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Highlights 

• A novel curl-based rotation measurement built from tensorial magnitudes is proposed. • Proposed rotation descriptor makes no as- 

sumption about the cardiac topology. • Locally increased vorticity values are present in hypertrophied myocardial segments. • Extracted 

vortical features have proven useful in cardiomyopathy discrimination. 
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a b s t r a c t 

Left ventricular rotational motion is a feature of normal and diseased cardiac function. However, classical 

torsion and twist measures rely on the definition of a rotational axis which may not exist. This paper re- 

views global and local rotation descriptors of myocardial motion and introduces new curl-based (vortical) 

features built from tensorial magnitudes, intended to provide better comprehension about fibrotic tissue 

characteristics mechanical properties. Fifty-six cardiomyopathy patients and twenty-two healthy volun- 

teers have been studied using tagged magnetic resonance by means of harmonic phase analysis. Rotation 

descriptors are built, with no assumption about a regular geometrical model, from different approaches. 

The extracted vortical features have been tested by means of a sequential cardiomyopathy classification 

procedure; they have proven useful for the regional characterization of the left ventricular function by 

showing great separability not only between pathologic and healthy patients but also, and specifically, 

between heterogeneous phenotypes within cardiomyopathies. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Hypertrophic cardiomyopathy (HCM) ( Maron et al., 2014 ) is

 relatively common heart muscle disease with a heteroge-

eous phenotypic expression that occasionally overlaps with other

athologies that also present left ventricular hypertrophy. Differen-

iating the underlying etiology of the ventricular hypertrophy is a

requent clinical problem with relevant implications since each eti-

logy needs a specific management and presents a different prog-

osis. HCM is characterized by a hypertrophied and nondilated left

entricle (LV) ( Baron, 2008 ), often with an asymmetrical wall thick-

ess distribution. HCM occurs in the presence of myocyte hyper-

rophy and interstitial and replacement fibrosis, which cause the

alls of the ventricles to thicken ( Maron et al., 1992 ) and a re-

uction on the cavity volume is usually observed. This thicken-
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ng may block blood flow out of the ventricle. Therefore, the main

eatures of a HCM heart summarize in increased LV mass and

hickened walls, especially in the interventricular septum ( Urbano-

oral et al., 2014 ). These abnormalities lead to altered forces re-

ealing a significant reduction in the diagonal components of the

train ( Saltijeral et al., 2010 ). Previous studies have shown that re-

ional LV dysfunctions predate over the morphologic changes re-

ated with the phenotypic expression of hypertrophy and obstruc-

ion ( Dhillon et al., 2014 ). 

As previously stated, etiological factors are of great impor-

ance in the cardiovascular disease detection ( Maron et al., 2006 ).

lobal indices, such as the global longitudinal strain ( Shimon et al.,

0 0 0 ), have been employed for cardiovascular disease identifica-

ion, reporting noticeable prognostic value; however, local mea-

urements could provide more insight to the behavior of fibrotic

issue ( Piella et al., 2010 ). In this direction, it has been hypothe-

ized that the presence of greater myocardial twist may be associ-

ted with a greater degree of myocardial fibrosis in HCM patients.

onsequently, assessment of LV rotation mechanics as a character-

stic of cardiac function may help differentiate the presence of fi-

rosis ( Young and Cowan, 2012 ). Consistently with these studies,

e adhere to the appropriateness of local analyses and their clini-
 myocardial rotation assessment in hypertrophic cardiomyopathy 
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Table 1 

Demographic data of the pathologic and healthy patients in the study (mean ±
std). 

Patients HCM SLVH Healthy Vol. 

Number of cases 39 17 22 

Age 58 ± 16.3 69.8 ± 10.5 49.2 ± 21.8 

Sex (M/F) 27/12 12/5 14/8 

Ejection Fraction (%) 70.4 ± 5.4 69.7 ± 6.1 63.6 ± 6.5 

Diastolic LV volume (ml) 140.6 ± 22.8 131 ± 50.3 150.3 ± 31.5 

Systolic LV volume (ml) 42 ± 9 41.8 ± 22.4 53.8 ± 13.9 

Wall thickening (%) 78.4 ± 20.1 79.8 ± 18.6 89.6 ± 16.9 

i  102 

fi 103 

 104 

i  105 

t  106 

c  107 

p  108 

a  109 

o  110 

(  111 

a  112 

d 113 

 114 

t  115 

a  116 

s  117 

w  118 

w  119 

r  120 

p  121 

o  122 

j  123 

l  124 

s 125 

2 126 

2 127 

 128 

r  129 

t  130 

d  131 

p  132 

o  133 

o  134 

8  135 

p  136 

t  137 

t  138 

p  139 

s  140 

t  141 

t  142 

s  143 

h 144 

 145 

s  146 

s  147 

l  148 

i 149 

 150 

d  151 
cal value on the basis that most heart diseases typically affect lo-

calized regions of the myocardium. In addition, local studies can

be used to improve cardiac analytics, which may help predict the

effects of specific cardiovascular diseases on the tissue. 

Rotation parameters have recently gained increasing attention

due to their simplicity and ease of quantification; they constitute

interesting measures of cardiac performance which provide addi-

tional information on myocardial mechanics as a complement of

standard pump function indices ( Rüssel et al., 2009a ). However,

most of the rotation parameters described in the literature im-

plicitly require an accurate description of an axis of rotation. The

center of mass given by myocardial boundaries is widely used

as such; however, the heart can translate during the cardiac cy-

cle, which commonly results in misalignments of the center along

subsequent frames, incurring in estimation errors. Hence, non bi-

ased calculation methods, which compensate centroid motion, are

mandatory for the use of LV torsion as a measure of myocardial

dysfunction quantification ( Sengupta et al., 2008 ). Still, additional

drawbacks have been reported; Young et al. (1994) state that, for

HCM, the axis of rotation is shifted from the LV center of mass to-

wards the inferoseptal region. In addition, for HCM patients, due

to their characteristic asymmetrical wall thickness distribution, ac-

curate centroid estimation could become a n extremely challenging

task. 

