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Abstract. Multishot ec.  '~nar imaging is a common strategy in dif-
fusion Magnetic Resonance Im , "~ reduce the artifacts caused by the
long echo-trains in single-shot :quisiti.. However, it suffers from shot-
to-shot phase discrepancies as - . subject motion, which can no-
tably degrade the quality ~* -cconstructed image. Consequently, some
type of motion-induced puases error correction needs to be incorporated
into the reconstruction prr~n T~ +hic ~~per we focus on ridig motion
induced errors, which ha: provea to cor1 pt the shots with linear phase
maps. By incorporating 1is prior know dge, we propose a maximum
likelihood formulation tI % estimates bc 1 the parameters characteris-
ing the linear phase maps 4 the recor _ucted image. In order to make

the problem tractable, we fo.. _dy iterative procedure that alter-
nates between the estimation of each of them. Simulation data are used
to demonstrate the perforr - method against state-of-the-art
alternatives.

Keywords: Multi-shot PI - Parallel ir ging - Motion-induced phase
error

1 Introduction

Diffusion-weighted imaging (DWI) i a non navasive technique that allows for
quantification of water molecules diff ion ir siological tissues. Due to its speed
and insensitivity to motion, hte o planar imaging (ss-EPI) has be-
come the most commonly used sequence in DWI. However, its long echo-trains
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result in significant image dist oons due v B0-field inhomogeneities, eddy cur-
rents, T2*-blurring or chem’ l shift [1]. In wder to achieve higher resolution
and less distortion using ss-- °I, different a 2rnatives have been studied. One
option would be to combine it -ith paralle’ aaging, but the acceleration rate is

limited by the noise amplificatic. _. possibility would be to use reduced
field-of-view (rFOV) techniques [2], where only a portion of the object is ex-
cited [3], leading to shorter e 1 lower resolution k—space suffices

to reconstruct the image. The negat e aspe . is that this technique is uniquely
useful when we are only interested i1 a spec ic part of the object [2,4].

A different approach to rec uce vue Ea . ccho train is multi-shot EPI (ms-EPI),
which consists in segmenting the readout into multiple interleaved shots [5].
This reduces the readout dur , asult, the distortion caused by the
aforementioned effects. However, ph se incc sistencies between different shots
induced by subject motion may cat : addi onal ghost artifacts. For this rea-
son, ms-EPI sequences need to inc  »orat- a phase-correction technique that

accounts for these phase misr _.....cs be. . _cn shots.

Subject-induced phase maps 1. WPI behave similarly to sensitivity maps
in parallel imaging (PI) in the s 1se tu. 'hey can be modelled as a pixel-
wise multiplication between the ¢ iei~  _iage and corresponding map. This
analogy motivates the translat: _ 1’1 techniques to reconstruct the multi-shot
data under shot-to-shot phase discrepancies. State-of-the-art methods can be
classified into three different ‘ avigated methods, self-navigated

methods and navigator—free n thods. The fi t group relies on the acquisition of
callibration data from where { e phase-maps an be estimated and incorporated
into a SENSE-type reconstruc o [6], but tb are not able to deal with dynamic

errors, i.e., mismatches betwee. '~ »~-" _or and the imaging data. For that
purpose, self-navigated methods acquire the callibration data within the imaging
sequence, and further reconstru~ ~ge based on different PI techniques

such as GRAPPA [7], SPIRi” & or LOn XS [9]. However, this approach is
time-inefficient, which led to1 2 developemeir of techniques that retrospectively
correct for ghosting artifacts rom the imag . themselves using priors such as
phase smoothness [10], rigid-1. tion [6] or * v-rankness [11].

