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Abstract. Nowadays, smartphones are essential parts of our lives. The
wide range of functionalities that they offer to us, from calling, taking
photos, sharing information or contacting with people, have contributed
to make them a useful tool. However, its accessibility remains restricted
to disabled people that are unable to control their motor functions. In this
preliminary study, we have developed a Brain-Computer Interface system
that allows users to control two main functionalities of our smartphones
using their own brain signals. In particular, due to the importance of
the socializing apps in today’s world, the system includes the control of
social networking and instant message services: Twitter and Telegram,
respectively. The system has been tested with 10 healthy subjects, who
were asked to perform several tasks, reaching an average accuracy of
92.3%. Preliminary results show that users can successfully control the
system, bridging the accessibility gap in smartphone applications.

Keywords: Brain-Computer Interfaces (BCI), smartphones, electroen-
cephalogram, P300 evoked potentials, Event-Related Potentials (ERP).

1 Introduction

Brain-Computer Interfaces (BCIs) have been originally developed for improv-
ing the quality of life of severely motor-disabled people. The facility of these
systems to create a communication system between our brains and the envi-
ronment makes them a suitable alternative to bypass diseases that impairs the
neural pathways that control muscles [1–3]. For instance, BCIs have been suc-
cessfully applied with users that suffer from traumatic brain injuries, muscle dis-
orders, ataxia, cerebral palsy, multiple sclerosis, among others [1, 2, 4]. In order
to perform such bypassing, brain signals should be monitored. This is commonly
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achieved by recording the electroencephalogram (EEG) of the user, due to its
non-invasiveness and ease of use [3].

Owing to the range of capabilities and the continuous Internet connection
that offer the smartphones nowadays, these devices have become an indispens-
able part of people’s lives. In fact, the market penetration of the smartphones
reaches the 66%, with a 4.9 billion of unique mobile users [5]. Although their
main functionalities cover from taking photos, reading news, watching videos or
playing games, more that the 56% of the time spent with these devices is dedi-
cated to socializing (i.e., social media and instant messaging) [6]. Nevertheless,
their access is still restricted to disabled people that are unable to use accurately
their hands and fingers.

In relation to that accessibility, despite the growing popularity of smart-
phones, there are very few attempts in the literature that have tried to integrate
a BCI system for controlling their main functionalities. These studies are lim-
ited to accept incoming calls [7], dial numbers [8], select contacts [8, 9] or open
pre-installed apps [10]. However, none of those studies have been focused on pro-
viding a high-level control of the smartphones, nor controlling anything related
to the socializing category, the most popular one, both in everyday and work
environments [6].

The main objective of this study is to design, develop and test a BCI system
that allows users to control socializing-related functionalities of the smartphones
with their own brain signals. In particular, the system should provide a complete
control of Twitter and Telegram, a social network and an instant messaging
app that currently have more than 317 and 100 millions of mobile active users,
respectively [5].

2 Subjects and methods

The application has been tested with 10 healthy subjects (9 males and 1 female)
with a mean age of 26.2% ± 3.45 years. All the subjects gave their informed
consent for participating in the study, composed of 3 different sessions (2 for
calibration and 1 for testing).

As can be noticed in the Fig. 1, the system is composed of three main
stages that communicate among themselves: (1) acquisition, which involves the
EEG signal recording and monitoring; (2) processing, which applies the real-
time methods to determine the command that the user wants to select; and (3)
application, intended to interpret those commands and provide visual feedback.
These stages are detailed below.

2.1 Acquisition

The acquisition stage is intended to record, monitor and send the EEG signal
of the user to the processing stage in real-time. EEG signals were recorded with
a g.USBamp amplifier using a 8-channel cap. BCI2000 platform was used to
record, display and process the data [11]. Active electrodes were placed on Fz,
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Fig. 1. Structure of the BCI smartphone system. The acquisition stage records the EEG
signal and sends it to the laptop, whose main task is to apply the signal processing
methods to decode the user’s intentions. Finally, the selected commands are sent in
real-time via Bluetooth to the final device, which runs the application and provides
visual feedback to the user.

Cz, Pz, P3, P4, PO7, PO8 and Oz, according to the International 10–20 System
distribution [12], and referenced to the earlobe, using the FPz as a ground.
Moreover, notch (50 Hz), bandpass (0.1 – 60 Hz) and common average reference
filters were applied as a pre-processing stage.