Imaging techniques provide essential information for the study

of these pathologies; several modalities have been proposed in an

effort to measure advanced cardiac mechanics in the LV: speckle

tracking echocardiography ( Helle-Valle et al., 2005; Bansala and

Kasliwalb, 2013 ), Cine Displacement Encoded (DENSE) Magnetic

Resonance Imaging (MRI) ( Zhong et al., 2010 ) or traditional cine

Steady State Free Precession (SSFP) MRI, combined with feature

tracking techniques,( Heermann et al., 2014 ), to mention a few. Nev-

ertheless, myocardial tissue tagging with cardiovascular magnetic

resonance is currently the gold standard for assessing regional my-

ocardial function ( Shehata et al., 2009 ). If it is not widely used in

the daily practice is because it is time consuming, but to date is

an accurate method to measure regional contractility ( Jeung et al.,

2012 ). MR-Tagging ( Ibrahim, 2011 ) is usually performed by spatial

magnetization modulation (SPAMM) ( Axel and Dougherty, 1989 ) or

a variant of this technique. SPAMM is grounded on the ability of

altering the magnetization of the tissue (within the limitations of

relaxation times in MR) even in the presence of motion. The tag-

ging procedure is based on the superposition of a spatial modula-

tion over the applied gradients which may be subsequently tracked

throughout the cardiac cycle, from which the cardiac function can

be assessed. 

Harmonic Phase (HARP) based methods ( Osman et al., 20 0 0 )

are widely used as a motion estimation technique in MR-Tagging

(MR-T). These methods are capable of reconstructing displacement

fields accurately, grounded on the assumption of constant local

phase, which turns out to be more reliable than the constant

pixel brightness assumption. This approach is based on the use of

SPAMM tag patterns, which modulate the underlying image, pro-

ducing a set of spectral peaks in the Fourier domain. Each of these

spectral peaks carry information about a particular component of

tissue motion, and this information can be extracted using phase

demodulation methods, obtaining tensorial descriptors of deforma-

tion and, for our case, rotation estimations. 

Curl is a differential operator that describes the infinitesimal ro-

tation of a vector field. Its direction determines the axis of rota-

tion while its magnitude shows the amount of rotation. The term

vortex is commonly associated to a localized increased value on

the magnitude of the given curl vector (this property will be here-

after referred to as vorticity). The local rotation measured by the

curl operator should not be confused with the bulk angular veloc-
m  152 

Please cite this article as: S. Sanz-Estébanez et al., Vortical features for
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ty vector observed within the myocardial tissue with respect to a

xed cardiac axis. 

Numerous 4D phase-contrast MRI ( Köhler et al., 2013 ) stud-

es have made use of the curl operator. Flow vortical patterns in

he heart chambers, the aorta, the carotid sinus and pulmonary

irculation are physiological, but can also be related to certain

athologies including aortic aneurysms, pulmonary hypertension

nd congenital heart defects. Vortical patterns often occur because

f morphological alterations, vessel widenings or after stenosis

 von Spiczak et al., 2015 ). These structures may alter the pressure

nd shear forces on the walls and trigger processes leading to cell

eath. 

It is our understanding that curl can also quantify the local ro-

ation within the muscle. Consequently, in this paper we introduce

 novel local rotation descriptor based on robust tensorial mea-

urements that relates the presence of increased vorticity values

ith the hypertrophic tissue in the heart. Rotation is estimated

ithout influence of global myocardial parameters, such as axis of

otation or cavity radius, allowing a regional comparative study in

atients with LV hypertrophy of different etiologies; HCM and Sec-

ndary forms of LV Hypertrophy (SLVH), as well as healthy sub-

ects. To the best of our knowledge, this is the first study that re-

ates local vortices in myocardial tissue with the presence of fibro-

is. 

. Materials and methods 

.1. Materials 

For the validation of the proposed approach, our study is a ret-

ospective analysis based on a database of patients who underwent

he ordinary clinical protocol according to their symptoms; the

atabase consisted in 78 individuals who were affected by either

rimary HCM or SLVH (hypertensive heart disease, aortic stenosis

r athlete heart disease) or were healthy volunteers. The number

f pathologic patients was 56; 39 of them, with ages from 30 to

6, were diagnosed as primary HCM. These patients showed hy-

ertrophy, predominantly in the septal region of the LV. Following

he same protocol, 17 patients were diagnosed of SLVH according

o chronic pressure overload. The differential diagnosis between

rimary HCM and SLVH was based on previous echocardiopraphic

tudies and clinical and familial records. About the healthy volun-

eers, 22 were included in the study with ages between 16 and 84;

hese subjects underwent the MRI protocol because of a previous

uspicion of cardiac pathology but all of them turned out to be

ealthy. 

All subjects signed the ordinary informed consent for the MR

ession and agreed in writing to share the resulting images for re-

earch purposes. Personal data were treated according to current

egislation. Demographic data of both controls and cases, the latter

ndexed by pathology type, are given in Table 1 . 

We have acquired short axis (SA) and long axis (LA) MR-T

atasets for each patient, from apex to base, using a MR Comple-

entary SPAMM (C-SPAMM) SENSitivity Encoding (SENSE) Turbo
 myocardial rotation assessment in hypertrophic cardiomyopathy 
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Fig. 1. Example images of the sequences acquired for the study. MR-Cine SA, MR-Cine LA, MR-Tagging SA and MR-Tagging LA, from left to right. 

Table 2 

Details on the sequences of MR images used in the paper. �p : Reconstructed Pixel Resolution (mm). �s : Slice Thickness (mm). N p : Number of pixels for dimension. N t : 

Number of Temporal Phases. N s : Number of slices. T R : Repetition Time (ms). T E : Echo Time (ms). α: Flip Angle (degrees). 

Parameters �p �s N p N t N s T R T E α

MR-T SA 1.21-1.32 10 256 –432 16 –25 10 –15 2.798-6.154 1.046-3.575 7 –25 

MR-C SA 0.96-1.18 8 –10 240 –320 30 10 –15 2.902-3.918 1.454-2.222 45 

MR-T LA 1.21-1.34 10 240 –340 15 –27 1 –3 2.903-4.507 1.097-2.897 10 –45 

MR-C LA 0.98-1.25 8 –10 256 –448 30 1 –3 2.858-3.529 1.251-2.132 45 
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E

ield Echo sequence on a Philips Achieva 3T scanner. Regarding

he tagging parameters, we validate the method for a fixed tag

pacing of k i = 1/ λ, with λ = 7 mm using two different orienta-

ions U i = (cos (θi ) ; sin (θi )) with θ = [ π/ 4 ; 3 π/ 4] for the stripe di-

ections. 

