
  

 

Abstract— In the sleep apnea-hypopnea syndrome (SAHS) 

context, airflow signal plays a key role for the simplification of 

the diagnostic process. It is measured during the standard 

diagnostic test by the acquisition of two simultaneous sensors: a 

nasal prong pressure (NPP) and a thermistor (TH). The 

current study focuses on the comparison of their spectral 

content to help in the automatic SAHS-severity estimation. The 

spectral analysis of 315 NPP and corresponding TH recordings 

is firstly proposed to characterize the conventional band of 

interest for SAHS (0.025-0.050 Hz.). A magnitude squared 

coherence analysis is also conducted to quantify possible 

differences in the frequency components of airflow from both 

sensors. Then, a feature selection stage is implemented to assess 

the relevance and redundancy of the information extracted 

from the spectrum of NPP and TH airflow. Finally, a multiclass 

Bayesian multi-layer perceptron (BY-MLP) was used to 

perform an automatic estimation of SAHS severity (no-SAHS, 

mild, moderate, and severe), by the use of the selected spectral 

features from: airflow NPP alone, airflow TH alone, and both 

sensors jointly. The highest diagnostic performance was 

reached by BY-MLP only trained with NPP spectral features, 

reaching Cohen’s  = 0.498 in the overall four-class 

classification task. It also achieved 91.3%, 84.9%, and 83.3% of 

accuracy in the binary evaluation of the 3 apnea-hypopnea 

index cut-offs (5, 15, and 30 events/hour) that define the four 

SAHS degrees. Our results suggest that TH sensor might be not 

necessary for SAHS severity estimation if an automatic 

comprehensive characterization approach is adopted to 

simplify the diagnostic process. 

I. INTRODUCTION 

The sleep apnea-hypopnea syndrome (SAHS) is a 
prevalent disease characterized by recurrent events of 
complete absence (apneas) and/or significant reduction 
(hypopneas) of airflow during sleep [1]. Apneas and 
hypopneas cause overnight inadequate gas exchange that 
derives into restless sleep and triggers inflammatory 
processes [1, 2]. These imply both life´s quality worsening 
and health deterioration of affected people, leading them to 
cognitive impairment and depression, as well as to a higher 
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chance for cardiovascular disease suffering [2, 3]. 
Furthermore, SAHS has been recently associated with a 
higher cancer incidence [4]. 

Nocturnal polysomnography (PSG) is the overnight 
standard test to diagnose SAHS and establish its severity [1]. 
During PSG, multiple physiological signals, such as 
electrocardiogram, electroencephalogram, electrooculogram, 
blood oxygen saturation, and airflow are monitored and 
recorded [1]. This technical complexity, which requires a 
hospital night stay for patients, derives into high costs and 
consumed time [5]. Therefore, simplified alternatives have 
been previously evaluated to avoid PSG drawbacks. 

Airflow signal has been commonly studied for this 
purpose since it is involved in both apnea and hypopnea 
definitions [6]. The American Academy of Sleep Medicine 
(AASM) recommends the use of two sensors to record 
airflow during PSG: nasal prong pressure (NPP) and 
thermistor (TH) [6]. The former has a quadratic response to 
the measured signal that may derive into overestimation of 
apnea events when airflow decreases [7]. Conversely, TH 
signal is an indirect measure of airflow based on the different 
temperature of inhaled and exhaled air, which is not sensible 
enough to small airflow changes, as in hypopneas [7]. These 
limitations cause that physicians use TH to score apneas and 
NPP to score hypopneas [6]. In spite of these limitations, 
multiple studies have shown the usefulness of single-channel 
airflow to detect SAHS; regardless it has been acquired from 
TH or NPP [8-11]. Many of these studies focus on the 
automatic detection of SAHS, and its severity, based on a 
comprehensive characterization of airflow [8, 9]. To the best 
of our knowledge, however, none of these has directly 
compared the performance of airflow from each sensor by the 
use of NPP and TH recordings acquired at the same time.  

