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Improved constructions of nested code pairs
Carlos Galindo, Olav Geil, Fernando Hernando and Diego Ruano

Abstract

Two new constructions of linear code pairs C2 ⊂ C1 are given for which the codimension and the relative
minimum distances M1(C1, C2), M1(C⊥

2 , C
⊥
1 ) are good. By this we mean that for any two out of the three

parameters the third parameter of the constructed code pair is large. Such pairs of nested codes are indispensable
for the determination of good linear ramp secret sharing schemes [40]. They can also be used to ensure reliable
communication over asymmetric quantum channels [54]. The new constructions result from carefully applying the
Feng-Rao bounds [21], [31] to a family of codes defined from multivariate polynomials and Cartesian product point
sets.

Index Terms

asymmetric quantum code, CSS construction, Feng-Rao bound, nested codes, ramp secret sharing, relative
generalized Hamming weight, relative minimum distance, wiretap channel of type II.

I. INTRODUCTION

In this paper we consider pairs of linear codes C2 ⊂ C1 ⊆ Fnq where Fq is the finite field with q
elements. We are interested in the codimension ` = dimC1− dimC2 and the relative minimum distances

M1(C1, C2) = min{wH(~c) | ~c ∈ C1\C2},

M1(C⊥2 , C
⊥
1 ) = min{wH(~c) | ~c ∈ C⊥2 \C⊥1 }.

Here wH(~c) means the Hamming weight of ~c. For any two out of three parameters we aim to construct
code pairs such that the two parameters are equal to some prescribed values, whereas the last parameter is
as large as possible. Our motivation for studying the above problem is applications in ramp secret sharing,
communication over wiretap channels of type II, and asymmetric quantum coding.

We first explain the application in secret sharing. The application to wiretap channels of type II is
analogue. A secret sharing scheme is a cryptographic method to encode a secret into a set of shares, later
to be distributed among participants, so that only specified subsets of the participants can reconstruct the
secret. The first secret sharing scheme, proposed by Shamir [52], was a perfect scheme, meaning that a
set of participants unable to reconstruct the secret has no information on the secret. Later non-perfect
secret sharing schemes were proposed [7], [56] in which there are sets of participants that have some
information about the secret, but cannot fully reconstruct it. In this paper we use the term ramp secret
sharing schemes for the general class of perfect or non-perfect schemes. Secret sharing has been applied,
for example, to store confidential information at multiple locations that are placed geographically apart.
When we use secret sharing schemes in such a scenario, the likelihoods of both data loss and data theft
are decreased. As far as we know, in many applications both perfect and non-perfect ramp secret sharing
schemes are useful. In the perfect scheme the size of a share must be greater than or equal to that of the
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secret [11]. In contrast ramp secret sharing schemes allow shares to be smaller than the secret which for
instance is useful for storing bulk data [14].

A linear ramp secret sharing scheme can be described as a coset construction C1/C2 where C2 ⊂ C1

are linear codes [12]. More precisely, let dimC2 = k2, dimC1 = k1 and ` = k1 − k2. Given a basis
{~b1, . . . ,~bk2} for C2 as a vector space over Fq and a corresponding basis {~b1, . . . ,~bk2 ,

~bk2+1, . . . ,~bk1=k2+`}
for C1 the encoding of a secret (s1, . . . , s`) ∈ F`q is done by choosing a1, . . . , ak2 ∈ Fq randomly from a
uniform distribution and then constructing the codeword ~c = a1

~b1 + · · ·+ ak2
~bk2 + s1

~bk2+1 + · · ·+ s`~bk1 .
The shares are the entries of ~c.

Definition 1. Given a ramp secret sharing scheme C1/C2 with ` = dimC1 − dimC2 we say that it has
(t1, . . . , t`)-privacy and (r1, . . . , r`)-reconstruction if the positive integers t1, . . . , t` are chosen as large as
possible and the positive integers r1, . . . , r` are chosen as small as possible such that
• for 1 ≤ v ≤ `, an adversary cannot obtain v log2(q) bits of information about ~s with any tv shares,
• for 1 ≤ v ≤ `, it is possible to recover v log2(q) bits of information about ~s with any collection of
rv shares.

We shall refer to the numbers r1, . . . , r` as reconstruction numbers and similarly call the numbers
t1, . . . , t` privacy numbers. These parameters are motivated by the fact that the amount of information
which an adversary can obtain is always an integer times log2(q) bits and similar for the reconstruction.
Of particular interest are the first privacy number t = t1 and the last reconstruction number r = r`, as t
is the maximal number such that no set of this size leaks any information about the secret, and r equals
the smallest number such that any set of this size can recover the entire secret. It was demonstrated
in [5], [55], [40], [30] that the above numbers can be uniquely determined from the relative generalized
Hamming weights, that we shall define now. For v = 1, . . . , `

Mv(C1, C2) = min{#Supp U | U is a subspace of C1

of dimension v, U ∩ C2 = {~0}}

(and similar for the dual codes). Here, Supp U is the set of entries where some codeword in U is non-
zero and # is the cardinality. In our paper we shall adopt the tradition of sometimes referring to relative
generalized Hamming weights M1(C1, C2) and M1(C⊥2 , C

⊥
1 ) simply as relative minimum distances. Note

that the relative minimum distance M1(C1, C2) can be lower bounded by the minimum distance of C1.
Similarly, the relative minimum distance M1(C⊥2 , C

⊥
1 ) is greater than or equal to the minimum distance

of C⊥2 . The following theorem corresponds to [30, Theorem 3].

Theorem 2. Let C2 ⊂ C1 ⊆ Fnq with ` = dimC1 − dimC2 and consider the corresponding ramp secret
sharing scheme C1/C2. Then the reconstruction numbers and privacy numbers satisfy

rv = n−M`−v+1(C1, C2) + 1,

tv = Mv(C
⊥
2 , C

⊥
1 )− 1,

for v = 1, . . . , `.

Hence, if for instance we want to construct a ramp secret sharing scheme over Fq with n participants,
secrets of length `, first privacy number equal to some t, and last reconstruction number r as small
as possible, what we need is exactly a pair of nested codes C2 ⊂ C1 ⊆ Fnq of codimension ` with
M1(C⊥2 , C

⊥
1 ) = t+ 1, and M1(C1, C2) = n− r + 1 as large as possible.

Finally we explain in brief the use of nested codes in connection with asymmetric quantum error-
correcting codes, introduced in [54]. The study of good quantum codes is by now a well-established
research area. Some classical and recent references are [10], [8], [9], [4], [6], [3], [47], [39]. Recently, such
theory has been extended to asymmetric quantum error-correcting codes which are useful in a model where
the probabilities of qubit-flip and phase-shift errors are different [38], [51], [19], [42], [41], [16], [17],
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[43], [44]. This generalization is motivated by the argument that dephasing will happen more frequently
than relaxation [38]. A linear q-ary asymmetric quantum error-correcting code C is a qk dimensional
subspace of the Hilbert space Cqn whose error basis is defined by unitary operators usually denoted by
X and Z. It is customary to write the parameters of C as [[n, k, dz/dx]]q which means that C corrects all
phase-shift errors up to bdz−1

2
c, and all qudit-flip errors up to bdx−1

2
c.

In the present paper we concentrate on the Calderbank-Shor-Steane (CSS) construction of asymmetric
quantum codes from a pair of nested linear codes C2 ⊂ C1 ⊆ Fnq . We leave it for the reader to inspect [9],
[39] for the actual construction. Here, we only give the following important result on the parameters of
the resulting asymmetric quantum code (see [51, Lemma 3.1]).

Theorem 3. Consider linear codes C2 ⊂ C1 ⊆ Fnq . Then the asymmetric quantum code defined using the
CSS construction has parameters

[[n, ` = dimC1 − dimC2, dz/dx]]q

where dz = M1(C1, C2) and dx = M1(C⊥2 , C
⊥
1 ).

Recall, that a stabilizer (symmetric) quantum code is the common eigenspace of a commutative subgroup
of the error group associated to the error basis (see [9], [39] for details). The quantum codes in Theorem 3
can be considered as stabilizer asymmetric quantum codes [51, Lemma 3.1]. Studying asymmetric quantum
codes rather than only symmetric codes is an important problem. For instance, already in [38] it was
identified that large ratios dz/dx are relevant – phase-flip errors occurring tens, hundreds, or even thousands
times more likely than bit-flips. From Theorem 3 it is clear that dz ≥ d(C1) and dx ≥ d(C⊥2 ) where the
expressions on the right sides are the minimum distance of the classical code. There is a clear physical
significance of cases where strict inequality holds in at least one of these expressions. Such (asymmetric)
quantum codes are called impure (or degenerate) [1], [35] and it is known that the impureness can be
employed to obtain improved decoding.

As a measure for goodness of asymmetric quantum codes we shall use the Gilbert-Varshamov bound
from [45, Theorem 4] which we now recall:

Theorem 4. If
1− q−2`

1− q−2n
· 1

qn−`

dx−1∑
i=1

(
n

i

)
(q − 1)i ·

dz−1∑
i=1

(
n

i

)
(q − 1)i < 1

then there exists an [[n, `, dz/dx]]q asymmetric quantum code.

The literature only reports few families of long asymmetric quantum codes, an exception being La
Guardia’s construction II in [44, Theorem 7.1] which we shall compare our codes with. In another direction
Ezerman et al’s works in [17], [18] explain how to derive good asymmetric quantum codes with dx being
very small and ` being moderate. As our constructions do not seem to generally compare well with these
codes in the case of dx ∈ {2, 3} we omit such cases in our tables.

Having discussed both ramp secret sharing schemes and asymmetric quantum codes we include a remark
relating them to each other.

Remark 5. There exists an asymmetric quantum code based on the CSS construction with parameters
[[n, `, dz/dx]]q if and only there exists a linear ramp secret sharing scheme over Fq with secrets in F`q,
with r = r` = n− dz + 1 and t = t1 = dx − 1.

As the tradition for reporting numerical data on parameters of (asymmetric) quantum codes seems
stronger than the tradition for reporting corresponding parameters of ramp secret sharing schemes, through-
out this paper we shall often report our findings in the first setting. In such cases we leave it for the reader
to apply Remark 5 to make the translation to secret sharing. On the other hand, higher relative weights
give information on ramp secret sharing schemes, whereas no implication for asymmetric quantum codes
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seems to be known. Hence, when treating them we shall do it in the setting of secret sharing.

