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Abstract—Sleep apnea hypopnea syndrome (SAHS) is a 

highly prevalent respiratory disorder that may cause many 

negative consequences for the health and development of 

children. The gold standard for diagnosis is the overnight 

polysomnography (PSG), which is a high cost, complex, 

intrusive, and time-demanding technique. To improve the early 

detection of pediatric SAHS, we propose an automated analysis 

of the SpO2 signal from nocturnal oximetry. A database 

composed of 298 SpO2 recordings from children ranging from 0 

to 13 years old was used for this purpose. Due to the abrupt 

changes caused by respiratory events in the SpO2 signal, our 

goal was to evaluate the diagnostic ability of this by means of 

the discrete wavelet transform (DWT). To achieve this 

objective, we conducted a signal processing approach divided 

into two main stages: (i) feature extraction, where features 

from the DWT detail coefficients were computed, and (ii) 

feature classification, where a logistic regression (LR) model 

was used to classify children into SAHS negative or SAHS 

positive. Our results showed that respiratory events introduced 

more variability in two detail levels of the DWT from SpO2: 

0.024-0.049 Hz and 0.012-0.024 Hz. Moreover, the LR classifier 

achieved an 81.9% accuracy (79.1% sensitivity and 84.1% 

specificity) in an independent test set for a clinical cutoff point 

of 5 events/h, as derived from PSG. These results suggest that 

DWT analysis may be a useful tool to analyze SpO2 recordings 

in the context of childhood SAHS. 

 

I. INTRODUCTION 

The American Academy of Pediatrics (AAP) defines the 
sleep apnea-hypopnea syndrome (SAHS) as a breathing 
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disorder characterized by a prolonged partial obstruction of 
the upper airway (hypopnea) and/or intermittent complete 
cessation (apnea) of airflow during sleep [1]. Pediatric SAHS 
is highly prevalent (in the range of 1% to 5%) and may lead 
to multiple negative consequences in children’s health and 
development, such as cardiometabolic dysfunction, 
neurocognitive deficit, and stunting [1]. 

The gold standard test for childhood SAHS diagnosis is 
overnight polysomnography (PSG), where multiple 
biomedical signals are recorded during sleep [1]. 
Nevertheless, PSG is costly, it requires the stay of the patient 
and qualified staff during the whole night in a specialized 
sleep laboratory [1]. Furthermore, PSG is highly intrusive 
due to the use of multiple sensors, and shows limited 
availability, which results in long waiting lists since initial 
referral by primary care physicians, and until the patients are 
ultimately diagnosed and treated  [2], [3]. 

These limitations, together with the high prevalence of 
the disease, have prompted exploration on the use of 
simplified diagnosis techniques [2]. The AAP guidelines 
recommend performing alternative tests when overnight PSG 
is not available [1]. Thus, an interesting approach is to 
evaluate the diagnostic ability of a reduced set of signals 
included in the PSG.  

In this regard, the usefulness of overnight oximetry as a 
simplified alternative method is being widely evaluated. 
Oximetry records the pulse rate and the blood oxygen 
saturation (SpO2) using a pulse-oximeter probe usually 
placed on the child’s finger, toe, or earlobe [4]. Due to its 
simplicity, reliability and suitability for children [2], [5], we 
propose an automated analysis of SpO2 recordings in order to 
simplify pediatric SAHS diagnosis. 

Previous research has supported the potential usefulness 
of automated analysis of SpO2 recordings in the context of 
childhood SAHS diagnosis [5]–[9]. Several of the previous 
studies assessed frequency domain features from power 
spectral density (PSD) [5], [6], [8], which contains 
information related with the recurrence and duration of apnea 
events. Nevertheless, PSD is based in Short-Time Fourier 
Transform (STFT), which offers a fixed time-frequency 
resolution. It is not appropriate for detecting abrupt changes 
in biomedical signals, such as SpO2 desaturations elicited by 
apneic events [10], [11]. By contrast, wavelet transform 
(WT) offers good frequency resolution at low frequencies 
and good time resolution at high frequencies [10]. This good 
resolution at low frequencies makes WT a well suited tool for 
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analyzing the non-stationary properties of the SpO2 signal 
caused by respiratory events. Nevertheless, there are no large 
previous studies assessing its screening capability in the 
context of pediatric SAHS by means of automated analysis of 
oximetric recordings.  

