
Optimized Diffusion-Weighting Gradient Waveform De-
sign (ODGD) Formulation for Motion Compensation and
Concomitant Gradient Nulling

Authors:
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ABSTRACT

Purpose: To present a novel Optimized Diffusion-weighting Gradient waveform Design (ODGD)

method for the design of minimum echo time (TE), bulk motion-compensated, and concomitant

gradient (CG)-nulling waveforms for diffusion MRI.

Methods: ODGD motion-compensated waveforms were designed for various moment-nullings Mn

(n=0,1,2), for a range of b-values, and spatial resolutions, both without (ODGD-Mn) and with

CG-nulling (ODGD-Mn-CG). Phantom and in-vivo (brain and liver) experiments were conducted

with various ODGD waveforms to compare motion robustness, signal-to-noise ratio (SNR), and

apparent diffusion coefficient (ADC) maps with state-of-the-art waveforms.

Results: ODGD-Mn and ODGD-Mn-CG waveforms reduced the TE of state-of-the-art wave-

forms. This TE reduction resulted in significantly higher SNR (P < 0.05) in both phantom and

in-vivo experiments. ODGD-M1 improved the SNR of BIPOLAR (42.8±5.3 versus 32.9±3.3) in the

brain, and ODGD-M2 the SNR of motion-compensated (MOCO) and Convex Optimized Diffusion

Encoding-M2 (CODE-M2) (12.3±3.6 versus 9.7±2.9 and 10.2±3.4, respectively) in the liver. Fur-

ther, ODGD-M2 also showed excellent motion robustness in the liver. ODGD-Mn-CG waveforms

reduced the CG-related dephasing effects of non CG-nulling waveforms in phantom and in-vivo

experiments, resulting in accurate ADC maps.

Conclusions: ODGD waveforms enable motion-robust diffusion MRI with reduced TEs, increased

SNR, and reduced ADC bias compared to state-of-the-art waveforms in theoretical results, simu-

lations, phantoms and in-vivo experiments.

Keywords: Diffusion-weighted imaging (DWI), diffusion-weighting gradient waveforms, optimiza-

tion, motion compensation, concomitant gradient (CG)-nulling
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INTRODUCTION

Diffusion-weighted (DW) MRI has a unique ability to non-invasively probe tissue microstruc-

ture (1, 2). By applying powerful diffusion-weighting gradient waveforms (3), DW-MRI is sen-

sitive to the microscopic Brownian motion of water molecules, with multiple applications for tissue

characterization in health and disease (4, 5).

However, the application of these powerful diffusion-weighting gradients results in significant

imaging challenges, including signal dephasing due to bulk motion (1, 6, 7) as well as due to

concomitant gradients (CGs) (8–10). Bulk motion artifacts are particularly severe in organs that

experience substantial physiological motion (e.g., heart and liver). In these organs, the presence

of macroscopic elastic tissue motion during the application of the diffusion gradients can result in

localized signal voids (11–14). CGs are inherent to any diffusion-weighting gradient waveform due

to the constraints imposed by Maxwell’s equations, and can introduce large spatially dependent

dephasing in diffusion MRI sequences where the diffusion gradients are not symmetric about the

refocusing radiofrequency pulse (9). Bulk motion- and CG-related signal dephasing can complicate

the interpretation of DW images and introduce bias and variability in the quantification of diffusion

parameters.

Multiple approaches have been proposed to address the effects of bulk motion and CGs in

several MRI applications. These approaches include both acquisition-based and reconstruction-

based methods, as described next:

• Bulk motion artifacts can be reduced through the synchronization of the DW acquisition (1).

Synchronizing the DWI acquisition with the bulk physiological motion (e.g., using cardiac

and/or respiratory triggering) reduces motion artifacts, although these methods generally in-

crease the overall acquisition time (6). Further, elastic motion can occur regionally throughout

the entire cardiac or respiratory cycle, therefore triggered acquisitions are generally not able to

completely avoid motion artifacts. Sensitivity to bulk motion can be further reduced by apply-

ing diffusion-weighting gradient waveforms that guarantee first- and/or second-order moment-

nulling (15–17). Traditionally, first-order moment-nulling (i.e., velocity compensation) has

been achieved with bipolar waveforms (16), and second-order moment-nulling (i.e., accelera-

tion compensation) with ‘motion-compensated’ diffusion encoding gradient waveforms (17).

However, first- and second-order moment-nulled diffusion waveforms have typically resulted

in substantial increases in the achievable echo times (TEs), leading to low signal-to-noise ratio
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(SNR) efficiency in these acquisitions.

• CG-effects can be minimized using multiple different approaches, including: postprocessing-

based methods (18), shimming coils (19), image gradients dephasing (9), and application

of symmetric diffusion-weighting gradient waveforms such as monopolar gradients (20), or

waveform reshaping to guarantee phase cancellation (10).

Recently, Aliotta et al. (21) proposed a novel algorithm, termed Convex Optimized Diffusion

Encoding (CODE), to design gradient waveforms with first- and/or second-order moment-nulling.

By formulating the gradient waveform design problem as a constrained nonlinear optimization

problem (with constraints including sequence timing, hardware limits, and moment-nulling), CODE

enables flexible design of gradient waveforms and seeks to minimize the achievable TE for a desired

b-value (or conversely, to maximize the achievable b-value for a given TE). By approximating

this constrained optimization formulation as a convex (linear) optimization problem (instead of

the original nonlinear, non-convex quadratic problem), CODE results in simplified computation.

However, because of this approximation, it is unclear whether CODE results in optimal waveforms,

i.e., whether it achieves the minimum TE for a given desired b-value. This optimality is critical

for moment-nulled diffusion-weighting waveform design, as it will determine the signal-to-noise

ratio (SNR) of the DWI acquisition, particularly for organs with relatively short T2 relaxation

time (e.g., the liver). Further, CODE waveforms are generally asymmetric around the refocusing

pulse, therefore they suffer from substantial CG-effects, which need to be addressed. Although the

CODE-designed diffusion-weighting gradient waveforms can be subsequently modified to reduce

CG-effects (21), it is unclear how this subsequent modification affects the overall optimality of the

waveform.

Therefore, in this study we propose a novel Optimized Diffusion-weighting Gradient waveform

Design (ODGD) method for diffusion-weighting gradient waveform design that seeks to overcome

the limitations of previous methods. The proposed ODGD method consists of: 1) a constrainted

optimization formulation that minimizes the TE for a given b-value subject to moment-nulling

and CG-nulling constraints, and 2) a quadratic optimization algorithm that directly solves the

formulation without introducing approximations. In this manuscript, the proposed method is

described and evaluated in phantoms and in-vivo brain and liver diffusion MRI experiments.

