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Abstract. Multishot echo-planar imaging is a common strategy in dif-
fusion Magnetic Resonance Imaging to reduce the artifacts caused by the
long echo-trains in single-shot acquisitions. However, it suffers from shot-
to-shot phase discrepancies associated to subject motion, which can no-
tably degrade the quality of the reconstructed image. Consequently, some
type of motion-induced phases error correction needs to be incorporated
into the reconstruction process. In this paper we focus on ridig motion
induced errors, which have proved to corrupt the shots with linear phase
maps. By incorporating this prior knowledge, we propose a maximum
likelihood formulation that estimates both the parameters characteris-
ing the linear phase maps and the reconstructed image. In order to make
the problem tractable, we follow a greedy iterative procedure that alter-
nates between the estimation of each of them. Simulation data are used
to demonstrate the performance of the method against state-of-the-art
alternatives.
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1 Introduction

Diffusion-weighted imaging (DWI) is a non-invasive technique that allows for
quantification of water molecules diffusion in biological tissues. Due to its speed
and insensitivity to motion, single-shot echo planar imaging (ss-EPI) has be-
come the most commonly used sequence in DWI. However, its long echo-trains
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result in significant image distortions due to B0-field inhomogeneities, eddy cur-
rents, T2*-blurring or chemical shift [1]. In order to achieve higher resolution
and less distortion using ss-EPI, different alternatives have been studied. One
option would be to combine it with parallel imaging, but the acceleration rate is
limited by the noise amplification. Another possibility would be to use reduced
field-of-view (rFOV) techniques [2], where only a portion of the object is ex-
cited [3], leading to shorter echo-trains since a lower resolution k–space suffices
to reconstruct the image. The negative aspect is that this technique is uniquely
useful when we are only interested in a specific part of the object [2, 4].

A different approach to reduce the EPI echo train is multi-shot EPI (ms-EPI),
which consists in segmenting the readout into multiple interleaved shots [5].
This reduces the readout duration and, as a result, the distortion caused by the
aforementioned effects. However, phase inconsistencies between different shots
induced by subject motion may cause additional ghost artifacts. For this rea-
son, ms-EPI sequences need to incorporate a phase-correction technique that
accounts for these phase mismatches between shots.

Subject-induced phase maps in ms-EPI behave similarly to sensitivity maps
in parallel imaging (PI) in the sense that they can be modelled as a pixel-
wise multiplication between the original image and corresponding map. This
analogy motivates the translation of PI techniques to reconstruct the multi-shot
data under shot-to-shot phase discrepancies. State-of-the-art methods can be
classified into three different groups: extra–navigated methods, self–navigated
methods and navigator–free methods. The first group relies on the acquisition of
callibration data from where the phase-maps can be estimated and incorporated
into a SENSE-type reconstruction [6], but they are not able to deal with dynamic
errors, i.e., mismatches between the navigator and the imaging data. For that
purpose, self–navigated methods acquire the callibration data within the imaging
sequence, and further reconstruct the image based on different PI techniques
such as GRAPPA [7], SPIRiT [8] or LORAKS [9]. However, this approach is
time-inefficient, which led to the developement of techniques that retrospectively
correct for ghosting artifacts from the images themselves using priors such as
phase smoothness [10], rigid–motion [6] or low-rankness [11].

In this paper, we present a navigator-free method to reconstruct ms-EPI im-
ages under the assumption of intra-shot rigid motion. Anderson et. al. proved
that the resulting phase errors are linear in the image space, which turn into
shifts and constant offsets in k–space [5]. Incorporating this knowledge into the
model, we present an image reconstruction procedure based on the optimiza-
tion of a functional used to jointly estimate the k–space shifts and offsets and
the diffusion image by exploiting the sensitivity encoding [12] redundancy pro-
vided by the the coil array. This philosophy has already proven succesful for the
correction between even and odd lines, where corruption occurs only along the
fully–sampled readout direction [13].
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2 Theory

