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Abstract— This study aims at assessing the bispectral analysis 

of blood oxygen saturation (SpO2) from nocturnal oximetry to 

help in pediatric sleep apnea-hypopnea syndrome (SAHS) 

diagnosis. Recent studies have found excessive redundancy in the 

SAHS-related information usually extracted from SpO2, while 

proposing only two features as a reduced set to be used. On the 

other hand, it has been suggested that SpO2 bispectral analysis 

is able to provide complementary information to common 

anthropometric, spectral, and clinical variables. We address 

these novel findings to assess whether bispectrum provides new 

non-redundant information to help in SAHS diagnosis. Thus, we 

use 981 pediatric SpO2 recordings to extract both the reduced 

set of features recently proposed as well as 9 bispectral features. 

Then, a feature selection method based on the fast correlation-

based filter and bootstrapping is used to assess redundancy 

among all the features. Finally, the non-redundant ones are used 

to train a Bayesian multi-layer perceptron neural network (BY-

MLP) that estimate the apnea-hypopnea index (AHI), which is 

the diagnostic reference variable. Bispectral phase entropy was 

found complementary to the two previously recommended 

features and a BY-MLP model trained with the three of them 

reached high agreement with actual AHI (intra-class correlation 

coefficient = 0.889). Estimated AHI also showed high diagnostic 

ability, reaching 82.1%, 81.9%, and 90.3% accuracies and 0.814, 

0.880, and 0.922 area under the receiver-operating 

characteristics curve for three common AHI thresholds: 1 e/h, 5 

e/h, and 10 e/h, respectively. These results suggest that the 

information extracted from the bispectrum of SpO2 can improve 

the diagnostic performance of the oximetry test.   

I. INTRODUCTION 

Pediatric sleep apnea-hypopnea syndrome (SAHS) has 
become a main research subject in both medical and technical 
fields [1]-[4]. On the one hand, the recurrence of respiratory 
pauses (apneas) and airflow reductions (hypopneas) during the 
night triggers a sequence of undesirable physiological 
phenomena that include inadequate gas exchange, oxygen 
desaturations, arousals, and sleep fragmentation [2]. These 
lead the affected children to restless sleep, which often results 
in cardiovascular and metabolic malfunctioning as well as 
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cognitive and behavioral problems that diminish their health 
and quality of life [1]. On the other hand, nocturnal 
polysomnography (PSG), which is the standard diagnostic test, 
is technically complex due to the number of biomedical signals 
to be recorded, time-consuming because of the need for 
inspecting all of them, and it is also costly for healthcare 
systems since it requires overnight in-hospital supervision [4]. 
In addition, it is an uncomfortable test to undertake for children 
[4]. 

The negative impact of SAHS in children’s life accentuates 
the importance of a rapid diagnosis. However, its high 
prevalence [1], together with the above-mentioned PSG 
limitations, lead most of affected children to remain 
undiagnosed [5], as well as highlights the need for a simplified 
diagnostic test. Nocturnal pulse-oximetry (NPO) has been 
often used for this purpose [3], [4], [6]-[8].  

NPO is able to record the oxygen saturation signal (SpO2), 
one of the 32 signals involved in PSG, with the only use of a 
sensor placed on a finger [9]. Apneic events usually cause 
drops in the oxygen of the hemoglobin present in the blood, i. 
e., oxygen desaturations [9]. Hence, SpO2 carries useful 
information about pediatric SAHS while changing the 
diagnostic approach from 32 channels to a single one. In 
addition, an automatic methodology has been commonly 
adopted as a further step into SAHS diagnosis simplification 
[3], [4], [6]-[8].  

A number of studies have shown the usefulness of different 
automatic approaches, such as spectral and non-linear 
analyses, when combining them with machine-learning 
methods to predict the presence of pediatric SAHS as well as 
its severity [3], [4], [6]-[8]. However, a recent study involving 
4,191 pediatric subjects has shown significant redundancy 
between the information extracted by spectral and non-linear 
methods and the 3% oxygen desaturation index (ODI3) [4], a 
commonly used clinical parameter. By contrast, another study 
has pointed to bispectral analysis as complementary to ODI3 
and other anthropometric variables [7], suggesting the 
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information obtained from the phase of the signal as the source 
of this new evidence. 