4



THEORY

The proposed Optimized Diffusion-weighting Gradient waveform Design (ODGD) formulation seeks

to optimize the TE for a given b-value, under various linear and nonlinear constraints. These

constraints are listed below.

Moments

In order to refocus the signal from static spins, all diffusion-weighting gradient waveforms require

zeroth-order moment-nulling (M0). Additionally, diffusion-weighting gradient waveforms with high-

order moment-nulling are desirable in tissues affected by physiological motion in order to avoid

motion-related signal dephasing (importantly, this dephasing will result in artifactual signal decay

in voxels that experience elastic tissue motion). These moment constraints can be expressed as

follows (22):

Mn = γ

∫ TDiff

0
tnG(t)dt = 0 where n = 0, 1, 2... [1]

where γ is the gyromagnetic ratio, and G(t) and TDiff are the diffusion-weighting waveform and

the diffusion-weighting time, respectively. Under this constraint, M0 = 0 rephases the static spins,

M1 = 0 rephases the spins moving with uniform speed, and M2 = 0 rephases the spins moving with

uniform acceleration. In the present work:

• ODGD-M0 stands for ODGD with M0 = 0.

• ODGD-M1 stands for ODGD with M0 = M1 = 0.

• ODGD-M2 stands for ODGD with M0 = M1 = M2 = 0.

Concomitant Gradients

Concomitant Gradients (CGs) are well-known nonlinear spatially dependent magnetic fields that

appear, as a consequence of Maxwell’s equations for the curl and divergence, anytime we generate a

magnetic field gradient (8). In conventional MRI scanners (8, 10), these CGs are orthogonal to the

diffusion-weighting gradients, and have significant first- and second-order spatially varying terms

as follows:

Bc(x, y, z, t) =
1

2B0
[(G2

x(t) +G2
y(t))z2 +G2

z(t)
x2 + y2

4
−Gx(t)Gz(t)xz −Gy(t)Gz(t)yz] [2]
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where Bc is the CG magnetic field, B0 is the amplitude of the static magnetic field, and Gx(t), Gy(t),

and Gz(t) are the diffusion-weighting gradients applied in the x, y, and z directions, respectively.

Importantly, CGs are small near isocenter, and increase in magnitude away from isocenter. These

nonlinear and spatially dependent magnetic fields can cause a phase accrual throughout the gradient

diffusion-weighting time (TDiff) given by:

φc(x, y, z) = γ

∫ TDiff

0
Bc(x, y, z, t)dt [3]

Therefore, the application of gradients leads to a spatially dependent dephasing of the MRI signal.

This dephasing may cause a blurring of the k-space due to parabolic phase variations within the

imaging plane, and a shifting of the k-space due to the cross-terms GiGj , so called in-plane dephas-

ing (9). In addition, through-plane phase dispersion resulting from CGs (9) may cause severe signal

attenuation. Further, this additional signal decay will be larger for increasing b-values, which may

introduce bias in quantitative diffusion measures.

Consequently, in order to address the effects of CGs, the CG-related phase accrual can be nulled

by incorporating the following nonlinear constraint into the diffusion-weighting gradient waveform

design formulation:

φc(x, y, z) = 0 [4]

By including this constraint, CG artifacts will be avoided by design.

Additional Constraints

Diffusion-weighted MRI sequences need to satisfy additional hardware constraints such as the lim-

itation on the maximum gradient intensity (GMax) and maximum slew rate (SRMax). Further,

diffusion-weighting gradient waveforms need to be zero at certain times during the pulse sequence

(e.g., during the RF pulses). In this work, we will only focus on the constraints imposed by the

spin-echo DWI sequence (21):

G(RF90) = 0 [5]

G(RF180) = 0 [6]

G(TEPI) = 0 [7]
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G(t) ≤ GMax [8]

Ġ(t) ≤ SRMax [9]

where RF90 corresponds to the excitation pulse and RF180 corresponds to the refocusing pulse.

TEPI is the time needed by the EPI echo train to reach the center of k-space. In summary, the

diffusion-weighting waveform may begin immediately after the excitation pulse, is zero during the

refocusing pulse, and needs to finish before the beginning of the EPI echo train.

Proposed Formulation

The proposed ODGD formulation seeks to maximize the achievable b-value for a given TE. The

b-value is given by

b = γ2

∫ TDiff

0
F (t)2dt [10]

where

F (t) =

∫ t

0
G(τ)dτ [11]

Therefore, the maximization is performed directly over the b-value formulation (without the ap-

proximations introduced in previous works (21)), by optimizing the diffusion-weighting gradient

waveform subject to the constraints in Eqs. [1-9]. Hence, the objective function is formulated as

follows:

G(t) = arg max
G

b(G) [12]

For sake of clarity, Table 1 summarizes the constraints of the ODGD formulation. Importantly, it

is generally of interest to minimize the TE for a given b-value (rather than to maximize the b-value

for a given TE). To achieve the minimum TE for a given b-value, ODGD iteratively implements the

maximization described in Eq. [12] at several TEs following a similar solution strategy as described

in Figure 2 of (21).

Optimization Algorithm

In this work, Eq. [12] is directly solved using a sequential quadratic programming (SQP) algorithm

subject to upper and lower bounds (Eq. [8]), linear equality constraints (Eqs. [1] and [5 - 7]), linear

inequality constraints (Eq. [9]), and a quadratic equality constraint (Eq. [4]). This optimization is

performed in MATLAB (MathWorks, Natick, MA) using the fmincon built-in function.
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METHODS

Optimized Diffusion-weighting Gradient Waveform Design

The performance of the proposed ODGD method and previous waveform designs were compared by

assessing the TE needed to achieve a given b-value for each waveform. Specifically, gradient wave-

forms were compared for a broad range of b-values (100 - 2000 s/mm2). Additionally, because the

achievable TE also depends on the time needed by the EPI echo train to reach the center of k-space

(which will itself depend on the desired spatial resolution and degree of partial Fourier acquisi-

tion), different EPI readout times to the center of k-space (TEPI = 15 - 50 ms) were considered for

each b-value. Diffusion-weighting gradient waveforms were designed using the following hardware

and time constraints: excitation radiofrequency pulse duration of RF90 = 5.3 ms; refocusing pulse

duration of RF180 = 4.3 ms; maximum gradient strength of GMax = 49 mT/m; maximum slew

rate of SRMax = 100 T/m/s; unless otherwise stated, only one gradient direction was considered

for the computation of the b-values (note that CG-effects will depend on the diffusion-weighting

direction). All waveform designs were computed with a time resolution of 0.5 ms to optimize the

waveforms in moderate computation times.

