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Summary	
Normal pressure hydrocephalus (NPH) encompasses a heterogeneous group of disorders generally 

characterised by clinical symptoms, ventriculomegaly and anomalous cerebrospinal fluid (CSF) 

dynamics. Lumbar infusion tests (ITs) are frequently performed in the preoperatory evaluation of 

patients who show NPH features. The analysis of intracranial pressure (ICP) signals recorded during 

ITs could be useful to better understand the pathophysiology underlying NPH and to assist treatment 

decisions. In this study, 131 ICP signals recorded during ITs were analysed using two continuous 
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wavelet transform (CWT)-derived parameters: Jensen Divergence (JD) and Spectral Flux (SF). These 

parameters were studied in two frequency bands, associated with different components of the signal: 

𝐵"(0.15 - 0.3 Hz), related to respiratory blood pressure oscillations; and 𝐵# (0.67 - 2.5 Hz), related to 

ICP pulse waves. Statistically significant differences (𝑝 < 1.70 ∙ 10+,, Bonferroni-corrected Wilcoxon 

signed rank tests) in pairwise comparisons between phases of ITs were found using the mean and 

standard deviation of JD and SF. These differences were mainly found in 𝐵#, where a lower 

irregularity and variability, together with less prominent time-frequency fluctuations, were found in 

the hypertension phase of ITs. Our results suggest that wavelet analysis could be useful for 

understanding CSF dynamics in NPH. 

 

1. Introduction	
Adult hydrocephalus comprises a heterogeneous group of disorders occurring in a wide range of 

ages, chronicity of symptoms and physiological states [1]. Patients with hydrocephalus generally 

show a triad of clinical symptoms (unsteady gait, urinary incontinence and cognitive impairment), 

as well as enlarged cerebral ventricles and anomalous cerebrospinal fluid (CSF) dynamics [1–3]. 

Normal pressure hydrocephalus (NPH) can develop as a consequence of subarachnoid haemorrhage, 

traumatic brain injury or meningitis [1,4]. However, idiopathic NPH can also appear as a primary 

condition, without a specific pathological hallmark [4]. Ventricular shunting is a generally accepted 

treatment of choice [5]. However, the outcome of shunt surgery is not always positive and the 

management of NPH patients becomes challenging for neurosurgeons [1,6]. In spite of the recent 

advances, treatment is sometimes based on a reduced knowledge of the underlying pathophysiology 

[7]. Therefore, the study of intracranial pressure (ICP) and CSF dynamics can provide valuable 

information for the selection of patients who could benefit from shunt surgery and the management 

of shunted patients [8]. 

Lumbar infusion tests (ITs) are regular procedures in the preoperatory evaluation of subjects who 

show clinical and radiological features of NPH [9]. In ITs, ICP is artificially raised by the injection of 
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fluid in the ventricular or subarachnoidal space. The resulting pressure is subsequently recorded and 

the resistance to CSF outflow is calculated [9]. The applications of ITs also include shunt function 

assessment [10], the analysis of metabolic changes in periventricular white matter [11] and the study 

of the haemodynamic response related to ICP [12].  

Traditionally, the analysis of the ICP waveforms relied on the time-averaged mean, provided by most 

ICP monitoring devices and related to certain pathological patterns [13,14]. This is a simple and 

widely available measure, but it does not reflect all the information contained in ICP signals and does 

not clarify NPH pathophysiology [9,13,14]. For this reason, prior research has been devoted to study 

the ICP waveform using alternative perspectives that take cerebral vascular pathophysiology and 

cerebral volume compensatory mechanisms into account [14]. In this sense, non-linear methods, 

including approximate entropy [15], multiscale entropy [16] and Lempel-Ziv complexity [9,17], have 

been used to analyse ICP signals. Results revealed a loss of complexity induced by intracranial 

hypertension in children with traumatic brain injury [15,17] and in adults with hydrocephalus [9]. 

Additionally, reduced complexity seems to be associated with a poor outcome after traumatic brain 

injury [16]. ICP signal analysis by means of spectral methods has also been addressed in the literature 

[12,18,19]. Prior research studied the relationship between resistance to CSF outflow and three 

spectral components of the ICP waveform: pulse, respiratory and slow vasogenic waves [12]. In this 

regard, the analysis of slow waves has received a special interest [18]. In a previous study, ICP 

recordings obtained during ITs were analysed using two classical spectral parameters: median 

frequency and relative power [19]. 

Recent studies have addressed the analysis of ICP recordings using the wavelet transform. This is a 

suitable methodology due to the non-stationary and multiscale nature of cerebral haemodynamics 

[20]. Several authors used the wavelet transform to analyse the instantaneous phase difference 

between arterial blood pressure (ABP) and ICP fluctuations [20]. The wavelet spectrograms have 

been also analysed as an alternative representation of long-term ICP recordings and ITs [21]. Other 

studies focused on the calculation of the wavelet transform phase-shift between ABP and ICP signals 

in patients with traumatic brain injury [22]. The analysis of wavelet coherence to assess cerebral 

autoregulation in neonates has also received attention [23]. Parameters derived from the wavelet 
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transform of ICP signals, like wavelet entropy (WE) and wavelet turbulence (WT), have been also 

used to study signal irregularity and variability in ICP recordings obtained during ITs [24]. 