In this preliminary study, we hypothesize that two airflow 
channels are not necessary to help in SAHS severity 
estimation when a comprehensive signal characterization 
approach is conducted. Hence, we firstly propose a spectral 
analysis of NPP and TH recordings simultaneously acquired 
from 315 subjects. This analysis includes the computation of 
the power spectral density (PSD) from NPP and TH [12], the 
magnitude squared coherence (MSC) estimation between 
each pair of airflow recordings from the same subject [13], as 
well as the characterization of the SAHS conventional 
spectral band of interest by means of a feature extraction 
stage. Then, a feature selection phase is implemented in order 
to evaluate the relevance and redundancy of the features 
extracted from the PSDs of each airflow sensor. The fast 
correlation-based filter (FCBF) selection method is used for 
this purpose [14]. Finally, we use a Bayesian multi-layer 

A Bayesian Neural Network Approach to Compare the Spectral 

Information from Nasal Pressure and Thermistor Airflow in the 

Automatic Sleep Apnea Severity Estimation 

Gonzalo C. Gutiérrez-Tobal, Member, IEEE, Julio de Frutos, Daniel Álvarez, Fernando Vaquerizo-

Villar, Student Member, IEEE, Verónica Barroso-García, Andrea Crespo, Félix del Campo, and 

Roberto Hornero, Senior Member, IEEE 

978-1-5090-2809-2/17/$31.00 ©2017 IEEE 3741



  

perceptron artificial neural network (BY-MLP) approach to 
evaluate the spectral information from NPP, TH, and both 
sensors simultaneously when classifying each subject under 
study into one out of the four SAHS severity degrees: healthy 
(no-SAHS), mild, moderate, and severe [3]. 

II. SUBJECTS AND SIGNALS 

In this study, 315 subjects were involved. All of them 
were derived to the sleep unit of the Hospital Universitario 
Rio Hortega of Valladolid (Spain) due to suspicion of SAHS. 
They underwent an overnight conventional PSG test (E-
series, Compumedics) to reach a diagnosis. According to the 
AASM recommendations, the apnea-hypopnea index (apneas 
and hypopneas per hour of sleep, AHI) was used to establish 
the presence and severity of SAHS [6]. Thus, an apnea was 
scored when a 10 seconds or more decrease of at least 90% 
was detected in TH airflow amplitude [6]. Similarly, a 
hypopnea was scored when a 10 seconds or more decrease of 
at least 30% was detected in NPP amplitude, and it was 
accompanied of a 3% or more decrease in blood oxygen 
saturation or an arousal [6]. According to these rules, the 
physicians diagnosed 39 no-SAHS subjects (AHI<5 
events/hour), 91 mild-SAHS subjects (5≤AHI<15 e/h), 69 
moderate-SAHS subjects (15≤AHI<30 e/h), and 116 severe-
SAHS subjects (AHI≥30 e/h). Table I shows the 
demographic and clinical data of the population under study. 
The whole dataset was randomly divided into a training 
(60%) and a test set (40%). The former was used to conduct 
exploratory analyses as well as to train the BY-MLP models, 
whereas the latter was only used for validation purposes. The 
Ethics Committee of the Hospital Universitario Rio Hortega 
approved the protocol and all the participants gave their 
informed consent. NPP and TH airflow recordings were 
simultaneously obtained during the PSG of each subject. 
Both signals were acquired at a sample rate of 128 Hz. 

III. METHODS 

A.  Spectral Analysis 

1) Power Spectral Density and Feature Extraction. The 
analysis in the frequency domain is justified by the recurrent 
nature of apneic events. In this regard, PSD has already 
shown its usefulness to obtain SAHS-related information 
from airflow signal [8-10]. Hence, PSDs were obtained from 
all NPP and TH recordings. Welch’s periodogram (Hamming 
window of 215 points, 50% overlap, and discrete Fourier 
transform of 216 points) was used to estimate PSD since it is 
suitable to deal with non-stationary signals [12]. 