For each TEPI and b-value, the following gradient waveforms were designed: 1) monopolar

(MONO) (20), 2) bipolar (BIPOLAR) (16), 3) motion-compensated (MOCO) diffusion-encoding

gradient waveforms (17), 4) three Convex Optimized Diffusion Encoding (21) waveforms, one for

each of the motion-nulling moments (CODE-Mn, where n=0,1,2), and 5) the proposed ODGD

formulation for each of the motion-nulling moments (ODGD-Mn, where n=0,1,2) without and

with CG-nulling (ODGD-Mn-CG, where n=0,1,2). In this study, the optimization algorithm for

ODGD-Mn waveforms was initialized with a constant waveform, and the optimization of ODGD-

Mn-CG waveforms was initialized with the corresponding ODGD-Mn waveform. Figure 1 shows

examples of each of the waveforms designed for the experiments grouped as traditional designs,

CODE waveforms, and ODGD waveforms without and with CG-nulling.

Evaluation of SNR Increase

Acetone phantom experiments

A ten-vial acetone-based diffusion phantom was constructed using mixtures of pure acetone (as a

signal source), H2O (to control the ADC of acetone without producing MR signal), and MnCl2 (to

control the T2 of acetone) (23). The total volume of mixture in each vial was of 50 ml. The ten
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vials were designed to form two T2 groups of approximately 40 and 90 ms, respectively, with five

different ADC values each. Specific vial compositions and expected approximate ADC values (23)

included 1) 11.02 and 2) 4.78 mM of MnCl2 with a 30% v/v of H2O for ADC = 0.9×10−3 mm2/s,

3) 13.89 and 4) 6.03 mM of MnCl2 with a 20% v/v of H2O for ADC = 1.2×10−3 mm2/s, 5) 15.94

and 6) 6.92 mM of MnCl2 with a 15% v/v of H2O for ADC = 1.5×10−3 mm2/s, 7) 17.50 and 8)

7.60 mM of MnCl2 with a 12% v/v of H2O for ADC = 1.8×10−3 mm2/s, and 9) 19.38 and 10) 8.42

mM of MnCl2 with a 9% v/v of H2O for ADC = 2.1×10−3 mm2/s, where the number before the

MnCl2 concentration represents the vial number.

Diffusion-weighted images of the diffusion phantom were acquired under 0◦C ice-water bath with

an eight-channel head coil in a 3T scanner (MR 750, GE Healthcare, Waukesha, WI). The specific

constraints of the optimization formulation are TEPI = 23 ms, RF90 = 5.5 ms, RF180 = 6 ms, GMax

= 49 mT/m and SRMax = 100 T/m/s. Twelve different diffusion-weighting gradient waveforms with

these constraints were designed with MONO, BIPOLAR, MOCO, CODE-Mn (n=0,1,2), ODGD-Mn

(n=0,1,2) and ODGD-Mn-CG (n=0,1,2), respectively. Axial images were acquired using different

waveforms with FOV = 26 × 26 cm, in-plane resolution = 2.0 × 2.0 mm, slice thickness = 5 mm,

TR = 6 s, parallel imaging acceleration of 2 and no partial-Fourier acquisitions. Diffusion encoding

was performed in all three orthogonal directions with b-values = [100(1), 400(1), 600(2), 800(4),

1000(6)] s/mm2, where the number in brackets represents the number of averages for each b-value.

In order to perform T2 mapping, spin-echo images were acquired with FOV = 26 × 15.6 cm,

matrix size of 256 x 160, slice thickness of 10 mm, TR = 2 s, parallel imaging acceleration factor

of 2, and TE = [6, 20, 60, 120, 240] ms. T2 maps were estimated with least squares fitting.

In order to compare SNR across different acquisitions, SNR maps were calculated for each

acquisition using a Rician non-stationary noise model (24), with spatially-varying noise standard

deviation σ(x). SNR maps were computed from the averaged composite magnitude images (e.g.,

complex images from different coils merged into one single magnitude image) using a Rician expec-

tation–maximization estimator (25, 26):

SNR(x) =
Â(x)

σ̂(x)
, [13]

where Â(x) and σ̂(x) are the estimates of the signal amplitude and noise standard deviation,

respectively, obtained from an iterative process (26). Local parameters were estimated using 3 × 3

windows and a total of 20 iterations. For evaluation of SNR, a 0.9 cm2 ROI was drawn in each

vial, co-localized across the different acquisitions.
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In-vivo acquisitions

This HIPAA-compliant study including healthy volunteers was performed with institutional review

board approval and informed written consent.

Brain DWI Ten healthy volunteers were recruited for brain DWI. Brain DWI was acquired with

the same waveform designs and constraints as the diffusion phantom experiment described in the

previous section with the eight-channel head coil, and on the same 3T scanner. The acquisition

parameters were FOV = 26 × 26 cm, in-plane resolution = 2.0 × 2.0 mm, slice thickness = 5

mm, TR = 2.5 s, parallel imaging acceleration factor = 2 and full k-space acquisitions. Diffusion

encoding was performed in all three directions with b-values(averages) = [100(1), 200(1), 600(2),

800(4), 1000(6)] s/mm2. SNR maps were calculated with Eq. [13]. For SNR analysis, four circular

ROIs of size 38 - 50 mm2 were drawn in the left and right cerebral white matter. ROIs in the

images from different acquisitions were co-localized and SNR measurements within each subject

were averaged prior to statistical comparison between different waveforms (see ‘Statistical Analysis’

section below for details).