2.1 Problem formulation

Under the assumption of rigid motion during the application of diffusion-sensitized
gradients the phase corruption for each shot becomes linear and can be charac-
terized by three parameters in 2D imaging. Thus, the reconstruction for parallel
multishot imaging can be performed by means of the maximum likelihood for-
mulation in matrix form as:

(x∗, θ∗) = argmin
x,θ

‖AFSP(θ)x− y‖22 . (1)

The aim is to reconstruct a 2D image (although the model could be easily
generalized to 3D imaging) x of sizeN = N1·N2, whereNl refers to the number of
voxels along the dimension l using an array containing C coils from M = E ·S ·C
samples of a discretized k–space grid of size K = K1 ·K2. E refers to the number
of sampled points per shot and S is the number of shots. The terms in (1) are
represented by the following matrices:

– y is a vector of size M × 1 containing measured multi-shot k–space data.
– A is a sampling matrix of size M ×KSC given by

A =



A11 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · A1C · · · 0
...

...
...

. . .
...

0 · · · 0 · · · ASC

 , (2)

where Asc is a matrix of size E×K whose entries are equal to 1 if the sample
e of the shot s matches the k–space location indexed by k and 0 otherwise.

– F is a matrix of size KSC×NSC that performs the Discrete Fourier Trans-
form (DFT) given by the diagonal block structure

F =



F11 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · F1C · · · 0
...

...
...

. . .
...

0 · · · 0 · · · FSC

 , (3)

where Fsc is a K ×N matrix performing the 2D DFT.
– S is a matrix of size NSC×NS containing properly arranged coil sensitivity

maps:

S =



S11 · · · 0
...

. . .
...

S1C · · · 0
...

. . .
...

0 · · · SSC

 , (4)
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where Ssc is a diagonal matrix of size N×N containing the sensitivity profile
of coil c.

– P(θ) is a matrix of size NS ×N containing the phase maps given by

P(θ) =

P (θ1)
...

P (θS)

 , (5)

where P (θs) is a diagonal matrix of size N ×N containing the linear phase
map for shot s characterized by three parameters θs = [θs0θs1θs2]. Its diag-
onal is given by the vector ps(θs):

ps(θs) = e−j(θs0+θs1·r1+θs2·r2), (6)

where rl denotes the spatial coordinate vector along dimension l.
– x is a vector of size N × 1 containing the reconstructed image.

2.2 Problem solving

Our minimization problem is a non-linear least squares optimization problem,
which does not have a closed-form solution in general. Directly solving the joint
optimization problem, however, is practically intractable. For this reason, we
proceeded in a greedy iterative fashion, alternating between solving the following
two subproblems [14]:

– Image reconstruction problem

x∗ = argmin
x
‖AFSP(θ∗)x− y‖22 . (7)

This formulation is equivalent to the one of SENSE (Pruessmann), which we
solve by the iterative conjugate gradient method described in (Pruessmann).

– Phase maps estimation

θ∗ = argmin
θ
‖AFSP(θ)x∗ − y‖22 . (8)

We look for the solution that nulls the gradient of the objective function and
for that puporse we have chosen to use the Newton’s algorithm, which uses
information of the Hessian.

Since the objective function is nonconvex, it will in general contain multi-
ple local minima. For this reason, a proper initialization becomes vital for our
algorithm to find the global minimum. Taking into account that the constant
offsets are preserved in k–space and that linear phases introduce k–space shifts,
we find an initial estimate of our phase maps parameters by finding the position
and phase of the peak of the spectrum. However, since each shot is undersampled
by a factor equivalent to the number of shots, the peak may have been shifted
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to an unacquired line. Consequently, prior to peak detection, we compute an
L2-Tikhonov regularized SENSE reconstruction of each shot. This way, we take
advantage of the ideas behind methods such as MUSE, although we could use
other kind of regularizations (low-rank as in MUSSELS, for example) as well.