Based on aforementioned considerations, our hypothesis 
is that wavelet analysis can be useful in the diagnosis of 
childhood SAHS. Therefore, our objective was to evaluate 
the diagnostic performance of oximetric features derived 
from DWT analysis in the context of pediatric SAHS. This 
analysis was conducted in two phases: feature extraction and 
feature classification. In the first stage, features from DWT 
detail coefficients were computed and, in the second phase, 
these features were combined by means of a logistic 
regression (LR) classifier with the purpose of improving the 
diagnostic ability of individual features. 

II. SUBJECTS AND SIGNALS UNDER STUDY 

In this study, the dataset was composed of 298 children 
(166 boys and 132 girls) ranging from 0 to 13 years of age. 
All patients were referred to the Pediatric Sleep Unit at the 
University of Chicago Medicine Comer Children’s Hospital 
(Chicago, IL, USA) due to clinical suspicion of SAHS. In all 
cases, an informed consent to participate in the research was 
obtained and the Ethical Committee approved the protocol. 

Children underwent overnight in-lab PSG between 22.00 
and 08.00. Sleep was monitored with a digital 
polysomnography system (Nihon Kohden America Inc., CA, 
USA). SpO2 recordings were obtained from PSG at a 
sampling rate of 25 Hz. In a preprocessing stage, artifacts 
were removed from SpO2 signals by eliminating drops to 
zero, sudden changes between consecutive SpO2 sampling 
intervals ≥4%/second [12]  and SpO2 values below 60%. 

According to the American Academy of Sleep Medicine 
rules, sleep and cardiorespiratory events were quantified and 
the apnea-hypopnea index (AHI) was derived [13]. An AHI 
cutoff of 5 events/h was considered as a positive SAHS 
because surgical treatment is routinely recommended in these 
cases [14]. 

The population was divided into a training set (149 
subjects, 50%), used for training the LR classifier with the 
DWT features, and a test set (149 subjects, 50%), employed 
for assessing the diagnostic performance of DWT individual 
features and the classifier. Table I shows demographic and 
clinical data of the population under study (median 
[interquartile range]). 

III. METHODS 

The methodology proposed in this study is illustrated in 
Fig 1. Firstly, DWT is applied in order to extract features 
from the SpO2 recordings. Then, a LR model was created 
with these features to classify the children into SAHS 
positive or SAHS negative. The training set was used to 
optimize the LR model and the test was used in order to 
evaluate the classifier in an independent set.  

A.  Discrete Wavelet Transform and feature extraction 

WT is seen as the decomposition of a signal into a set of 
basis functions, called wavelets, which are obtained from a 
mother wavelet by scaling and time translations. Therefore,  

 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA 

All subjects 

 All SAHS negative SAHS positive 

Subjects (n) 298 164 134 

Age (years) 6 [4-9] 7 [5-10] 5 [3-9] 

Males (n) 166 (55.70%) 91 (55.49%) 75 (55.97%) 

BMI (kg/m2) 
18.37  

[16.33-23.04] 

18.16  

[16.32-22.27] 

18.66 

 [16.36-24.08] 

AHI (e/h)  1.95 [0.96-3.45] 11.11 [7.53-18.86] 

Training 

 All SAHS negative SAHS positive 

Subjects (n) 149 82 67 

Age (years) 6 [4-9] 7 [5-10] 6 [3-9] 

Males (n) 88 (59.06%) 51 (62.20%) 37 (55.22%) 

BMI (kg/m2) 
18.34  

[16.40-23.18] 

17.90  

[16.35-21.67] 

19.03 

 [16.50-24.22] 

AHI (e/h)  2.01 [0.95-3.39] 11.09 [7.49-19.59] 

Test 

 All SAHS negative SAHS positive 

Subjects (n) 149 82 67 

Age (years) 7 [4-9] 7 [5-10] 5 [3-9] 

Males (n) 78 (52.35%) 40 (48.78%) 38 (56.72%) 

BMI (kg/m2) 
18.42  

[16.26-22.76] 

18.33  

[16.30-22.66] 

18.42 

 [16.05-22.80] 

AHI (e/h)  1.90 [0.97-3.49] 11.13 [7.56-18.41] 

BMI: Body Mass Index; AHI: Apnea Hypopnea Index 

 

 

 
Figure 1.   Block diagram of the proposed methodology for SAHS 

diagnosis 
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WT is a time-scale representation [10]. Depending on the 
scale and translation values, WT can be continuous or 
discrete [15]. Continuous Wavelet Transform (CWT) 
calculates WT for every possible scale, while DWT only 
computes wavelet coefficients for dyadic scales, so it is 
computationally less expensive. As a consequence, DWT was 
chosen for this work [15].  