According to the above-mentioned considerations, we 
hypothesize that the information obtained from the bispectrum 
of the SpO2 signal is able to complement that provided by the 
optimum feature subset previously reported [4], i.e., ODI3 and 
the third-order statistical moment obtained from the 0.020-
0.044 Hz spectral band (Mf3BoI) [4]. In this regard, the 
objective of this preliminary study is twofold. First, to evaluate 
whether 9 bispectral SpO2-related features show redundancy 
with ODI3 and Mf3BoI. Then, to assess the diagnostic 
usefulness of the bispectrum features together with the 
previously reported optimum feature set. A Bayesian neural 
network approach with ability to automatically estimate 
pediatric SAHS severity has been chosen for this purpose in 
view of its previous usefulness in SAHS context [10], [11].  

II. SUBJECTS AND SIGNALS 

Nine hundred and eighty one SpO2 recordings were 
involved in this study. All of them were acquired from children 
referred to the Pediatric Sleep Unit at the University of 
Chicago Medicine Comer Children’s Hospital (Chicago, IL, 
USA) due to suspicion of SAHS. The Ethical Committee 
approved the protocol and all the legal guardians of the 
pediatric subjects signed and informed consent. Children 
underwent overnight PSG, which was used as the diagnostic 
reference. A clinical specialist inspected all PSGs to determine 
the apnea-hypopnea index (number of apneas and hypopneas 
per hour of sleep, AHI), the parameter used to determine 
SAHS and its severity. Apneas and hypopneas were scored 
following the rules of the American Academy of Sleep 
Medicine (AASM) [9]. One hundred and seventy five pediatric 
children showed no SAHS (AHI<1 events per hour). By 
contrast, 401 had an AHI in the range [1,5) e/h, 176 in the 
range [5,10) e/h, and 229 showed an AHI ≥ 10 e/h. The whole 
group was randomly divided into a training set (60%) and a 
test set (40%). Table I displays clinical and demographic data 
from the subjects under study for the whole sample as well as 
split into these two sets. No statistically significant differences 
(p-value>0.01) were found between training and test samples 
in either age or body mass index (BMI).  

The SpO2 recording of each child was acquired during its 
corresponding PSG at sampling rates of 25, 200, and 500 Hz. 
Hence, a pre-processing stage was included to resample all of 
them to 25 Hz., as recommended by the AASM [9]. In 
addition, artifacts due to children movements were removed 
following the methodology suggested in previous studies [4], 
[12].   

III. METHODOLOGY 

Eleven features were obtained from each SpO2 recording. 
Two of them (ODI3 and Mf3BoI) were reported as the only non-
redundant features in a previous study involving 23 SpO2 
features from 4,191 pediatric recordings [4]. This conclusion 
was reached using the same training set than in the present 
study. Additionally, 9 features were also extracted from the 
bispectrum of the SpO2 recordings. After feature extraction, a 
feature selection stage was implemented to assess whether 
there was redundancy among the 11 features obtained.  
Finally, those features showing no redundancy were used to 
train and test a Bayesian multi-layer perceptron neural network 

(BY-MLP) with ability to automatically estimate the AHI of 
each subject. 

A.  Feature extraction 

 ODI3 is a widely used clinical parameter commonly 
involved in SAHS context. ODI3 is computed as the 
number of drops from the baseline (≥3%) of the SpO2 time 
series, divided by the number of hours of the recording 
[12]. ODI3 tends to increase with the number of apneic 
events [9]. 

 Mf3BoI is the third order statistical moment (or skewness) 
obtained in the frequency domain from the spectral band 
of interest 0.020-0.044 Hz. It measures the asymmetry of 
the values of the power spectral density in such band, 
which has been reported to be different in SAHS affected 
children [4]. 

 Bispectral features. In contrast to the conventional spectral 
analysis, as that used to compute Mf3BoI, bispectrum 
gathers information not only from the amplitude of a time 
series but phase too [13]. It is the 2-D Fourier’s transform 
of the third order cumulant and, therefore, it is often 
represented as a 2-D image or a matrix [13]. Since 
recurrent drops in SpO2 changes both the amplitude and 
phase of the signal, which otherwise shows low variation 
in the range 96%-100%, up to 9 bispectrum features has 
been proposed to characterize SAHS information [7]. 
Features related to amplitude are: mean amplitude of the 
bispectrum (MB1); bispectral entropy (BE1) and squared 
bispectral entropy (BE2); and the sum of logarithmic 
amplitudes (H1), sum of the logarithmic amplitudes of the 
elements of the diagonal of bispectrum (H2), and first-
order spectral moment of the logarithmic amplitudes of the 
elements in the diagonal of bispectrum (H3). On the other 
hand, features related to phase are phase entropy (PE) and 
the mean and the variance of the bispectral invariant (P(a)), 
meanPa and varPa, which is the phase of the integration 
function of the bispectrum for each pair of frequencies 
associated through a line of slope a [13].  