Six spectral features were extracted from each NPP and 
TH recording, i.e., 12 features were finally obtained from 
each patient. All of these features were acquired from the 
conventional SAHS spectral band of interest in airflow 
signals, 0.025-0.050 Hz [8, 9], which corresponds to the most 
common range of apneic event duration (20 to 40 seconds) 
[1]. Thus, maximum amplitude (MA), minimum amplitude 
(mA), mean (Mf1), standard deviation (Mf2), skewness (Mf3), 
and kurtosis (Mf4) were computed from this band in each 
NPP and TH PSDs. 

2) Magnitude Squared Coherence. MSC is a measure of 
correlation between each of the individual frequency 
components, f, of two signals [13]. In this work, we use it to 
study differences between the spectrums of each pair of NPP 

and TH recordings acquired from the same patients. MSC is 
computed as [13]: 
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where Px,x and Py,y are the corresponding PSDs of each signal 
(NPP and TH) and Px,y is the cross PSD between them. 

B. Feature selection 

The FCBF automatic selection algorithm was 
implemented to evaluate relevance and redundancy of the 
features obtained from NPP and TH [14]. This method 
computes symmetrical uncertainty (a normalization of mutual 
information) between each feature and the AHI taken as a 
reference variable (SUF,AHI). SU is used to perform a 
relevance ranking by classifying higher those features with 
values closer to 1. Redundancy is established by computing 
SU between each pair of features (SUi, j), where feature i is 
ranked higher than feature j. Then, if SUi, j ≥ SUj,AHI, feature j 
is considered redundant and discarded for subsequent 
analysis [14]. 

C. Bayesian multi-layer perceptron 

Multi-layer perceptron (MLP) artificial neural networks 
were used to automatically classify each subject into one out 
of the four SAHS-severity degrees. Vectors formed by the 
previously selected spectral features were used as patterns to 
characterize each subject and to train the networks. MLP 
architecture was arranged in three layers of neurons (input 
layer, hidden layer, and output layer), since this configuration 
is known to be able to provide universal approximations [15]. 
Logistic activation functions were used for the neurons as a 
common choice for classification tasks [15]. The Bayesian 
approach was used to estimate the weights connecting 
neurons each other. This method (BY-MLP) has been 
reported to provide higher performance in SAHS context than 
the maximum likelihood optimization approach [16]. 

D. Statistical analysis 

The extracted features did not pass the Lilliefors 

normality test. Hence, the non-parametric Spearman’s  
coefficient was used to evaluate the correlation between the 
features from NPP and TH with the AHI, the apnea index 

(AI), and the hypopnea index (HI). Cohen’s  was used to 
assess the diagnostic performance of BY-MLP in the four-
class classification task. Sensibility (Se), specificity (Sp), and 
accuracy (Acc) were used to perform a binary evaluation of 
BY-MLP in each of the AHI cut-offs that limit the SAHS-
severity degrees (5, 15, and 30 events/hour). 

TABLE I.   DEMOGRAPHIC AND CLINICAL DATA OF THE SUBJECTS 

UNDER STUDY. 

Data All Training Test 

Subjects (n) 315 189 126 

Males (%) 71.4 73.0 69.0 

Age (years) 49.9 ± 12.0 49.2 ± 12.2 50.9 ± 11.8 

BMI (kg/m2) 25.5 ± 9.5 25.3 ± 10.1 25.9 ± 8.6 

BMI: Body Mass Index 
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a) 

 

b) 

 

c) 
Figure 1.  Averaged plots per SAHS-severity degree for a) PSDn of NPP 

airflow; b) PSDn of TH airflow and c) MSC comparing frequencial 

components of NPP and TH. 

