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Abstract

Asymptotically good sequences of linear ramp secret sharing schemes have
been intensively studied by Cramer et al. in terms of sequences of pairs of nested
algebraic geometric codes [4, 5, 6, 7, 8, 10]. In those works the focus is on full
privacy and full reconstruction. In this paper we analyze additional parameters
describing the asymptotic behavior of partial information leakage and possibly
also partial reconstruction giving a more complete picture of the access struc-
ture for sequences of linear ramp secret sharing schemes. Our study involves a
detailed treatment of the (relative) generalized Hamming weights of the consid-
ered codes.
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1 Introduction
A secret sharing scheme [22, 2, 3, 27] is a cryptographic method to encode a secret
s into multiple shares c1, . . . , cn so that only from specified subsets of the shares
one can recover s. Often it is assumed that n participants each receive a share,
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no two different participants receiving the same. The secret and the share vector
c = (c1, . . . , cn) corresponding to it are assumed to be taken at random with some
given distributions (usually uniform), and the recovery capability of a set of shares is
measured from an information-theoretical point of view [27]. The term ramp secret
sharing scheme [27, 3, 7] is used for those schemes where some sets of shares partially
determine the secret, but not completely. This allows the shares to be of smaller size
than the secret.

In this paper, we concentrate on linear ramp secret sharing schemes with uniform
distribution on the secret and uniform distribution on the share vector conditioned
to the secret, which is widely considered in the literature (see, for instance, [6, 7, 12,
17]). Here, the secret is a vector s ∈ F`q (for some finite field Fq), and we assume
that the shares are elements c1, . . . , cn ∈ Fq. The term linear means that a linear
combination of share vectors is a share vector of the corresponding linear combination
of secrets. In [7, Sec. 4.2] it was shown that such schemes are equivalent to the
following construction based on two nested linear codes C2 ( C1 ⊂ Fnq with dimC1−
dimC2 = `. Writing k2 = dimC2 and k1 = dimC1 (and consequently ` = k1− k2) let
{b1, . . . ,bk2} be a basis for C2 and extend it to a basis {b1, . . . ,bk1} for C1. A secret
s = (s1, . . . , s`) is encoded by first choosing at random coefficients a1, . . . , ak2 ∈ Fq
and then letting the share vector be

c = a1b1 + · · ·+ ak2bk2 + s1bk2+1 + · · ·+ s`bk1 . (1)

Define a q-bit of information to be log2(q) bits of information. Then, for the schemes
that we consider, the mutual information between the secret and a set of shares is an
integer between 0 and ` if measured in q-bits [17, Proof of Th. 4]. Therefore, for each
m = 1, . . . , `, we may define the following threshold values [12, Def. 2]:

• The m-th privacy threshold of the scheme is the maximum integer tm such that
from no set of tm shares one can recover m q-bits of information about the
secret. That is, tm = max{#J | J ⊆ {1, . . . , n}, I(J) < m}, where I(J) = I

(
s1,

. . . , s` ; (ci | i ∈ J)
)
. Here, ci is the i-th component of c in (1), and I(; ) is the

mutual information taking logarithms in base q.

• The m-th reconstruction threshold of the scheme is the minimum integer rm
such that from any set of rm shares one can obtain m q-bits of information
about s. That is, rm = min{#J | J ⊆ {1, . . . , n}, I(J) ≥ m}.

The numbers t = t1 and r = r` have been intensively studied in the literature, e.g.
[3, 7, 27], where they are called privacy and reconstruction threshold, respectively.
Clearly t is the greatest number such that no set of t shares holds any information
on the secret and r is the smallest number such that from any set of r shares one
can reconstruct the information in full. In a series of papers the asymptotic behavior
of such parameters has been investigated [4, 5, 6, 7, 8, 10] in terms of corresponding
infinite sequences of nested code pairs of increasing length. In the present paper we
take a particular interest in sequences of nested code pairs (C2(i) ( C1(i) ⊂ Fni

q )∞i=1
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with ni and with `i = dimC1(i)− dimC2(i) satisfying

lim
i→∞

ni =∞, and lim inf
i→∞

(`i/ni) = L (2)

for some fixed 0 < L < 1, see [4, 5, 6, 7, 8, 10]. The reason for us to require (2) is
to obtain a constant information rate. For instance if the schemes are to be used in
connection with distributed storage as mentioned in [27] then a memory of size 1/L
times the information size is enough. As in the above listed papers the focus in on
full privacy and full reconstruction, what is studied there is

lim inf
i→∞

t

ni
= Ω(1) and lim sup

i→∞

r

ni
= Ω(2). (3)