B. Feature selection 

The fast correlation-based filter (FCBF) was used to 
evaluate the redundancy of the bispectral features with ODI3 
and Mf3BoI. FCBF computes symmetrical uncertainty between 
each feature, Fi, and the AHI, which is taken as a reference 
variable (SUFi,AHI) [14]. SU is used to rank higher those 
features with values closer to 1. Redundancy is established by 
computing SU between each pair of features (SUFi,Fj), where Fi 
is ranked higher than Fj. Then, if SUFi,Fj ≥ SUFi,AHI, Fj is 
considered redundant and discarded [14]. In order to conduct 
a comprehensive redundancy analysis and obtain a stable 
optimum feature subset [15], a bootstrap methodology was 
used along with the FCBF. Hence, following the methodology 

TABLE I.   DEMOGRAPHIC AND CLINICAL DATA OF THE SUBJECTS 

UNDER STUDY. 

Data All Training Test 

Subjects (n) 981 589 392 

Males (%) 61.4 58.9 65.1 

Age (years) 6.1 ± 3.4 6.1 ± 3.4 6.1 ± 3.5 

BMI (kg/m2) 19.7 ± 7.3 19.7 ± 7.5 19.6 ± 7.0 

BMI: Body Mass Index 



  

conducted in [4], 1000 new bootstrap sets were formed by 
resampling with replacement from the training set [16]. Those 
features selected more often than discarded, i.e., more than 500 
times, were chosen as non-redundant [4]. 

C. Bayesian multi-layer perceptron 

A BY-MLP neural network was used to estimate the AHI 
of the subjects under study. An array formed with the values 
of the selected features was used as pattern to characterize each 
subject and train the model. The BY-MLP was arranged in 
three layers of neurons (input, hidden, and output layer). This 
architecture configuration is known to be able to provide 
universal approximations [17]. The weights connecting 
neurons from different layers were estimated using the 
Bayesian approach. It showed higher performance than the 
maximum likelihood optimization approach in previous 
studies involving SAHS [10]. The number of neurons in the 
input layer will equal the number of selected features, whereas 
the output layer will be formed by a single neuron since the 
model is intended for regression [17]. In order to control the 
effective network complexity and deal with overfitting [17], 
the number of neurons in the hidden layer (NH) was set to 10% 
of the samples in the training set (NH=60).  

D. Statistical analysis 

A Bland-Altman plot and the intra-class correlation 
coefficient (ICC) were used to measure the agreement between 
the AHI estimated by the BY-MLP methodology and the 
actual AHI obtained from the standard diagnostic test. The 
diagnostic performance of the estimated AHI was assessed in 
terms of sensitivity (Se), specificity (Sp), accuracy (Acc) and 
area under the receiver-operating characteristics curve 
(AROC) in three commonly used AHI thresholds (1 e/h, 5 e/h 
and 10 e/h) [4].  

IV. RESULTS 

A. Complementarity of the extracted features 

Fig. 1 shows a histogram with the number of times each 
extracted feature was selected by the FCBF after the bootstrap 
procedure applied to the training set. In accordance with 
previous studies [4], the clinical parameter ODI3 was selected 
all the times and Mf3BoI was also selected more than half of the 
times. Notice, however, that an additional feature from 
bispectrum (PE) was also selected more than half of the times. 
We also verified that PE and Mf3BoI were jointly selected 407 
out of the 1000 times. Therefore, ODI3, Mf3BoI, and PE were 
chosen as the optimum feature subset.   

B. Agreement between estimated and actual AHI 

A BY-MLP model was obtained using the three selected 
features from the subjects of the training set. Fig. 2 shows a 
Bland-Altman plot with the AHI from the subjects in the test 
set estimated with this model and the corresponding actual 
AHI. A slight overestimation is observed in our proposal 
(mean = 0.725 e/h) with overall low variance in the 
comparison between estimated and actual AHI (standard 
deviation = ± 6.21). This results in a 95% confidence interval 
ranging [-11.45, 12.90] e/h, with higher AHI values (from 10 
e/h onwards) being responsible for most of the dispersion in 
the data. High agreement between estimated and actual AHI is 
also showed by the ICC value, which reaches 0.889. 

C. Diagnostic performance of the estimated AHI 

Table II shows the diagnostic performance of our 

estimation in terms of Se, Sp, Acc, and AROC in three 

clinically-used AHI thresholds: 1 e/h, 5 e/h, and 10 e/h. High 

overall diagnostic ability is reached (all Acc values higher 

than 80.0% and AROC values higher than 0.800), with 

increasing overall statistics as the AHI threshold is higher.  