Liver DWI Ten healthy volunteers were scanned with a 30-channel torso coil (GE Healthcare,

Waukesha, WI) in the same 3T scanner for liver DWI. Slices covering the superior portion of the

liver, including through the right and left lobes were acquired. Full liver coverage was not obtained

due to time constraints for the acquisition. The constraints used for the waveform optimization

were TEPI = 18.5 ms, RF90 = 5.5 ms, RF180 = 6.5 ms, GMax = 49 mT/m, and SRMax = 100

T/m/s. Different diffusion-weighting gradient waveforms with these parameters were designed

with MONO, MOCO, CODE-M2, ODGD-M2 and ODGD-M2-CG, respectively. Axial images were

acquired with respiratory triggering. Other acquisition parameters are FOV = 36 × 36 cm, in-plane

resolution = 2.8 × 2.8 mm, slice thickness = 6 mm, parallel imaging factor of 2 and full k-space

acquisitions. Diffusion encoding was performed in the R/L direction with b-values(averages) =

[100(4), 500(10)] s/mm2. SNR maps were calculated with Eq. [13] and ADC maps were estimated

with least-squares fitting. For SNR analysis, circular ROIs of 50 - 100 mm2 were drawn on the

superior portion of the liver in segments VII and VIII of the right lobe, and segment IV of the left

lobe. For each waveform, SNR measurements within each subject were averaged prior to statistical

comparison between different waveforms. For motion compensation analysis, one ROI was set on

segment II since it is typically severely impacted by cardiac motion and might contain signal voids
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with traditional diffusion waveforms. Care was taken to avoid large vessels and blurred regions.

Further, to measure liver T2, a multi-TE multi-TR STEAM sequence (27) with voxel size of 20

× 20 × 20 mm was applied to all volunteers on the right lobe of the liver carefully avoiding large

vessels.

Evaluation of CG-nulling

Simulations and phantom experiments

Water phantom simulations Simulations were performed in a synthetic water phantom with

full k-space acquisition and same FOV, in-plane resolution, slice thickness, and waveform designs

as the acetone phantom experiments. CG-related signal dephasing effects for different diffusion-

weighting directions were simulated, including x, y, z, x-y, x-z, y-z and x-y-z to assess the through-

plane dephasing effects. Further, the synthetic water phantom approximated the shape and dimen-

sions, and ADC value (2×10−3 mm2/s) of the following water phantom described next.

Water phantom A 7.5 L water phantom doped with NaCl and NiCl2 (28) was imaged at room

temperature with the same acquisition setup and the same waveform designs as the acetone phantom

experiment to evaluate the CG correction effect. Seven diffusion-weighting directions were acquired,

including x, y, z, x-y, x-z, y-z and x-y-z. Coverage in the slice (z) direction of 12 cm was applied to

evaluate the slice dependent CG-effect, especially for slices that are away from the isocenter. ADC

maps were estimated for each diffusion-weighting direction and each diffusion-weighting waveform

with a maximum likelihood estimator (29).

In-vivo acquisitions

Brain DWI Average trace ADC maps were estimated from trace DW images from the previously

described brain DW acquisitions with a maximum likelihood estimator (29). Hereinafter, the

average trace ADC map and the trace DW images are denoted as ADC maps and DW images,

respectively. ROIs measured within slices between 4.5 and 7 cm from isocenter (among the ROIs

drawn on the previously described brain DW acquisitions) were considered to assess the effect

of CG-related bias in ADC measurements. For each waveform, ADC measurements within each

subject were averaged prior to statistical comparison between different waveforms.
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Statistical Analysis

All ROIs of the phantom experiments were first tested for normality using the Kolmogorov-Smirnov

(KS) test. Homoscedasticity across variances was then tested using the Ansari-Bardley test. If

both tests yielded normality and homoscedasticity, respectively, pairwise comparisons were made

between co-localized ROI acquired with different waveforms using the one-way sample t-test. From

these comparisons, p-value (P) test with 0.05 confidence level was considered significant. Similarly,

for each waveform of the in-vivo experiments, all ROI SNR and ADC measurements within each

subject were averaged and then tested using the same analysis as in the phantom experiments.
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RESULTS

ODGD Optimization

ODGD waveforms reduce or equalize the minimum TE of the traditional (MONO, BIPOLAR, and

MOCO) and recently proposed waveforms (CODE-Mn, where n=0,1,2) for any given b-value, EPI

readout time, and moment-nulling order. ODGD with CG-nulling constraints also results in shorter

TE compared to the traditional waveforms. The relationship between previously proposed CODE

versus the proposed ODGD solution depends on the specific constraints: CODE waveforms are

sometimes the same as ODGD, sometimes a different local optimum resulting in a longer TE, and

sometimes not even a local optimum (results not shown).

Moment Constraints ODGD-Mn, where n=0,1,2, outperforms the traditional waveforms as

well as the recently proposed CODE-Mn gradient waveforms as shown in Figure 2. Figure 2.a)

depicts the optimal TE for a range of b-values and TEPI = 26.4 ms. Figure 2.b) shows the TE

difference between CODE-Mn and ODGD-Mn waveforms for the range TEPI = 15 - 50 ms. There

is no TE reduction of ODGD-M0 compared to CODE-M0, but there is a TE reduction between 0

- 3.57% for M1, and between 0.63 - 10.14% for M2. Relative to the traditional waveforms, ODGD

results in TE reductions between 1.91 - 17.84% compared to MONO, 9.20 - 29.22% compared to

BIPOLAR, and 1.88 - 26.97% compared to MOCO.

Concomitant Gradients Constraints ODGD-Mn-CG, where n=0,1,2, reduces the TE of tra-

ditional CG-compensated waveforms (MONO, BIPOLAR, and MOCO, which cancel the CG phase

accrual due to their symmetry around the RF180), as illustrated in Figure 3. Figure 3.a) shows

the minimum TE achieved for a given range of b-values and TEPI = 26.4 ms of the traditional

waveform designs and the proposed ODGD waveforms. Figure 3.b) shows the difference between

the minimum TE achieved by the traditional and ODGD waveforms for the same range of b-values

and TEPI = 15 - 50 ms. Namely, ODGD-Mn-CG, where n=0,1,2, results in TE reductions between

0 - 4.02% compared to MONO, 7.53 - 16.74% compared to BIPOLAR, and 0.77 - 12.54% compared

to MOCO.
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Evaluation of SNR Increase

Acetone phantom experiments

Experimentally measured T2 are 39.5±0.7 ms and 83.5±1.5, and measured ADC with respect to

each of the T2 and vial number are 1) 2.22±0.16 and 2) 2.28±0.02 × 10−3 mm2/s, 3) 1.99±0.09

and 4) 1.94±0.02 × 10−3 mm2/s, 5) 1.69±0.07 and 6) 1.69±0.02 × 10−3 mm2/s, 7) 1.36±0.06 and

8) 1.35±0.01 × 10−3 mm2/s, and 9) 0.84±0.06 and 10) 0.92±0.02 × 10−3 mm2/s.