Here, t and r are the privacy and reconstruction thresholds for the schemes based on
C2(i) ( C1(i) ⊂ Fni

q , and thereby are functions in i. For any chosen value of L and
corresponding feasible Ω(1) it is desirable to have the threshold gap Ω(2)−Ω(1) as small
as possible. One way of achieving this [4, 5, 6, 7, 8, 10] is to base the secret sharing
schemes on sequences of nested code pairs related to an optimal tower of function
fields and to require limi→∞(dimC1(i)/ni) = R1 and limi→∞(dimC2(i)/ni) = R2

for some fixed rates R1 > R2. Using the Goppa bound [15] one then obtains good
parameters L = R1−R2, Ω(2) and Ω(1). For future reference we formalize the concept
of asymptotic goodness in a definition, where for completeness we also include the
case L = 0, although we do not study this case in the present paper.

Definition 1. Let 0 < R2 ≤ R1 < 1 and consider a sequence of nested codes
(C2(i) ( C1(i) ⊂ Fni

q )∞i=1 with ni → ∞, dimC2(i)/ni → R2 and dimC1(i)/ni → R1

for i→∞. The corresponding sequence of linear ramp secret sharing schemes is said
to be asymptotically good if the parameters from (3) satisfy 0 < Ω(1) and Ω(2) < 1.

The purpose of the present paper is to provide additional information on the
access structure of sequences of linear ramp secret sharing schemes by studying partial
information leakage and partial reconstruction parameters. More precisely, given a
sequence of linear ramp secret sharing schemes and any fixed numbers 0 ≤ ε1, ε2 ≤ 1
we study the asymptotic parameters

Λ(1)(ε1) = sup
{

lim inf
i→∞

tm1(i)

ni
| (m1(i))

∞
i=1 satisfies

1 ≤ m1(i) ≤ `i, lim
i→∞

(m1(i)/ni) = ε1L
}
,

Λ(2)(ε2) = inf
{

lim sup
i→∞

r`i−m2(i)+1

ni
| (m2(i))

∞
i=1 satisfies

1 ≤ m2(i) ≤ `i, lim
i→∞

(m2(i)/ni) = ε2L
}
.

Such parameters tell us that asymptotically no fraction less than Λ(1)(ε1) of the
shares holds more information on the secret than a fraction ε1. Similarly, from any
fraction greater than Λ(2)(ε2) of the shares one can gain information on the secret
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corresponding to a fraction 1 − ε2 or more. Of particular interest is Λ(1)(0) which
ensures almost full privacy. It is a surprising fact that for secret sharing schemes
based on algebraic geometric codes this number can be significantly larger than Ω(1),
meaning that such schemes are more secure than anticipated (see Section 3 and
Theorem 21). The situation is similar with regards to reconstruction. In another
direction, for fixed values of L and corresponding feasible Λ(1)(ε1) we determine for
the general class of ramp secret sharing schemes the smallest value Λ(2)(ε2) such that
a sequence of codes with these parameters exists. This bound – which can be seen
as an asymptotic Singleton bound for linear ramp secret sharing schemes – is then
by a non-constructive proof shown to be achievable, but unfortunately, we obtain no
information regarding Ω(1) and Ω(2) for those sequences.

Sequences of linear ramp secret sharing schemes based on algebraic geometric
codes defined from optimal towers of function fields are interesting for the following
three reasons. Firstly, for such sequences the parameters L, Ω(1) and Ω(2) are si-
multaneously good. Also Λ(1)(ε1) and Λ(2)(ε2) are good, although they do not always
reach the Singleton bound. Secondly, such sequences are constructible if q is a perfect
square and are semi-constructible if not. Finally, as demonstrated in [4, 5, 6, 7, 8, 10]
examples of such sequences are important in connection with secure multiparty com-
putation due to nice properties on the componentwise product of share vectors.