In this paper we present two new families of long nested codes C2 ⊂ C1 with M1(C1, C2)+M1(C⊥2 , C
⊥
1 )

high. Such codes give rise to ramp secret sharing schemes with r−t close to `, and give rise to asymmetric
quantum codes with dz + dx close to n − ` + 2. The code pairs are defined by evaluating multivariate
polynomials at the points of Cartesian products of subsets of finite fields, and the above mentioned two
families are found by carefully applying Feng-Rao theory [30]. Our first family is made by combining, for
the first time in the literature, the Feng-Rao improved code constructions for dual and primary codes. This
leads to good pairs of codes, however, it only works for relatively high codimension `. The asymmetric
quantum codes related to this first family of nested codes compare very favorably with known asymmetric
quantum codes of similar length as well as the Gilbert-Varshamov bound. Moreover, the construction is
very flexible and we can choose dz/dx very large, which as already mentioned can be desirable. Our
second family is a completely new construction which produces very good parameters in the case of
relatively small codimension `. Again the corresponding asymmetric quantum codes compare favorably
with the known codes of similar length and similarly with the Gilbert-Varshamov bound. Even more, we
demonstrate a strong advantage of using our estimates on the relative minimum distances M1(C1, C2) and
M1(C⊥2 , C

⊥
1 ); rather than just using information on the minimum distances d(C1) and d(C⊥2 ). Actually,

using only information on the minimum distances d(C1) and d(C⊥2 ) – which is often done in the literature
– it seems in many cases impossible to establish the code parameters for asymmetric quantum codes, which
we are able to obtain. These reflections are closely related to the fact that the corresponding asymmetric
quantum codes of relatively small dimension are almost always impure, which as already mentioned is
desirable. Again the construction is quite flexible in the sense that we can choose the ratio dz/dx very high
if requested. For both families of codes we provide generator matrices, and we also describe a method
for estimating higher relative weights Mv(C1, C2), Mv(C

⊥
2 , C

⊥
1 ), v = 2, . . . , `, which sometimes leads to

closed formula expressions. Recall, that such parameters express the information leakage and message
recovery in connection with ramp secret sharing. As a result it is shown that for our second family of
nested codes, the security of the related secret sharing schemes is much better than expected from studying
only t = t1. Furthermore, for certain choices of Cartesian product point sets also parity check matrices
can easily be obtained, namely for the particular cases where the considered codes satisfy the conditions
for being so-called J-affine variety codes [26]. Finally, all considered codes in this paper can be decoded
up to half their designed minimum distance by applying known decoding algorithms. The dual codes can
furthermore be decoded up to half the designed relative minimum distance. These observations lead to
decoding algorithms for the corresponding asymmetric quantum codes.

The paper is organized as follows. In Section II we start by recalling the Feng-Rao bounds for primary
and dual linear codes and we apply them to the general class of codes derived by evaluating multivariate
polynomials at Cartesian product point sets. In this section we provide all needed background on Feng-Rao
theory – for basic results on multivariate polynomials and related concepts we refer the reader to [13].
The section concludes with a discussion on how to decode the related asymmetric quantum codes. Then,
in Section III, we explain how to employ the Feng-Rao improved code constructions for primary and dual
codes simultaneously to obtain good families of nested codes with relatively high codimension. We then
study the corresponding ramp secret sharing schemes and asymmetric quantum codes. In Section IV we
present the new good construction of nested codes with relatively small codimension and we study the
corresponding ramp secret sharing schemes and asymmetric quantum codes. Section V gives concluding
remarks on the connection to J-affine variety codes. The paper contains a number of examples, the end
of which we indicate by ♦s.

II. CODES DEFINED FROM CARTESIAN PRODUCT POINT SETS

In this paper we consider families of code pairs C2 ⊂ C1 defined by evaluating multivariate polynomials
at the points of Cartesian products of subsets of finite fields. For the applications described in the previous



5

section, we are interested in the parameters Mv(C1, C2) (the primary case) as well as Mv(C
⊥
2 , C

⊥
1 ) (the

dual case) – with a special focus on the relative minimum distances M1(C1, C2) and M1(C⊥2 , C
⊥
1 ). To

handle the primary case only it would be natural to use the language of Gröbner basis theory and to
apply the so-called footprint bound [50], [36], [28]. However, in this language it is more difficult to treat
the dual case and we therefore give a coherent description of both cases using the Feng-Rao bounds
for general linear codes instead. The Feng-Rao bounds come in two versions, namely one for primary
codes [2], [32], [31], [30] and another for dual codes [20], [21], [22], [48], [37], [46], [30].

Our exposition follows the presentation in [30, Section IV] and is illustrated with a continued example.
This continued example, at the end of the present section, leads to the introduction of a general class of
code pairs for which we have a simple description of generator matrices, where we know the codimension,
and where we can easily estimate the relative minimum distances and also the higher relative weights
(Theorem 16). It is from this class of code pairs we, in the following sections, show how to choose optimal
pairs when the codimension is relatively large (Section III), and when it is relatively small (Section IV).

Consider a fixed basis B = {~b1, . . . ,~bn} for Fnq as a vector space over Fq and let I = {1, . . . , n}.

Definition 6. Define ρ̄ : Fnq → I ∪ {0} to be the function given as follows. For non-zero ~c we have
ρ̄(~c) = i where i is the unique integer such that

~c ∈ Span{~b1, . . . ,~bi}\Span{~b1, . . . ,~bi−1}.

Here we use the convention that Span ∅ = {~0}. Finally, let ρ̄(~0) = 0.

Throughout the paper by ≺deg we shall always mean the degree lexicographic ordering given by the
rule that for two different monomials we have X i1

1 · · ·X im
m ≺deg Xj1

1 · · ·Xjm
m if one of the following

conditions holds:
1) i1 + · · ·+ im < j1 + · · ·+ jm
2) i1 + · · ·+ im = j1 + · · ·+ jm, but the rightmost non-zero entry of (j1− i1, . . . , jm− im) is positive.
In case of two variables X and Y , we shall always think of X as X1 and Y as X2. In the paper we shall

also need other monomial orderings ≺, however, the degree lexicographic ordering will play a particular
important role.

Example 1. Consider the ideal I = 〈X6 − 1, Y 6 − 1〉 ⊂ F7[X, Y ] and the residue class ring R =
F7[X, Y ]/I . We have that the corresponding variety consists of all pairs of non-zero elements of F7,
hence we may write VFq(I) = {P1, . . . , P36}. Let ev : R→ F36

7 be the vector space homomorphism given
by ev(F + I) = (F (P1), . . . , F (P36)). Therefore, the set B = {ev(X iY j + I) | 0 ≤ i, j < 6} constitutes a
basis for F36

7 as a vector space over F7. To see this, we first observe that

ev
(
F (X, Y ) + I

)
= ev

(
F (X, Y )− A(X, Y )(X6 − 1)

−B(X, Y )(Y 6 − 1) + I
)

for any A(X, Y ), B(X, Y ) ∈ F7[X, Y ], which implies that we may, without loss of generality, assume
that degX F, degY F < 6. Using Lagrange interpolation it holds that ev is surjective, and as #B equals
the dimension of the image F36

7 B is indeed a basis – and consequently ev is an isomorphism. We next
enumerate B according to the degree lexicographic ordering ≺deg. The enumeration is illustrated in Fig. 1.
As an example we obtain ρ̄(ev(2X5Y 4 + 5X3Y 2 + 4 + I)) = 34. ♦

Recall, that the component wise product of two vectors in Fnq is given by

(α1, . . . , αn) ∗ (β1, . . . , βn) = (α1β1, . . . , αnβn).

Using this product we can now introduce the concept of one-way well-behaving pairs.
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Y 5 XY 5 X2Y 5 X3Y 5 X4Y 5 X5Y 5

Y 4 XY 4 X2Y 4 X3Y 4 X4Y 4 X5Y 4

Y 3 XY 3 X2Y 3 X3Y 3 X4Y 3 X5Y 3

Y 2 XY 2 X2Y 2 X3Y 2 X4Y 2 X5Y 2

Y XY X2Y X3Y X4Y X5Y
1 X X2 X3 X4 X5

~b21
~b26

~b30
~b33

~b35
~b36

~b15
~b20

~b25
~b29

~b32
~b34

~b10
~b14

~b19
~b24

~b28
~b31

~b6
~b9

~b13
~b18

~b23
~b27

~b3
~b5

~b8
~b12

~b17
~b22

~b1
~b2

~b4
~b7

~b11
~b16

Fig. 1. The enumeration of B in Example 1

Definition 7. An ordered pair (i, j) ∈ I × I is said to be one-way well-behaving (OWB) if ρ̄(~bi′ ∗~bj) <
ρ̄(~bi ∗~bj) holds true for all i′ ∈ I with i′ < i.

Example 2. This is a continuation of Example 1. Consider ~bi = ev(XαY β + I) and ~bj = ev(XγY δ + I)
(where, by assumption, 0 ≤ α, β, γ, δ < 6). The pair (i, j) is OWB if and only if α+γ < 6 and β+δ < 6
hold simultaneously. To see the “if” part note that if XηY λ ≺deg X

αY β then the leading monomial M
of the remainder of Xη+γY λ+δ after division with {X6 − 1, Y 6 − 1} satisfies M �deg X

η+γY λ+δ ≺deg

Xα+γY β+δ which follows from the properties of a monomial ordering and those of the division algorithm.
The “only if” part has to do with the special form of the ideal I coming from a variety which is a Cartesian
product. If for instance, α + γ ≥ 6 then letting η = 6 − γ − 1 we obtain XηY β ≺deg X

αY β , but the
leading monomial N of Xη+γY β+δ after division with {X6 − 1, Y 6 − 1} has the same Y -part as the
leading monomial of Xα+γY β+δ after division with {X6 − 1, Y 6 − 1}, but higher X-part. ♦

To formulate the Feng-Rao bound for primary codes we shall need the following set.

Definition 8. For i ∈ I define

Λi = {l ∈ I | ∃ j ∈ I s.t. (i, j) is OWB and ρ̄(~bi ∗~bj) = l}.

Given a v-dimensional vector space U ⊆ Fnq then ρ̄(U\{~0}) is of size v. The following proposition, known
as the Feng-Rao bound for primary codes [30, Proposition 8], therefore is operational.

Proposition 9. Let U ⊆ Fnq be a vector space of dimension at least 1. The support size of U satisfies

#Supp (U) ≥ # ∪i∈ρ̄(U\{~0}) Λi. (1)

Example 3. This is a continuation of the previous examples. We have ~b28 = ev(X4Y 3 + I) and therefore

#Λ28 = #{X4Y 3, X5Y 3, X4Y 4, X5Y 4, X4Y 5, X5Y 5} = 6.