The decomposition process of a signal 𝑥[𝑛] with the 
DWT is a filter bank tree, as it can be seen in Fig. 1. At each 
stage, a high pass filter 𝑔[𝑛], the mother wavelet, a low pass 
filter ℎ[𝑛], the mirror version of the wavelet, and two 
downsamplers by a factor 2 are implemented [15]. In the first 
level, the signal 𝑥[𝑛] is decomposed in an approximation 
signal, A1, and a detail signal, D1. Then, A1 is decomposed 
in an approximation signal, A2, and a detail signal, D2, and 
this process continues until reaching the maximum desired 
detail level of the signal to analyze, as shown in Fig.1 [15].   

In this study, DWT was applied to N=214 sample 
segments and daubechies44 was the mother wavelet selected, 
as recommended for biomedical signals [16]. Ten-level DWT 
analysis was performed and the following frequency bands 
for the detail coefficients were obtained for each of them: 

 Level 1. From 6.25 Hz to 12.5 Hz.  

 Level 2. From 3.125 Hz to 6.25 Hz. 

 Level 3. From 1.563 Hz to 3.125 Hz. 

 Level 4. From 0.781 Hz to 1.563 Hz. 

 Level 5. From 0.391 Hz to 0.781 Hz. 

 Level 6. From 0.195 Hz to 0.391 Hz. 

 Level 7. From 0.098 Hz to 0.195 Hz. 

 Level 8. From 0.049 Hz to 0.098 Hz. 

 Level 9. From 0.024 Hz to 0.049 Hz. 

 Level 10. From 0.012 Hz to 0.024 Hz.  

 
Related work in the context of pediatric SAHS diagnosis 

determined the following frequency bands of interest for 
childhood SAHS: 0.0137-0.0473 Hz and 0.021-0.040 Hz [6], 
[8]. Therefore, we have analyzed the detail coefficients of 
the levels 9 (D9) and 10 (D10), which contain the bands of 
previous works [6], [8]. The features extracted from D9 and 
D10 levels were the mean (MeanD9 and MeanD10) and the 
variance (VarD9 and VarD10) of the detail coefficients. 
Features were computed for each segment of N=214 samples 
and subsequently averaged over all epochs of each recording 
to obtain a single value per subject. 

B. Logistic Regression 

LR estimates the posterior probability of a given instance 
(subject) belonging to one of two mutually exclusive classes 
(SAHS negative vs. SAHS positive) giving a set of input 
features (in our case, DWT features) [17]. Therefore, it has 
been widely used as a binary classifier in the context of 
computer aided diagnosis systems [17]. LR models the 
probability density function as a Bernouilli distribution and it 
uses the maximum likelihood ratio to optimize coefficients of 
the input features of the classifier [17].  

C. Statistical analysis and diagnostic performance 

The non-parametric Mann-Whitney U test was used to 
search for statistical differences in the DWT features between 

the groups under study. A p-value under 0.01 was considered 
significant. Diagnostic performance of the individual features 
and the LR model in the test set was assessed by means of 
sensitivity (Se, percentage of SAHS positive patients 
correctly classified), specificity (Sp, percentage of SAHS 
negative children correctly classified), positive predictive 
value (PPV, proportion of subjects classified as positive that 
are true positives), negative predictive value (NPV, 
proportion of subjects classified as negative that are true 
negatives), positive likelihood ratio (LR+, likelihood ratio for 
subjects classified as positive), negative likelihood ratio (LR-, 
likelihood ratio for subjects classified as negative) and 
accuracy (Acc, percentage of subjects correctly classified).   

IV. RESULTS 

A. Training set 

DWT features were computed in the training set and the 
optimum classification threshold was determined by means 
of a ROC analysis for each single feature. Table II displays 
the average values of the parameters for both groups (median 
[interquartile range]). The variance in both detail levels, 
VarD9 and VarD10, were significantly higher in SAHS 
positive, which suggest that the variability in this detail bands 
is related with apneic events. On the other hand, no 
significant differences were found linked with the mean 
values in these detail levels, MeanD9 and MeanD10. Then, 
coefficients of the LR model were subsequently estimated 
using all the single features.  

B. Test set 

Table III summarizes the diagnostic performance of the 
individual features and the LR model in the test set. 
Regarding every single feature, the parameter VarD9 reached 
the highest accuracy (79.9%), while the LR model including 
the 4 DWT features achieved 79.1% Se, 84.1% Sp and an 
accuracy of 81.9%, outperforming the highest individual 
feature (VarD9).  

