardiac information. Regarding the selection of 

the features, a new limitation arises. Other feature selection or 

dimensionality reduction methods might obtain other data as 

the optimum choices. Similarly, the use of other machine-

learning models, or the combination of those described in this 

study, might increase the final classification task, which could 

be another interesting future goal. Finally, the AHI of each 

subject under study was obtained from in-lab PSG, which is the 

gold standard for SAHS diagnosis. However, the SpO2 signals 

were recorded at-patients’ home in a different night. Such a 

protocol may be affected by the night-to-night variability effect 

[20]. In order to minimize it, all the SpO2 recordings were 

acquired within the 24 hours before or after PSG (randomly 

assigned). 

VI. CONCLUSIONS 

In summary, we have shown and explained SAHS-severity 

related tendencies in statistical, spectral, non-linear, and clinical 

features extracted from SpO2 recordings obtained at patients’ 

home. Moreover, we have exposed excessive redundancy with 

ODI3 in the information typically extracted from SpO2 in the 

context of SAHS. Accordingly, we have identified SpecEn as a 

robust non-redundant complement for ODI3. Our new machine-

learning AB-LDA model, rigorously validated, reached the 

highest diagnostic ability comparing with the works of the state 

of the art. It can be applied to both multiclass and binary 

classifications using different AHI thresholds, which highlights 

its potential as a SAHS screening tool. These results suggest 

that the machine-learning approach can be used along with 

SpO2 information acquired at patients’ home to help in SAHS 

diagnosis simplification. 
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