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Synopsis  
Diffusion-Weighted MRI often suffers from signal attenuation due to long TE, sensitivity to 

physiological motion, and dephasing due to concomitant gradients (CGs). These challenges 

complicate image interpretation and may introduce bias in quantitative diffusion 

measurements. Motion moment-nulled diffusion-weighting gradients have been proposed to 

compensate motion, however, they frequently result in high TE and suffer from CG effects. 

In this work, the Optimal Diffusion-weighting Gradient waveform Design method that 

overcomes limitations of state-of-the-art waveforms is revisited and validated in phantom 

and in-vivo experiments. These diffusion-weighting gradient waveforms reduce the TE and 

increase the SNR of state-of-the-art waveforms without and with CG-nulling. 

 

Introduction  
Diffusion-Weighted MRI (DW-MRI) provides exquisite sensitivity to tissue microstructure in a 

variety of applications. However, DW-MRI suffers from multiple challenges, including: 1) low 

signal intensity due to long echo times (TE), 2) motion-related artifacts (eg: signal voids) in 

tissues affected by bulk motion during the application of DW gradients1,2,3 (eg: heart and 

liver), and 3) signal dephasing due to concomitant gradients (CGs)4,5. To overcome these 

challenges, there is a need for optimized diffusion-weighting waveforms that include high-

order motion compensation6 and CG-nulling.   

 

A constrained optimization formulation, termed Convex Optimized Diffusion Encoding6 

(CODE), for design of motion-compensated DW gradients has been proposed. Despite the 

elegant formulation, CODE may not achieve optimal waveforms (maximum b-value for a 

given TE) due to the approximation of the b-value optimization formulation as a linear 

optimization problem. This lack of optimality would result in SNR losses. Furthermore, CODE 

waveforms require additional manipulation to reduce CG effects. Other DW gradient 

waveforms with motion compensation have been proposed (eg: MONO6, BIPOLAR7, and 

MOCO8). These waveforms achieve CG-nulling, however, they do not maximize the b-value 

for a given TE. In order to overcome these limitations, a novel constrained quadratic 

optimization algorithm termed Optimal Diffusion-weighting Gradient waveform Design 

(ODGD) was recently presented9. ODGD directly maximizes the b-value subject to nth-order 

moment-nulling, CG-nulling, and hardware and pulse sequence timing constraints (see 

Table 1). Despite the promising theoretical properties of ODGD, experimental 

implementation and validation have not yet been reported.  

 

Therefore, the purpose of this work is to compare feasible waveforms produced by ODGD 

with state-of-the-art methods, and implement and validate ODGD in phantom and in-vivo 

experiments.   

 

Methods 



In order to minimize TE for a given desired b-value, the ODGD optimization (Table 1) is run 

iteratively for various TEs (similarly to Ref6).    

 

In this work, nth-order moment-nulled ODGD waveforms without and with CG-nulling (ODGD 

Mn and ODGD Mn CG, where n=0,1,2, respectively) were designed for b-values=100-

2000s/mm², and TEPI (the EPI readout time required to reach the center of k-space) of 

TEPI=16.4-46.4ms. Similarly, waveforms with these same parameters were designed using 

MONO, BIPOLAR, MOCO, and CODE with nth-order moment-nulling.  

 

With IRB approval and informed written consent, liver DWI was acquired in healthy 

volunteers (N=10) with MONO and 2nd-order moment-nulling waveforms in order to assess 

motion robustness, signal intensity, and compare SNR across waveform designs. The DW-

MRI acquisition was performed at a 3T unit (GE Healthcare, Waukesha, WI) using a spin 

echo DW-EPI sequence with the following parameters: axial orientation, slice 

thickness=6mm, FOV=36x36cm, in-plane resolution=2.8x2.8mm, full k-space, and b-

values(averages)=[100(4),500(10)]s/mm². SNR maps were computed as in Ref10.  

 

A water phantom was scanned to assess CG effects with a spin echo DW-EPI sequence 

using several DW waveforms without and with CG-nulling and multiple diffusion directions, 

slice thickness=5mm, FOV=26x26cm, in-plane resolution=2x2mm, full k-space, b-

values(averages)=[100(1),400(1),600(2),800(4),1000(6)]s/mm². ADC maps were computed 

using the maximum likelihood estimator11.   

 

Results 
Figure 1 shows the TE difference for a set of b-values and TEPI between ODGD waveforms 

and MONO, BIPOLAR, MOCO, and CODE waveforms. There is no TE improvement of 

ODGD M0 over CODE M0, but there is an improvement ranging between 0-3.57% for M1, 

and 0.63-10.14% for M2. Improvements of ODGD Mn CG over MONO are between 0-4.02% 

(M0=0), 7.53-16.74% over BIPOLAR (M1=0), and 0.77-12.54% over MOCO (M2=0).   