In general, for ~bi = ev(XαY β + I) (with 0 ≤ α, β < 6) we have #Λi = (6− α)(6− β). The situation is
depicted in Fig. 2.

6 5 4 3 2 1
12 10 8 6 4 2
18 15 12 9 6 3
24 20 16 12 8 4
30 25 20 15 10 5
36 30 24 18 12 6

Fig. 2. #Λi from Example 1 (enumeration with respect to Fig. 1)
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Let F (X, Y ) be a polynomial whose leading monomial with respect to ≺deg is XαY β for some 0 ≤
α, β < 6. Consider ~c = ev(F + I), then, by Proposition 9, wH(~c) ≥ (6 − α)(6 − β). In general, Fig. 2
gives upper bounds on the Hamming weights of all possible words in F36

7 . ♦

We now turn to relative generalized Hamming weights. Note that although C2 ⊂ C1 implies ρ̄(C2) ⊂
ρ̄(C1), it does not always hold that ~c ∈ C1\C2 implies ρ̄(~c) ∈ ρ̄(C1)\ρ̄(C2). Nevertheless, the Feng-Rao
bound for primary codes [30, Theorem 9] still gives us useful information.

Theorem 10. Consider two linear codes C2 ⊂ C1 ⊆ Fnq with dim(C1) = k1 and dim(C2) = k2. Let u be
the smallest element in ρ̄(C1) that is not in ρ̄(C2). For v = 1, . . . , ` = k1 − k2 we have

Mv(C1, C2) ≥ min
{

# ∪vs=1 Λis | u ≤ i1 < · · · < iv and

i1, . . . , iv ∈ ρ̄(C1\{~0})
}
.

Example 4. This is a continuation of the previous examples. If C2 = Span{~b1,~b2,~b3,~b5} and C1 =
Span{~b1,~b2,~b3,~b4,~b5} then

M1(C1, C2) ≥ min{#Λ4,#Λ5} = min{24, 25} = 24.

However, if C2 = Span{~b1,~b2,~b3,~b4}, while C1 is unchanged, then M1(C1, C2) ≥ #Λ5 = 25. ♦

To treat dual codes we shall need the following definitions, where the first can be considered as the
counterpart of Definition 8, and the last as the counterpart of Definition 6.

Definition 11. For l ∈ I define

Vl = {i ∈ I | ρ̄(~bi ∗~bj) = l for some ~bj ∈ B with (i, j) OWB}.

Definition 12. For ~c ∈ Fnq \{~0} define η(~c) to be the smallest number l ∈ I such that ~c ·~bl 6= 0. Here ~a ·~b
means the Euclidean inner product between ~a and ~b.

Given a v-dimensional space U , η(U\{~0}) is of size v. The following proposition, known as the Feng-
Rao bound for dual codes [30, Proposition 13], therefore is operational.

Proposition 13. Let U ⊆ Fnq be a space of dimension at least 1. We have

#Supp(U) ≥ # ∪l∈η(U\{~0}) Vl.

Example 5. This is a continuation of the previous examples. For ~bl = ev(XαY β + I) (with 0 ≤ α, β < 6)
we have #Vl = (α + 1)(β + 1). Given ~c with η(~c) = l, from Proposition 13 we obtain wH(~c) ≥
(α + 1)(β + 1). By Proposition 13, Fig. 3 gives upper bounds on the Hamming weights of all possible
words in F36

7 . ♦

6 12 18 24 30 36
5 10 15 20 25 30
4 8 12 16 20 24
3 6 9 12 15 18
2 4 6 8 10 12
1 2 3 4 5 6

Fig. 3. #Vl from Example 4 (enumeration with respect to Fig. 1)

We next treat relative generalized Hamming weights. Note that for C2 ⊂ C1 it does not in general
hold that ~c ∈ C⊥2 \C⊥1 implies η(~c) ∈ ρ̄(C1\{~0}). Nevertheless, the Feng-Rao bound for dual codes [30,
Theorem 14] still gives us useful information.
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Theorem 14. Consider linear codes C2 ⊂ C1 ⊆ Fnq . Let u⊥ be the largest element in ρ̄(C1\{~0}). For
v = 1, . . . , dim(C1)− dim(C2) = dim(C⊥2 )− dim(C⊥1 ) we have

Mv(C
⊥
2 , C

⊥
1 ) ≥ min{# ∪vs=1 Vis | 1 ≤ i1 < · · · < iv ≤ u⊥,

i1, . . . , iv /∈ ρ̄(C2)}.

Example 6. This is a continuation of the previous examples. If C2 = Span{~b1,~b2,~b3,~b4} and C1 =
Span{~b1,~b2,~b3,~b4,~b6}, then

M1(C⊥2 , C
⊥
1 ) ≥ min{#V5,#V6} = min{4, 3} = 3.

However, if C1 = Span{~b1,~b2,~b3,~b4,~b5} while C2 is unchanged then M1(C⊥2 , C
⊥
1 ) ≥ #V5 = 4. ♦

The above theorems and examples lead us to consider the following family of codes, which have a
good behavior with respect to the applications described in the introduction. Consider a Cartesian product
S = S1 × · · · × Sm ⊆ Fmq . For i = 1, . . . ,m define the one-variable polynomial

Fi(Xi) =
∏
α∈Si

(Xi − α), (2)

and consider the vanishing ideal of S, I = 〈F1(X1), . . . , Fm(Xm)〉 ⊂ Fq[X1, . . . , Xm]. We write R =
Fq[X1, . . . , Xm]/I and enumerate S as S = {α1, . . . αn}, where n = #S =

∏m
i=1 si. Here, we use the

notation si = #Si. As in the above examples we then obtain a vector space homomorphism ev : R→ Fnq
defined by ev(F + I) = (F (α1), . . . , F (αn)). Now let

∆(s1, . . . , sm) = {X i1
1 · · ·X im

m | 0 ≤ it < st, t = 1, . . . ,m}
= {N1, . . . , Nn},

where the enumeration of the Ni’s is with respect to an arbitrary (but fixed) monomial ordering ≺. For
general L ⊆ ∆(s1, . . . , sm) define

C(L) = Span{ev(X i1
1 · · ·X im

m + I) | X i1
1 · · ·X im

m ∈ L},

which is clearly a code of length n. For the purpose of applying the Feng-Rao bounds to the codes C(L)
and C(L)⊥ we introduce functions D and D⊥.

Definition 15. Given X i1
1 · · ·X im

m ∈ ∆(s1, . . . , sm), define

D(X i1
1 · · ·X im

m ) =
m∏
t=1

(st − it) and

D⊥(X i1
1 · · ·X im

m ) =
m∏
t=1

(it + 1).

More generally, for K ⊆ ∆(s1, . . . , sm) let

D(K) = #{N ∈ ∆(s1, . . . , sm) |
N is divisible by some M ∈ K},

D⊥(K) = #{N ∈ ∆(s1, . . . , sm) |
N divides some M ∈ K}.

Observe that D(X i1
1 , . . . , X

im
m ) = D({X i1

1 , . . . , X
im
m }) and D⊥(X i1

1 , . . . , X
im
m ) = D⊥({X i1

1 , . . . , X
im
m }).

We are now ready to describe the relative parameters of the evaluation codes introduced above.

Theorem 16. Consider S = S1 × · · · × Sm ⊆ Fmq and L2 ⊂ L1 ⊆ ∆(s1, . . . , sm) = {N1, . . . , Nn} where
the enumeration of the Ni’s is with respect to an arbitrary (but fixed) monomial ordering ≺. Then the
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codes C(L1) and C(L2) are of length n and their codimension equals #L1 − #L2. Furthermore, for
v = 1, . . . ,#L1 −#L2 we have

Mv(C(L1), C(L2)) ≥ min{D(K) |
K ⊆ {Nu, . . . , Nn} ∩ L1,#K = v}, (3)

Mv(C(L2)⊥, C(L1)⊥) ≥ min{D⊥(K) |
K ⊆ {N1, . . . Nu⊥}\L2,#K = v}, (4)

where u = min{i | Ni ∈ L1\L2} and
u⊥ = max{i | Ni ∈ L1}.

Proof. We start by proving that {ev(N1 + I), . . . , ev(Nn + I)} is a basis for Fnq as a vector space over Fq.
This fact implies that the dimension of C(Li) equals #Li, i = 1, 2, and the formula for the codimension
follows. Observe that ev(F (X1, . . . , Xm) + I) is equal to

ev
(
F (X1, . . . , Xm)− A1(X1, . . . , Xm)F1(X1)− · · ·

− Am(X1, . . . , Xm)Fm(X1, . . . , Xm) + I
)

for any polynomials A1, . . . , Am in the variables X1, . . . Xm with coefficients in Fq. Hence, we may assume
that degX1

F < degF1 = s1, . . ., degXm F < degFm = sm. Using Lagrange-interpolation we next see that
ev is surjective and, as ∆(s1, . . . , sm) is of the same size as the image Fnq , the considered set is indeed
a basis for Fnq . As in the above examples we enumerate the basis elements {~b1 = ev(N1 + I), . . . ,~bn =
ev(Nn + I)} (meaning that we order it according to the monomial ordering ≺).
Notice that, regardless of the choice of monomial ordering ≺, D(Ni) ≤ #Λi, and that in larger generality1

D({Ni1 , . . . , Nim}) ≤ # ∪mt=1 Λit . Therefore (3) follows from Theorem 10. Similarly, regardless of the
choice of monomial ordering ≺, D⊥(Ni) ≤ #Vi and in larger generality2 D⊥({Ni1 , . . . , Nim}) ≤ #∪mt=1

Vit . Hence, (4) follows from Theorem 14.

In the next two sections we show a way to choose L2 ⊂ L1 such that the parameters ` = dimC(L1)−
dimC(L2) = #L1−#L2, M1(C(L1), C(L2)), and M1(C(L2)⊥, C(L1)⊥) are good. We study two separate
cases. The first case, which we treat in Section III, deals with relatively large codimension. The second
case, which we treat in Section IV, concerns relatively small codimensions.