2.2 Processing

P300 evoked potentials were selected as control signals, due to its exogenous
nature and the large amount of commands that can be selected by the user
[3,4,13]. These potentials, defined as voltage deflections that appear in parietal
and occipital cortex in response to infrequent and significant stimuli about 300
ms after their onset, are elicited using an oddball paradigm [3]. In this paradigm,
a target infrequent stimulus, which has to be attended, is presented among other
distracting stimuli that have to be ignored. Thus, a P300 potential is generated
when the user receives an unexpected target stimulus.

In this study, row-col paradigm (RCP) matrices, an extension of the oddball
paradigm, have been used to determine the user’s intention [14]. As shown in
Fig. 2, a matrix that contains the application commands is displayed. The user
just need to focus attention on one of these commands, while the matrix rows
and columns are randomly intensified. Whenever the target’s row or column is
flashed, a P300 potential is produced in the scalp of the user. Therefore, the
desired character can be determine by computing the intersection where those
potentials were found [3, 4, 13, 14]. In particular, two switchable RCP matrices
have been used: (i) navigation matrix, a small one intended to provide efficient
navigation; and (ii) keyboard matrix, intended to write texts and fill out forms.
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In order to determine the command that the user is looking at, it is required
to perform a signal processing stage, composed by feature (i) extraction, (ii)
selection and (iii) classification. The signal processing pipeline that has been
followed in this study is the most common one in the P300-based BCI literature,
which applies: down-sampling to 20 Hz as feature extraction, step-wise (SW)
regression (max. of 60 features, pin = 0.1, pout = 0.15) as feature selection,
and linear discriminant analysis (LDA) as feature classification [4, 15–18]. As a
result, the likelihood of selecting each matrix command is returned, and the final
selected command will be the one that provides the maximum probability (i.e.,
psel = maxp).

RCP paradigm is a synchronous process. This implies that a set of probabil-
ities will be always returned and thus, the system will select a command even if
the user is not paying attention to the flashings [4,19,20]. In order to avoid this
problem, we have applied an asynchrony management method based on thresh-
olding [4]. The algorithm is simple: (1) EEG signals of the user paying attention
(i.e., control state) and ignoring the stimuli (i.e., non-control state) are recorded
in a calibration session; (2) probability scores are stored in control pc, and non-
control pn vectors; (3) these vectors are fed as different classes into a ROC
curve; and (4) threshold is obtained by maximizing the sensitivity-specificity
tuple. Hence, when a selection occurs, psel is compared to the threshold T : if
psel > T , the selected command is sent to the application stage; otherwise,
the application shows a warning message that encourages the user to pay more
attention to the stimulation.

2.3 Application

As previously indicated, the developed system allows users to control both Twit-
ter and Telegram, and switch freely between both functionalities. Therefore, the
application stage receives the commands selected by the user via Bluetooth and
interprets them, controlling both functionalities and providing real-time feed-
back. Fig. 2 shows several snapshots of the final application.

Twitter. Popular social networking service where users post small messages (up
to 140 characters), known as “tweets” Moreover, its activity is not only limited
to personal computers, but also to mobile phones, where the number of active
users reaches more than 317 million [5]. Our BCI application implements the
entire set of Twitter functionalities, including the possibility of interacting with
tweets: writing, answering, mark as favorite or “retweet” them; and accounts:
surfing among profiles, or sending private messages.

Telegram. Non-profit cloud-based instant messaging service where users can
send messages and exchange files of any type. Although it also have a desktop
version, it has more than 100 million of mobile active users, becoming the most
popular instant message app in several countries [5]. The developed BCI applica-
tion covers its main functionalities, including the possibility to create new chats
with any contact stored in the phone; and interacting with chats, groups and
channels, sending messages and receiving them in real-time.
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2.4 Evaluation procedure

During the assessment, participants were comfortably seated in front of a panora-
mic screen that displayed the current RCP command matrix, connected to a
laptop (Intel Core i7 @ 2.6 GHz, 16GB RAM, Windows 10) that executed the
processing stage; as well as in front of a smartphone (Samsung Galaxy S7, 4GB
RAM, Android 7.0) on a small tripod, which run the application. Each user
carried out a total of 3 sessions (2 calibration sessions and 1 evaluation session),
detailed below:

Calibration 1 The first session was indented to calculate the optimal param-
eters for each user, such as the classifier weight vector, the optimal number of
sequences (i.e., repetitions of the stimuli) and the optimal asynchronous thresh-
old. First, users were ask to sequentially pay attention to 6 items in 4 trials (i.e.,
spelling 4 words of 6 characters with the keyboard matrix) while the matrix was
flashing. For this task, 15 sequences where used and thus, each character cell
was highlighted 30 times. In order to keep the attention on the task, they were
recommended to count how many times the target command was illuminated.
Then, SW and LDA were performed for determining the optimal weights and
number of sequences of each user. From here onwards, the customized classifier
and number of sequences were used. Finally, the first session of threshold cali-
bration was performed. Composed of 8 trials with 6 items, users were asked to
pay attention to 4 trials (i.e., control state), and to ignore the remaining 4 (i.e.,
non-control state).