Additionally, we have also acquired a balanced SSFP SA MR-

ine (MR-C) sequence at the same spatial location for each patient;

napshots of the acquired sequences are shown in Fig. 1 . The my-

cardium has been segmented in the end-diastolic (ED) phase of

he MR-C sequence by two cardiologists. Cine segmentations are

sed to align the tagging orientations to a common reference sys-

em to correct for patient motion. The ED segmentation is used

o define a region of interest (ROI) in which to compute mean-

ngful measurements. Resolution details about these sequences are

ncluded in Table 2 . 

.2. Methods 

.2.1. Preprocessing 

We have implemented a preprocessing pipeline in order to (a)

ropagate the ROI in MR-C from ED to the end-systolic (ES) phase

in which subsequent calculations will be carried out— and (b)

lign the MR-C and MR-T sequences at ES. These two steps are: 

• Registration The MR-C sequence is processed by means of a

groupwise elastic registration procedure ( Cordero-Grande et al.,

2013a ) in order to propagate the ED segmentations towards ES

phase. The transformation is achieved by B-spline based Free

Form Deformations (FFD) ( Rueckert et al., 2006 ). A gradient-

descent optimization scheme is performed where the sum of

the squared differences of image intensities is used as registra-

tion metric. A smoothness penalty term has also been intro-

duced to constrain the spline-based FFD transformation to be

smooth. 
• Alignment An affine registration method is performed to align

MR-T and MR-C images at ES phase. The MR-T sequence has

been detagged by means of a homomorphic filtering procedure

( Makram et al., 2015 ) prior to the alignment process. 

.2.2. Motion estimation 

3D HARP motion reconstruction using the C-SPAMM tech-

ique requires a minimum of 3 linearly independent wave vec-

ors ( Osman et al., 20 0 0 ). We have extended the aforementioned
Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
ARP methodology for the computation of the deformation gradi-

nt tensor using SA and LA images on the intersection of the slices

s shown in Fig. 2 . For points on which LA axis images were not

vailable, 2D motion has been reconstructed. The motion estima-

ion technique is based on the extraction of the local phase of the

rid pattern according to the method presented in Cordero-Grande

t al. (2011, 2016) . A windowed Fourier Transform (WFT) is applied

o the image at ES phase. The WFT provides a representation of

he image spectrum in the surroundings of each pixel of the orig-

nal image, so HARP band pass filtering techniques can be directly

pplied on the spatially localized spectrum of the image. To ade-

uately retrieve the shape of the spectral peaks, we have resorted

o an anisotropic filtering approach combining Gaussian band-pass

nd all-pass filters as proposed in Sanz-Estébanez et al. (2016a) .

inally, each of the image phase ϕi ( x ) (two for each plane) can be

xtracted in the spatial domain from the inverse WFT of the afore-

entioned filtered spectrum. 

As mentioned before, we have extended the HARP methodol-

gy by allowing the estimation of motion under the application

f a set of four wave vectors. Therefore, 3D deformation gradi-

nt tensor can be robustly recovered at the intersection points

f both axes, by applying the methodology presented in Cordero-

rande et al. (2016) . The material deformation gradient tensor F ( x )

an be estimated from the gradient of the phase image as stated

n Osman et al. (20 0 0) as: 

 = 

∂ϕ 

∂x 

(x ) F (x ) = Y (x ) F (x ) , (1) 

here K represents the two stripe orientations of four given wave

ectors corresponding to each tagged image. Robust estimation of

 ( x ) is achieved through Least Absolute Deviation (LAD) procedure.

he reconstruction is performed via Iteratively Reweighted Least

quares (IRLS): 

 l+1 (x ) = (Y 

T (x ) W l (x ) Y (x )) −1 Y 

T (x ) W l (x ) K , (2) 

ith W l ( x ) a diagonal weighting matrix, which is updated at each

teration by considering fitting residuals ( Cordero-Grande et al.,

016 ). 

From this estimated tensor, the main cardiac function character-

stics can be obtained through the Lagrangian strain tensor, defined

s: 

 (x ) = 

1 

( F ( x ) 
T 

F (x ) − I ) . (3) 

2 
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Fig. 2. The figure on the left sketches the proposed 3D HARP motion reconstruction scheme for the intersected points between SA and LA planes, which are shown in the 

figure on the right over the SA. 
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1 Rotation parameter β has been pixelwise estimated; therefore, rotation mea- 

sures expressed on (5) are referred to the median of the rotation distribution on 

basal and apical segments. 
The spatial resolution of the reconstructed tensors depends on

the width of the HARP band pass filter ( Parthasarathy and Prince,

20 03; 20 04 ); the HARP method is upper limited by half of the tag

spacing (small deformation assumption). However, WHARP meth-

ods ( Sanz-Estébanez et al., 2016a; Cordero-Grande et al., 2016 ) try

to accommodate the band pass filter to the local frequency of the

signal in order to approach to the maximum achievable resolution.

Therefore, effective HARP resolution will vary dynamically, allow-

ing large deformations, as those observed at ES, being captured at

a maximal scale of 1.5 times half the tag spacing. 

These tensors have been calculated at ES, where the greatest

deformation along the cardiac cycle takes place. 

2.2.3. Rotation parameters 

In addition to thickening and shortening, the myocardium also

undergoes a wringing motion during systolic phases due to the

obliquely oriented subendocardial and subepicardial myofibers.

Many descriptors have been proposed to measure this motion that

rely on either global information derived from simplified anatomi-

cal models or on tensorial strain and deformation magnitudes built

from local motion estimates. 

Measures based on global information. It is well known that the

LV apex globally rotates anticlockwise at a relatively constant rate

throughout systole. On the contrary, the base, initially rotating an-

ticlockwise, reverses direction providing a net clockwise rotation

at ES phase. The resulting difference of these two motions is de-

fined as twist, defined to be positive by convention ( Young and

Cowan, 2012 ). 

There is currently a lack of standardization for methods used to

characterize the global LV twisting motion. These descriptors rely

on geometrical models of the heart for torsion and twist calcula-

tion. Consequently, both a well-defined fixed axis of rotation and

regular myocardial radii over the whole heart are mandatory. For

example, torsion has been traditionally calculated as relative ro-

tation in degrees ( Lorenz et al., 20 0 0 ), rotation per length in de-

grees/mm, torsional shear angle, also in degrees ( Buchalter et al.,

1990 ), and longitudinal-circumferential shear strain (dimension-

less) ( Fung, 1965 ). Traditional rotation indices are obtained by vec-

torial product between position vectors at ES �
 u ES and ED 

�
 u ED 

phases as: 

sin (β) = 

| � u ED × �
 u ES | 

| � u ED || � u ES | . (4)

As stated above, twist computation depends on the exact loca-

tions of the apical and basal slices and requires accurate motion
Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
ompensation, specially for centroid motion correction. Twist per

nit length is also widespread, since torsion is relatively constant

n the longitudinal direction ( Young and Cowan, 2012 ). Nonethe-

ess, this measure does not scale appropriately between hearts of

ifferent sizes and we have not observed a significant complemen-

ary value with respect to the twist. 