Before studying these two families of codes we briefly discuss the decoding of the related asymmetric
quantum codes. Observe that the decoding algorithm for order domain codes described in [37, Section
6.3] can be applied in the more general setting of linear codes with Feng-Rao designed minimum distance.
Hence, it can be applied to all codes of the present paper. This holds both for dual codes [46] and primary
codes [31]. The decoding algorithm which corrects errors up to half the designed minimum distance uses
O(n3) operations, where n is the length of the code. In [15, Appendix A] Duursma and Park provided
a similar algorithm correcting errors up to half the designed relative minimum distance. This was done
at the general level of linear codes described by means of their parity check matrix. The application in
connection with decoding of asymmetric quantum codes is as follows. To decode both phase-shift and
qudit-flip errors up to half the designed values of dz and dx one will need two decoding algorithms,
namely one which decodes up to b(M1(C1, C2)− 1)/2c errors in connection with C2 ⊂ C1, and another
which corrects up to b(M1(C⊥2 , C

⊥
1 )− 1)/2c errors in connection with C⊥1 ⊂ C⊥2 [10], [9]. Duursma and

Park’s algorithm applies to the last task, but not to the first in its present form. It is an open research
problem to modify the decoding algorithm from [15] for general nested dual codes, so that it also works
for nested primary codes. This probably could be done using the material in [31]. In the absence of such
a translation one may instead apply the algorithm from [31] to correct only up to b(d(C1)− 1)/1c errors
in connection with the primary nested codes.

1Actually equalities hold – which can be seen by applying similar arguments as in Example 2 – but we shall not need this fact.
2Actually again equalities hold, but we shall not need this fact.
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III. RELATIVELY LARGE CODIMENSION

One of the nice features of the Feng-Rao bounds is that they come with improved code constructions.
In the setting of the codes in the previous section, by applying the improved construction for primary
codes [2], we obtain a code C(L1) of designed distance δ and maximal dimension if we choose

L1 = {X i1
1 · · ·X im

m ∈ ∆(s1, . . . , sm) |
D(X i1

1 · · ·X im
m ) ≥ δ}. (5)

Similarly, by applying the improved construction for dual codes [21], [22] we obtain a code C(L2)⊥ of
designed distance δ⊥ and maximal dimension if we choose

L2 = {X i1
1 · · ·X im

m ∈ ∆(s1, . . . , sm) |
D⊥(X i1

1 · · ·X im
m ) < δ⊥}. (6)

Our first proposal for constructing good pairs of nested codes is to choose L1 and L2 as in (5) and (6)
with L2 ⊂ L1. We then obtain

M1(C(L1), C(L2)) ≥ d(C(L1)) ≥ δ, (7)

M1(C(L2)⊥, C(L1)⊥) ≥ d(C(L2)⊥) ≥ δ⊥. (8)

The codimension ` = #L1−#L2 is the largest possible with these designed parameters as, by Proposition 9
and Proposition 13, L1 is as large as possible and L2 is as small as possible, such that (7) and (8) hold.
Observe that (7) and (8) are independent of the choice of monomial ordering ≺ in Theorem 16, as
the integers u and u′ from that theorem play no role here. Note that D(X i1

1 · · ·X im
m ) = δ is a concave

function on the domain under consideration, while D⊥(X i1
1 · · ·X im

m ) = δ⊥ is a convex function. Therefore
the necessary condition that L2 ⊂ L1 creates a restriction on how small a codimension can be for each
fixed value of δ (low codimensions require another method which we describe in the next section). The
following theorem summarizes the method described.

Theorem 17. With the above notation, fix two positive integers δ and δ⊥ such that the monomial sets L1 and
L2 described in (5) and (6), respectively, satisfy that L2 ⊂ L1. Then the evaluation codes C(L2) ⊂ C(L1)
are of codimension ` = #L1 −#L2, and the relative minimum distances satisfy M1(C(L1), C(L2)) ≥ δ
and M1(C(L2)⊥, C(L1)⊥) ≥ δ⊥.

Remark 18. The case δ = δ⊥ and S = Fmq is studied in [25], [27] in connection with symmetric quantum
codes. There it is characterized when the corresponding sets L1 and L2 satisfy the inclusion L2 ⊂ L1.

Remark 19. It is possible to show that d(C(L1)) = M1(C(L1), C(L2)), but for general Cartesian product
point sets it is unsettled if

d(C(L2)⊥, C(L1)⊥) = M1(C(L2)⊥, C(L1)⊥),

leaving it undecided if the related asymmetric quantum codes are pure or not.

Below we analyze the parameters of the nested code pairs in Theorem 17 when the sets S1, . . . , Sm
are all of the same size, but first we illustrate the theorem with an example.

Example 7. This is a continuation of the examples in Section II where we considered S = F∗7 ∗F∗7. From
Fig. 2 we see that for δ = 12 the set L1 in (5) becomes

L1 = {1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, Y 3,

X4, X3Y,X2Y 2, XY 3, Y 4, X3Y 2, X2Y 3}. (9)

Hence, #L1 = 17. According to Fig. 3, δ⊥ = 6 is the highest possible value of δ⊥ such that all
XαY β ∈ ∆(6, 6) with D⊥(XαY β) < δ⊥ also belong to L1. The corresponding set L2 in (6) then becomes

L2 = {1, X, Y,X2, XY, Y 2, X3, Y 3, X4, Y 4} (10)
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` 2 1 3 1 3 5 3 5 7 2 5 7 9
δ 30 25 25 24 24 24 20 20 20 18 18 18 18
δ⊥ 2 3 2 4 3 2 4 3 2 5 4 3 2

` 3 6 8 10 5 8 10 12 7 9 12 14 16
δ 16 16 16 16 15 15 15 15 12 12 12 12 12
δ⊥ 5 4 3 2 5 4 3 2 6 5 4 3 2

` 9 11 14 16 18 10 12 15 17 19 12 14 17
δ 10 10 10 10 10 9 9 9 9 9 8 8 8
δ⊥ 6 5 4 3 2 6 5 4 3 2 6 5 4

` 19 21 16 18 21 23 25 20 23 25 27 26 28
δ 8 8 6 6 6 6 6 5 5 5 5 4 4
δ⊥ 3 2 6 5 4 3 2 5 4 3 2 4 3

` 30 30 32 34
δ 4 3 3 2
δ⊥ 2 3 2 2

TABLE I
PARAMETERS FROM EXAMPLE 7.

which is of size 10. Hence, the codimension between C(L1) and C(L2) is 7, and M1(C(L1), C(L2)) ≥ 12
and M1(C(L2)⊥, C(L1)⊥) ≥ 6. In a similar fashion we obtain the remaining parameters in Table I. Note
that if we have a code pair C(L2) ⊂ C(L1) with designed parameters δ = a, δ⊥ = b and #L1−#L2 = `
then there exist L′2 ⊂ L′1 with designed parameters of C(L′2) ⊂ C(L′1) being δ = b, δ⊥ = a and
#L′1 − #L′2 = `. Hence, in Table I we only list parameters with δ ≥ δ⊥. We also exclude cases with
δ⊥ = 1 (corresponding to C2 = {~0}).

♦

In the following we find closed formula expressions for the parameters of the coset construction in
Theorem 17 when S1, . . . , Sm are all of the same size. We start with a lemma explaining for which
choices of δ and δ⊥ the theorem works.

Lemma 20. Assume s = s1 = · · · = sm and consider δ ∈ {1, . . . , sm}. Let v ∈ {0, . . . ,m − 1} be such
that sv ≤ δ ≤ sv+1. If δ⊥ ≤ b(s − δ

sv
+ 1)sm−v−1c then the set L2 from (6) is contained in the set L1

from (5).

Proof. Define functions D̃ : Qm → Q and D̃⊥ : Qm → Q by D̃((i1, . . . , im)) =
∏m

t=1(s − it) and
D̃⊥((i1, . . . , im)) =

∏m
t=1(it + 1). Let i = s− δ/sv and note that 0 ≤ i ≤ s− 1 as well as

D̃((0, . . . , 0︸ ︷︷ ︸
v times

, i, s− 1, . . . , s− 1︸ ︷︷ ︸
m−1−v times

)) = δ

hold true. Finally we observe that

D̃⊥((0, . . . , 0︸ ︷︷ ︸
v times

, i, s− 1, . . . , s− 1︸ ︷︷ ︸
m−1−v times

)) = (s− δ

sv
+ 1)sm−v−1

and the lemma follows.

The next step in our analysis is to establish an estimate from below on the dimension of the code
C(L1) and C(L2)⊥ when L1 is as in (5), L2 is as in (6) and s = s1 = · · · = sm. In [29, Theorem 1]
a bound was given for the special case S1 = · · · = Sm = Fq and qm−1 ≤ δ, δ⊥ ≤ qm. With the last
mentioned condition we do not obtain L2 ⊂ L1 and we therefore now generalize the result from [29] to
arbitrary 1 ≤ δ⊥, δ ≤ sm and s = s1 = · · · = sm. We start with a technical lemma, whose proof we give
in Appendix A.
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Lemma 21. For m ≥ 2, 1 ≤ i ≤ m it holds that

∫ s− τ

sm−i(s−x1)···(s−xi−1)

0

∫ s− τ

sm−i−1(s−x1)···(s−xi)

0

· · ·∫ s− τ
(s−x1)···(s−xm−1)

0

dxm · · · dxi+1 dxi

= sm−i+1 −
m−i∑
t=0

[
1

t!

τ

(s− x1) · · · (s− xi−1)

·
(

ln

(
(s−x1)···(s−xi−1)sm−i+1

τ

))t]
.

From this lemma we obtain information on the dimensions of the codes as follows.

Theorem 22. Let s = s1 = · · · = sm and consider L1 and L2 as in (5) and (6), respectively with
δ = δ⊥ = τ ∈ {1, . . . , sm}. The dimensions of C(L1) and C(L2)⊥ are at least

sm −
m∑
t=1

1

(t− 1)!
τ

(
ln
(sm
τ

))t−1

. (11)

If 1 ≤ τ < s then the dimensions are at least

sm −
m∑
t=1

1

(t− 1)!
τ((m− 1) ln(τ))t−1 (12)

which is sharper than (11).

Proof. By symmetry is is enough to prove the result for C(L1). The dimension of C(L1), i.e. the number
of integer tupples (i1, . . . , im) ∈ {0, . . . , s − 1}m with (s − i1) · · · (s − im) ≥ τ , is at least that of the
volume of

{(x1, . . . , xm) ∈ [0, s]m | (s− x1) · · · (s− xm) ≥ τ}

which corresponds to the integral in Lemma 21 when i is chosen to be equal to 1. This proves (11). Next,
assume 1 ≤ τ < s. The above mentioned set of integer tupples can be divided into two sets, the first
set consisting of those tupples satisfying 0 ≤ iv < s − τ for some v ∈ {1, . . . ,m}, and the second set
consisting of those tupples satisfying s − τ ≤ iv for v = 1, . . . ,m. The number of elements in the first
set equals sm − τm. The cardinality of the second set is estimated from below by the volume of

{(x1, . . . , xm) ∈ [0, τ ]m | (τ − x1) · · · (τ − xm) ≥ τ}.