Nevertheless, this initialization may still be subject to a certain degree of
uncertainity in the detection of the peak if the reconstructed shots show a large
noise amplification or ghosting artifacts. For this reason, and to help Newton’s
method scape from local minima, we search on a discretized grid in the space of
phases for each shot around the previous phase candidates. In order to alleviate
the computational burden, we decrease the size of the grid by a factor of 2 at
each iteration.

3 Methods

With the aim of replicating the phase maps generated by a rigid motion, we used
a T2 neonatal brain axial image acquired with a fast spin echo sequence on a
3T PHILIPS ACHIEVA TX with a head coil array of 32 channels and using the
following parameters: resolution= 0.8 × 0.8mm, slice thickness= 1.6mm, echo
time TE = 145ms, repetition time TR = 12s, flip angle α = 90◦. Coil sensitivity
profiles were estimated from a separate pre-scan using (Allison). The image was
reconstructed without zero filling in order to preserve the resolution and then
cropped to a 128 × 128 matrix so the brain adjustes to the FOV. To generate
our synthetic msEPI data, we applied the forward model described in Eq.(1).

We have compared our algorithm with three different alternatives:

1. MUSE [10]: we reconstruct each shot using SENSE and from it we get an
estimate of its phase map after applying a Total-Variation (TV) filter. We
then reconstruct the image solving the SENSE-type problem in Eq.(7).

2. Linearly parameterized MUSE (LinMUSE): since the original MUSE imple-
mentation was developed for a more general scenario where the only prior
knowledge about the phase is that it is smooth, we implemented a MUSE
version that incorporates the prior knowledge of linear phase corruption
maps. The difference with the previous algorithm is that, instead of taking
the phase of each shot-reconstructed image after the TV-filter, we estimate
the three parameters caracterising the linear phase map from the peak and
position of the k–space peak.

3. LinMUSE with L2−Tikhonov regularization (LinMUSE+Tik): the presence
of noise can affect the detection of the peak in k-space, specially when the
phase map shifted it to the furthest position from the acquired lines, i.e., to
the intermediate position in between two lines for the considered shot. For
this reason, a certain degree of regularization can help avoid misidentifying
the peak as amplified noise. It is important to notice that a regularization
may induce errors as well due to incorrect removal of ghosting artifacts.

Finally, we carried out two experiments on our data:

Carlos Alberola López�
BORRADOR



6 I. Rabanillo et al.

– In order to visually assess the ability of the aforementioned methods to
reconstruct the image, we compared the reconstructions at a low SNR sce-
nario for 4, 6 and 8 shots. The phase offset was randomly generated between
[−π, π], whereas the linear ramp was generated to shift the peak in the region
covering the central S lines. We focused on this region of linear shifts since
the worst scenario arises when the peak moves to the intermediate position
between two acquired lines. However, with respect to the acquired lines, it
does not seem to matter how far away we move from the original center.

– We carried out 100 reconstruction using S = 8 shots for varying levels of
SNR. We computed the SNR as the mean absolute signal divided by the stan-
dard deviation of the synthetic uniformly gaussian added noise. The phase
parameters were generated as in the previous experiment. We compared the
absolute error in the estimation of the phase parameters, since they are the
ones causing the ghosting artifacts in the reconstructed image.

4 Results

In Fig.1 we show the reconstructed images for a low SNR scenario varying the
number of shots. The first column shows the ground-truth, and the next columns
show the reconstruction for the described method, LinMUSE, LinMUSE+Tik
and standard MUSE.

Ground-truth Joint Est LinMUSE LinMUSE+Tik MUSE
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Fig. 1. Reconstructed images in a low SNR scenario for different number of shots: 4
(first row), 6 (second row) and 8 (third row). First column shows the ground-truth and
the following ones the reconstructed images with our method (second column), Lin-
MUSE (third column) LinMUSE+Tikhonov regularization (fourth column) and stan-
dard MUSE (fifth column).
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We observe that for S = 4, all reconstructions seem to perform similarly,
which is consistent with the literature [10]. However, when we increase the num-
ber of shots, we start to observe how the MUSE-type reconstructions introduce
ghosting artifacts. For a high number of shots, the g-factor noise amplification
associated to SENSE becomes very high, increasing the uncertainity in the detec-
tion of the peak of the spectrum. Specifically, when the phase corruption shifts
the peak to the intermediate position between two sampled lines for a particular
shot, it becomes more likely to identify it at a noisy location.