V. DISCUSSION  

In this study, a novel approach for pediatric SAHS 
diagnosis based on a frequency domain analysis of SpO2 
recordings through DWT was developed. This approach was 
divided in two stages: (i) feature extraction, where mean and 
variance of the DWT coefficients were computed in the detail 
levels D9 and D10, and (ii) feature classification, where a LR 
model was built with these features.  

It was observed that variance of the coefficients in both 
detail levels were higher in SAHS positive cases, which is 
consistent with the effect of respiratory events on the 
frequency bands of these detail levels[6], [8]. VarD9 showed 
a remarkable diagnostic performance, reaching an accuracy 
of 79.9% in the test set, with a balanced Se-Sp pair (80.6%-
79.3%). Moreover, the joint analysis of all the features by 
means of a LR classifier improved the diagnostic ability of 
each of the single features, achieving an accuracy of 81.9% in 
the test set, also with a balanced Se-Sp pair (79.1%-84.1%).
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These results agree with related work focusing on 
pediatric SAHS diagnosis from SpO2 recordings. Garde et al. 
[5] achieved 88.4% Se and 83.6% Sp, by combining PSD and 
time domain features from 146 SpO2 and pulse rate 
recordings in a LDA model. The study by Gutiérrez-Tobal et 
al. combined PSD features from 50 airflow recordings with 
oxygen desaturation index (ODI) from SpO2 signal using a 
LR model, achieving 85.9% Se and 87.4% Sp, and 86.3% Acc 
[7]. Similarly, Cohen and de Chazal analyzed a database 
composed of 396 subjects, achieving an accuracy of 66.7%, 
with 58.1% Se and 67.0% Sp combining time domain 
features from the SpO2 signal and time domain and PSD 
features from ECG recordings [9]. In our work, we use one 
single biomedical signal, SpO2 from nocturnal oximetry, 
using a large database (298 recordings). 

This study presents some limitations. First, only binary 
classification has been performed, while clinical studies 
recommend estimating the degree of severity. Second, it 
would be interesting to extract more features from the DWT 
detail coefficients and to use conventional oximetry indices. 
Moreover, a feature selection stage should be applied, in 
order to obtain a subset of features that are complementary. 
Finally, more classifiers should be assessed with the 
objective of improving the diagnostic performance of the 
SpO2 signal.  

VI. CONCLUSIONS 

In summary, we have developed a method in the context 
of pediatric SAHS based on the automated analysis of SpO2 
recordings by means of DWT. Our results showed increased 
variance in the DWT coefficients of childhood SpO2 
recordings in the frequency bands described in the literature 
(0.024-0.049 Hz and 0.012-0.024 Hz), which appears to be 
related to slow variations in the SpO2 signals due to SAHS. 

Furthermore, a LR model trained with the mean and 
variance of DWT coefficients in these bands reached high 
diagnostic ability in an independent test set. Therefore, we 
conclude that DWT could be a useful tool for analyzing 
SpO2 recordings and assist in the process of achieving a 
pediatric SAHS diagnosis in high pre-test probability cases.  
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TABLE II.  MEDIAN, INTERQUARTILE RANGE AND P-VALUE OF THE DWT 

FEATURE VALUES FOR SAHS NEGATIVE AND SAHS POSITIVE GROUPS IN THE 

TRAINING SET  

 SAHS negative SAHS positive p-value 

MeanD9(10-3) 
0.97  

[-1.53 - 3.43] 

1.21  

 [-3.11 - 4.96] 
0.97 

MeanD10(10-4) 
-1.71  

 [-9.47 - 5.21 ] 

3.32  

[-1.29 - 1.07] 
0.20 

VarD9 
3.61 

 [2.97 - 4.41] 

5.85 

 [4.51 - 7.88] 
p<0.01 

VarD10 
4.26  

[3.43 - 5.18] 

6.63 

 [5.19 - 9.20] 
p<0.01 

 

TABLE III.  DIAGNOSTIC ASSESMENT OF EACH SINGLE FEATURE AND THE 

LR MODEL IN THE TEST SET 

 Se Sp PPV NPV LR+ LR- Acc 

MeanD9 37.3 65.9 47.2 56.3 1.09 0.95 53.0 

MeanD10 47.8 53.7 45.7 55.7 1.03 0.97 51.0 

VarD9 80.6 79.3 76.1 83.3 3.89 0.24 79.9 

VarD10 77.6 74.4 71.2 80.3 3.03 0.30 75.8 

LR 79.1 84.1 80.3 83.1 4.99 0.25 81.9 
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