The last part of the theorem now follows by applying Lemma 21 with i = 1 and s = τ .

Remark 23. From Theorem 22 one obtains for each choice of m closed formula lower bounds on the rate
k/n as a function of the relative minimum distance3 d/n. Such estimates are independent of the actual
value of s. From the proof it is clear that these estimates become more and more precise as s increases.
Computer experiments reveal that with m = 2 and m = 3 already for s = 32 the true values of the rate
is almost the same as the estimated.

Using the constructions described in Section I we get by applying Lemma 20 in combination with (11)
from Theorem 22 the following result on the existence of ramp secret sharing schemes and asymmetric
quantum codes.

3Here, the relative minimum distance should not be confused with the first relative generalized Hamming weight.
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Theorem 24. Consider integers m ≥ 2 and s ≤ q, where q is a prime power. Given δ ∈ {1, . . . , sm}
let v ∈ {0, . . . ,m − 1} be such that sv ≤ δ ≤ sv+1 and choose an integer δ⊥ ≤ b(s − δ

sv
+ 1)sm−v−1c.

From Theorem 17 we obtain ramp secret sharing schemes over Fq with n = sm participants, shares in
F`q where

` ≥ sm −
m∑
t=1

1

(t− 1)!

(
δ
(

ln
(sm
δ

))t−1
+ δ⊥

(
ln
(sm
δ⊥
))t−1

)
,

the first privacy number satisfying t = t1 ≥ δ⊥ − 1 and the last reconstruction number satisfying r =
r` ≤ sm − δ + 1. Similarly, we obtain asymmetric quantum codes with parameters

[[n = sm, `, dz ≥ δ/dx ≥ δ⊥]]q.

Remark 25. The lower bound on ` in Theorem 24 can be improved in the case 1 ≤ δ < s or 1 ≤ δ⊥ < s
by applying (12) instead of (11).

Recall from Remark 5 that studying asymmetric quantum codes derived from the CSS construction
is equivalent to studying linear ramp secret sharing schemes. Therefore, the following discussion on
asymmetric quantum codes imposed by Theorem 17 can be directly translated into results on ramp secret
sharing schemes. We leave the details for the reader. It seems relevant to compare in some concrete cases
what can be derived from Theorem 17 in combination with Theorem 3 with other general constructions
in the literature of asymmetric quantum codes of similar length. Applying Theorem 17 to polynomials in
two variables and to a Cartesian product S = S1 × S2 we obtain from Theorem 3 asymmetric stabilizer
codes of length s1s2, where s1 = #S1 and s2 = #S2. For comparison La Guardia’s Construction II of
asymmetric quantum generalized Reed-Solomon codes [44, Theorem 7.1] gives codes of length m1m2 as
follows:

Theorem 26. Let q be a prime power. Then there exist asymmetric quantum generalized Reed-Solomon
codes with parameters

[[m1m2, ` = m1(2k −m2 + c), dz ≥ d/dx ≥ (d− c)]]q,

where 1 < k < m2 < 2k + c ≤ qm1 , k = m2 − d+ 1, and m2, d > c+ 1, c ≥ 1, m1 ≥ 1 are integers.

Observe that the bound dz ≥ m2 − k + 1 in Theorem 26 suggests that to obtain the widest variety of
code parameters for a given code length one should choose m1 smallest possible and m2 largest possible,
such that the conditions in the theorem are satisfied. The surprising consequence – which we illustrate in
the following example – is that sometimes one obtains better parameters from Theorem 26 by considering
a shorter code length. Adding 0s to the code words of the shorter code, we then obtain bounds on codes
of the right length.

Example 8. We first consider asymmetric quantum codes with q = 7 and of length 49. Applying
Theorem 26 directly to the case of n = 49 we obtain six different sets of parameters. However, we
can actually derive better information on codes of length 49 by applying Theorem 26 to codes of length
n = 48. In Table II a selection of such parameters are compared with examples of what can be achieved
by applying Theorem 17 instead. In the table, by “—–” we indicate that no comparable parameters can
be derived. The advantage of our method is clear in most cases. Furthermore, all the codes in Table II
coming from Theorem 17 strictly exceed the Gilbert-Varshamov bound (Theorem 4).
We next consider asymmetric quantum codes with q = 8 and of length 64. Our theorem treats many more

constellations of dz/dx with dz ≥ dx than does Theorem 26. For instance, the highest value of dz treated
by Theorem 26 is dz = 31, whereas Theorem 17 describes 35 different nested code pairs with dz ≥ 32. In
most cases the code parameters guaranteed by Theorem 17 are much better than the parameters described
in Theorem 26. However, there are also cases where the situation is the opposite. From the huge amount of
obtainable values dz/dx we display in Table III some representative examples that illustrate the situation.
Again all listed codes coming from Theorem 17 strictly exceed the Gilbert-Varshamov bound. ♦
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Theorem 26 ([44, Theorem 7.1]) Theorem 17
—– [[49, 3, 30/4]]7
—– [[49, 8, 24/4]]7
—– [[49, 5, 24/5]]7
—– [[49, 9, 20/5]]7

[[49, 10, 14/7]]7 [[49, 10, 14/7]]7
[[49, 12, 14/6]]7 [[49, 14, 14/6]]7
[[49, 16, 12/6]]7 [[49, 18, 12/6]]7
[[49, 18, 10/7]]7 [[49, 16, 10/7]]7

TABLE II
COMPARISON OF CODE PARAMETERS IN EXAMPLE 8. PARAMETERS FROM APPLYING THEOREM 26 TO CODES OF LENGTH n = 48 ON

THE LEFT, AND PARAMETERS FROM THEOREM 17 ON THE RIGHT.

Theorem 26 ([44, Theorem 7.1]) Theorem 17
—– [[64, 5, 35/5]]8
—– [[64, 12, 30/4]]8
—– [[64, 9, 30/5]]8
—– [[64, 7, 30/6]]8

[[64, 6, 25/6]]8 [[64, 10, 25/6]]8
[[64, 6, 24/7]]8 [[64, 10, 24/7]]8
[[64, 50, 5/4]]8 [[64, 51, 5/4]]8

TABLE III
COMPARISON OF CODE PARAMETERS IN EXAMPLE 8. PARAMETERS FROM THEOREM 26 ON THE LEFT AND PARAMETERS FROM

THEOREM 17 ON THE RIGHT.

Example 9. In this example we consider S1, S2 ⊆ F7 with #S1 = 6 and #S2 = 7 and apply Theorem 17
and Theorem 26 to construct asymmetric quantum codes of length n = 42. In most cases Theorem 17 is
much better than Theorem 26, however, there also exists a number of cases where the latter is the best.
Table IV displays some illustrative examples. As in the previous example all displayed cases coming from
Theorem 17 strictly exceed the Gilbert-Varshamov bound.

♦

Example 10. This is a continuation of Example 7. From Table I one can show that all related asymmetric
quantum codes strictly exceed the Gilbert-Varshamov bound (Theorem 4). The details are left for the
reader.

We conclude this section with an example illustrating how to derive relative generalized Hamming
weights of the considered codes. Recall from Section I that such information directly translates into
information on the privacy numbers and the reconstruction numbers of the corresponding ramp secret
sharing schemes.

Example 11. In this example we apply Theorem 16 to estimate the parameters Mv(C(L1), C(L2)),

Theorem 26 ([44, Theorem 7.1]) Theorem 17
—– [[42, 4, 20/5]]7

[[42, 2, 18/4]]7 [[42, 9, 18/4]]7
[[42, 6, 16/4]]7 [[42, 10, 16/4]]7
[[42, 10, 14/4]]7 [[42, 13, 14/4]]7
[[42, 14, 10/6]]7 [[42, 14, 10/6]]7
[[42, 16, 9/6]]7 [[42, 15, 9/6]]7
[[42, 24, 7/4]]7 [[42, 23, 7/4]]7
[[42, 28, 5/4]]7 [[42, 29, 5/4]]7

TABLE IV
COMPARISON OF CODE PARAMETERS IN EXAMPLE 9. PARAMETERS FROM THEOREM 26 ON THE LEFT AND PARAMETERS FROM

THEOREM 17 ON THE RIGHT.
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v 1 2 3 4 5 6 7
Mv(C(L1), C(L2)) ≥ 12 15 16 18 20 22 23

Mv(C(L2)⊥, C(L1)⊥) ≥ 6 8 9 11 12 14 15

TABLE V
ESTIMATED RELATIVE GENERALIZED HAMMING WEIGHTS OF THE CODE PAIR IN EXAMPLE 11.

v 1 2 3 4 5 6 7
tv ≥ 5 7 8 10 11 13 14
rv ≤ 25 22 21 19 17 15 14

TABLE VI
PRIVACY NUMBERS AND RECONSTRUCTION NUMBERS OF THE RAMP SECRET SHARING SCHEME DESCRIBED IN EXAMPLE 11.

Mv(C(L2)⊥, C(L1)⊥), v = 1, . . . ,#L1 −#L2 = 7 where L1 and L2 are as in (9) and (10), respectively.
See Fig. 4. Recall that the monomial ordering, that we use in this example, is the degree lexicographic

N21 N26 N30 N33 N35 N36

N15 N20 N25 N29 N32 N34

N10 N14 N19 N24 N28 N31

N6 N9 N13 N18 N23 N27

N3 N5 N8 N12 N17 N22

N1 N2 N4 N7 N11 N16

Fig. 4. The situation in Example 11: L2 corresponds to the circled monomials and L1 equals L2 plus the boxed monomials.

ordering ≺deg. We therefore obtain u = min{i | Ni ∈ L1\L2} = 8 and u⊥ = max{i | Ni ∈ L1} = 19.
Hence, (3) becomes

Mv(C(L1), C(L2)) ≥ min
{
D(K) | K ⊆ {N8, N9, N10,

N11, N12, N13, N14, N15, N18, N19},#K = v
}
,

and (4) becomes

Mv(C(L2)⊥, C(L1)⊥) ≥ min
{
D⊥(K) | K ⊆ {N8, N9,

N12, N13, N14, N16, N17, N18, N19},#K = v
}
.

Going through all possible combinations we obtain the information in Table V. Hence, we can construct
a ramp secret sharing scheme over F7 with n = 36 participants, with the secrets belonging to F7

7 and with
the privacy numbers being as in Table VI.

♦

IV. RELATIVELY SMALL CODIMENSION

In the former section we demonstrated how to construct good pairs of nested codes having relatively
large codimension. We now show how to obtain good pairs of nested codes with relatively small codimen-
sion. To explain the idea behind our method, we start with an example which leads to a formal statement
in Theorem 27 below.