In this paper, we present a navigator-free method to reconstruct ms-EPI im-
ages under the assumption 0. ... w1 wv g motion. Anderson et. al. proved
that the resulting phase errors are 1 ear ir she image space, which turn into
shifts and constant offsets in k—space 5]. Inc rporating this knowledge into the
model, we present an image recone  ~tior srocedure based on the optimiza-
tion of a functional used to j..uuy estuuwwe the k—space shifts and offsets and
the diffusion image by exploiting the sensitivity encoding [12] redundancy pro-
vided by the the coil array. This philosophy has already proven succesful for the
correction between even and odd lines, where corruption occurs only along the
fully-sampled readout direction [13].
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2 Theory

2.1 Problem formulatio

Under the assumption of rigid . ~tion durir  ne application of diffusion-sensitized

gradients the phase corruption to. .ot becomes linear and can be charac-
terized by three parameters in 2D imaging. Thus, the reconstruction for parallel
multishot imaging can be pe ) 18 of the maximum likelihood for-
mulation in matrix form as:
* * : 2
(x*,0%) = argm’ [AF, P(O)z — yll; - (1)

The aim is to reconstruct a 2D image (although the model could be easily
generalized to 3D imaging) x of «ive M — M. N, wwhere N; refers to the number of
voxels along the dimension [ using an rray ¢ 1taining C' coils from M = E-S-C
samples of a discretized k—space grid fsize . = K;-K,. E refers to the number
of sampled points per shot and S is he nw oer of shots. The terms in (1) are
represented by the following m-~*-

— vy is a vector of size M x 1 containing measured multi-shot k—space data.
— A is a sampling matrix o. . M x KSC' given by

(Al"' .0

A= | u - Aic--- 0 , (2)
\ 0O --- 0 --- Agc

where A, is a matrix of s. > E'x K whos entries are equal to 1 if the sample
e of the shot s matches th ™-space lo- .ion indexed by k and 0 otherwise.

— F is a matrix of size KSC X .. . performs the Discrete Fourier Trans-
form (DFT) given by the diagonal block structure

- o0
F- 0o ---F --- 0 , (3)
\0 v 0 -+ Fso

where 1‘75C isa K x N mauiix Pl JLLLLLY she 2D DFT.
— S is a matrix of size NSC x NS ¢ atainii ; properly arranged coil sensitivity
maps:
.. 0

0 - Ssc
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where S, is a diagonal ms .x of size /v IV containing the sensitivity profile

of coil c.
— P(0) is a matrix of size . S x N contair 1g the phase maps given by
oY)
PO =] : |, (5)
o ls)

where P(fs) is a diagonal matri: of size V x N containing the linear phase
map for shot s characterized bv  vee r -ameters 05 = [050051052]. Its diag-
onal is given by the vectc ,,.vs):

s PN s(0 0 1-T‘1+952'T2), (6)

where 7; denotes the spatial coor inate :ctor along dimension I.
— x is a vector of size N x 1 conta ing tI reconstructed image.

2.2 Problem solving

Our minimization problem is a nc -.. - least squares optimization problem,
which does not have a closed-form olutior  general. Directly solving the joint
optimization problem, however, is wwcally intractable. For this reason, we

proceeded in a greedy iterativ.  _.uon, alternating between solving the following
two subproblems [14]:

— Image reconstruction pro em

x* = -gmin||AFE '(9*)w—y||§. (7)

This formulation is equivalent to the one of SENSE (Pruessmann), which we
solve by the iterative conjus  _.ww.  wethod described in (Pruessmann).
— Phase maps estimation

0" = gmin|AFS" (0)z" —yl;. (8)

We look for the solution that nulls the gradient of the objective function and
for that puporse we have -~~~ *~ -=-~ ¢ Newton’s algorithm, which uses
information of the Hessian.

Since the objective function is n 1conve | it will in general contain multi-
ple local minima. For this reason -~  oper itialization becomes vital for our
algorithm to find the global ..uuuum. Laxing into account that the constant
offsets are preserved in k—space and that linear phases introduce k—space shifts,
we find an initial estimate of our phase maps parameters by finding the position
and phase of the peak of the spectrum. However, since each shot is undersampled
by a factor equivalent to the number of shots, the peak may have been shifted
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to an unacquired line. Conse .ently, pric. "o peak detection, we compute an
L2-Tikhonov regularized SEI SE reconstruc »n of each shot. This way, we take
advantage of the ideas behir methods suc! as MUSE, although we could use
other kind of regularizations \ w-rank as i MUSSELS, for example) as well.