Alternative time-frequency representations, such as Zhao-Atlas-Marks distribution, have been used 

to analyse cerebral autoregulation in healthy subjects during hypercapnia [25]. 

In the present research, our working hypothesis is that NPH elicits a disruption of CSF dynamics that 

is reflected in instabilities of respiratory- and pulse-related ICP oscillatory components. To study the 

time-varying properties of ICP signals, we propose to compute wavelet-based measures that can 

accurately reflect the non-stationary and multiscale alterations in ICP associated with NPH. 

Specifically, we analyse the variability and irregularity patterns of ICP signals using Jensen 

Divergence (JD), and time-frequency fluctuations by means of Spectral Flux (SF). They are analysed 

in two frequency bands: 𝐵", between 0.15 and 0.3 Hz, related to respiratory blood pressure 

oscillations [26]; and 𝐵#, between 0.67 and 2.5 Hz, related to ICP pulse waves [26]. We attempt to 

address the following research questions: (i) Can the proposed parameters reflect the dynamical 

properties of ICP signals recorded during ITs?; and (ii) Are the proposed parameters useful to 

evaluate the influence of respiratory and pulse waves of the ICP waveform in NPH? 

 

2. Materials	and	Methods	

(a)	Subjects	

We analysed 131 ICP signals recorded during ITs at the Department of Neurosurgery of the 

University Hospital of León (Spain). The recordings belonged to patients suffering from 

hydrocephalus (79 male and 52 female, age 69 ± 14 years, mean ± standard deviation, SD). Brain 

images (computer tomography or magnetic resonance) revealed ventriculomegaly in 96.18% of 

patients (Evans index ≥ 0.30). All the participants presented clinical symptoms of NPH: gait and 

balance disturbances, cognitive deterioration and urinary incontinence [10,27]. Lumbar ITs were 
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performed as a supplementary hydrodynamic study to help in the decision on the surgical 

management of patients [9,24]. Table 1 summarises the data of the population under study. 

All patients or a close relative gave their informed consent to be included in the study, which was 

approved by the Ethics Committee at the University Hospital of León (Spain). 

INSERT TABLE 1 AROUND HERE 

 

(b)	Data	Acquisition	Protocol	

Signals were acquired using a variant of the Katzman and Hussey method [28]. With patients under 

local anaesthesia and in the lateral recumbent position, two lumbar needles were inserted in the lower 

lumbar region. The caudal needle was connected to an infusion pump (Lifecare® 5000, Abbott 

Laboratories) through a three-way stopcock and used to perform infusion. Pressure was measured 

using the second needle (rostral needle), which was connected to a pressure microtransducer 

(Codman® MicroSensorTM ICP transducer, Codman & Shurtleff). The analogue output of the 

microtransducer was connected to an amplifier (ML110 Bridge amplifier), an analogue to digital 

converter (PowerLab 2/25 Data recording system ML825, ADI Instruments) and a computer, where 

signals could be visualised and recorded [9,24]. 

Each ICP recording contained four different phases. Firstly, opening pressure (𝑃.) was determined 

after approximately 5 minutes of baseline recording. Then, a Ringer solution was infused at a constant 

rate of 1.5 ml/min. Infusion stopped when the pressure levels reached a plateau. At this point, the 

plateau pressure (𝑃/) was measured. CSF pressure was still recorded after infusion ceased, until it 

decreased towards the baseline level [9,19]. A qualified neurosurgeon manually selected four 

artefact-free epochs for signal analysis by visual inspection of each recording [9,19]: 

• Epoch 0 (𝐸.) was representative of the basal phase of the IT. 𝑃.  was measured at this stage. 

• Epoch 1 (𝐸") corresponded to the early infusion phase, where ICP recordings usually 

described an ascending slope. 
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• Epoch 2 (𝐸#) represented the plateau phase. 𝑃/ was obtained in this stage. 

• Epoch 3 (𝐸,) was connected to the recovery phase, where the pressure slowly decreased 

towards baseline levels. 

ICP recordings were acquired with a sampling frequency 𝑓2 = 100	Hz. All the recordings were 

processed using a finite impulse response (FIR) bandpass filter with cut-off frequencies 0.02 Hz and 

5 Hz. This frequency range preserved the relevant spectral content of the signals and minimised the 

presence of the DC component [24]. 

One of the ICP recordings in our database can be seen in Figure 1. The four artefact-free epochs 

identified by the neurosurgeon have been indicated in this image. 