Our analysis of the asymptotic secret sharing parameters is based on the material
in [12, 17] which translates information-theoretical properties of a ramp secret sharing
scheme based on nested linear codes C2 ( C1 ⊂ Fnq into coding-theoretical properties
of the nested codes. In particular, bounding generalized Hamming weights [26] of
C1 and C⊥2 and relative generalized Hamming weights [18] of the pairs C2  C1 and
C⊥1  C⊥2 implies bounds on the privacy and reconstruction numbers ti and ri.

The paper is organized as follows. In Section 2 we give the Singleton bound
for linear ramp secret sharing schemes. Using the material from A we then show
that for arbitrary L, sequences of schemes exist such that for arbitrary ε1, ε2 one gets
arbitrarily close to the Singleton bound for Λ(1)(ε1) and Λ(2)(ε2). In Section 3 we then
discuss how to obtain sequences of ramp secret sharing schemes with good values of
L, Ω(1) and Ω(2) from optimal towers of function fields. As a preparation step to treat
later in the paper Λ(1)(ε1) and Λ(2)(ε2) for these sequences of schemes we next study
relative generalized Hamming weights of algebraic geometric codes in Section 4 and
derive asymptotic consequences in Section 5. Then finally in Section 6 we collect our
findings into information on Ω(1), Ω(2), Λ(1)(ε1) and Λ(2)(ε2) for sequences of ramp
secret sharing schemes based on algebraic geometric codes coming from optimal towers
of function fields.

2 The Singleton bound
The code parameters governing the privacy and reconstruction numbers tm and rm of
linear ramp secret sharing schemes are the relative generalized Hamming weights [18]
which we now define together with the generalized Hamming weights [26].
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Definition 2. Consider C2 ( C1 ⊂ Fnq and let ` = k1 − k2 where k1 = dimC1

and k2 = dimC2. For m = 1, . . . , ` the m-th relative generalized Hamming weight
(RGHW) is:

Mm(C1, C2) = min{#Supp(D) | D ⊂ C1 is a linear space
with dim(D) = m and D ∩ C2 = {0}},

where Supp(D) = {i ∈ {1, 2, . . . , n} | ∃d ∈ D, di 6= 0}. For m = 1, 2, . . . , k1, the m-th
generalized Hamming weight (GHW) of C1 is defined as dm(C1) = Mm(C1, {0}).

Clearly, the RGHWs can be lower bounded by the GHWs of the same index,
and as the latter are often easier to estimate we shall also take an interest in them.
The following theorem, which is [12, Th. 3], gives a characterization of the threshold
numbers tm and rm in terms of the RGHWs of the pairs C2  C1 and C⊥1  C⊥2 ,
where C⊥ denotes the dual of the linear code C.

Theorem 3. Consider a linear ramp secret sharing scheme based on codes C2 (
C1 ⊂ Fnq . Then for m = 1, 2, . . . , `,

tm = Mm(C⊥2 , C
⊥
1 )− 1, and

rm = n−M`−m+1(C1, C2) + 1.

Observe, that as a consequence we obtain tm ≥ d(C⊥2 ) − 1 and rm ≤ n −
d`−m+1(C1) + 1. Given a sequence of linear ramp secret sharing schemes satisfy-
ing (2), numbers 0 ≤ ε1, ε2 ≤ 1 and any two sequences (m1(i))

∞
i=1 and (m2(i))

∞
i=1 with

limi→∞(m1(i)/ni)→ ε1L and limi→∞(m2(i)/ni)→ ε2L we then obtain

Ω(1) = lim inf
i→∞

M1(C
⊥
2 , C

⊥
1 )

ni
≥ lim inf

i→∞

d(C⊥2 )

ni
(4)

Ω(2) = 1− lim inf
i→∞

M1(C1, C2)

ni

≤ 1− lim inf
i→∞

d(C1)

ni
(5)

Λ(1)(ε1) ≥ lim inf
i→∞

Mm1(i)(C
⊥
2 , C

⊥
1 )

ni
(6)

≥ lim inf
i→∞

dm1(i)(C
⊥
2 )

ni
(7)

Λ(2)(ε2) ≤ 1− lim inf
i→∞

Mm2(i)(C1, C2)

ni
(8)

≤ 1− lim inf
i→∞

dm2(i)(C1)

ni
(9)

To study the optimality of linear ramp secret sharing schemes we recall the Singleton
bound [18, Section IV] for a linear code pair C2  C1 ⊂ Fnq and its dual pair C⊥1  
C⊥2 ⊂ Fnq : for each m = 1, 2, . . . , `,