Nevertheless, this initializati. .1l be subject to a certain degree of
uncertainity in the detection of the peak if the reconstructed shots show a large
noise amplification or ghostir this reason, and to help Newton’s

method scape from local minima, we earch 1 a discretized grid in the space of
phases for each shot around the prex >us ph e candidates. In order to alleviate
the computational burden, we decrs ‘e the ize of the grid by a factor of 2 at
each iteration.

3 Methods

With the aim of replicating the phas naps « nerated by a rigid motion, we used
a Ty neonatal brain axial im _ U .ath a fast spin echo sequence on a
3T PHILIPS ACHIEVA TX with a head coil array of 32 channels and using the
following parameters: resoluti.. 8 x 0.8mm, slice thickness= 1.6mm, echo
time Tg = 145ms, repetition time . " “<. flip angle a = 90°. Coil sensitivity
profiles were estimated from a sep: ate p~~  an using (Allison). The image was
reconstructed without zero filline _aer to preserve the resolution and then
cropped to a 128 x 128 matr .o the brain adjustes to the FOV. To generate
our synthetic msEPI data, we applied the forward model described in Eq.(1).
We have compared our aly ..viun waon o ee different alternatives:

1. MUSE [10]: we reconstru each shot u 1g SENSE and from it we get an
estimate of its phase map ‘ter applyi- | a Total-Variation (TV) filter. We

then reconstruct the image sc_ . SENSE-type problem in Eq.(7).
2. Linearly parameterized MUSE (TinMUSE): since the original MUSE imple-
mentation was developed . wuie _ meral scenario where the only prior

knowledge about the pha  is that it is mooth, we implemented a MUSE
version that incorporate the prior knc ledge of linear phase corruption
maps. The difference witl ‘he previous gorithm is that, instead of taking
the phase of each shot-recc. “~nmected ©  ge after the TV-filter, we estimate
the three parameters caracterisiug vue linear phase map from the peak and
position of the k—space peak

3. LinMUSE with L2—Tikhonov re uariza on (LinMUSE~+Tik): the presence
of noise can affect the detection - the | ak in k-space, specially when the
phase map shifted it to the furth t posi o>n from the acquired lines, i.e., to
the intermediate position i» »~" =+ lines for the considered shot. For
this reason, a certain deg.ee ot regularization can help avoid misidentifying
the peak as amplified noise. It is important to notice that a regularization
may induce errors as well due to incorrect removal of ghosting artifacts.

Finally, we carried out two experiments on our data:
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— In order to visually asser che ability °f the aforementioned methods to
reconstruct the image, w compared the -econstructions at a low SNR sce-
nario for 4, 6 and 8 shots Che phase offs was randomly generated between
[—7, 7], whereas the linear ~mp was ge- :ated to shift the peak in the region

covering the central S lines. . _d on this region of linear shifts since
the worst scenario arises when the peak moves to the intermediate position
between two acquired lin h respect to the acquired lines, it

does not seem to matter how fa1r way v move from the original center.

— We carried out 100 reconstructi 1 usin S = 8 shots for varying levels of
SNR. We computed the SNR ast  mear ibsolute signal divided by the stan-
dard deviation of the syr dlu .y gaussian added noise. The phase
parameters were generated as in the previous experiment. We compared the
absolute error in the esti " 7 7 ase parameters, since they are the
ones causing the ghosting artifac 5 in th reconstructed image.

4 Results

In Fig.1 we show the reconst “=d images for a low SNR scenario varying the
number of shots. The first column : *he ground-truth, and the next columns
show the reconstruction for the d scribea  >thod, LinMUSE, LinMUSE+Tik
and standard MUSE.

LinMUSE+Tik MUSE

6

Number of shots
S=

Fig. 1. Reconstructed images ir. a low SNK scenario for different number of shots: 4
(first row), 6 (second row) and 8 (third row). First column shows the ground-truth and
the following ones the reconstructed images with our method (second column), Lin-
MUSE (third column) LinMUSE+Tikhonov regularization (fourth column) and stan-
dard MUSE (fifth column).
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We observe that for S = | all recon. ‘ictions seem to perform similarly,
which is consistent with the ] crature [10]. I wever, when we increase the num-
ber of shots, we start to obse 7e how the M! 5E-type reconstructions introduce
ghosting artifacts. For a high -umber of s' s, the g-factor noise amplification