The torsional shear angle is a measure of the change in an-

le between line segments which are initially aligned with the

natomical axes of the LV. Many studies have used the formula

iven by Aelen et al. (1997) . However, it has been demonstrated

hat it usually overestimates deformation ( Rüssel et al., 2009b ), so

e have resorted to an unbiased alternative formula based on cir-

umferential displacements: 

 = 

(βapex r apex − βbase r base ) 

D 

, (5)

here D is the distance between selected segments. 1 However,

CM characteristic endocardial irregularities may hinder the accu-

ate estimation of both the myocardial radius and the axis, which

re crucial in this formulation. 

ensorial descriptors. Another important group of rotation descrip-

ors focus on the properties of the tissue that provide localized

haracterization of the motion by tensorial analysis. As stated in

olid mechanics ( Fung, 1965 ), the 3D strain state at any point in a

ody can be fully represented by three diagonal strains and three

hear strains. From them, the longitudinal-circumferential shear

 E lc ) is a useful measure closely related to torsion. According to this

nalysis, local torsion measures can be defined, i.e., the 3D local

orsion shear can be given by: 

in (θlc ) = 

2 E lc √ 

1 + 2 E cc 

√ 

1 + 2 E ll 
, (6)

here E cc and E ll represent the circumferential and longitudi-

al strains, respectively; these components can be obtained by

traightforward operations on the Cartesian components in (3) .

evertheless, shear strains are several magnitudes lower than di-

gonal strains, so factors other than inotropic state may greatly af-

ect its estimation ( Petitjean et al., 2005 ). 

Angular variation between two states of stress in the plane

n Cartesian coordinates can be expressed by a single angle φ as
 myocardial rotation assessment in hypertrophic cardiomyopathy 
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Fig. 3. Examples of vorticity vector modulus at ES from (9) in basal and apical slices, left and right respectively. The arrows show the extracted cardiac displacement field 

while the colour represents the intensity of vorticity (unitless). Some outliers are observed near the boundaries due to the difficulty of HARP methods in tracking material 

points in the presence of great intensity changes. Scales are set to best accomodate the range of values on the given cardiac plane, since myocardial rotation varies in 

modulus and direction along the cardiac axis. 
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tated in Fung (1965) : 

an (2 φ) = 

2 ε xy 

ε xx − ε yy 
, (7) 

here ε represents the Cauchy’s strain tensor ( ε ) directly related

ith the stress tensor by the Lamé parameters ( Fung, 1965 ). Par-

icular values of φ show angular variation of stress principal direc-

ions between both states (ES and ED phases). 

Additionally, in Cordero-Grande et al. (2013b) a novel rotation

arameter has been proposed built from the (longitudinal) trans-

ormation that suffers a local coordinate at ED through time in the

R plane as given by the material deformation gradient tensor F . 

LRl = arctan (−F lr /F ll ) . (8) 

Our work ellaborates on vortical patterns widely employed for

he identification of abnormal flow patterns. Nonetheless, the term

ortex bears different interpretations as defined in the literature.

or most flow studies performed in clinical practice, the term vor-

ex denotes rotating motion, where stream or pathlines tend to

url back on themselves ( Markl et al., 2011 ). In fluid dynamics, a

ortex is a region in a fluid in which the flow is rotating around an

xis line, which may be straight or curved. More explanatory notes

n the theoretical definition of the term vortex can be found in

talder et al. (2010) . In this paper, the term vortex will be used in

he solid mechanics context as a local abnormally increased rota-

ion component. In order to find evidence of perturbations within

he myocardial tissue, material vortical patterns can then be asso-

iated to increased values of an dynamic rotation parameter ex-

racted from the deformation gradient tensor. 

The curl of a given deformation field u describes local spinning

ectors (see Fig. 3 ) and can be calculated as: 

�
  (t) = 

( 

ω x (t) 
ω y (t) 
ω z (t) 

) 

= 

1 

2 

∇ × �
 u (t) = 

1 

2 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∂u z 

∂y 
− ∂u y 

∂z 
∂u x 

∂z 
− ∂u z 

∂x 
∂u y 

∂x 
− ∂u x 

∂y 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

1 

2 

( 

F zy − F yz 

F xz − F zx 

F yx − F xy 

) 

(9) 

here F ab represents a component of the material deformation

radient tensor in Cartesian coordinates. Hereinafter, vortical pa-

ameters will be expressed in Cartesian coordinates as opposed to

he cylindrical coordinates from the strain tensor used in (6) . 
Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
In this paper we hypothesize that local increasing of vortic-

ty values (in modulus) arises within myocardial segments with

brosis-related perturbations. Nonetheless, high vorticity values, ir-

espective of the fibrosis degree, are prone to appear in myocardial

oundaries, giving rise to multiple outliers in rotation estimation. 

These vorticity measures are insensitive to the definition of the

otation axis, although 3D deformations are needed for its proper

econstruction. When LA information is not available, only the lon-

itudinal component ( ω z ) of the vorticity vector can be estimated.

n addition, if the cardiac axis is not planned properly, vorticity

arameters will be estimated with a systematic error related to

he angular error of the axis. However, as it is common in clinical

ractice, we will assume that the main axis of rotation will lie on

he LA planes (i.e., will be normal to the SA image planes). Hence,

he ω z component of the vorticity vector provides clinical compli-

nce as it is aligned with the wringing motion of myocardial fibers.

hus, a phase increment due to the aforementioned local rotation

an be extracted by integration: 
 t ES 

t ED 

ω z (t)d t = ϑ(t ES ) − ϑ(t ED ) = ϑ(t ES ) ≈ ω z (t ES ) 

2 

(t ES − t ED ) . 