Mm(C1, C2) ≤ n− k1 +m, and Mm(C⊥2 , C
⊥
1 ) ≤ k2 +m. (10)
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From these bounds and Theorem 3, it follows that rm ≥ k2 +m and tm ≤ k2 +m− 1,
and as a consequence

Ω(2) − Ω(1) ≥ L (11)

and
Λ(2)(ε2)− Λ(1)(ε1) ≥ L(1− ε1 − ε2). (12)

There exist choices of Ω(1) < Ω(2) such that (11) is not nearly tight, meaning that
L cannot be close to Ω(2) − Ω(1) [4, Th. 3.26, Th. 4.6]. It is therefore surprising
that for any fixed value of Λ(1)(0) < Λ(2)(0) there exist sequences of linear ramp
secret sharing schemes with L arbitrarily close to Λ(2)(0) − Λ(1)(0). Even more, by
the strict monotonicity of RGHWs [18, Pro. 2], for such schemes L(1 − ε1 − ε2)
becomes arbitrarily close to Λ(2)(ε2) − Λ(1)(ε1) for all 0 ≤ ε1, ε2 ≤ 1. Our proof is
non-constructive, as might be expected, and it unfortunately does not reveal any
non-trivial information on the corresponding values of Ω(1) and Ω(2). We leave it for
further research to determine simultaneous information on these parameters, and in
particular to decide if the sequences fulfill the requirements in Definition 1 for being
asymptotically good. In A we prove the following result:

Theorem 4. For 0 ≤ R2 < R1 ≤ 1, 0 ≤ δ ≤ 1, 0 ≤ δ⊥ ≤ 1, 0 < τ ≤ min{δ, R1−R2}
and 0 < τ⊥ ≤ min{δ⊥, R1 −R2}, if

R1 + δ < 1 + τ and (1−R2) + δ⊥ < 1 + τ⊥, (13)

then for any prime power q there exists an infinite sequence of nested linear code pairs
C2(i) ( C1(i) ⊂ Fni

q , where ni →∞ for i→∞, and where

lim
i→∞

dim(C1(i))

ni
= R1,

lim
i→∞

dim(C2(i))

ni
= R2,

lim inf
i→∞

Mdniτe(C1(i), C2(i))

ni
≥ δ, and

lim inf
i→∞

Mdniτ⊥e(C2(i)
⊥, C1(i)

⊥)

ni
≥ δ⊥.

As a corollary we see that the difference in (12) can become arbitrarily close to
zero.

Corollary 5. For any 0 < R2 < R1 < 1 there exists a sequence of linear ramp secret
sharing schemes satisfying (2) with L = R1 − R2 and having simultaneous Λ(1)(ε1)
arbitrarily close to R2+ε1L and Λ(2) arbitrarily close to R1−ε2L for all 0 ≤ ε1, ε2 ≤ 1.
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Proof. As noted prior to Theorem 4 by the strict monotonicity of the RGHWs it
is enough to prove L = R1 − R2 and that Λ(1)(0) can be arbitrarily close to R2

simultaneously with Λ(2)(0) being arbitrarily close to R1. We start by proving a
result which at a first glance seems weaker – but from which the above will follow.
Let 0 < ε ≤ min{R1/L, (1−R2)/L} and choose arbitrarily small µ > 0. In Theorem 4
choose τ = τ⊥ = εL, δ = 1− R1 + εL− µ and δ⊥ = R2 + εL− µ. By inspection all
the conditions of the theorem are satisfied and therefore by (6) and (8) for any ε in
the considered interval there exists a sequence of linear ramp secret sharing schemes
satisfying (2) such that Λ(1)(ε) is arbitrarily close to R2 + εL simultaneously with
Λ(2)(ε) being arbitrarily close to R1− εL. The theorem finally follows by considering
a sequence of numbers (ε(i))∞i=1 between 0 and min{R1/L, (1 − R2)/L} and with
limi→∞ ε(i) = 0. For each ε(i) we have a sequence S(i) of secret sharing schemes as
described above. Now build a new sequence of schemes in which the i-th scheme is the
i-th scheme from the sequence S(i). The resulting scheme satisfies the requirement
mentioned at the beginning of the proof.