Example 12. This is a continuation of the series of examples where we consider codes over F∗7×F∗7, and
where we use the degree lexicographic ordering ≺deg. Consider

L1 = {XαY β ∈ ∆(6, 6) | XαY β �deg XY
3}, (13)

L2 = {XαY β ∈ ∆(6, 6) | XαY β ≺deg X
3Y }. (14)
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v 1 2 3
Mv(C(L1), C(L2)) ≥ 15 19 22

Mv(C(L2)⊥, C(L1)⊥) ≥ 8 11 13

TABLE VII
ESTIMATED RELATIVE GENERALIZED HAMMING WEIGHTS OF THE FIRST CODE PAIR IN EXAMPLE 12

` = #L1 −#L2 1 2 3 1 4 2
M1(C(L1), C(L2)) ≥ 25 20 15 16 10 12

d(C(L1)) ≥ 24 18 12 12 6 6
M1(C(L2)⊥, C(L1))⊥ ≥ 4 6 8 9 10 12

d(C(L2)⊥) ≥ 3 4 5 5 6 6

TABLE VIII
THE FIRST WEIGHTS IN EXAMPLE 12.

The situation is described in Fig. 5

N21 N26 N30 N33 N35 N36

N15 N20 N25 N29 N32 N34

N10 N14 N19 N24 N28 N31

N6 N9 N13 N18 N23 N27

N3 N5 N8 N12 N17 N22

N1 N2 N4 N7 N11 N15

Fig. 5. The situation in Example 12: The circled monomials correspond to L2. The circled and the boxed monomials correspond to L1.

The codimension is 3 and the values of u and u⊥ in Theorem 16 become u = min{i | Ni ∈ L1\L2} = 12
(corresponding to Nu = X3Y ), and u⊥ = max{i | Ni ∈ L1} = 14 (corresponding to Nu⊥ = XY 3). By
inspection we see that, due to the particular choice of L1 and L2, in (3) and (4) of Theorem 16 we need
only to consider monomials in L1\L2. That is, we obtain

Mv(C(L1), C(L2)) ≥ min{D(K) |
K ⊆ {X3Y,X2Y 2, XY 3},#K = v},

Mv(C(L2)⊥, C(L1)⊥) ≥ min{D⊥(K) |
K ⊆ {X3Y,X2Y 2, XY 3},#K = v},

for v = 1, 2, 3. From this we easily obtain the parameters in Table VII.
In a similar way we have in (3) and (4) only monomials from L1\L2, if in (13) and (14) we replace

(XY 3, X3Y ) with (XY,XY ), (XY 2, X2Y ), (X2Y 2, X2Y 2), (XY 4, X4Y ), (X2Y 3, X3Y 2), (X2Y 4, X4Y 2),
(X3Y 3, X3Y 3), (X3Y 4, X4Y 3), or (X4Y 4, X4Y 4). However, due to symmetry, we only need to con-
sider the first five cases (in addition to the case that we have already considered). For instance from
(X4Y 4, X4Y 4) we derive the same estimates for Mv(C(L1), C(L2)) and Mv(C(L2)⊥, C(L1)⊥), respec-
tively, as we would derive from (XY,XY ) for Mv(C(L2)⊥, C(L1)⊥) and Mv(C(L1), C(L2)), respectively
(the order of parameters being reversed). In Table VIII we list our estimates of relative minimum distances
and these are compared to the estimates of minimum distances to demonstrate the advantage of the
proposed code construction. In this example we did in (13) and (14), not consider replacing XY 3 and
X3Y , respectively, with Y a and Xa, respectively. The arguments of the example surely would apply also
in this case, however, the corresponding nested codes are of Reed-Muller type, and such codes do not
have impressive parameters. ♦
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The method of Example 12 can be applied to any point set S1 × S2 with s = #S1 = #S2. The idea
is to consider the intersection of a line with slope −1 and the lattice ∆(s, s). From either direction, both
values D(X iY j) and D⊥(X iY j) strictly increase, while moving on the line segment toward its middle.
Hence, choosing L2 ⊂ L1 in such a way that L1\L2 is equal to a center part of a line segment of slope
−1 produces good relative minimum distances.

Theorem 27. Consider S1, S2 ⊆ Fq with s = #S1 = #S2. Let I = 〈F1(X), F2(Y )〉 ⊂ Fq[X, Y ], where
F1 and F2 are as in (2). Consider X iY j ∈ ∆(s, s) with i ≤ j and let

L1 = {N ∈ ∆(s, s) | N �deg X
iY j}, (15)

L2 = {N ∈ ∆(s, s) | N ≺deg X
jY i}. (16)

The codes C(L1) and C(L2) are of length n = s2 and their codimension equals ` = j− i+1. The relative
minimum distances satisfy

M1(C(L1), C(L2)) = (s− i)(s− j), (17)
M1(C(L2)⊥, C(L1)⊥ ≥ (i+ 1)(j + 1), (18)

and for v = 2, . . . , `

Mv(C(L1), C(L2)) = (s− i)(s− j)

+
v∑
t=2

(
(s− i)− (t− 1)

)
(19)

= (s− i)(s− j + v − 1)

−v(v − 1)

2
,

Mv(C(L2)⊥, C(L1)⊥) ≥ (i+ 1)(j + 1) +
v∑
t=2

(
(j + 1)− (t− 1)

)
(20)

= (i+ v)(j + 1)− v(v − 1)

2
.

Proof. We first establish the bounds

Mv(C(L1), C(L2)) ≥ min
{
D(K) |

K ⊆ {XjY i, Xj−1Y i+1, . . . , X iY j},#K = v
}
, (21)

Mv(C(L2)⊥, C(L1)⊥) ≥ min
{
D⊥(K) |

K ⊆ {XjY i, Xj−1Y i+1, . . . , X iY j},#K = v
}
. (22)

We do this by applying Theorem 16 with ≺deg as the chosen monomial ordering. In particular ∆(s, s) =
{N1, . . . , Ns2} where the enumeration of the Nis is with respect to ≺deg. Consider u = min{i | Ni ∈
L1\L2} and u⊥ = max{i | Ni ∈ L1}. The uth element of ∆(s, s) now is Nu = XjY i and the u⊥th
element is Nu⊥ = X iY j . By (3) and (4) the right-hand sides of (21) and (22) therefore serve as lower
bounds on their respective left-hand sides.
We next prove (17) and (18). From (21) we have

M1(C(L1), C(L2))

≥ min{D(XjY i), D(Xj−1Y i+1), . . . , D(X iY j)}
= min{(s− (i+ v))(s− (j − v)) |

v = 0, . . . , `− 1 = j − i}
= (s− i)(s− j)
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(equality of the convex function is attained for v = 0 and v = `− 1). This proves that the right-hand side
of (17) is larger than or equal to the left-hand side. In a similar fashion we establish the inequality (18). To
establish equality in (17) we only need to find a codeword in C(L1)\C(L2) with (s− i)(s− j) non-zeros.
To this end, write S1 = {α1, . . . , αs} and S2 = {β1, . . . , βs} and consider

F (X, Y ) =
i∏

w=1

(X − αw)

j∏
r=1

(Y − βr)

which has exactly the prescribed number of non-zeros in S1 × S2. The codeword ~c = ev(F (X, Y ) + I)
clearly belongs to C(L1)\C(L2) and therefore we have established equality in (17).
In a similar way we can show that equality actually holds in (21). This is done by considering for each
possible set K ⊆ {XjY i, Xj−1Y i+1, . . . , X iY j} the corresponding set of #K polynomials as above. The
number of elements in S1 × S2, that are non-zeros of at least one of these polynomials, equals D(K).
It remains to show that the right-hand side of (21) equals the right-hand side of (19), and that the right-
hand side of (22) equals the right-hand side of (20). For convenience, we will explain the case in (19)
for v = 2. The cases v ≥ 3 can be proved with the same reasoning by using the principle of inclusion
and exclusion. A similar and straightforward reasoning, where one should replace (s − i)(s − j) with
(i+ 1)(j + 1) gives the corresponding formula for the case in (20).
Indeed, note that we are considering sets K = {Xj−xY i+x, Xj−yY i+y}, where one can assume 0 ≤ x <
y ≤ j− i = `−1. Then D(K) equals the cardinality of the set of monomials which are divisible by either
Xj−xY i+x or Xj−yY i+y. So, we have to compute the sum of the cardinalities of the set of monomials
divisible by Xj−xY i+x plus that of the set of monomials divisible by Xj−yY i+y minus that of the set of
monomials divisible by both of them. Therefore,

D(K) =
(
(s− j) + x

)(
(s− i)− x

)
+
(
(s− j) + y

)(
(s− i)− y

)
−
(
(s− j) + x

)(
(s− i)− y

)
.

We are looking for the minimum of that function within the above mentioned region. Derivatives show
that the minimum will appear on the boundary. As a consequence we find it for the values x = 0 and
y = 1 which give the value (s− i)(s− j) + (s− i− 1) in the statement. This concludes the proof.

Proposition 28. Let the notation be as in Theorem 27 and consider σ ∈ {0, . . . , s − 1}. Then for any
positive integer ` ≤ σ + 1 such that ` is even if and only if σ is odd we obtain nested code pairs
C(L2) ⊂ C(L1) of codimension ` with

M1(C(L1), C(L2))=

(
s− σ − `+ 1

2

)(
s− σ + `− 1

2

)
(23)

M1(C(L2)⊥, C(L1)⊥)≥
(
σ − `+ 3

2

)(
σ + `+ 1

2

)
(24)

and if ` ≤ σ − 1 then

d(C(L1)) = s(s− σ) < M1(C(L1), C(L2)). (25)

Similarly we obtain code pairs of codimension ` with

M1(C(L1), C(L2))=

(
σ − `+ 3

2

)(
σ + `+ 1

2

)
(26)

M1(C(L2)⊥, C(L1)⊥)

≥
(
s− σ−`+1

2

)(
s− σ+`−1

2

)
(27)
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and if ` ≤ σ − 1 then

d(C(L1)) = σ + 1 < M1(C(L1), C(L2)).

Proof. We only prove (23), (24) and (25). The other results follow by symmetry. Choose 0 ≤ i ≤ j < s
with i + j = σ < s and ` = j − i + 1. Then i = σ−`+1

2
, j = σ+`−1

2
and the first two results follow from

Theorem 27. Finally, d(C(L1)) = M1(C(L1), {~0}) = D(Xσ) = s(s− σ).