Calibration 2 The second session was intended to record additional data with
the objective of creating a more robust asynchronous threshold [4]. Hence, users
were asked to pay attention to 4 trials and to ignore 4 trials more, all of them
composed by 6 items. It is noteworthy to mention that these trials were per-
formed using the navigation matrix, which reduces the average duration time of
the session.

Evaluation The last session was intended to assess the usefulness and the per-
formance of the developed BCI application. Users were asked to complete 6 dif-
ferent tasks, whose difficulty increased progressively. The duration of each task
varied among users due to their optimal number of sequences. However, the op-
timum number of selections, the mean average time, and its standard deviation
are provided below:

Task 1) Toggling between Twitter and Telegram. The first and easiest
task is intended to introduce the system to the user. In this task,
users had to scroll up and down the Twitter timeline and toggle to
Telegram (3 items, 1 : 10 ± 0 : 25 min).

Task 2) Retweeting a tweet. Using Twitter, users had to scroll down the
timeline, select one tweet and retweet it (4 items, 1:50 ± 0:55 min).

Task 3) Writing a new tweet. This was the first task that involved the use
of both matrices, increasing the duration time and the difficulty to
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Fig. 2. (a) Snapshots of the developed BCI application whilst controlling Twitter and
Telegram. (b) Evaluation setup: (1) smartphone; and panoramic screen with (2) navi-
gation matrix or (3) keyboard matrix. Note that the first row of the navigation matrix
is currently flashed.

finish it. Using Twitter, users had to open the form to write a new
tweet and spell “hello”(7 items, 3:54 ± 1:39 min).

Task 4) Checking the profile and answering a tweet. Using Twitter,
users had to visit their profile, select the last written tweet and an-
swer it by “great!” (11 items, 5:53 ± 2:00 min).

Task 5) Create a new chat. Using Telegram, users had to select one contact
and create a new chat, spelling “how are you?” (11 items, 6:15 ±
2:10 min).

Task 6) Chating with someone. Using Telegram, users had to select one
chat from the list, in which the interlocutor had inquiring: ”hi! how
are you?”, and reply with: “fine, and you?” (12 items, 7:31 ± 2:48
min).

3 Results

The results of the evaluation session are shown in the Table 1 and the Fig. 3,
where accuracies and the required time to accomplish each task are provided for
each participant. Accuracy is calculated as 1 −Ne/Nt, where Ne is the number
of errors and Nt is the total number of selections. Note that selections that have
not overcome the asynchronous threshold are not considered errors, since they
have not been sent to the final device. As previously mentioned, the duration of
each task depends on the number of sequences of each user (i.e., Ns) in a large
extent. Owing to that fact, Ns is provided as well.
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Users
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Ns
Average

Tim. Acc. Tim. Acc. Tim. Acc. Tim. Acc. Tim. Acc. Tim. Acc. accuracy

C01 01:42 100% 02:16 100% 05:38 100% 07:47 90.9% 08:05 90.9% 09:12 91.7% 11 93.8%
C02 00:56 100% 01:14 100% 03:04 85.7% 04:40 100% 04:51 100% 05:31 100% 6 97.9%
C03 02:01 100% 04:02 83.3% 07:43 85.7% 10:07 100% 10:30 100% 13:01 92.3% 13 94.2%
C04 01:05 100% 02:10 66.7% 03:35 100% 05:27 81.8% 05:39 100% 09:43 73.3% 7 85.2%
C05 00:47 100% 01:02 100% 02:33 100% 03:54 90.9% 04:03 100% 04:36 100% 5 98.0%
C06 00:56 100% 01:14 100% 03:04 71.4% 06:14 100% 08:05 100% 09:12 66.7% 8 86.7%
C07 01:14 100% 02:04 60.0% 03:35 57.1% 05:27 81.8% 06:53 91.7% 07:22 81.8% 8 79.6%
C08 00:37 100% 00:50 100% 02:03 100% 03:07 100% 03:14 90.9% 03:41 91.7% 4 95.8%
C09 01:14 100% 01:39 100% 04:06 100% 06:38 91.7% 05:39 100% 06:26 100% 8 98.0%
C10 01:05 100% 01:49 80.0% 03:35 100% 05:27 100% 05:27 90.9% 06:26 91.7% 7 93.9%

Mean 01:10 100% 01:50 89.0% 03:54 90.0% 05:53 93.7% 06:15 96.4% 07:31 88.96% 7.7 92.3%
SD 00:25 0.0% 00:55 15.6% 01:39 15.1% 02:00 7.5% 02:10 4.6% 02:48 11.5% 2.7 6.3%

Table 1. Evaluation session results for each participant.