(10) 

his parameter will be referred to as local rotation ϑ. Therefore,

wist motion will be approximated as 

wist ϑ = | ϑ base − ϑ apex | (11) 

For comparative purposes, we will also estimate ϑ and β rota-

ion distributions with two other different methodologies. First, we

ill analyse the capabilities of the elastic registration algorithm de-

cribed in Section 2.2.1 applied to MR-C to detect rotation from the

stimated deformation fields. Second, we have employed an atlas-

ased approach that consists of a spheroidal model ( Young and

xel, 1992 ) fitted at ED and that deforms due to the forces ex-

rted from a stripe tracking procedure ( Young et al., 1995 ) on the

R-T sequence throughout the cardiac cycle. Deformations are for-

ulated from continuous parameter functions which, in addition,

nclude parameterized twisting and rotation axis deformation as

iven in Park et al. (1996) and, therefore, can be applied to any

hape. 

.2.4. Classification 

We have resorted to a classification method ( Sanz-

stébanez et al., 2016b ) to assess the discriminating ability

f the rotation features previously described. The procedure,

ketched in Fig. 4 , consists in an automated processing pipeline
 myocardial rotation assessment in hypertrophic cardiomyopathy 
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Fig. 4. Pipeline for the feature selection and classification stages. 
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to classify heterogeneous groups of ventricular hypertrophy (and

controls) from myocardial functional descriptors. The proposed

classification method is grounded on the idea that populations

overlap strongly irrespective of the specific features selected for

classification if the problem is addressed through a single stage.

Our purpose is to classify a sample into one of three classes,

namely, control, primary HCM and secondary hypertrophy (SLVH).

Since secondary hypertrophy patients have subtle differences with

respect to the other two classes, we have resorted to a two-stage

classification procedure. Thus, we have divided the classification

process in three stages and performed a feature selection step

for each stage independently, following a sequential methodol-

ogy that adapts to the characteristics of the population at every

stage. Different machine learning methods (both supervised and

unsupervised) have been implemented for each stage and all their

possible combinations have been tested. 

Mechanical descriptors extracted from the aforementioned ten-

sors are an essential part of the classification procedure. We have

considered different groups of features. First, the components of

the strain tensor in the cylindrical coordinate system { R , C , L }

are accounted for. We also use twist and torsion features (see

Table 3 ) built from the aforementioned rotation parameters as

extracted from the MR-T and MR-C sequences, as well as using

the spheroidal model we have previously referred to. Additionally,

since some rotation-related components have opposite directions
Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
n apex and base, we consider the location of the zero crossing for

hese components as well. 

For the feature extraction step, we have previously se-

ected for each feature the most representative cardiac segments

 Cerqueira, 2002 ) within clinical practice. For twist and torsion de-

criptors, we have considered septal segments, whereas for tenso-

ial parameters, mid-ventricular or basal segments have been cho-

en. In Table 3 we show the segments involved in the calculation

f each of the features; then the overall feature is, for robustness

urposes, the median of the distribution within those segments,

hich will be the input to the classifier. For the twist parame-

ers the feature extracted is the difference between medians on

pical and basal septal segments. On the other hand, for the zero

rossing parameter, the feature represents the height of the cardiac

xis at which the given rotation parameter, estimated slice by slice,

hanges its sign. Notice that the feature extraction step is grounded

n clinical knowledge, i.e., it is not data-driven. 

As reflected in Fig. 4 , after feature extraction we carry out a

ormalization stage in order to diminish the influence of possible

utliers. A sigmoidal function, with its scale factor set according

o Theodoridis and Koutroumbas (1999) , is used to this end. Data

re mapped on the interval (0,1) by imposing a generalized logistic

unction; outliers will tend to appear at either of the two extremes,

hile maintaining a linear relation for the rest of the data. Then,

ormalized features are arranged in vectors with different number
 myocardial rotation assessment in hypertrophic cardiomyopathy 
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Table 3 

Cardiac segments involved during the feature extraction stage for each one of the motion descriptors employed in the classification procedure. For each row, only one feature 

will be extracted, summarizing all the segments indicated below. The extracted features will be the input to the feature selection step, from which the final (survivor) feature 

vector (from 2 to 5 components) will arise. The number within braces indicates the equation that defines the parameter. 

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

E rr (3) 
√ √ √ √ √ √ 

E cc (3) 
√ √ √ √ √ √ 

E ll (3) 
√ √ √ √ √ √ 

E lc (3) 
√ √ √ √ √ √ 

|| ω|| (9) 
√ √ √ √ √ √ √ √ √ √ √ √ 

Twist ϑ (11) 
√ √ √ 

Twist β (4) 
√ √ √ 

Twist φ (7) 
√ √ √ 

T (5) 
√ √ √ √ √ √ √ √ √ √ 

αLRl (8) 
√ √ √ √ √ 

θ lc (6) 
√ √ √ √ 

ω z zero cross. (9) 
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

β zero cross. (4) 
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

o  421 

i422 

 423 

b  424 

s  425 

b  426 

b  427 

i  428 

a  429 

h  430 

o  431 

(  432 

I  433 

i  434 

g  435 

T  436 

t  437 

d  438 

1  439 

h  440 

M  441 

a442 

 443 

c  4 4 4 

r  445 

g  446 

l  447 

e  448 

3449 

3450 

 451 

t  452 

c  453 

d  454 

r  455 

C  456 

S  457 

t  458 

t  459 

s460 

 461 

l  462 

s  463 

v  464 

v  465 

Table 4 

Twist and torsion parameters extracted from the MR-T sequence (mean ± std) for 

segments in Table 3 for each population. The number within braces indicates the 

equation that defines the parameter. 

Populations HCM SLVH Control 

Twist ϑ (11) 10.46 ± 2.11 9.23 ± 2.28 7.33 ± 2.08 

Twist β (4) 13.53 ± 2.50 13.80 ± 3.37 9.87 ± 2.81 

Twist φ (7) 2.73 ± 0.53 2.71 ± 0.64 1.25 ± 0.072 

T (5) 7.26 ± 1.14 6.85 ± 1.90 4.63 ± 1.68 

E lc (3) 0.02 ± 0.003 0.022 ± 0.01 0.011 ± 0.006 

θ lc (6) 7.94 ± 1.66 7.22 ± 1.81 3.18 ± 0.39 

αLRl (8) 1.83 ± 1.57 2.08 ± 1.98 2.82 ± 1.79 

s  466 

d  467 

c 468 

 469 

d  470 

m  471 

(  472 

i  473 

t  474 

s  475 

r  476 

h  477 

t 478 

 479 

o  480 

t  481 

u  482 

r  483 

i  484 

a  485 

b  486 

t  487 

c  488 

a  489 

b  490 

t  491 

d  492 

i  493 

n  494 

s 495 

2 Similar conclusions have been obtained when performing Mann-Whitney U- 

Tests over these same distributions. 
f components (2 through 5). All possible combinations of features

ndicated in Table 3 have been tested. 