Corollary 29. Consider integers 1 < s ≤ q, where q is a prime power and let σ ∈ {0, . . . , s− 1}. Then
for any ` ≤ σ + 1 such that ` is even if and only if σ is odd we obtain from Proposition 28 ramp secret
sharing schemes over Fq with n = s2 participants, shares in F`q and either

t = t1 ≥
(
σ − `+ 3

2

)(
σ + `+ 1

2

)
− 1

r = r` = s2 −
(
s− σ − `+ 1

2

)(
s− σ + `− 1

2

)
+ 1

or

t = t1 ≥
(
s− σ − `+ 1

2

)(
s− σ + `− 1

2

)
− 1

r = r` = s2 −
(
σ − `+ 3

2

)(
σ + `+ 1

2

)
+ 1.

Similarly we obtain asymmetric quantum codes with parameters

[[n = s2, `, dz/dx]]q

where dz equals the right hand side of (23) and dx is greater than or equal to the right hand side of (24)
(and similarly with (26) and (27)). If ` ≤ σ − 1 then the asymmetric quantum codes are impure.

Remark 30. As mentioned in the introduction it is often desirable to have asymmetric quantum codes
with dz much larger than dx. One such family is obtained from Corollary 29 with parameters [[n =
s2, `, dz ≥ s(s−`+1)/dx = `]]q for any ` ∈ {1, . . . , s−1}. For q = 7, 8, 9 and ` = 1, 2, 3, 4, 5 these codes
strictly exceed the Gilbert-Varshamov bound (Theorem 4). Similarly for q = 5, 11, 13, 16, 17, 19, 23, 25
and ` = 1, 2, 3, 4.

Example 13. In this example we consider asymmetric quantum codes as in Corollary 29 with dz = δ
being equal to the right hand side of (23) and dx being greater than or equal to δ⊥ which we define as the
right hand side of (24). We treat the cases n = q2, where q = 3, 4, 5, 7, 8, 9. In the literature e.g. [42], [17],
[44] one can find extensive tables of quantum stabilizer code parameters derived by applying Theorem 3,
however, they only use the bound dz ≥ d(C1) and dx ≥ d(C⊥2 ), where d(C1) and d(C⊥2 ) are the minimum
distances of concrete code pairs with C2 ⊂ C1. The present example illustrates the huge advantage of
using instead the relative minimum distances (which is what is behind the bounds in Corollary 29). This is
done by investigating for each ` and δ what is the highest value g(`, δ) such that the tables of best known
linear codes in [34] guarantee the existence of linear code pairs A,B⊥ satisfying dimA − dimB = `,
d(A) ≥ δ, and d(B⊥) ≥ g(`, δ) (this is in the spirit of [18, Theorem 2]). Observe, that we make no
assumption whatsoever that B ⊂ A. Actually, such inclusion is very unlikely to hold when one chooses
two codes A and B⊥ which are optimal with respect to the tables of best known linear codes in [34].
In Table IX we list values of (`, δ, δ⊥, g(`, δ)). The many cases where δ⊥ is close to g(`, δ) illustrate the
huge advantage of using the construction in Theorem 27 and taking into account the relative minimum
distances. Note that, there are even two cases where δ⊥ exceeds the corresponding g(`, δ), namely for
q = 7 and (`, δ, δ⊥, g(`, δ)) equal to (3, 15, 15, 14) or (2, 30, 6, 5). All displayed code parameters coming
from Theorem 27 strictly exceed the Gilbert-Varshamov bound (Theorem 4).

♦
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q (`, δ, δ⊥, g(`, δ))
3 (1,4,4,4)

4 (2,6,6,6) (1,9,4,4)

5 (3,8,9,9) (1,9,9,9) (2,12,6,6) (1,16,4,4)

7 (5,12,12,18) (3,15,15,14) (1,16,16,17) (4,18,10,13)
(2,20,12,12) (3,24,8,9) (1,25,9,10) (2,30,6,5)
(1,36,4,4)

8 (5,21,12,19) (3,24,15,16) (1,25,16,16) (4,18,18,21)
(2,20,20,22) (4,28,10,13) (2,30,12,13) (3,35,8,8)
(1,36,9,10) (2,42,6,6) (1,49,4,4)

9 (3,24,24,26) (1,25,25,26) (5,21,21,27) (4,28,18,21)
(2,30,20,22) (5,32,12,18) (3,35,15,16) (1,36,16,16)
(4,40,10,13) (2,42,12,14) (3,48,8,8) (1,49,9,9)
(2,56,6,6) (1,64,4,4)

TABLE IX
CORRESPONDING VALUES OF (`, δ, δ⊥, g(`, δ)) FROM EXAMPLE 13. THE MANY CASES WITH δ⊥ CLOSE TO g(`, δ) (AND EVEN TWO

CASES WITH δ⊥ > g(`, δ)) DEMONSTRATE THE ADVANTAGE OF THE CONSTRUCTION IN THEOREM 27 AND OF USING RELATIVE
MINIMUM DISTANCES.

8 7 6 5 4 3 2 1
16 14 12 10 8 6 4 2
24 21 18 15 12 9 6 3
32 28 24 20 16 12 8 4
40 35 30 25 20 15 10 5

5 10 15 20 25 30 35 40
4 8 12 16 20 24 28 32
3 6 9 12 15 18 21 24
2 4 6 8 10 12 14 16
1 2 3 4 5 6 7 8

Fig. 6. Example 14: D(N) to the left, and D⊥(N) to the right

It is not straightforward to generalize Theorem 27 to point ensembles S1×S2 with #S1 not necessarily
equal to #S2. The problem lies in the choice of monomial ordering (and the corresponding definition of
L1 and L2). More concretely, for #S1 6= #S2 there simply is no monomial ordering which simultaneously
optimizes the relative minimum distance of the corresponding primary codes and the relative minimum
distance of the corresponding dual codes. However, our method can still be applied as the following
example illustrates.

Example 14. In this example we consider S1, S2 ⊆ Fq with s1 = #S1 = 8, s2 = #S2 = 5 and consider
codes defined from S1 × S2. Here q is any prime power greater than or equal to 8. In Fig. 6 we depict
on the left D(∆(s1, s2)) and on the right D⊥(∆(s1, s2)).

Concentrating first on the lower left corner of ∆(s1, s2) we see that on a line segment of slope −1
the values D⊥(X iY j) indeed still increase when moving from either direction toward the middle of the
segment. This, however, does not at all hold for D(X iY j). For instance if we choose

L1 = {N ∈ ∆(s1, s2) | N �deg XY
2},

L2 = {N ∈ ∆(s1, s2) | N ≺deg X
2Y },

then in (3) and (4) of Theorem 16 we only need to consider monomials in L1\L2 = {X2Y,XY 2}. Hence,
we obtain the estimates M1(C(L1), C(L2)) ≥ min{21, 24} = 21 and M1(C(L2)⊥, C(L1)⊥) ≥ 6. But this
seems somewhat not a perfect choice of L2 ⊂ L1 as now min{D(M) | M ∈ L1} = min{D(M) | M ∈
L1\L2}. Hence, we optimized the relative minimum distance of the dual codes, but did not obtain any
improvement for the primary codes. Turning to the right upper corner of ∆(s1, s2) the situation is similar,
however, with the role of the primary and dual codes interchanged. We finally consider the remaining
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middle part of ∆(s1, s2). We first choose as monomial ordering the weighted degree lexicographic ordering
≺w defined by the rule that X i1Y i2 ≺w Xj1Y j2 if either i1 + 2i2 < j1 + 2j2, or i1 + 2i2 = j1 + 2j2 with
i2 < j2. Then define

L1 = {N ∈ ∆(s1, s2) | N �w X2Y 2},
L2 = {N ∈ ∆(s1, s2) | N ≺w X4Y }.

Again this renders the nice property that in (3) and (4) we only need to consider the monomials of L1\L2,
which in this case becomes {X4Y,X2Y 2}. We obtain

M1(C(L1), C(L2)) ≥ min{16, 18} = 16,

M1(C(L2)⊥, C(L1)⊥) ≥ min{9, 10} = 9.

Choosing on the other hand the degree lexicographic ordering and defining

L1 = {N ∈ ∆(s1, s2) | N �deg X
2Y 2},

L2 = {N ∈ ∆(s1, s2) | N ≺deg X
3Y },

we only need to consider monomials in L1\L2 = {X3Y,X2Y 2}, from which we obtain M1(C(L1), C(L2)) ≥
min{18, 20} = 18 and M1(C(L2)⊥, C(L1)⊥) ≥ min{8, 9} = 8. As a consequence, there seems to be no
general rule for which (weighted) degree lexicographic ordering to choose. ♦

We now return to the case of the point set being a Cartesian product of subsets Si ⊆ Fq of the same
size. Theorem 27 treated the two-dimensional case, the theorem below treats higher dimensions.

Theorem 31. Consider S1, . . . , Sm ⊆ Fq with s = #S1 = · · · = #Sm and let
〈F1(X1), . . . , Fm(Xm)〉 ⊂ Fq[X1, . . . , Xm], where F1, . . . Fm are as in (2). Consider X i1

1 X
i2
2 · · ·X im

m ∈
∆(s, . . . , s) with i1 ≤ i2 and let

L1 = {N ∈ ∆(s, . . . , s) | N �deg X
i1
1 X

i2
2 · · ·X im

m },
L2 = {N ∈ ∆(s, . . . , s) | N ≺deg X

i2
1 X

i1
2 X

i3
3 · · · , X im

m }.

The codes C(L1) and C(L2) are of length n = sm and their codimension equals ` = i2 − i1 + 1. The
relative minimum distances satisfy

M1(C(L1), C(L2)) = (s− i1) · · · (s− im)

M1(C(L2)⊥, C(L1)⊥ ≥ (i1 + 1) · · · (im + 1),

and for v = 2, . . . , `

Mv(C(L1), C(L2)) = min
{
D(K) |

K ⊆ {X i2
1 X

i1
2 X

i3
3 · · ·X im

m , . . . , X i1
1 X

i2
2 · · ·X im

m },
#K = v

}
,

Mv(C(L2)⊥, C(L1)⊥) ≥ min
{
D⊥(K) |

K ⊆ {X i2
1 X

i1
2 X

i3
3 · · ·X im

m , . . . , X i1
1 X

i2
2 · · ·X im

m },
#K = v

}
.

Proof. The proof is similar to that of Theorem 27. The details are left for the reader.