 

Representative in-vivo liver imaging examples are shown in Figures 2 and 3. CODE M2 and 

ODGD M2 achieve similar motion robustness (see Figure 2). Figure 3 shows visually 

apparent signal intensity and SNR increases across all volunteers (measured liver 

T2=24.38+/-11.4ms) for both ODGD M2 and ODGD M2 CG compared to MOCO and CODE 

M2. Mean SNR analysis shows significantly higher SNR (p<10-6) of ODGD without and with 

CG-nulling over MOCO and CODE M2.     

 

Figure 4 shows the biased ADC maps of ODGD M1 due to the additional dephasing 

introduced by CGs, which in turn lead to spatially-dependent overestimation of ADC. In 

contrast, BIPOLAR and ODGD M1 CG produce unbiased ADC maps, due to the nulling of 

CG effects.   

 

Discussion 
We have implemented and validated the ODGD formulation presented in Ref9. ODGD allows 

the design of diffusion-weighting waveforms to reduce bulk motion artifacts and null CGs 

effects, while minimizing the TE as shown in phantom and in-vivo experiments. ODGD 



waveforms have potential applications to improve image quality and quantitative measures 

in neuroimaging and body DW-MRI.   

 

This work has several limitations. Further validation in volunteers and in patients is still 

required. Extension of the formulation to minimize other artifacts including eddy currents12 is 

also desirable.   

 

Conclusion 
ODGD provides optimized motion-compensated and CG-nulled diffusion gradient 

waveforms, increasing the SNR compared to state-of-the-art methods.  
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Table 1. Optimal Diffusion-weighting Gradient Design (ODGD) formulation. For the examples 

in this work, GMax=49 mT/m, SRMax=100 T/m/s. RF90 and RF180 are the excitation and 

refocusing radiofrequency pulses respectively, TEPI is the time required by the EPI readout to 

reach the center of k-space, TDiff is the end of the diffusion-weighting gradients, Bc are the 

concomitant gradients described in Ref5, and G(t) is the optimal diffusion-weighting gradient 

waveform. 

 

 
Figure 1. ODGD waveforms generally have lower TE than state-of-the-art waveforms, 

achieving higher TE reductions for higher b-values and TEPI (the readout time to the center of 

k-space). (a) TE difference between CODE Mn and ODGD Mn waveforms where n=0,1,2, 

for b-values=100-2000s/mm² and TEPI=16.4-46.4ms. (b) TE difference between MONO, 

BIPOLAR, MOCO and ODGD Mn CG where n=0,1,2, respectively. TE reduction (ΔTE) of 

ODGD Mn compared to CODE Mn is zero when there is no motion nulling (M0=0), but 

increases for M1=0 and M2=0. TE reduction of ODGD Mn CG compared to BIPOLAR is 

larger than compared to MONO, and MOCO. 

 

 

 



 
Figure 2. CODE M2 and ODGD M2 waveforms achieve similar motion robustness with more 

spatially homogenous DW images and ADC maps than MONO waveforms. (a) Axial 

diffusion-weighted images of a representative liver are shown acquired with MONO, CODE 

M2, and ODGD M2 with a b-value of 500s/mm². (b) Corresponding ADC maps. MONO ADC 

maps have heterogeneous positive bias throughout the liver due to intravoxel signal 

dephasing at b-value=500s/mm2 produced by bulk motion.  

  



 

Figure 3. Motion-compensated ODGD waveforms without and with CG-nulling provide 

shorter TE and improved SNR compared to state-of-the-art methods. (a) Axial diffusion-

weighted images of a representative liver are shown acquired with MOCO, CODE M2, 

ODGD M2, and ODGD M2 CG with a b-value=100s/mm². (b) Signal-to-noise ratio maps of 

the prior acquisition smoothed with an average filter for better representation. (c) Mean+/-

95% CI diffusion-weighted values, and (d) SNR values across ROIs measured on segments 

IV, VII, and VIII of the 10 volunteers. ODGD M2 and ODGD M2 CG lead to higher signal 

intensity and SNR than MOCO and CODE M2. 

 



 
Figure 4. ODGD waveforms with CG-nulling achieve lower bias in quantitative diffusion 

measurements than state-of-the-art waveforms. Measured ADC maps along each gradient 

direction combination (Dn) of the water phantom experiment with (a) BIPOLAR waveform, (b) 

ODGD M1 waveform, and (c) ODGD M1 CG waveform. The true ADC value of 

2x10⁻ ³mm²/s (dotted line), was measured from the average Dx, Dy, and Dz directions of the 

BIPOLAR acquisition. BIPOLAR and ODGD M1 CG acquisitions considerably reduced the 

bias of the ADC maps introduced by concomitant gradients. Further, ODGD M1 CG shows 

tighter histograms around the true ADC value than BIPOLAR. 