DISPLAY FIGURE 1 AROUND HERE 

 

(c)	Continuous	Wavelet	Transform	(CWT)	

The CWT is a mathematical tool that can be used to analyse time series with a variable resolution in 

the time-frequency plane [29]. It has been used in the context of ICP signal analysis due to the non-

stationary and multiscale features of cerebral haemodynamics [20,24]. In the CWT, the signal to be 

analysed, 𝑥(𝑡), is decomposed using translated and dilated versions of a function called “mother 

wavelet”, 𝜓(𝑡) [29]. For this task, a dilation parameter or scale, s, is considered. Additionally, the 

location parameter, 𝜏 ,represents the translation of 𝜓(𝑡) [30]. The wavelet coefficients, 𝑊(𝜏, 𝑠), 

quantify the similarity between 𝑥(𝑡) and the scaled and translated versions of 𝜓(𝑡) [29,30]: 

𝑊(𝜏, 𝑠) = "
√2
∙ ∫ 𝑥(𝑡) ∙ 𝜓∗ CD+E

2
F𝑑𝑡H

+H . (1) 

Here, * represents the complex conjugate of the wavelet function. A wavelet is a zero-mean and finite-

energy function that is localized in both time and frequency [30–32]. Many different waveforms 
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satisfy these conditions and could be used as mother wavelet [29]. In this study, we chose the complex 

Morlet wavelet. It has the form of a Gaussian-windowed complex sinusoidal waveform with several 

cycles [33]. The complex Morlet wavelet has been previously used in the analysis of several types of 

biological signals that show a non-stationary behaviour [20,34–36], including ICP signal analysis 

[20,24]. It can be defined as [20]: 

𝜓(𝑡) = "
IJKL

∙ exp	(𝑗2𝜋ΩT𝑡) ∙ exp C
+DU

KL
F, (2) 

where ΩT is the wavelet centre frequency and ΩV is the bandwidth parameter. In this study, both 

parameters were set to 1, in order to obtain a good trade-off between time resolution (Δ𝑡) and 

frequency resolution (Δ𝑓) at low frequencies [20].  

Actually, the relationship between Δ𝑡 and Δ𝑓 is important in wavelet analysis. According to the 

Heisenberg uncertainty principle, it is not possible to achieve arbitrarily good resolution in time and 

frequency simultaneously [31]. The CWT provides good Δ𝑡 at high frequencies and good Δ𝑓 at low 

frequencies [29,30]. To take this issue into account, we defined a Heisenberg box in the calculation of 

the CWT. It is a rectangle centred at each point in the time-frequency plane, whose width and height 

depend on the time and frequency resolution [30,32]. It should also be noticed that the four artefact-

free epochs analysed are finite short-time signal segments. This means that CWT calculation would 

be affected by edge effects at the beginning and end of each epoch [31]. To take this problem into 

account, a cone of influence (COI) was established for each of the four artefact-free epochs based on 

the Heisenberg box approach. The COI delimitates the region in the time-frequency plane in which 

edge effects can be ignored [31]. The area of the Heisenberg box was chosen to be 2Δ𝑡 × 2Δ𝑓 [34]. In 

Fig. 1, the scalogram and COIs corresponding to the artefact-free epochs of the example ICP signal 

are depicted.  

The ICP recordings in our database were analysed in two frequency bands. 𝐵" encompasses the 

frequency range between 0.15 and 0.3 Hz (9-18 cycles per minute) and is related to respiratory blood 

pressure oscillations [26]. 𝐵#  corresponds to frequencies between 0.67 and 2.5 Hz (40-150 cycles per 
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minute) and is related to ICP pulse waves [26]. Only those CWT coefficients whose associated 

Heisenberg boxes were completely included in the COI and for the scales associated to frequencies 

in 𝐵"  and 𝐵# were taken into account [34]. 

 

(d)	Jensen	Divergence	(JD)	

Irregularity of ICP signals during ITs has been previously analysed using measures of entropy 

obtained from a time-scale representation of the signal trough the CWT [24]. In this case, the classical 

measure of the Shannon entropy is called wavelet entropy, WE [24]. Measures of entropy are useful 

in quantifying the disorder of a system. However, they do not describe the underlying system [37]. 

In this regard, information theory introduces the concept of disequilibrium [37]. More specifically, 

disequilibrium provides a quantification of the distance between a probability density function 

(PDF), 𝑃, and the PDF that represents the equilibrium, 𝑃Y [37,38]: 

𝑄[𝑃] = 𝑄. ∙ 𝐷[𝑃, 𝑃Y], (3) 

where 𝐷[∙] represents a measure of distance and 𝑄. is a normalization constant. Although many 

distance measures can be applied, it is also possible to use a divergence metric alternatively [38]. In 

this study, we used Jensen divergence (JD), which is a symmetric and smoothed version of the well-

known Kullback–Leibler divergence [39]. One of the advantages of JD over other divergence 

measures is that the probability distributions involved do not need to meet the condition of absolute 

continuity [39]. JD can be expressed from the WE as [38]: 

𝐽𝐷[𝑃", 𝑃#] = 𝑊𝐸 _ àb Ù
#
c − 𝑊𝐸 _ à

#
c − 𝑊𝐸 _ Ù

#
c. (4) 
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JD quantifies the difference between two PDFs, 𝑃"  and 𝑃# . In order to be a disequilibrium measure, 

𝑃"  is replaced by the PDF of the system under consideration and 𝑃# by the PDF representing the 

equilibrium, i.e., 𝑃Y. In this study, 𝑃Y is represented by a uniform PDF. In the same way, the 

normalized wavelet scalogram, obtained from 𝑊(𝜏, 𝑠), was used to represent the PDF of the system 

under consideration [37]:  

𝑊e(𝜏, 𝑠) =
|g(E,2)|U

∑ |g(E,2)|Ui 	
, 𝜏 = 1,⋯ ,𝑁l, 𝑠 ∈ 	 𝑆op	(𝑖 = 1,2). (5) 

JD was calculated at each time point in the scales corresponding to frequency bands 𝐵"  and 𝐵#. 