There is a 6% TE reduction of ODGD-M2 over CODE-M2 (TE: 118.5 ms and 126.5 ms, re-

spectively), which generally increases the SNR in each of the diffusion phantom vials, as shown in

Figure 4. Mean SNR for each of the vials is T2 and ADC dependent, but there is an increase of

4%, -15%, 18%, 44%, 11% for each of the vials with T2 = 39.5±0.7 ms (vial numbers 1, 3, 5, 7

and 9, respectively), and 29%, -4%, 25%, 17%, 8% for each of the vials with T2 = 83.5±1.5 ms

(vial numbers 2, 4, 6, 8 and 10, respectively) as shown in Figure 4.c-d). Statistical significance

(P < 0.05) is found in every vial pairwise comparison except for vial 4) T2 ≈ 83.5 ms and ADC =

1.94±0.02 × 10−3 mm2/s. ODGD-M0 and ODGD-M1 waveforms are the same as the correspondent

CODE waveforms under the implemented spatial resolution (TEPI = 23.32 ms), achieving no TE

reduction, and therefore no SNR increase.

In-vivo acquisitions

Brain DWI Brain DWI results, including SNR and ADC measurements, are shown in Figure 5.

ODGD-M1 and ODGD-M1-CG reduce the TE by 16.3% and 10.9% as compared with BIPOLAR

(BIPOLAR: 119.5 ms, ODGD-M1-CG: 106.5 ms, ODGD-M1: 100.0 ms). There is no TE reduction

of ODGD-M1 compared to CODE-M1. The TE reduction relative to BIPOLAR results in visually

apparent increased signal (see Fig. 5.a) ). ODGD-M1 leads to higher SNR than BIPOLAR and

ODGD-M1-CG, P < 1 x 10−6 and P < 0.05, respectively. ODGD-M1-CG also leads to higher SNR

than BIPOLAR with P < 0.005.

Liver DWI The results from the liver acquisitions, with mean measured liver T2 = 24.38±11.4

ms, are shown in Figures 6 and 7. ODGD-M2 and CODE-M2 waveforms result in ADC maps that

are visually more homogeneous than MONO, suggesting higher motion robustness (see Fig. 6).

ADC values on a ROI on segment II of the liver of a representative volunteer are 2.46±0.38 ×

10−3 mm2/s for MONO, 1.85±0.2 × 10−3 mm2/s for CODE-M2, and 1.53±0.21 × 10−3 mm2/s for
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ODGD-M2.

ODGD-M2 increases the TE by 47.7% as compared to MONO (from 65.3 to 96.5 ms). ODGD-

M2 (TE = 96.5 ms) reduces the TE by 8.5% and 6% as compared with MOCO (105.5 ms) and

CODE-M2 (102.5 ms), respectively. ODGD-M2-CG (TE = 99 ms) reduces the TE by 6% and 3.5%

as compared with MOCO and CODE-M2. This TE reduction results in visually apparent increased

diffusion-weighted signal and SNR (Fig. 7). ODGD-M2 and ODGD-M2-CG have significantly

higher SNR than MOCO and CODE-M2 (ODGD-M2 = 12.3±3.6, ODGD-M2-CG = 12.0±3.5

versus MOCO = 9.7±2.9 and CODE-M2 = 10.2±3.4, both with P < 0.05). There is no statistically

significant difference between the SNRs of ODGD-M2 and ODGD-M2-CG.

Evaluation of CG-nulling

Water phantom simulations and experiments

Figure 8 shows the in-plane CG-related dephasing effects for the x-y-z diffusion-weighting gradient

direction in the water phantom experiments. ODGD-M0 suffers from diffusion-weighting direction-

dependent k-space shifting at the slice 4.5 cm from isocenter. Further, it also shows that ODGD-M0

suffers from k-space blurring (i.e., larger full-width-half-maximum along the y direction, FWHMy)

at isocenter (0 cm) and at 4.5 cm from isocenter. In contrast, MONO and ODGD-M0-CG do not

suffer from k-space shifting and their FWHMy is similar at both slice positions.

From simulations and phantom experiments, through-plane dephasing effects produced by CGs

are demonstrated in Figure 9. Figure 9.b-c) show the direction-dependent patterns of ADC bias

produced by the CG-effects of ODGD-M1 waveforms in simulations and in the water phantom

experiments, respectively. Importantly, BIPOLAR and ODGD-M1-CG waveforms, both with CG-

nulling, show improved homogeneity of ADC maps and tightly distributed histograms around the

expected room-temperature water diffusion coefficient (nearly 2 × 10−3 mm2/s) (30).

In-vivo acquisitions

Brain DWI ADC results from the brain acquisitions are shown in Figure 5. The ADC map of

ODGD-M1 pixelwise subtracted from the BIPOLAR ADC map shows visually positive general bias

(see Fig. 5.c) ). No bias is apparent in the pixelwise subtraction of ODGD-M1-CG and BIPOLAR

ADC maps. ODGD-M1 leads to statistically significant higher ADC than BIPOLAR (P < 0.005)

while there is no statistically significant difference between the ADC measured from ODGD-M1-CG
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versus BIPOLAR (BIPOLAR ADC = 0.71±0.02 x 10−3 mm2/s, ODGD-M1 ADC = 0.73±0.03 x

10−3 mm2/s, and ODGD-M1-CG ADC = 0.71±0.01 x 10−3 mm2/s).
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DISCUSSION

In this study, we presented a novel Optimized Diffusion-weighting Gradient waveform Design

(ODGD) formulation, as a quadratic constrained optimization problem. The ODGD formula-

tion allows the design of diffusion-weighting gradient waveforms to diminish bulk motion effects

and null concomitant gradient (CG) effects while minimizing the TE of diffusion-weighted acquisi-

tions. ODGD equalized or reduced the achievable TE compared to the traditional moment-nulled

waveforms and the recently proposed CODE formulation. Generally, TE reductions are greater at

higher b-values, k-space resolutions (i.e., longer TEPI), and high-order moment-nulling.