Feature selection and classification performance assessment has

een carried out in a similar but sequential manner. For both, data

amples have been randomized and a Leave-10-out method has

een applied; the proportions of control/primary/secondary have

een kept unaltered along trials. Specifically, for feature selection

n the first classification stage, we classify the samples in controls

nd primaries and calculate the accuracy; the feature set with the

ighest figure is selected for this stage. In parallel, and for the sec-

nd stage, controls and secondaries are classified on one branch

left branch) and primaries and secondaries on the other branch.

n this case, features are selected with the criterion of maximiz-

ng the sensitivity to secondaries so as to avoid bias towards the

roups with larger sample size, specially between HCM and SLVH.

his procedure has been labelled in Fig. 4 as K-fold Feature Selec-

ion . As for finding classification performance, a similar cross vali-

ation procedure has been carried out (labelled in Fig. 4 as Leave-

0-out Classification ) on new randomizations. The classifiers tested

ave been Fuzzy c-Means (FCM) ( Bezdec, 1981 ) and Support Vector

achines ( Cortes and Vapnik, 1995 ) both with quadratic (SVMq)

nd Gaussian (SVMg) kernels ( Vert et al., 2004 ). 

In order to assess the performance of a given feature in the

lassification procedure we have measured its surviving percent

ate. This parameter shows the membership probability of the

iven feature to the feature vector extracted from the feature se-

ection step; in other words, it is the frequency that the feature is

mployed within any of the stages of the classification along trials.

. Results 

.1. Rotation analysis 

Torsion is known to be dependent on LV shape, with reduced

wist in more spherically shaped hearts and increased torsion with

oncentric hypertrophy due to an increased lever arm for myocar-

ial fibers. In HCM, torsion has been reported to increase despite

educed circumferential and longitudinal shortening ( Young and

owan, 2012 ). These findings, together with others described in

ection 1 , can be observed in the results included in Table 4 , where

he mean and standard deviation of the twist and torsion dis-

ributions derived from the aforementioned rotation features are

hown. 

In Fig. 5 we show snapshots of mid-ventricular slices of the

ocal rotation extracted by means of the vortical approach as de-

cribed in (10) for a HCM and a SLVH case as well as for a healthy

olunteer. In general, septal segments for HCM have shown higher

orticity, specially when compared to lateral segments, whereas for
Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
econdary cases this behavior can be observed in any of the car-

iac segments. In healthy volunteers the extracted values are lower

ompared to HCM patients independently of the cardiac segment. 

In Fig. 6 , we show color codes of the mean ± standard

eviation (respectively, inner and outer rings within each seg-

ent) of the rotation parameters over the 17-segment model

 Cerqueira, 2002 ), estimated from both the vortical approach given

n (10) and the traditional approach by (4) for the resulting dis-

ribution of the deformation vector field. Additionally, and for the

ake of comparison, rotation parameters extracted with the elastic

egistration procedure over MR-C and from the deformable model

ave been included as well in the second and third rows, respec-

ively. 

Student t-tests 2 have been performed to highlight differences

n the mean of the vorticity modulus and the aforementioned ro-

ation distributions on each of the 17 cardiac segments. Each pop-

lation of the study has been compared with the other two, sepa-

ately for each rotation parameter; the numerical results are shown

n Table 5 and graphically in Fig. 7 bull’s eye display. It is notice-

ble that the vortical approach seems to show larger differences

etween populations compared to the traditional approach. Sep-

al segments seem to bear higher discriminating capability, spe-

ially when twist is measured by the vortical approach. Addition-

lly, we have performed (two-way) ANOVA tests over the ϑ distri-

utions extracted from MR-C and MR-T sequences as well as using

he deformable model (over MR-T) for each population and car-

iac segment. Significant differences ( p < 10 −3 ) have been found

n the vast majority of the comparisons. ϑ and β distributions were

ot compared since the measured parameters do not represent the

ame component of the physiological rotation motion. 
 myocardial rotation assessment in hypertrophic cardiomyopathy 
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Fig. 5. Snapshots on vortical-based rotation measurement ω z from (9) for HCM, SLVH and a healthy volunteer over mid-ventricular slices (from left to right). 

Fig. 6. Regional study of the aforementioned vortical rotation parameters obtained from the MR-C and MR-T sequences, as well as using the deformable model over the 

latter, for the different populations. Traditional rotation is also depicted in the last row. For each cardiac segment two colors are depicted, the inner showing mean + std and 

the outer for mean − std . 

Please cite this article as: S. Sanz-Estébanez et al., Vortical features for myocardial rotation assessment in hypertrophic cardiomyopathy 
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Table 5 

p -values for the comparisons between distributions (H, S and C stand for HCM, SLVH cases and controls, respectively) of the given rotation parameters indexed by number 

of segment. When unspecified, MR-T is the image source. Significance level after Bonferroni correction is 0.017. 

Differences on ϑ distributions Differences on β distributions Differences on ϑCINE distributions Differences on ϑMODEL distributions 

Seg. H. vs S. C. vs S. H. vs C. H. vs S. C. vs S. H. vs C. H. vs S. C. vs S. H. vs C. H. vs S. C. vs S. H. vs C. 

1 0.078 0.001 ≤ 10 −6 0.91 0.01 0.001 0.20 0.008 ≤ 10 −6 0.19 0.033 ≤ 10 −6 

2 0.022 ≤ 10 −6 ≤ 10 −6 0.97 2.49 ·10 −6 ≤ 10 −6 0.47 ≤ 10 −6 ≤ 10 −6 0.12 ≤ 10 −6 ≤ 10 −6 

3 0.065 ≤ 10 −6 ≤ 10 −6 0.65 5.82 ·10 −5 ≤ 10 −6 0.10 0.002 ≤ 10 −6 0.24 ≤ 10 −6 ≤ 10 −6 

4 0.33 ≤ 10 −6 ≤ 10 −6 0.71 1.77 ·10 −6 ≤ 10 −6 0.66 ≤ 10 −6 ≤ 10 −6 0.093 8.23 ·10 −5 ≤ 10 −6 