Therefore, we obtained the temporal evolution of this parameter for each frequency band (see 

Figure1, bottom left panel). The mean (〈𝐽𝐷〉) and the standard deviation (SD[𝐽𝐷]) were subsequently 

calculated from the time series formed by the temporal evolution of JD in frequency bands 𝐵" and 

𝐵#. 〈𝐽𝐷〉 summarises the average irregularity throughout time, while SD[𝐽𝐷] describes the variability 

of the JD around the mean value. An average value of 〈𝐽𝐷〉 and SD[𝐽𝐷] was obtained for each artefact-

free epoch and frequency band. We will denote by 〈𝐽𝐷op
vw〉 the average value of JD in epoch 𝐸x  (j = 0, 

1, 2, 3) and band 𝐵y (i = 1, 2). Similarly, SD _𝐽𝐷op
vwc denotes de value of SD[𝐽𝐷] in epoch 𝐸x  (j = 0, 1, 2, 3) 

and band 𝐵y (i= 1, 2). The evolution of JD along time for the two frequency bands of interest has also 

been depicted in Fig. 1. 

 

(e)	Spectral	Flux	(SF)	

As previously mentioned, irregularity patterns of ICP signals have been analysed in other studies. 

Although they provide an interesting approach to understand ICP properties, they are not able to 

assess ICP instabilities in NPH. Therefore, new approaches are needed. We introduced the spectral 

flux (SF) as a novel time-varying parameter, useful to quantify spatio-temporal oscillations in neural 
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signals [40]. In this study, SF was used to assess temporal fluctuations in ICP signals. It is defined as 

the statistical distance between consecutive scalograms along the duration of the signal [40]: 

𝑆𝐹(𝜏) = 𝐷{[𝑊𝑆(𝜏, 𝑠),𝑊𝑆(𝜏 + 𝑇2, 𝑠)], (6) 

where 𝑇2 is the sampling period (𝑇2 = 1 𝑓2⁄ ) and 𝐷{ represents a statistical distance. In this sense, SF 

can be considered a dynamical measure that quantifies the spectral fluctuations that occur within the 

signal along time. Like in the case of JD, different distance measures could be used, but it is also 

possible to consider a divergence metric [38]. In order to be consistent with the previous parameter, 

Jensen divergence was employed in the calculation of SF. However, in this case, the divergence 

provides a measure of the differences that occur within the signal at different time points. Conversely, 

in the previous parameter (JD) the distance measure was useful to quantify the differences between 

the signal and the PDF that represents the equilibrium. 

We obtained the temporal evolution of SF in frequency bands 𝐵"  and 𝐵# by applying (6) in the scales 

corresponding to each frequency band. The mean (〈𝑆𝐹〉) and the standard deviation (SD[𝑆𝐹]) were 

subsequently calculated from this time series. 〈𝑆𝐹〉 quantifies the average value of the dynamical 

spectral fluctuations within the signal, while SD[𝑆𝐹] describes the variability of these spectral 

fluctuations around the mean value. An average value of 〈𝑆𝐹〉 and SD[𝑆𝐹] was obtained for each 

artefact-free epoch and frequency band. We will denote by 〈𝑆𝐹op
vw〉 the average value of SF in epoch 𝐸x  

(j = 0, 1, 2, 3) and band 𝐵y (i = 1, 2). Similarly, SD _𝑆𝐹op
vwc denotes de value of SD[𝑆𝐹] in epoch 𝐸x  (j = 0, 

1, 2, 3) and band 𝐵y (i= 1, 2). The evolution of SF along time can be seen in Fig. 1 for 𝐵" and 𝐵# . 

 

(f)	Statistical	Analysis	

Data distribution was initially studied by means of an exploratory analysis. The Kolmogorov-

Smirnov with Lilliefors significance correction and the Shapiro-Wilk tests were used to determine the 
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normality of JD and SF in the four artefact-free epochs. The results showed that our data did not meet 

parametric test assumptions. Therefore, the existence of statistically significant interactions (𝛼 =

0.01) among epochs of the IT was assessed using the non-parametric Friedman test [41]. Post-hoc 

analyses were performed when statistically significant interactions were found. For this task, the 

Wilcoxon signed-rank test with Bonferroni correction to account for multiple comparisons (𝛼 =

0.01 6⁄ = 1.7 ∙ 10+,) was used [41]. 

 

3. Results	
Table 2 summarises the median and interquartile range (IQR) of CSF pressure and epoch duration. 

These values were averaged over the 131 subjects in our database. 