IV. RESULTS 

A. Power Spectral Density and Magnitude Squared 

Coherence plots 

Figures 1 a) and b) show the normalized PSDs (PSDn) of 
NPP and TH airflow averaged by SAHS severity group 
(training set). As expected, spectrum of airflow from both 
sensors is concentrated around the normal respiratory 
frequency at rest (15 breaths per minute, i.e., 0.250 Hz.) [17]. 
Consistent with previous studies [10], the PSD amplitudes of 
the band of interest increase with SAHS severity for both 
NPP and TH. In Figure 1 c), MSC quantifies these qualitative 
findings. High correlation is found (>0.8) around the normal 
respiratory rate. However, low correlation values are reached 
(<0.3) when comparing the spectral content of the 
frequencies from the two sensors in the band of interest. 

B. Spectral features relationship with apneic events 

Table II shows Spearman’s  coefficient of the spectral 
features from NPP and TH airflow with AHI, AI, and HI 
(training set). As can be observed, all the spectral features 

from NPP airflow reached higher with than the 
corresponding features from TH. Despite the AASM 
recommendation of using NPP to score hypopneas and TH to 
score apneas, all the spectral features showed higher 
correlation with AI than with HI, regardless the sensor they 
were acquired from. Furthermore, NPP spectral content 
showed higher correlations with apneas than TH. 
Nonetheless, features from both sensors reached significant 
correlations with apneas and hypopneas.  

C. Feature selection: relevance and redundancy 

The FCBF automatic selection method was applied to 
(training set): i) the 6 NPP spectral features; ii) the 6 TH 
spectral features; and iii) the 12 NPP and TH features. Two 
features were considered relevant and non-redundant in the 
case of NPP (Mf1 and Mf4) and TH (Mf2 and Mf4). By 
contrast, 3 features were selected when applying FCBF to the 
12 spectral features (Mf1NPP, Mf2TH, and Mf4NPP). 

D. Sleep Apnea Severity Classification 

The three subsets of features selected in the previous 
stage (NPP, TH, and features from both sensors) where used 
to train BY-MLP networks with ability to assign the subjects 
into the SAHS severity degrees. Table III summarizes the 
diagnostic performance of BY-MLP (test set) when trained 
with these selected features from NPP (BY-MLPNPP), TH 
(BY-MLPTH), and both sensors (BY-MLPTH). According to 
the number of features and instances used for training the 
models, 10 neurons in the hidden layer were fixed in the three 
cases as reasonable choices for the sake of the bias-variance 
trade-off [15]. Since BY-MLP training depends on random 
initializations of the weights connecting the neurons, the 
results are reported as the median values of the performance 
in the test set after 100 training processes (with 95% 
confident interval). Thus, it can be observed that BY-MLPNPP 
substantially outperformed BY-MLPNPP-TH and BY-MLPTH 

in the overall 4-class classification task ( = 0.498), as well 
as in the binary assessment for the AHI cut-offs = 15 e/h 
(84.9 % Acc) and 30 e/h (83.3 % Acc). Additionally, only 
BY-MLPNPP-TH slightly outperformed BY-MLPNPP in the case 
of the AHI cut-off = 5 e/h (92.9% vs. 91.3%). 

TABLE II.  SPEARMAN’S COEFFICIENT BETWEEN THE SPECTRAL 

FEATURES AND EACH OF AHI, AI, AND HI. 

Features AHI AI HI 

MANPP 0.721 0.742 0.522 

MATH 0.588 0.580 0.429 

mANPP 0.687 0.713 0.486 

mATH 0.489 0.510 0.336 

Mf1NPP 0.711 0.736 0.513 

Mf1TH 0.556 0.560 0.397 

Mf2NPP 0.651 0.674 0.464 

Mf2TH 0.603 0.567 0.448 

Mf3NPP 0.100 0.081 -0.002 

Mf3TH 0.082 0.122 0.029 

Mf4NPP 0.073 0.104 0.017 

Mf4TH 0.043 0.101 0.053 

In bold are those values of Spearman’s coefficient higher than the 

corresponding from the other sensor. 
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V. DISCUSSION AND CONCLUSIONS 

In this study, a comparison of the spectral information of 

airflow obtained from NPP and TH sensors was conducted 

in the context of SAHS severity estimation. Although the 

averaged PSDs from both sensors showed a similar 

behavior, a MSC analysis revealed that the spectral content 

of NPP and TH is low correlated in the SAHS band of 

interest. This result pointed out to possible differences in the 

relationship with apneic events of the spectral information 

obtained from each sensor, which was subsequently 

supported by a correlation analysis conducted over the 

features extracted from the two of them. Thus, although 

spectral features from both sensors were significantly 

correlated with apneas and hypopneas, those derived from 

NPP showed higher correlation values with AHI, AI, and HI. 