V. DISCUSSION AND CONCLUSIONS 

In this preliminary study, we assessed the usefulness of the 

 

Figure 1. Histogram of the number of times each features was selected 
(bootstrap conducted in the training set). 

 

 

Figure 2. Bland-Altman plot with the estimated and actual AHI in the 

test set (sd stands for standard deviation). 

 
TABLE II.  DIAGNOSTIC ABILITY OF THE ESTIMATED AHI FOR THE 

AHI THRESHOLDS 1 E/H, 5 E/H AND 10 E/H (TEST SET) 

AHI 

threshold 
Se (%) Sp (%) Acc (%) AROC 

 1 e/h 93.0 37.7 82.1 0.814 

 5 e/h 78.1 84.2 81.9 0.880 

 10 e/h 75.9 94.2 90.3 0.922 

 

 



  

bispectral analysis of the SpO2 signal in the simplification of 

the diagnosis of pediatric SAHS. We found that the entropy 

of the bispectrum phase showed complementarity with ODI3 

and Mf3BoI, which had been recently established as relevant 

and non-redundant features for pediatric SAHS in a 

multicenter study involving 4,191 subjects [4]. A BY-MLP 

neural network was trained with these three features to 

automatically estimate the AHI of the subjects under study. It 

was subsequently tested, reaching high agreement with actual 

AHI (ICC=0.889) and high diagnostic ability for 3 

commonly-used AHI thresholds (1 e/h, 5 e/h, and 10 e/h). 

Particularly high were the figures for 5 e/h and 10 e/h, 

reaching 0.880 and 0.922 AROC. 

Only one study has been found focused on estimating AHI 

from SpO2 features from pediatric recordings. Hornero et al. 

involved 4,191 subjects and obtained a multilayer perceptron 

model built with ODI3 and Mf3BoI [4]. They reported an 

agreement with actual AHI of 0.785 ICC. Additionally, they 

reached 75.2%, 81.7%, and 90.2% Acc as well as 0.788, 

0.854, and 0.913 AROC for the AHI thresholds 1 e/h, 5 e/h, 

and 10 e/h, respectively. Our new proposal outperformed all 

these diagnostic statistics, with higher gain for the threshold 

of 1 e/h. However, they used 3.602 subjects as test set in 

contrast to 392 in this study.    

Vaquerizo-Villar et al. used 2 SpO2 bispectral features 

along with 7 anthropometric, spectral, and clinical features to 

train a multi-layer perceptron neural network with ability to 

classify pediatric subjects in 3 classes (AHI<5 e/h, AHI in the 

range [5,10), and AHI≥10 e/h) [7]. Using a database with 75 

subjects in the test set, they reported 81.3% and 85.3% Acc 

for AHI thresholds of 5 e/h and 10 e/h, respectively. Finally, 

a number of studies took a binary approach by training models 

with ability to discriminate pediatric SAHS in a single AHI 

threshold, usually 5 e/h [3], [6], [8], [18]. Accuracies reported 

in these works range 76.6%-84.9% using relatively small 

databases (from 21 to 146 pediatric subjects) [3], [6], [8], [18]. 

Our AHI estimation proposal, which can be used and 

evaluated in several thresholds at the same time, ranked high 

among these works only focused on the AHI threshold equal 

to 5 e/h [3], [6], [8], [18]. 

In spite of the promising results showed in this study, 

several limitations need to be addressed. First, further 

evaluation would be required in order to fairly compare our 

results with those reported in the study by Hornero et al. In 

this regard, the evaluation of our new proposal in the 4,191 

subjects is a future goal. In addition, other features different 

from bispectral analysis may also gather complementary 

information to simplify SAHS diagnosis through SpO2 signal. 

Hence, other analytical approaches, such as time-frequency 

analysis, could help to gain insight into the maximal 

diagnostic capability of this signal. Finally, the number of 

hidden neurons in the BY-MLP network was arbitrary chosen 

to control the effective complexity of the network. Therefore, 

additional tests would be required to find the optimum 

number of hidden neurons for our problem. 

Summarizing, we found that the phase of the SpO2 

bispectrum provides complementary information to that 

recently established as relevant and non-redundant for 

pediatric SAHS diagnosis simplification. It also showed its 

diagnostic usefulness by taking part of a BY-MLP estimation 

model that reached high agreement with actual AHI as well 

as high diagnostic ability comparing with the state-of-the-art 

studies. These results suggest that the entropy of the 

bispectrum phase from SpO2 might be used to enhance the 

models described in the literature to help in pediatric SAHS 

simplification. 
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