INSERT TABLE 2 AROUND HERE 

 

(a)	JD	Results	

The non-parametric Friedman test showed significant interactions among phases of the IT using 

〈𝐽𝐷oa〉 (𝜒
#(3) = 17.75, 𝑝 = 4.96 ∙ 10+�), 〈𝐽𝐷oU〉 (𝜒

#(3) = 83.18, 𝑝 = 6.38 ∙ 10+"�) and SD�𝐽𝐷oU� (𝜒
#(3) =

139.46, 𝑝 = 4.94 ∙ 10+,.). The Wilcoxon signed-rank test with Bonferroni correction was used to 

perform post-hoc analyses in order to evaluate these interactions. Statistically significant differences 

were found between several pairwise comparisons of artefact-free epochs of ITs, as summarised in 

Table 3. 

INSERT TABLE 3 AROUND HERE 

Additionally, the evolution of 〈𝐽𝐷op
vw〉 and SD _𝐽𝐷op

vwc (j = 0, 1, 2, 3 and i = 1, 2) along the IT was analysed 

(see Fig. 2). 〈𝐽𝐷oa〉 values were higher in 𝐸., slightly decreased during infusion reaching the lowest 

values in 𝐸# and then increased again in 𝐸,. Regarding SD�𝐽𝐷oa�, values were very similar in all epochs 
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of the infusion test. The results in 𝐵# followed a different trend. The minimum 〈𝐽𝐷oU〉 values were 

found in the basal phase and then increased during infusion until the plateau phase. 〈𝐽𝐷oU〉 slightly 

decreased again in the recovery phase. Regarding SD�𝐽𝐷oU�, the highest values corresponded to the 

basal phase. Then SD�𝐽𝐷oU� decreased during infusion, reaching the lowest levels in the plateau phase. 

Finally, SD�𝐽𝐷oU� increased again in 𝐸,.  

DISPLAY FIGURE 2 AROUND HERE 

 

(b)	SF	Results	

The results of the Friedman test revealed significant interactions among phases of the IT using 〈𝑆𝐹oa〉 

(𝜒#(3) = 40.99, 𝑝 = 6.58 ∙ 10+�), SD�𝑆𝐹oa� (𝜒#(3) = 42.60, 𝑝 = 2.99 ∙ 10+�), 〈𝑆𝐹oU〉 (𝜒#(3) = 79.88, 𝑝 =

3.26 ∙ 10++"�) and SD�𝑆𝐹oU� (𝜒#(3) = 92.03, 𝑝 = 8.03 ∙ 10+#.). Post-hoc analyses were subsequently 

performed to analyse these interactions. Statistically significant differences were detected in pairwise 

comparisons between different phases of ITs in frequency bands 𝐵" and 𝐵# , as shown in Table 3. 

The temporal evolution of 〈𝑆𝐹op
vw〉 and SD _𝑆𝐹op

vwc (j = 0, 1, 2, 3 and i = 1, 2) is depicted in Fig. 3. The 

tendency was very similar using 〈𝑆𝐹oa〉 and SD�𝑆𝐹oa�: the lowest values were found in the basal phase, 

then increased during infusion until the plateau phase, slightly decreasing again in the recovery 

phase. In the case of band 𝐵# , the values of 〈𝑆𝐹oU〉 and SD�𝑆𝐹oU� were higher in 𝐸., decreased during 

infusion to reach the lowest values in 𝐸# and then slightly increased again in 𝐸,. 

DISPLAY FIGURE 3 AROUND HERE 

 

4. Discussion	and	conclusion	

(a)	Dynamical	properties	of	ICP	signals	
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Regarding the first research question, results for JD in band 𝐵" showed non-significant differences 

between phases of the IT using 〈𝐽𝐷oa〉 and	SD�𝐽𝐷oa�. In the case of band 𝐵#,we found statistically 

significant differences between the basal phase and the remaining phases of the ITs using 〈𝐽𝐷oU〉 and 

SD�𝐽𝐷oU�. It should be noted that our results showed a significant increase in 〈𝐽𝐷oU
vU〉 with respect to 

〈𝐽𝐷oU
v�〉. This indicates that, during the state of intracranial hypertension, the average irregularity 

throughout time decreases when compared with the resting state. These changes were only found in 

𝐵#, suggesting that this irregularity decrease is mainly associated with the pulse waves [12]. This 

result is consistent with findings obtained in previous studies, where an irregularity loss in 𝐸# with 

respect to 𝐸. was found using WE and WT [24]. However, in this study, irregularity was measured 
in terms of disequilibrium and using divergence as a distance measure. A decrease in complexity 
during episodes of intracranial hypertension has been also reported [9,17]. A decrease in Lempel-Ziv 
(LZ) complexity in the plateau phase of ITs with respect to the basal phase was found in adults [9]. 
Reduced complexity has also been found in paediatric patients suffering from traumatic brain injury 
and intracranial hypertension [17]. Certainly, complexity and irregularity are complementary 
measures to quantify the degree of disorder in a system. It should also be stressed that a significant 

decrease in SD�𝐽𝐷oU
vU� with respect to SD�𝐽𝐷oU

v�� was found. This result can be associated with a loss of 

variability in the plateau phase when compared with the basal phase. 