associated to SENSE becomes ve. _creasing the uncertainity in the detec-
tion of the peak of the spectrum. Specifically, when the phase corruption shifts
the peak to the intermediate two sampled lines for a particular

shot, it becomes more likely to ident y it at . noisy location.
We can observe as well that whe an LZ [ikhonov regularization is applied
together with SENSE, the peak det tion ¢ :ms to provide a good estimate of

the linear phase maps param ee .a column for 6 shots). By applying
this regularization, we limit the noise amplification in the SENSE reconstructed
shot, although the trade-off is ~ ’ tructed image can still show some

ghosting artifacts. For this reason, we hose il s the initialization for our method,
which after the steps described in the “heory jection seems to be able to provide
a ghosting artifacts free image for t case ¢ 8 shots.

Phase Offset Linear phase along FE _ Linear phase along FE
0.15; Absolute Estimation Error 6; ~lute Estimation Error 1.2/*"Absolute Estimation Error

Thb b Bl s R DR
10 8 si]R 4 2 10 8 6 4 2 10 8 squ 4 2

Fig. 2. Bosplots of the absolute rors for the pt e parameters estimation: offset (first
column), FE slope (second colu n) and PE slo : (third column). We must point out
that multiple outliers were presc  for the l~ st SNR scenario in all of the studied
reconstructions, although we remove.. ..om the figure for a more clear visualiza-
tion.

On the other hand, in F ;2 we can se that the absolute errors for the
estimation of the three differe t parameters: 1e constant offset, the slope along
the frequency—encoding (FE) = -ection and e slope along the phase-encoding

(PE) direction. We compared tu.. vetween our method, LinMUSE and
LinMUSE+Tik for varying levels of SNR. We observe that our method is always
able get a closer estimate to se parameters. This is consistent

with the fact that our method is ini alized -ith the phase estimates provided
by LinMUSE+Tik and from there a ner es mation is done based on both the
initial grid search and the subsequer Newt: .’s method based descent.

5 Discussion

In this work we have proposed a joint procedure to both reconstruct the images
and estimate the phase error maps for ms-EPI under the assumption of rigid
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motion during the application . the diffus. -sensitized gradients in AMRI. Our
method is initialized with the >Hlution provid ' by a linearly parametrized MUSE
reconstruction that identifies 1e position an' phase of the peak of the spectrum.
By using alltogether the infor1. tion from a’ he shots and due to the availability

of multi—channel data, we are « ~wain a finer estimation of the phase
parameters that results in a better removal of ghosting artifacts.
We have illustrated the ps > proposed technique with simula-

tions varying the number of shots anc shelev  of noise. Importantly, our method
seems able to reconstruct the image for h' ner number of shots compared to
the considered alternatives.

This study presents some 104 .st, we have only tested the method
in a synthetic phantom corrupted by linear phase maps. We expect this assump-
tion to be a reasonable one fo ' f the brain, or if cardiac triggering

is used during the acquisition to lin & the : n-linear phase effects of pulsatile
motion [15]. For this reason, we bel: ve the esults are promising regarding its
applicability to clinical scenarios. S¢ nd, v have only compared our method
to our own implementation of - . Jdalinearly parametrized version of
it. These methods however contain different parameters that need to be tunned,
so a more detailed of them sh. ™ he considered to guarantee a fair comparison.
Furthermore, other more comples .. “*hms such as LORAKS [9] or MUS-
SELS Manil7 could be considerec as wel!  hird, we have just considered the
case of linear phase errors, but it w be interesting to study a non-linear
model based on B-splines sic . to [14] that can deal with non-rigid motion.
Fourth, we have only considered tha case of cartesian sampling, but our formu-
lation is compatible with dif . s such as spirals, so it would be
interersting to test it under d ‘erent samplii ; patterns.

6 Conclussions

We have developed a method that* ' 'J< upon state-of-the-art techniques and
is able to better estimate the .ase map. -orruption multi-shot EPI acquisi-
tions, resulting in an increas 1 ability to 1 mnove ghosting artifacts from the
reconstructed images. Under he assumptio of rigid motion, we pose a joint
formulation that is able to bc - reconstruct ne images and estimate the phase
maps in a greedy iterative fashi
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