We next return to the two-dimensional case, comparing in an example asymmetric quantum codes from
Corollary 29 with La Guardia’s Construction II of asymmetric quantum generalized Reed-Solomon codes
(Theorem 26). Recall from Remark 5 that parameters of asymmetric quantum codes based on the CSS
construction can be directly translated into parameters of ramp secret sharing schemes.
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Theorem 26 ([44, Theorem 7.1]) Theorem 27
—– [[49, 1, 31/4]]7
—– [[49, 2, 30/6]]7
—– [[49, 1, 25/9]]7

[[49, 2, 23/2]]7 [[49, 3, 24/8]]7
[[49, 2, 20/5]]7 [[49, 2, 20/12]]7
[[49, 2, 18/7]]7 [[49, 4, 18/10]]7
[[49, 2, 16/9]]7 [[49, 1, 16/16]]7
[[49, 2, 15/10]]7 [[49, 3, 15/15]]7
[[49, 6, 12/11]]7 [[49, 5, 12/12]]7

TABLE X
COMPARISON OF CODE PARAMETERS IN EXAMPLE 15. TO THE RIGHT ALL POSSIBLE PARAMETERS DERIVED USING THEOREM 27. TO
THE LEFT A SELECTION OF PARAMETERS DERIVED BY APPLYING THEOREM 26 TO CODES OF LENGTH 48. AN EMPTY ENTRY MEANS

THAT THERE ARE NO COMPARABLE PARAMETER.

Theorem 26 ([44, Theorem 7.1]) Theorem 27
—– [[64, 1, 49/4]]8
—– [[64, 2, 42/6]]8
—– [[64, 1, 36/9]]8
—– [[64, 3, 35/8]]8

[[64, 2, 30/3]]8 [[64, 2, 30/12]]8
[[64, 4, 28/4]]8 [[64, 4, 28/10]]8
[[64, 2, 25/8]]8 [[64, 1, 25/16]]8
[[64, 2, 24/9]]8 [[64, 3, 24/15]]8
[[64, 2, 21/12]]8 [[64, 5, 21/12]]8
[[64, 2, 20/13]]8 [[64, 2, 20/20]]8
[[64, 4, 18/14]]8 [[64, 4, 18/18]]8

TABLE XI
COMPARISON OF CODE PARAMETERS IN EXAMPLE 15. TO THE RIGHT ALL POSSIBLE PARAMETERS FROM THEOREM 27. TO THE LEFT A

SELECTION OF PARAMETERS RESULTING FROM THEOREM 26.

Example 15. We first consider the case of asymmetric quantum codes with q = 7 and of length 49. The
parameters produced by Theorem 26 for the code length 49 all satisfy that dz, dx ≤ 6. To produce higher
values of dz (as usual we shall assume dz ≥ dx), we can instead apply Theorem 26 to codes of length
48 and thereby derive information on codes of length 49. We then compare these values with what is
produced from Theorem 27 in combination with Theorem 3 for codes of length 49. As is seen in Table X,
most often Theorem 27 produces the best results. All displayed codes coming from Theorem 27 strictly
exceed the Gilbert-Varshamov bound (Theorem 4).
We next consider asymmetric quantum codes with q = 8 and of length 64. In Table XI we compare

representative examples of what can be derived from Theorem 26 with what can be obtained from
Theorem 27 in combination with Theorem 3. Again the advantage of our method is distinct in most
cases, however, with a clear exception when dz = 14. For dz > 31, Theorem 26 does not produce any
information, which in Table XI is marked with “—–”. All displayed codes coming from Theorem 27
strictly exceed the Gilbert-Varshamov bound (Theorem 4).

♦

We conclude this section with discussing higher weights and their use in secret sharing.

Remark 32. Inspecting (19) and (20) it is clear that the (v + 1)th relative weights are typically much
larger than the vth relative weights, for v ∈ {1, . . . , ` − 1}. In particular the second relative weights are
often much larger than the first relative weights. The consequence for the related ramp secret sharing
schemes is that the security is much better than what is reflected only by the parameter t = t1, in that
tv+1 is much larger than tv for v ∈ {1, . . . , ` − 1}. Hence, if a small amount of information leakage
can be accepted, then one can tolerate many more leaked symbols. In the other direction, reconstruction
corresponds to solving a system of linear equations. Hence, the fact that rv is much smaller than rv+1 for
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` t1 t2 t3 t4 r1 r2 r3 r4
1 24 - - - 33 - - -
2 19 23 - - 29 31 - -
3 14 18 21 - 24 26 29 -
1 15 - - - 28 - - -
4 9 13 16 18 18 20 23 27
1 8 - - - 21 - - -
3 7 10 12 - 15 18 22 -
2 5 7 - - 13 17 - -
1 3 - - - 12 - - -

TABLE XII
RAMP SECRET SHARING SCHEMES FROM EXAMPLE 16

v ∈ {1, . . . , ` − 1}, and in particular that r`−1 is much smaller than r = r`, means that if one is willing
to guess some of the indeterminates of the system then one needs much fewer shares to reconstruct the
secret.

We illustrate Remark 32 with an example.

Example 16. This is a continuation of Example 12. Applying Theorem 27 we obtain ramp secret sharing
schemes with n = 36 participants, with secrets in F`q where ` and the privacy and reconstruction numbers
are as in Table XII.

♦

V. CONCLUDING REMARKS

In a series of works [26], [24], [27], [25], [23] the authors of the present paper investigated linear codes
over Fq defined by evaluating multivariate polynomials at Cartesian products S1 × · · · × Sm, where for
i = 1, . . . ,m, Si is the set of roots of

XNi
i −Xi or XNi−1

i − 1. (28)

Here Ni > 1 satisfies that Ni − 1 divides q − 1. Such codes were then used in [26], [24], [27], [25],
[23] for the construction of symmetric quantum codes. In the terminology used in these papers a set
J ⊆ {1, . . . ,m} indicates for which indices the second case in (28) occurs – and the corresponding codes
are called J-affine variety codes, and if Ni − 1 = q − 1, J = {1, . . . ,m} generalized toric codes [49].
One of the advantages of such codes is that they come with an efficient method for finding parity check
matrices. More precisely, when each row in the generator matrix is made by evaluating a monomial at
the points of the point set, then [27, Proposition 1] provides a description of a corresponding parity check
matrix. The codes of the present paper clearly are J-affine variety codes when Si, i = 1, . . . ,m is of the
form (28). This is in particular the case in all the examples we have given, implying that for these codes
we can easily establish parity check matrices.

Another advantage of J-affine variety codes is that they are suited for the construction of subfield
subcodes. It is an interesting topic of future research to investigate if the method from the present paper
can be successfully combined with such subfield subcode construction.

For q an even power of a prime, Theorem 3 is also true if one replaces the Euclidean duality with
the Hermitian duality [19, Theorem 4.5]. It is also an interesting research problem to investigate if this
product can be successfully combined with the methods of the present paper.

APPENDIX A
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Proof. Let m ≥ 2 be an arbitrary integer. The proof is by induction on i = m, . . . , 1. For i = m the
formula reduces to ∫ s− τ

(s−x1)···(s−xm−1)

0

dxm = s− τ

(s− x1) · · · (s− xm−1)
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which is indeed true. Next let 1 ≤ i < m and assume that the formula in the lemma holds when i is
substituted with i+ 1. We must show that it also holds for i. The left hand side becomes∫ s− τ

sm−i(s−x1)···(s−xi−1)

0

sm−i

−
∑m−i−1

t=0

[
1
t!

τ
(s−x1)···(s−xi)

·
(

ln

(
(s− x1) · · · (s− xi)sm−i

τ

))t]
dxi

= sm−i+1 − τ
(s−x1)···(s−xi−1)

+
m−i−1∑
t=0

∫ s− τ

sm−i(s−x1)···(s−xi−1)

0

1

t!

τ

(s− x1) · · · (s− xi−1)

−1

(s− xi)

·
(

ln

(
(s− x1) · · · (s− xi)sm−i

τ

))t
dxi. (29)

We continue with the last term, which after the substitution,

u = ln((s− x1) · · · (s− xi)sm−i/τ),

becomes
m−i−1∑
t=0

∫ 0

ln

(
(s−x1)···(s−xi−1)s

m−i+1

τ

)
1

t!

τ

(s− x1) · · · (s− xi−1)
ut du

= −
m−i−1∑
t=0

[
1

(t+ 1)!

τ

(s− x1) · · · (s− xi−1)

·
(

ln

(
(s− x1) · · · (s− xi−1)sm−i+1

τ

))t+1]
.

Shifting the index by 1 in the last sum and collecting terms in (29) prove the lemma.
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[38] L. Ioffe and M. Mézard. Asymmetric quantum error-correcting codes. Phys. Rev. A, 75(3):032345, 2007.
[39] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory,

52(11):4892–4914, 2006.
[40] J. Kurihara, T. Uyematsu, and R. Matsumoto. Secret sharing schemes based on linear codes can be precisely characterized by the

relative generalized Hamming weight. IEICE Trans. Fundamentals, E95-A(11):2067–2075, Nov. 2012.
[41] G. G. La Guardia. Asymmetric quantum product codes. Int. J. Quantum Inf., 10(01):1250005, 2012.
[42] G. G. La Guardia. Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes. Quantum Inf. Process., 11(2):591–604,

2012.
[43] G. G. La Guardia. Asymmetric quantum codes: New codes from old. Quantum Inf. Process., 12(8):2771–2790, 2013.
[44] G. G. La Guardia. On the construction of asymmetric quantum codes. Int. J. Theor. Phys., 53:2312–2322, 2014.



26

[45] R. Matsumoto. Two Gilbert-Varshamov type existential bounds for asymmetric quantum error-correcting codes. arXiv preprint
arXiv:1705.04087, 2017.

[46] R. Matsumoto and S. Miura. On the Feng-Rao bound for the L-construction of algebraic geometry codes. IEICE Trans. Fundamentals,
E83-A(5):926–930, May 2000.

[47] R. Matsumoto and T. Uyematsu. Lower bound for the quantum capacity of a discrete memoryless quantum channel. J. Math. Phys.,
43(9):4391–4403, 2002.

[48] R. Pellikaan. On the efficient decoding of algebraic-geometric codes. In P. Camion, P. Charpin, and S. Harari, editors, Eurocode
’92 International Symposium on Coding Theory and Applications, number 339 in CISM Courses and Lectures, pages 231–253. CISM
International Centre for Mechanical Sciences, Springer, 1993.

[49] D. Ruano. On the structure of generalized toric codes. J. Symbolic Comput., 44(5):499–506, 2009.
[50] S. Sakata. Extension of the Berlekamp-Massey algorithm to N dimensions. Inform. and Comput., 84(2):207–239, 1990.
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