Regarding SF, we found statistically significant differences between phases of the infusion test in 

bands 𝐵"  and 𝐵#. Results in Table 3 indicate that a significant increase was found in 〈𝑆𝐹oa
vU〉 with 

respect to 〈𝑆𝐹oa
v�〉 and in SD�𝑆𝐹oa

vU� with respect to SD�𝑆𝐹oa
v��. The tendency found in 〈𝑆𝐹oa〉 revealed that 

the dynamical fluctuations within the signal are more prominent in 𝐸# with respect to 𝐸.. The 
variation of these fluctuations around the mean value also increased during the early infusion and 

plateau phases of the IT. However, the tendency in 𝐵#  was different. Specifically, we found 

statistically significant differences in 〈𝑆𝐹oU
vU〉 with respect to 〈𝑆𝐹oU

v�〉. This result suggests that the signal 

is less fluctuant in the hypertension state than in the resting state. These findings for band 𝐵# were 
concordant with the results obtained with JD, since the irregularity loss during infusion previously 
found is coherent with a less fluctuant signal in the plateau phase. This result is also coherent with 
our previous study, where we used WE and WT to measure irregularity [24]. However, SF differs 



14 

 

 

 

Phil. Trans. R. Soc. A.  

 

 

 

from WE and WT, since it is a parameter focused on the quantification of the signal dynamical 
fluctuations. As formerly stated, similar results were found using complexity measures in previous 

studies [9,17]. Regarding SD�𝑆𝐹oU�, we also found a significant decrease in SD�𝑆𝐹oU
vU� with respect to 

SD�𝑆𝐹oU
v��. These results suggest that intracranial hypertension due to volume loading produces a 

decrease in the variability of the spectral fluctuations around the mean value in band 𝐵# . This 

variability loss in the plateau phase with respect to the basal phase was also found using SD�𝐽𝐷oU�. A 
similar result was found in previous studies on ITs, where a decrease in data dispersion, measured 
in terms of the standard deviation of LZ values, was reported [9]. However, contradictory data can 
be found in the literature. In [27] an increased variability during intracranial hypertension, measured 
in terms of data dispersion using central tendency measure (CTM), was obtained. Our results 

using	SD�𝑆𝐹oa� also showed an increased variability in the plateau phase with respect to the basal 
phase. However, it is difficult to clearly assess the relationship between our results and those reported 
in the literature since variability is quantified differently and the frequency components of the ICP 
waveform were not studied separately. 

In summary, we characterised the irregularity, variability and dynamical fluctuation of ICP signals 
during ITs using JD and SF. JD provides an alternative measure of the disorder of a system through 
the concept of divergence, whereas SF represents a novel time-varying parameter that quantifies the 
fluctuations that occur within the signal at different time points. Our findings support the results in 
previous studies on ICP signals recorded during ITs, where a decreased irregularity and variability 

found in 𝐵#  during the plateau phase were also found. Furthermore, the dynamical nature of the 
fluctuations in ICP signals were characterised through SF. To the best of our knowledge, this analysis 

has not been previously addressed. We found different tendencies in 𝐵"  and 𝐵#, which may be linked 
to the variability of the signal in both frequency bands. Our results support the notion that the 
individual study of the different components of the ICP waveform is useful in understanding the 
different physiological elements of NPH. 

 

(b)	Respiratory	and	pulse-related	abnormalities	in	NPH	
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The second research question was related to the influence of the components of the ICP waveform 
in NPH physiology. It has been shown that the oscillatory processes that occur in the brain are not 
only relevant to the function of the central nervous system. They also interact with other 
physiological oscillations, including the cardiovascular and respiratory systems [42,43]. In this sense, 

the differences in the average irregularity, dynamical fluctuations and variability found in 𝐸# with 

respect to 𝐸. could be related to various effects. In the first place, NPH has been associated with a 
reduced intracranial compliance [44]. Vascular compliance is defined as the rate of change in the 
vascular volume with respect to pressure changes that occur during the cardiac cycle [44,45]. ICP 
oscillates as a result of cardiac-driven variations in ABP [46]. The blood volume entering the brain 
changes within the cardiac cycle, resulting in a net inflow during systole and net outflow during 
diastole [44]. In order to maintain a stable ICP, these blood volume changes during the cardiac cycle 
must be compensated by CSF, leading to ABP-driven pulsations in CSF pressure [44]. When 
compliance is reduced, as in NPH [46], CSF cannot accommodate the volume changes during the 
cardiac cycle. Besides, it has been suggested that volume load during ITs may also have a relevant 
impact in brain and blood vessels compliance. This issue leads to an exhausted compensatory reserve 
in the plateau phase of ITs, independently of the pathogenesis of hydrocephalus [8,47]. In this study, 
we found a decrease in irregularity and variability of the ICP waveform in the plateau phase with 

respect to the basal phase. These changes were mainly observed in band 𝐵#, related to pulse waves 

[26]. Moreover, SF revealed that dynamical fluctuations of the ICP signal in band 𝐵#  were less 
prominent in the plateau phase than in the basal phase. These results may be a consequence of 
alterations in the ICP waveform associated with reduced brain compliance in NPH or with 
hypertension induced by ITs. 