In contrast to AASM recommendation, this suggests that 

NPP airflow might be able to reflect more accurately not 

only hypopneas-related information but apneas too.  

The FCBF selection algorithm also revealed differences in 

the relevant and non-redundant features from each sensors, 

as well as supported some degree of complementarity in the 

information obtained from them (two features selected from 

NPP and one from TH). However, the BY-MLP models 

trained with the selected features from NPP, TH, and both 

sensors showed that the model only built with features from 

NPP reached the highest performance in SAHS severity 

estimation. Actually, the BY-MLPNPP reached high overall 

diagnostic ability ( = 0.498), as well as for the three AHI 

cut-offs binary evaluated, (91.3%, 84.9%, and 83.3% Acc 

for 5, 15, and 30 e/h, respectively). These results outperform 

those from a recent study focused on automatic SAHS 

severity estimation by the use of information from NPP 

single-channel airflow and AdaBoost as multiclass 

classification approach ( = 0.432, 86.5%, 81.0%, and 

82.5% Acc, respectively) [9]. However, further optimization 

of our BY-MLP approach is required (a search for the 

optimum number of hidden neurons) to be able to conduct a 

more reliable comparison.  

Summarizing, we found differences in the SAHS-related 

spectral information provided by NPP and TH airflow. In 

contrast to scored-event recommended protocols, our 

analysis showed that the spectral information from NPP 

correlates more than TH’s with both apneas and hypopneas. 

A BY-MLP model only trained with selected features from 

NPP reached high diagnostic ability and widely 

outperformed similar ones trained with TH features, and 

with NPP and TH features jointly. These results suggest that 

TH airflow might be not necessary to simplify SAHS-

severity estimation when an automatic comprehensive signal 

characterization approach is conducted. 
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TABLE III.  DIAGNOSTIC PERFORMANCE OF BY-MLP TRAINED WITH THE SELECTED FEATURES FROM NPP, TH, AND BOTH SENSORS (NPP AND TH) 

Models Cut-off Se (%) Sp (%) Acc (%)  

BY-MLPNPP 

5 e/h 96.5 (96.5, 100.0) 41.7 (16.7,58.3) 91.3 (91.3, 92.9) 

0.498 (0.456,0.513) 15 e/h 90.9 (89.6, 90.9) 75.5 (67.4, 75.5) 84.9 (81.8, 84.9) 

30 e/h 71.0 (67.7, 71.0) 95.3 (95.3, 95.3) 83.3 (81.8, 83.3) 

BY-MLPTH 

5 e/h 100.0 (100.0, 100.0) 0.0 (0.0, 0.0) 90.5 (90.5 90.5) 

0.325 (0.257,0.352) 15 e/h 74.0 (67.5, 74.0) 73.5 (71.4, 79.6) 73.8 (71.4, 76.2) 

30 e/h 69.2 (48.4, 66.1) 90.6 (89.1, 93.8) 77.0 (71.4, 78.6) 

BY-MLPNPP-TH

5 e/h 98.3 (96.5, 100.0) 41.7 (25.0,58.3) 92.9 (92.1, 94.4) 

0.449 (0.405,0.494) 15 e/h 88.3 (87.0, 90.9) 71.4 (67.4, 75.5) 81.8 (80.2, 84.1) 

30 e/h 66.1 (58.1, 71.0) 95.3 (93.8, 96.9) 81.0 (77.0, 82.5) 
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