The TE reduction achieved with ODGD for a given b-value over state-of-the-art waveforms

may have potential applications in neuroimaging and body DW-MRI. This TE reduction may

enable increased signal-to-noise ratio in DW-MRI by avoiding T2-related signal losses. Moreover,

optimized motion-compensated waveforms have promising applications in organs that experience

substantial physiological motion, such as heart or liver, by enabling improved DW image quality and

improved accuracy of quantitative diffusion parameter maps (14). Further, CG-nulling waveforms

may be important for quantitative diffusion imaging in applications requiring a large anatomical

coverage and when implementing partial Fourier acquisitions. In addition, ODGD-Mn waveforms

may enable improved quantification of tissue diffusion and perfusion and characterization of non-

Gaussian diffusion. Interestingly, improvements on multi-shot EPI (31) might be achieved by using

ODGD-Mn waveforms due to the potential for reduced motion-induced phase variations across

multiple shots.

It has been shown that ODGD-Mn results in equal or shorter TE than CODE-Mn for a given

b-value. This TE reduction is likely due to the direct solution of the nonlinear optimization problem

for gradient waveform design in ODGD, compared to the approximate linear formulation of the

objective function used in (21). CG-nulling waveforms also shortened the achievable TE compared

to the traditional symmetric MONO, BIPOLAR, and MOCO waveforms. This was likely achieved

due to the elimination of dead times between radiofrequency pulses leading to more efficient use

of the diffusion encoding time. Interestingly, the proposed CG-nulling formulation leads to novel

smoothed asymmetric waveforms with the same squared area before versus after the refocusing RF

pulse. The TE reduction of ODGD-M0-CG and ODGD-M2-CG compared to MONO and MOCO,

respectively, are smaller than the TE reduction of ODGD-M1-CG compared to BIPOLAR. This

larger reduction with respect to BIPOLAR might be due to the fact that, in addition to CG-
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nulling, BIPOLAR waveforms achieve eddy current-nulling for some decay constant (32) which

might require higher TEs for a given b-value.

This work has several limitations. ODGD waveforms were applied to the spin-echo diffusion

pulse sequence, and validated on phantom experiments and 10 healthy volunteers. Future validation

in a larger cohort including patients is still needed. However, TE-related SNR gains, as well

as CG-effects are largely subject-independent, so these results are likely generalizable. Further,

in this work the computation of ODGD waveforms was performed offline (with relatively long

computation times between 2 and 8 min) and then loaded on the scanner. Next steps will include

accelerated computation to achieve finer time resolution with reasonable computation times, and

online implementation of ODGD waveforms for better sequence design flexibility. In addition,

comparing different motion-compensated waveforms in liver acquisitions is challenging as shown

in Figure 6. Different TEs might lead to different T2 shine-through and SNR. Further, not using

cardiac gating might produce slight mis-registrations across b-values and across multiple averages.

Finally, rapidly moving blood spins might also result in different signal behavior under different

diffusion-weighting gradient waveforms, which might in turn lead to different ADC values in/near

blood vessels.

Future work includes further validation in brain, liver, and heart, in volunteers and patients.

Additionally, several extensions of the proposed formulation are desirable. Minimization of periph-

eral nerve stimulation effects may be included, as shown in Ref. (33). Further, prospective and

retrospective techniques may be used to diminish eddy current induced distortions (34), although

it is also possible to extend the ODGD formulation to reduce the eddy current distortions as re-

cently proposed in Ref. (21). Future work may extend the ODGD formulation beyond the spin-echo

sequence to, for example, the gradient echo, stimulated echo or twice refocused spin-echo (TRSE)

diffusion sequences. Specifically, application of ODGD-CG to TRSE may reduce the strong phase

accrual suffered by TRSE from CG-effects (9), while minimizing EC-induced distortions.
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CONCLUSIONS

We have proposed a novel method, termed ODGD, to design motion-compensated and CG-nulling

diffusion-weighting gradient waveforms that optimize the TE for a given b-value. Theoretical

results, simulations, as well as experiments in phantoms and healthy volunteers, demonstrated

that ODGD motion-compensated diffusion-weighting gradient waveforms resulted in reduced TEs,

increased SNR, increased motion robustnes, and reduced ADC bias compared to the state-of-the-

art.

ACKNOWLEDGMENTS

The authors acknowledge grant TEC2013-44194-P and VA069U16 from Ministerio de Economı́a

y Competitividad of Spain, and Junta de Castilla y León, respectively. In addition, the authors
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Figure captions

Figure 1: Traditional waveforms (a), Convex Optimized Diffusion Encoding (CODE) gradient

waveforms (b), and Optimized Diffusion-weighting Gradient waveform Designs (ODGD) without (c)

and with (d) concomitant gradients (CGs) nulling for b = 1000 s/mm2 and TEPI = 26.4 ms. CODE

and ODGD waveforms without and with CG-nulling reduced the TE of the traditional waveforms

(MONO, BIPOLAR, and MOCO) in all cases. These traditional waveforms have equivalent or

symmetric shapes before and after the refocusing pulse, and therefore lead to dead times between

the radiofrequency pulses (due to the need for additional time for the EPI readout between the end

of the diffusion waveform and the echo time). In contrast, the CODE framework and the ODGD

formulation seek to use the available time optimally in order to minimize the TE.

Figure 2: Minimum TE achieved for the range of b-values 100 - 2000 s/mm2 and TEPI (EPI

readout time to the center of k-space) of 26.4 ms for ODGD-Mn, CODE-Mn, and the traditional

waveforms (MONO, BIPOLAR, and MOCO) for different moment constraints, M0, M1, and M2,

respectively (a). TE reduction (∆TE) achieved using ODGD-Mn compared to CODE-Mn for the

same range of b-values and TEPI in the range of 15 - 50 ms (b). There is no TE reduction (∆TE

= 0) for zeroth-order moment-nulling (M0), but there is TE reduction for first- and second-order

moment-nulling (M1 and M2, respectively). The TE reduction is greater for higher b-values, longer

TEPI, and higher-order moment-nulling.

Figure 3: Minimum TE achieved for a range of b-values 100 - 2000 s/mm2 and TEPI (EPI

readout time to the center of k-space) of 26.4 ms for ODGD-Mn-CG and the traditional waveforms

(MONO, BIPOLAR, and MOCO) for different moment constraints, M0, M1, and M2, respectively

(a). TE reduction (∆TE) achieved using ODGD-Mn-CG compared to the traditional waveforms

for the same range of b-values and TEPI in the range of 15 - 50 ms (b). ∆TE is larger for higher

b-values and TEPI, and larger for the M1 constraint than for M0, or M2.