The transmission of arterial pulsations through the CSF is also related to the windkessel effect [48]. 
Arterial pulsations suffer a progressive decrease, mostly through the CSF, in order to reach the 
capillaries of the brain as a nonpulsatile continuous flow [48,49]. Several authors have shown that 
this occurs as a consequence of a close coupling between CSF oscillations and arterial pulsations, 
which leads to a resonance state [49]. However, alterations such as NPH cause a disruption of the 
windkessel effect [48,49]. Consequently, the arterial pulse pressure transmitted to the brain capillary 
bed would be stronger [48]. Our results showed that intracranial hypertension induced by ITs 
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influences the properties of the ABP component of the ICP waveform (band 𝐵#) and may be 
associated with a disruption of the windkessel effect activated by infusion. 

Finally, it has been suggested that the moderate rise in ICP during ITs may result in a reversible 
pressure-driven systemic response [50]. This includes an elevation in ABP and heart rate variability, 
as well as a decrease in cerebral perfusion pressure (CPP) and blood flow velocity (FV) [50]. This 
relationship between pressure and the response of the cardiovascular system is consistent with the 

presence of an intracranial baroreflex triggered by ITs [50,51]. Our results in band 𝐵#  could be 
indicative of this adaptive haemodynamic response, which may result in an early Cushing effect that 
affects ABP [50]. 

The statistically significant differences between phases of the IT were mainly found in 𝐵# , which 
leads us to hypothesise that intracranial hypertension induced by ITs mainly affect the pulse 
component of the ICP waveform. However, some statistically significant differences were also 

observed in band 𝐵", related to the respiratory component of the ICP signals. Previous research also 
reported a relationship between pressure changes and the respiratory component of the ICP 
waveform [26,52]. It has been shown that, under reduced pressure-volume compliance conditions, 
ventilatory alternations in cerebral FV are reduced [26,52], while ICP appears to be unaffected [26]. 

Our results using 〈𝑆𝐹oa〉 indicate that the dynamical fluctuations in the spectral content are more 

prominent in the plateau phase than in the resting state. In addition, the results obtained for SD�𝑆𝐹oa� 

suggest that there is a significantly higher variability in the spectral content of band 𝐵"  when CSF 
pressure reaches the range of intracranial hypertension. However, results were not as significant as 

in 𝐵# . The methodology used in previous studies were very different from ours, and included 
experimental models [52] and evoked respiratory waves [26]. This may be the reason why our results 
show a weaker link between ICP and respiratory waves. 

 

(c)	Limitations	of	the	study	and	future	research	lines	

Certain limitations of the study should be mentioned. Firstly, it should be noted that the ICP 
waveform contains a third component: slow waves (0.0055-0.05 Hz) [12]. In this study, this frequency 
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range could not be analysed due to the constraints imposed by the duration of the artefact-free epochs 
in our database and the frequency resolution associated with the complex Morlet wavelet. Very low 
frequencies have been previously analysed for brain pressure signals using the wavelet transform, 
for example in the context of near-infrared spectroscopy signals [53], analysis of ABP and ICP in 
traumatic brain injury [22] or blood flow velocity and ABP investigation [36]. The analysis of this 
frequency range was possible because the recording time was longer. Nonetheless, to the best of our 
knowledge, the COI was only considered in some of these studies [22,23]. It should be mentioned 
that, although slow waves are usually analysed in longer ICP signals, their study may be clinically 
relevant, since there is evidence that a frequent occurrence of these waves could be related to a 
positive response to shunting [54]. Further investigations should be performed to assess whether 
very low frequency components could provide additional information about the mechanisms of 
cerebral autoregulation. Another important issue concerns the population under study. Although all 
the patients showed clinical and radiological features of NPH, the mechanisms leading to 
hydrocephalus were diverse. We believe that patient heterogeneity should not be regarded as an 
important drawback, since this study is focused on the wavelet characterisation of ICP signals.  

Future efforts will be aimed at studying new wavelet parameters in order to determine whether 
they can reveal differences between phases of ITs. We will also try to combine wavelet and non-linear 
parameters in order to obtain complementary information that may help physicians gain insight into 
the pathophysiology of NPH. Finally, the potential clinical applications of our results need to be 
further explored. In this sense, it would be desirable to assess the utility of the proposed wavelet 
analysis in the prediction of patient response to shunting and in the distinction between NPH and 
other pathologies with similar clinical signs. 

In conclusion, wavelet parameters like JD and SF revealed changes in the signal time-scale 
representation during ITs. Our results showed a lower irregularity and variability, as well as less 

prominent spectral fluctuations in the plateau phase with respect to the basal phase in band B#. We 

also found statistically significant differences between E# and E. for band B" using SF. 
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Tables 

 

Table 1. Data recorded from the population under study. 

IQR: interquartile range 

 

 

Table 2. Median [interquartile range, IQR] values of the epoch length and CSF pressure. 