Fig. 3. Results of the assessment sesion. (Left) Stacked normalized accuracy of the
participants for each task. (Right) Average duration percentage of each evaluation
task.

4 Discussion

Results show that the developed application, tested with 10 healthy subjects,
can be successfully controlled using only the brain signals of the users, reaching
an average accuracy of 92.3% in the evaluation session. Its standard deviation
is kept low, since 7 participants were able to reach an average accuracy greater
than 90%, and only 3 have obtained values below the average. Moreover, it is
noteworthy to mention that all of them were able to finish all the tasks.

With regard to the difficulty of these tasks, the average durations shown
in Fig. 3 reinforce the fact that it was increased progressively. In fact, the last
two tasks took more than the half of the duration of the session, while the
sum of the 4 first ones took only over a quarter. However, the average reached
accuracies of the tasks does not show a constant decreasing, which could be
expected in order to follow that difficulty. The first task was easily finished by all
the participants, obtaining a perfect score (i.e., 100%±0.0%), which means that
they were able to complete it without a single mistake. Despite of the difference
of the required time to finish them, the second and the third tasks have obtained
similar average accuracies, 89.0%±15.6% and 90.0%±15.1%, respectively. This
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may be because several participants, such as C02 or C10, demonstrated that
they were more proficient controlling the keyboard matrix (i.e., present in tasks
3–6) than the navigation matrix (i.e., present in all tasks). After the first one, the
fourth and the fifth tasks have achieved high accuracies, reaching 93.7% ± 7.5%
and 96.4% ± 4.6%, respectively. Finally, the sixth and last task has obtained
the lowest performance, with an average accuracy of 88.96% ± 11.5%, possibly
because of its difficulty, where 10 out of 12 selections had to be performed using
the keyboard matrix.

As pointed earlier, there are vey few BCI-based studies that have attempted
to control any functionalities of a smartphone. These studies are limited to dial
numbers in cell phones [8], accept incoming calls [7], perform calls [8, 9], open
the photo gallery [10] or playing simple games [21]. None of them have been
focused to provide a high level control of a smartphone, nor implement any so-
cializing feature. In addition, none of them have been tested with disabled users.
Moreover, within these attempts, only two of them are P300-based [9,10], while
the rest uses steady-state visual evoked potentials [8], or MindSet concentration
features [7,21]. Regarding the P300-based studies, Katona et al. developed an ap-
plication to answering or rejecting incoming calls, reaching an average accuracy
of 75% with 5 healthy subjects; while Elsawy et al. developed an application that
allowed users to open pre-installed apps and visualize images from the gallery,
obtaining mean accuracies of 79, 17% and 87.5% for both features, respectively,
using 6 healthy subjects. As can be noticed, not only our application provides a
higher level of control of an smartphone, but also it have reached higher accu-
racies than these previous attempts.

Even though the results show that the developed application allow users to
successfully control the socializing features of a smartphone, we can point out
several limitations. Firstly, the application has been only tested with healthy
subjects, and not with motor-disabled people, who are the target of this kind
of BCI systems. In addition, the signal processing stage is executed in a laptop,
making the system dependent on a computer and thus, impairing its portability.
In order to overcome these limitations, we contemplate the following future re-
search lines: (i) testing the system with motor-disabled people, in order to assess
its actual usefulness to improve their quality of life, and (ii) encapsulating the
signal processing stage inside the final device, improving the portability and its
application in a real world scenario.

5 Conclusion

An asynchronous P300-based BCI system to control socializing apps of a smart-
phone has been designed, developed and tested. The system uses the P300 poten-
tials of the user, generated by two exchangeable RCP matrices that are displayed
on a panoramic screen, to determine the command that the user wants to select
in real-time. These commands are then sent to the smartphone app via Blue-
tooth, and visual feedback is presented to the user. The application has been
tested with 10 healthy subjects, who were asked to perform a total of 6 different
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tasks with increased difficulty, reaching an overall accuracy of 92.3%. Although
the preliminary results shows that the developed system can be successfully con-
trolled with the brain signals of the users, care must be taken to generalize them
for disabled people.
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