Figure 4: Diffusion-weighted images of the acetone phantom experiments acquired with CODE-

M2 and ODGD-M2 at b-value 1000 s/mm2 (a). SNR of the same images (b). Top row of the set of

10 vials have short T2 ≈ 39.5 ms (vial numbers 1, 3, 5, 7, 9), and bottom row have long T2 ≈ 83.5

ms (vial numbers 2, 4, 6, 8, 10). Distribution of the SNR values of each vial grouped by T2 ≈ 39.5

ms (c), and T2 ≈ 83.5 ms (d). From left to right, distributions are ordered as vials in (a). Red

boxes show the distribution of CODE-M2 and black boxes the distribution of ODGD-M2. There

is a statistically significant (P < 0.05) SNR increase for every vial of ODGD-M2 compared to
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CODE-M2 except for vials with ADC = 1.9×10−3 mm2/s.

Figure 5: Axial trace diffusion-weighted images (DWI) acquired at 4.5 cm from isocenter of a

representative brain are shown acquired with BIPOLAR, ODGD-M1, and ODGD-M1-CG with a

b-value of 100 s/mm2 (a). Corresponding average trace ADC map of the BIPOLAR acquisition (b).

ODGD-M1 and ODGD-M1-CG average trace ADC maps pixelwise subtracted with the BIPOLAR

average trace ADC map (c). Mean ± 95% CI SNR values of the trace DW images (d), and average

trace ADC values (e) across ROIs set on white matter of the 10 volunteers. ODGD-M1 leads to

higher statistically significant SNR than BIPOLAR and ODGD-M1-CG, P < 1 x 10−6 and P < 0.05,

respectively. ODGD-M1-CG also leads to statistically significant higher SNR than BIPOLAR with

P < 0.005. ODGD-M1 average trace ADC map is positively biased (P < 0.005) with respect to

BIPOLAR. There is no statistically significant difference between the average trace ADC maps of

ODGD-M1-CG and BIPOLAR.

Figure 6: Axial diffusion-weighted images of a representative liver are shown acquired with

MONO, CODE-M2, and ODGD-M2 with a b-value of 500 s/mm2 (a). Corresponding ADC maps

(b). MONO ADC maps have heterogeneous positive bias throughout the liver due to intravoxel

signal dephasing at b-value of 500 s/mm2 produced by bulk motion. ODGD-M2 and CODE-M2

waveforms achieve more spatially homogeneous DW images and ADC maps than MONO, showing

better motion robustness. ADC values on a ROI on segment II of the liver (blue ROI) of a

representative volunteer are 2.46±0.38 × 10−3 mm2/s for MONO, 1.85±0.2 × 10−3 mm2/s for

CODE-M2, and 1.53±0.21 × 10−3 mm2/s for ODGD-M2.

Figure 7: Axial diffusion-weighted images of the liver are shown acquired with MOCO, CODE-

M2, ODGD-M2, and ODGD-M2-CG with a b-value of 100 s/mm2 (a). Signal-to-noise ratio (SNR)

maps of these acquisitions (smoothed with an average filter for better representation) (b). Liver

SNR measurements in the 10 volunteers, for each of the diffusion waveforms (c). ODGD-M2 and

ODGD-M2-CG lead to statistically significant (P < 0.05) higher SNR than MOCO and CODE-M2.

There is no statistically significant difference between ODGD-M2 and ODGD-M2-CG.

Figure 8: k-Space of the water phantom experiments of slices at isocenter (0 cm) and 4.5 cm

from isocenter with MONO, ODGD-M0, and ODGD-M0-CG, b-value of 1000 s/mm2, and diffusion-

weighting direction Dxyz, (a) and (b), respectively. FWHMy indicates the full-width-half-maximum

along the phase-encoding direction (y-axes). ODGD-M0 shows broader FWHMy than MONO and

ODGD-M0-CG, and k-space shifting towards the upper left corner at 4.5 cm from isocenter. MONO

and ODGD-M0-CG show little blurring and no k-space shifting.
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Figure 9: Measured ADC maps along each gradient direction combination (Dn) of the water

phantom experiment with the BIPOLAR waveform (a). Measured ADC maps of the simulated

acquisition of the water phantom experiment for ODGD-M1 (b). Measured ADC maps of the

waveforms ODGD-M1 (c) and ODGD-M1-CG (d). The reference ADC value of 1.98×10−3 mm2/s,

dotted line, was measured as the average of Dx, Dy and Dz of the BIPOLAR acquisition. Acqui-

sitions with BIPOLAR and ODGD-M1-CG waveforms considerably reduced the bias of the ADC

maps introduced by the concomitant gradients.
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Table 1: Optimized Diffusion-weighted Gradient waveform Design (ODGD) formulation.

ODGD Formulation

Pulse Sequence Constraints G(RF90) = 0 G(RF180) = 0 G(TEPI) = 0

Hardware Constraints G(t) ≤ GMax Ġ(t) ≤ SRMax

Moment Constraint Mn = γ
∫ TDiff

0 tnG(t)dt = 0 where n = 0, 1, 2...

Concomitant Gradients Constraint φc(x, y, z) = γ
∫ TDiff

0 Bc(x, y, z, t)dt = 0

b-value Formulation b = γ2
∫ TDiff

0 F (t)2dt F (t) =
∫ t

0 G(τ)dτ

Objective Function aG(t) = arg maxG b(G)

aG(t) is the diffusion-weighting gradient waveform.
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Figure 1: Traditional waveforms (a), Convex Optimized Diffusion Encoding (CODE) gradient

waveforms (b), and Optimized Diffusion-weighting Gradient waveform Designs (ODGD) without (c)

and with (d) concomitant gradients (CGs) nulling for b = 1000 s/mm2 and TEPI = 26.4 ms. CODE

and ODGD waveforms without and with CG-nulling reduced the TE of the traditional waveforms

(MONO, BIPOLAR, and MOCO) in all cases. These traditional waveforms have equivalent or

symmetric shapes before and after the refocusing pulse, and therefore lead to dead times between

the radiofrequency pulses (due to the need for additional time for the EPI readout between the end

of the diffusion waveform and the echo time). In contrast, the CODE framework and the ODGD

formulation seek to use the available time optimally in order to minimize the TE.
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Figure 2: Minimum TE achieved for the range of b-values 100 - 2000 s/mm2 and TEPI (EPI readout

time to the center of k-space) of 26.4 ms for ODGD-Mn, CODE-Mn, and the traditional waveforms

(MONO, BIPOLAR, and MOCO) for different moment constraints, M0, M1, and M2, respectively