5 0.52 ≤ 10 −6 ≤ 10 −6 0.31 5.48 ·10 −6 ≤ 10 −6 0.090 0.002 ≤ 10 −6 0.073 6.88 ·10 −5 ≤ 10 −6 

6 0.092 ≤ 10 −6 ≤ 10 −6 0.23 8.04 ·10 −5 3.05 ·10 −5 0.057 1.17 ·10 −4 ≤ 10 −6 0.55 0.0095 ≤ 10 −6 

7 0.64 0.002 3.12 ·10 −5 0.78 0.26 0.21 0.18 0.022 3.29 ·10 −5 0.055 0.0037 ≤ 10 −6 

8 0.011 7.32 ·10 −5 ≤ 10 −6 0.16 0.008 3.03 ·10 −6 0.042 0.098 6.34 ·10 −5 0.038 0.002 ≤ 10 −6 

9 0.049 0.17 0.002 0.27 0.41 0.028 0.09 0.010 4.29 ·10 −4 0.013 0.051 6.81 ·10 −5 

10 0.12 0.27 0.044 0.29 0.89 0.20 0.53 0.016 3.52 ·10 −5 0.34 0.046 2.25 ·10 −4 

11 0.018 6.88 ·10 −6 ≤ 10 −6 0.58 5.79 ·10 −4 1.37 ·10 −6 0.25 0.037 1.98 ·10 −5 0.091 0.047 0.12 

12 0.006 8.21 ·10 −6 ≤ 10 −6 0.94 0.004 6.94 ·10 −5 0.26 0.18 1.34 ·10 −4 0.65 0.059 0.064 

13 0.10 0.092 0.002 0.57 0.085 0.002 0.040 0.092 2.69 ·10 −4 0.021 0.0068 ≤ 10 −6 

14 0.79 0.068 5.38 ·10 −5 0.54 0.017 0.001 0.055 0.003 ≤ 10 −6 0.032 0.0082 ≤ 10 −6 

15 0.18 0.061 0.003 0.56 0.58 0.24 0.018 0.019 ≤ 10 −6 0.76 0.019 2.16 ·10 −5 

16 0.46 0.045 ≤ 10 −6 0.25 0.019 0.001 0.18 0.38 0.018 0.083 0.025 ≤ 10 −6 

17 0.87 0.86 0.22 0.73 0.88 0.82 0.14 0.17 0.27 0.81 0.17 3.76 ·10 −4 

Fig. 7. p -value bull’s-eye plots from intra-segment comparisons between primary HCM and SLVH patients for ϑ distributions obtained with different methodologies, as well 

as traditional rotation β distribution. Scale is defined as −log 10 ( p-value ) . 
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.2. Classification analysis 

We have assessed the survival rate of the feature selection stage

f the classifier (recall Fig. 4 ). Results are shown in Table 6 for

he features described in Table 3 ; features obtained from both the

R-C elastic registration as well as from the spheroidal deformable

odel have also been included. Additionally, we have also included

onventional indices of cardiac motion used in clinical practice,

uch aswall thickening (WT) over mid-ventricular slices (see Dong

t al., 1994; Prasad et al., 2010 for more details), ejection fraction

EF) and LV volume, with the latter both at ED (EDLVV) and ES

hases (ESLVV). 

The most repeated configuration of the classifier consisted of

CM for stages 1 and 2.2 and SVMg for stage 2.1. The best ac-

uracy figures were obtained when using diagonal strain ten-

or components on stage 1, whereas for stages 2.1 and 2.2, the

est feature vectors turned out to be [ E ll , Twist ϑTAG , Twist φ] and

 E ll , E cc , Twist ϑ TAG , || � ω || ] , respectively. If we take into account not

nly the best classifier but we also rank performance and analyze

he first, say, ten results, the composition of the selected feature
Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
ectors shows some degree of variability which seems very much

n accordance with the results in Table 6 . 

In terms of end-to-end performance, the obtained accuracy

86%) seems comparable in classification figures with other proce-

ures (see Gopalakrishnan et al., 2014; Puyol-Antón et al., 2017 )

lthough, in these cases, no SLVH are analyzed, so comparisons

ave to be made cautiously. In disaggregated terms, the sequential

lassifier has obtained sensitivity figures higher than 70% for each

roup (specifically, 81% for control, 72% for secondary hypertrophy

atients and 95% for primary HCM patients). It is worth mention-

ng that no primary is classified as control and viceversa; therefore,

he pipeline proposed seems a proper screening tool. Secondary

atients performance is clearly lower as compared with both con-

rols and primary HCM patients, possibly due to a smaller sample

ize as well as the subtle differences they show. 

Finally, in order to assess the relative strength of the differ-

nt measures in classification performance, we have run the clas-

ification pipeline with different f eatures subsets. In particular, in

able 7 we have compared confusion matrices obtained with the

ull feature set (MR-T + MR-C + Deformable model + Conventional
 myocardial rotation assessment in hypertrophic cardiomyopathy 

), https://doi.org/10.1016/j.media.2018.03.005 
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Table 6 

Surviving percent rate of the features employed in the classification procedure (see 

notation in Fig. 4 ). Stage 2.2 is devised to SLVH-to-HCM sensitivity, while stage 2.1 

refers to SLVH-to-Control sensitivity. 

Features Stage 2.2 Stage 2.1 Stage 1 

E rr 7 38 35 

E cc 54 24 60 

E ll 49 50 37 

E lc 22 11 6 

|| � ω || 43 25 19 

Twist ϑ TAG 42 32 27 

Twist ϑ CINE 7 2 13 

Twist ϑ MODEL 15 8 7 

Twist β TAG 19 16 16 

Twist β CINE 8 5 4 

Twist β MODEL 12 3 0 

Twist φ 18 20 24 

T 8 13 18 

θ lc 3 0 1 

αLRl 7 9 10 

ω z zero cross. TAG 21 13 4 

ω z zero cross. CINE 2 5 2 

ω z zero cross. MODEL 12 3 0 

β zero cross. TAG 14 1 3 

β zero cross. CINE 0 2 1 

β zero cross. MODEL 3 1 0 

WT 0 8 10 

EF 0 6 3 

EDLVV 0 0 1 

ESLVV 0 2 0 
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clinical indices) and with MR-T features only. From the latter, we

have also shown classification performance obtained discarding

traditional and vortical rotation features, respectively. 