 

 

 

 

Characteristic Value  
(median [IQR]) 

Number of subjects (n) 131 

Age (years) 69 [62-79] 

Ventricular size (Evans index, E) 0.37 [0.35-0.41] 

Basal pressure (𝐸.) (mm Hg) 8.26 [5.72-11.11] 

Basal amplitude (𝐴.) (mm Hg) 2.71 [1.57-3.46] 

Plateau pressure (𝑃/) (mm Hg) 25.78 [18.12-33.04] 

Plateau amplitude (𝐴/) (mm Hg) 10.40 [5.45-13.80] 

Outflow resistance (R) (mm Hg ml-1 min) 11.67 [7.30-15.25] 

 Epoch 0 Epoch 1 Epoch 2 Epoch 3 

Length (s) 150 [120-180] 300 [240-300] 429 [308-540] 160 [120-180] 

CSF pressure 
(mm Hg) 7.72 [5.72-11.11] 16.13 [12.07-20.79] 24.91 [18.12-33.04] 15.26 [11.69-19.80] 
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Table 3. Z statistics and p-values associated with the Wilcoxon signed-rank tests. The significant values (p < 1.70 ∙ 10-,, 
Bonferroni-corrected) are highlighted. 

 E0 vs. E1 E0 vs. E2 E0 vs. E3 E1 vs. E2 E1 vs. E3 E2 vs. E3 
 Z p Z p Z p Z p Z p Z p 

〈𝐽𝐷oa〉 -1.68 9.27·10-2 -3.11 1.90·10-3 -2.38 1.74·10-2 -2.18 1.89·10-2 -2.44 1.46·10-2 -0.40 0.69 
SD�𝐽𝐷oa� -1.22 0.22 -0.21 0.83 -0.94 0.35 -0.90 0.37 -0.45 0.65 -1.30 0.19 
〈𝐽𝐷oU〉 -6.89 5.69·10-12 -7.39 1.44·10-13 -6.60 4.18·10-11 -3.03 2.50·10-3 -0.05 0.96 -3.40 6.80·10-4 
SD�𝐽𝐷oU� -7.11 1.20·10-12 -8.21 2.16·10-16 -8.02 1.02·10-15 -6.13 8.59·10-10 -3.88 1.04·10-4 -2.93 3.40·10-3 
〈𝑆𝐹oa〉 -3.31 9.32·10-4 -4.21 2.52·10-5 -2.21 2.74·10-2 -3.86 1.13·10-4 -0.32 0.75 -2.94 3.30·10-3 
SD�𝑆𝐹oa� -2.90 3.70·10-3 -4.56 5.23·10-6 -2.39 1.69·10-2 -3.84 1.24·10-4 -0.005 0.99 -3.39 6.91·10-4 
〈𝑆𝐹oU〉 -6.47 1.00·10-10 -7.25 4.31·10-13 -6.97 3.12·10-12 -2.95 3.20·10-3 -0.94 0.35 -2.16 3.10·10-2 
SD�𝑆𝐹oU� -7.19 6.57·10-13 -8.13 4.46·10-16 -7.81 5.59·10-15 -3.31 9.32·10-4 -1.36 0.17 -2.18 2.96·10-2 

E0: epoch 0; E1: epoch 1; E2: epoch 2; E3: epoch 3; 〈𝐽𝐷oa〉: mean Jensen’s divergence in band 𝐵"; SD�𝐽𝐷oa�: standard deviation of the 
Jensen’s divergence in band 𝐵";〈𝐽𝐷oU〉: mean Jensen’s divergence in band 𝐵#; SD�𝐽𝐷oU�: standard deviation of the Jensen’s divergence 
in band 𝐵#; 〈𝑆𝐹oa〉: mean spectral flux in band 𝐵"; SD�𝑆𝐹oa�: standard deviation of the spectral flux in band 𝐵"; 〈𝑆𝐹oU〉: mean spectral 
flux in band 𝐵#; SD�𝑆𝐹oU�: standard deviation of the spectral flux in band 𝐵# . 
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Figure captions 

Figure 1. Evolution of the CSF pressure during the infusion test for a patient diagnosed with normal 

pressure hydrocephalus (top panel). The four artefact-free epochs selected by a neurosurgeon have 

been indicated (𝐸.: epoch 0, 𝐸": epoch 1, 𝐸#: epoch 2, 𝐸,: epoch 3). Scalogram obtained for the ICP 

recording (middle panel). The transparency outline delineates the limits of the cone of influence 

(COI), where border effects can be ignored. The black horizontal lines indicate the limits of frequency 

bands 𝐵"  (0.15 - 0.3 Hz) and 𝐵# (0.67 – 2.5 Hz). Evolution of JD along time for frequency bands 𝐵" and 

𝐵# (bottom left panel). Evolution of SF along time for frequency bands 𝐵"  and 𝐵# (bottom right panel). 

 

Figure 2. Boxplots showing the distribution of 〈𝐽𝐷〉 and SD[𝐽𝐷] for frequency bands 𝐵" and 𝐵#  in the 
four artefact-free epochs. (a) 〈𝐽𝐷oa〉, (b) SD�𝐽𝐷oa�, (c)	〈𝐽𝐷oU〉, (d) SD�𝐽𝐷oU�. 

 

Figure 3. Boxplots showing the distribution of 〈𝑆𝐹〉 and SD[𝑆𝐹] for frequency bands 𝐵" and 𝐵#  in 
the four artefact-free epochs. (a) 〈𝑆𝐹oa〉, (b) SD�𝑆𝐹oa�, (c)	〈𝑆𝐹oU〉, (d) SD�𝑆𝐹oU�. 

 