(a). TE reduction (∆TE) achieved using ODGD-Mn compared to CODE-Mn for the same range

of b-values and TEPI in the range of 15 - 50 ms (b). There is no TE reduction (∆TE = 0) for

zeroth-order moment-nulling (M0), but there is TE reduction for first- and second-order moment-

nulling (M1 and M2, respectively). The TE reduction is greater for higher b-values, longer TEPI,

and higher-order moment-nulling.
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Figure 3: Minimum TE achieved for a range of b-values 100 - 2000 s/mm2 and TEPI (EPI readout

time to the center of k-space) of 26.4 ms for ODGD-Mn-CG and the traditional waveforms (MONO,

BIPOLAR, and MOCO) for different moment constraints, M0, M1, and M2, respectively (a). TE

reduction (∆TE) achieved using ODGD-Mn-CG compared to the traditional waveforms for the

same range of b-values and TEPI in the range of 15 - 50 ms (b). ∆TE is larger for higher b-values

and TEPI, and larger for the M1 constraint than for M0, or M2.

30



4

6

8

10

12

10

20

30

40

50

a)

b)

d)

T2 � 83.5 ms

T2 � 39.5 ms

S
N

R
S

N
R

S
N

R

2.2 1.9 1.6 1.3 0.9
ADC [mm2/s]

CODE-M2

(TE = 126.5ms)

ODGD-M2

(TE = 118.5ms)

5

25

45

c)

SNR CODE-M2

SNR ODGD-M2

SNR CODE-M2

SNR ODGD-M2

x10-3

1) P < 0.05 3) P < 0.001 5) P < 0.001 7) P < 0.001 9) P < 0.05

10) P < 0.018) P < 0.0016) P < 0.0014) NS2) P < 0.001

D
W

I

108642

97531

Figure 4: Diffusion-weighted images of the acetone phantom experiments acquired with CODE-M2

and ODGD-M2 at b-value 1000 s/mm2 (a). SNR of the same images (b). Top row of the set of 10

vials have short T2 ≈ 39.5 ms (vial numbers 1, 3, 5, 7, 9), and bottom row have long T2 ≈ 83.5

ms (vial numbers 2, 4, 6, 8, 10). Distribution of the SNR values of each vial grouped by T2 ≈ 39.5

ms (c), and T2 ≈ 83.5 ms (d). From left to right, distributions are ordered as vials in (a). Red

boxes show the distribution of CODE-M2 and black boxes the distribution of ODGD-M2. There

is a statistically significant (P < 0.05) SNR increase for every vial of ODGD-M2 compared to

CODE-M2 except for vials with ADC = 1.9×10−3 mm2/s.
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Figure 5: Axial trace diffusion-weighted images (DWI) acquired at 4.5 cm from isocenter of a

representative brain are shown acquired with BIPOLAR, ODGD-M1, and ODGD-M1-CG with a

b-value of 100 s/mm2 (a). Corresponding average trace ADC map of the BIPOLAR acquisition (b).

ODGD-M1 and ODGD-M1-CG average trace ADC maps pixelwise subtracted with the BIPOLAR

average trace ADC map (c). Mean ± 95% CI SNR values of the trace DW images (d), and average

trace ADC values (e) across ROIs set on white matter of the 10 volunteers. ODGD-M1 leads to

higher statistically significant SNR than BIPOLAR and ODGD-M1-CG, P < 1 x 10−6 and P < 0.05,

respectively. ODGD-M1-CG also leads to statistically significant higher SNR than BIPOLAR with

P < 0.005. ODGD-M1 average trace ADC map is positively biased (P < 0.005) with respect to

BIPOLAR. There is no statistically significant difference between the average trace ADC maps of

ODGD-M1-CG and BIPOLAR.
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Figure 6: Axial diffusion-weighted images of a representative liver are shown acquired with MONO,

CODE-M2, and ODGD-M2 with a b-value of 500 s/mm2 (a). Corresponding ADC maps (b).

MONO ADC maps have heterogeneous positive bias throughout the liver due to intravoxel signal

dephasing at b-value of 500 s/mm2 produced by bulk motion. ODGD-M2 and CODE-M2 waveforms

achieve more spatially homogeneous DW images and ADC maps than MONO, showing better

motion robustness. ADC values on a ROI on segment II of the liver (blue ROI) of a representative

volunteer are 2.46±0.38 × 10−3 mm2/s for MONO, 1.85±0.2 × 10−3 mm2/s for CODE-M2, and

1.53±0.21 × 10−3 mm2/s for ODGD-M2.
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Figure 7: Axial diffusion-weighted images of the liver are shown acquired with MOCO, CODE-M2,

ODGD-M2, and ODGD-M2-CG with a b-value of 100 s/mm2 (a). Signal-to-noise ratio (SNR)

maps of these acquisitions (smoothed with an average filter for better representation) (b). Liver

SNR measurements in the 10 volunteers, for each of the diffusion waveforms (c). ODGD-M2 and

ODGD-M2-CG lead to statistically significant (P < 0.05) higher SNR than MOCO and CODE-M2.

There is no statistically significant difference between ODGD-M2 and ODGD-M2-CG.
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Figure 8: k-Space of the water phantom experiments of slices at isocenter (0 cm) and 4.5 cm from

isocenter with MONO, ODGD-M0, and ODGD-M0-CG, b-value of 1000 s/mm2, and diffusion-

weighting direction Dxyz, (a) and (b), respectively. FWHMy indicates the full-width-half-maximum

along the phase-encoding direction (y-axes). ODGD-M0 shows broader FWHMy than MONO and

ODGD-M0-CG, and k-space shifting towards the upper left corner at 4.5 cm from isocenter. MONO

and ODGD-M0-CG show little blurring and no k-space shifting.
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Figure 9: Measured ADC maps along each gradient direction combination (Dn) of the water phan-

tom experiment with the BIPOLAR waveform (a). Measured ADC maps of the simulated acquisi-

tion of the water phantom experiment for ODGD-M1 (b). Measured ADC maps of the waveforms

ODGD-M1 (c) and ODGD-M1-CG (d). The reference ADC value of 1.98 × 10−3 mm2/s, dotted

line, was measured as the average of Dx, Dy and Dz of the BIPOLAR acquisition. Acquisitions

with BIPOLAR and ODGD-M1-CG waveforms considerably reduced the bias of the ADC maps

introduced by the concomitant gradients.
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