We can observe as well that when an L2-Tikhonov regularization is applied
together with SENSE, the peak detection seems to provide a good estimate of
the linear phase maps parameters (see fourth column for 6 shots). By applying
this regularization, we limit the noise amplification in the SENSE reconstructed
shot, although the trade-off is that the reconstructed image can still show some
ghosting artifacts. For this reason, we chose it as the initialization for our method,
which after the steps described in the Theory Section seems to be able to provide
a ghosting artifacts free image for the case of 8 shots.

Linear phase along FE 
Absolute Estimation Error

Phase O set 
Absolute Estimation Error

Linear phase along FE 
Absolute Estimation Error

10        8        6         4      2
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10        8        6         4      2
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Fig. 2. Bosplots of the absolute errors for the phase parameters estimation: offset (first
column), FE slope (second column) and PE slope (third column). We must point out
that multiple outliers were present for the lowest SNR scenario in all of the studied
reconstructions, although we removed them from the figure for a more clear visualiza-
tion.

On the other hand, in Fig.2 we can see that the absolute errors for the
estimation of the three different parameters: the constant offset, the slope along
the frequency–encoding (FE) direction and the slope along the phase–encoding
(PE) direction. We compared the errors between our method, LinMUSE and
LinMUSE+Tik for varying levels of SNR. We observe that our method is always
able get a closer estimate to the actual phase parameters. This is consistent
with the fact that our method is initialized with the phase estimates provided
by LinMUSE+Tik and from there a finer estimation is done based on both the
initial grid search and the subsequent Newton’s method based descent.

5 Discussion

In this work we have proposed a joint procedure to both reconstruct the images
and estimate the phase error maps for ms-EPI under the assumption of rigid
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motion during the application of the diffusion-sensitized gradients in dMRI. Our
method is initialized with the solution provided by a linearly parametrized MUSE
reconstruction that identifies the position and phase of the peak of the spectrum.
By using alltogether the information from all the shots and due to the availability
of multi–channel data, we are able to obtain a finer estimation of the phase
parameters that results in a better removal of ghosting artifacts.

We have illustrated the performance of the proposed technique with simula-
tions varying the number of shots and the level of noise. Importantly, our method
seems able to reconstruct the images for higher number of shots compared to
the considered alternatives.

This study presents some limitations. First, we have only tested the method
in a synthetic phantom corrupted by linear phase maps. We expect this assump-
tion to be a reasonable one for certain areas of the brain, or if cardiac triggering
is used during the acquisition to limit the non-linear phase effects of pulsatile
motion [15]. For this reason, we believe the results are promising regarding its
applicability to clinical scenarios. Second, we have only compared our method
to our own implementation of MUSE [10] and a linearly parametrized version of
it. These methods however contain different parameters that need to be tunned,
so a more detailed of them should be considered to guarantee a fair comparison.
Furthermore, other more complex algorithms such as LORAKS [9] or MUS-
SELS Mani17 could be considered as well. Third, we have just considered the
case of linear phase errors, but it would be interesting to study a non-linear
model based on B-splines similar to [14] that can deal with non-rigid motion.
Fourth, we have only considered tha case of cartesian sampling, but our formu-
lation is compatible with different trajectories such as spirals, so it would be
interersting to test it under different sampling patterns.

6 Conclussions

We have developed a method that builds upon state-of-the-art techniques and
is able to better estimate the phase maps corruption multi-shot EPI acquisi-
tions, resulting in an increased ability to remove ghosting artifacts from the
reconstructed images. Under the assumption of rigid motion, we pose a joint
formulation that is able to both reconstruct the images and estimate the phase
maps in a greedy iterative fashion.
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