4. Discussion 

The relationship between myocardial fibrosis and local mechan-

ics is important for the diagnosis and treatment of cardiomy-

opathies ( Karamitsos and Neubauer, 2011 ). This paper shows that

LV rotation is essential for proper myocardial function. In our case,

most of the measurements shown in Table 4 indicate that LV rota-

tion can be considered as a marker for cardiac disease identifica-

tion and might be helpful for cardiomyopathy understanding, thus

providing complementary information to standard pump function

indices. 

The diagonal components of the strain tensor ( E cc , E ll and

E rr ), defined in (3) , have provided the highest separability be-

tween pathologic and healthy groups (cardiomyopathy screening)

as shown in Table 6 ; our results are in accordance with this find-

ing ( Saltijeral et al., 2010 ). Twist parameters seem to be also valu-

able in this step, showing higher survival rate than shear strains

and torsion parameters. For the refinement step for controls/SLVH

(stage 2.1 in Fig. 4 ) the E cc component in mid-ventricular areas is

the most discriminative. Amongst the rotation-based parameters,

vorticity modulus || � ω || and twist ϑTAG remain the most discrimina-

tive features. 

In parallel, for the classifier stage 2.2, lower figures on the

global performance are obtained. Besides, the selected feature vec-
Table 7 

Confusion matrices for classification performance with different feature subsets. M

Each column represents the instances in a predicted class while rows represent th

Full Feature Set MR-Tagging only 

C S H C S H 

C 0.236 0.064 0 0.243 0.057 0 

S 0.023 0.145 0.032 0.038 0.144 0.018 

H 0 0.017 0.483 0 0.025 0.475 

Please cite this article as: S. Sanz-Estébanez et al., Vortical features for

using cardiac tagged magnetic resonance, Medical Image Analysis (2018
or presented one more component and two curl-derived entries; it

onsisted of a combination of two diagonal strain parameters, the

orticity modulus (9) and the twist extracted from the vortical ap-

roach (10) . Extending the analysis to more (than one) high-ranked

eatures vectors, we observe a greater degree of heterogeneity as

ell as the frequent presence of ω z (9) . Consequently, the pro-

osed curl-derived parameters (9) –(11) have turned out to be par-

icularly useful for the discrimination of primary and secondary

ases as reflected by sensitivity figures extracted from Table 7 . 

To the best of our knowledge, this is the first study in HCM

atients that relates vorticity in cardiac deformation fields with lo-

al myocardial mechanics and its abnormalities; our results sug-

est that vorticity may help deepen on the underlying character-

stics behind primary and secondary cases of LV hypertrophy. For

hese parameters, neither the length nor the center of the heart

re needed, so no bias is introduced in their estimation; as we

ave described above, vorticity is directly related to the deforma-

ion gradient tensor and, consequently, it can be estimated from

he same information used in the strain tensor (3) analysis. In ad-

ition, they show higher survival rates than techniques that use

xed LV axis and center representations, giving rise to a more reli-

ble parameter. 

The color-coded results shown in Fig. 6 reveal that patients

ith both forms of ventricular hypertrophy present greater rota-

ion distributions as compared with controls over most segments

oth for vortical (10) and traditional (4) rotations. As for primary

CM patients, there is a clear increased rotation (in modulus) for

ll segments, but high vorticity areas are mainly located on septal

egments. SLVH patients showed a somewhat different pattern in

id-ventricular and basal regions of the heart, presenting higher

alues than controls; those values are not focused on septal seg-

ents but a slight bias to lateral segments may exist. Other re-

ional analyses have also been performed by means of automatic

V segmentation ( Bai et al., 2016; Liang et al., 2015 ). However, the

resence of hypertrophic tissue and other pathologies may bias

he final parcellation of the cardiac segments. For this reason, we

ave made use of the 17-segment model as a consistent and well-

stablished model for motion analysis ( Smiseth et al., 2016 ). The

sefulness of the vortical parameters has also been reflected by

he improvement shown in Table 7 with respect to traditional ro-

ation parameters and the minor degradation with respect to the

ull-feature option when curl-derived parameters are used in iso-

ation. 

Our results also indicate a higher performance of MR-T for mo-

ion estimation with respect to MR-C; however, it is well-known

hat HARP procedures have some difficulties in correctly estimat-

ng the phase in the vicinity of boundaries. In those areas, elas-

ic registration procedures over MR-C is usually more robust. For

his reason, a coordinated procedure that weighs both information

ources according to position may potentially provide better fig-

res. 

Additionally, vortical measures were compared when extracted

oth from the HARP method and by deforming a spheroidal model

reviously fit. Similar vorticity values were obtained although the

xtracted vortical patterns from the spheroidal model showed
atrices have been normalized with respect to the total number of patients. 

e instances in an actual class. 

Vortical only Traditional only 

C S H C S H 

0.24 0.06 0 0.234 0.066 0 

0.021 0.141 0.038 0.038 0.127 0.035 

0 0.022 0.478 0 0.023 0.477 

 myocardial rotation assessment in hypertrophic cardiomyopathy 

), https://doi.org/10.1016/j.media.2018.03.005 
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 766 
igher spatial smoothness due to the regularized functions used

o define the deformation, thereby reducing its usefulness for clas-

ification (see Table 6 ). 

Finally, conventional global indices in HCM diagnosis (see

able 1 ) have also been tested in the classifier. Neither of them

resented a very representative survival rate (even in stage 1),

ence, their influence on final performance does not seem rele-

ant. 

. Conclusions and future lines 

In this paper we have related anomalies on local vortical pat-

erns with the presence of fibrotic tissue by means of an im-

ge processing pipeline and a two-stage sequential classification

ethod. Local rotation parameters are estimated by means of a ro-

ust motion and tensor analysis so that potential biases of global

nalyses are avoided. 

Local rotation was significantly increased in primary HCM pa-

ients, specially in the septum, compared to controls and secondary

ases; in the latter, vortical abnormalities may show a slight trend

o lateral segments and with values less pronounced than pri-

aries. These findings may provide important information in hy-

ertrophic diseases to establish a differential diagnostic between

hese two classes. 

Classification figures, although collateral in the paper, are

romising; clearly, discrimination between primary HCM and sec-

ndary cases is more challenging than between HCM and controls.

herefore, figures related to the former problem have been lower

han those related to the latter. A larger cohort may let us increase

his number in the near future. Classification of SLVH cases has

roven to be a challenging task but figures, despite not being re-

arkable, are likely to improve when equalizing the number of

ubjects in the study or by introducing features that take into ac-

ount the position of vortical peaks. 
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