3 Asymptotically good sequences of schemes from
algebraic geometric codes

In the remaining part of the paper we concentrate on ramp secret sharing schemes
defined from pairs of nested algebraic geometric codes. In the present section we
collect known information to describe what is possible concerning the parameters L,
Ω(1) and Ω(2). In subsequent sections we then derive information on Λ(1)(ε1) and
Λ(2)(ε2).

Let F be an algebraic function field over Fq of transcendence degree one. In the
rest of the paper we consider divisors D = P1 + · · ·+Pn and G with disjoint supports,
where the places Pi are rational and pairwise distinct. For any divisor E, we define
the Riemann-Roch space L(E) of functions f ∈ F such that the divisor (f) + E is
effective (see also [15, Def. 2.36]). We denote by CL(D,G) the evaluation code of
length n obtained by evaluating functions f ∈ L(G) in the places Pi. An algebraic
geometric code is a code of the form CL(D,G) or CL(D,G)⊥. We call the first primary
algebraic geometric codes and the latter dual. The well-known Goppa bound [15, Th.
2.65] gives information on the relation between dimension and minimum distance for
primary or dual codes.

Theorem 6. Let C be an algebraic geometric code of dimension k defined from a
function field of genus g. Then the minimum distance satisfies d(C) ≥ n− k+ 1− g.

Given a function field F , we shall write N(F) for its number of rational places
and g(F) for its genus. For asymptotic purposes, we will make use of Ihara’s constant
[16]

A(q) = lim sup
g(F)→∞

N(F)

g(F)
,
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where the limit is taken over all function fields over Fq of genus g(F) > 0. The
Drinfeld-Vlăduţ bound [25] states that

A(q) ≤ √q − 1. (14)

As is well-known A(q) is always strictly positive and equality in (14) holds if q is a
perfect square [16]. See [1] for the status on what is known about A(q) for q being a
non-square. For convenience, we give the following definition:

Definition 7. A tower of function fields (Fi)∞i=1 over Fq is optimal if N(Fi)→∞ and
N(Fi)/g(Fi)→ A(q) for i→∞. On the other hand, (Ci)

∞
i=1 is an optimal sequence

of one-point algebraic geometric codes defined from Fi if ni/N(Fi) → 1 for i → ∞,
where ni is the length of Ci.

The above together with (4) and (5) immediately combine into the following result
concerning the existence of asymptotically good sequences of ramp secret sharing
schemes.

Theorem 8. Let (C2(i) ( C1(i) ⊂ Fni
q )∞i=1 be a sequence of nested algebraic geometric

codes defined from an optimal tower of function fields and satisfying ni = N(Fi)− 1,
dimC1(i)/ni → R1 and dimC2(i)/ni → R2 for some 0 < R2 ≤ R1 < 1. Then the
corresponding sequence of linear ramp secret sharing schemes (see Section 1) satisfies
Ω(1) ≥ R2 − 1

A(q)
and Ω(2) ≤ R1 + 1

A(q)
.

In particular we obtain asymptotically good ramp secret sharing schemes (Defi-
nition 1) if 1

A(q)
< R2 ≤ R1 < 1 − 1

A(q)
. If moreover R2 < R1 then also the crucial

requirement (2) is satisfied. Observe that due to the assumption ni = N(Fi) − 1
we may choose the codes in Theorem 8 as one-point codes, meaning that without
loss of generality we may consider codes of the form C2(i) = CL(D,µ2(i)Q) and
C1(i) = CL(D,µ1(i)Q), where D is the sum of ni distinct rational places in Fi and Q
is another rational place in the same function field.

4 RGHWs and GHWs of algebraic geometric codes
In this section, we give non-asymptotic analysis that are necessary in Sections 5 and
6 to treat the parameters Λ(1)(ε1) and Λ(2)(ε2) of the sequences of algebraic geometric
schemes discussed in the previous section. The next theorem combines [15, Th. 2.65],
[24, Th. 4.3, Cor. 4.2] and [26, Th. 1]. The first part which is a generalization of
Theorem 6 is known as the Goppa bound for GHWs.

Theorem 9. Let C be an algebraic geometric code of dimension k defined from a
function field of genus g. Then dm(C) ≥ n − k + m − g, for 1 ≤ m ≤ g, and
dm(C) = n− k +m, for g + 1 ≤ m ≤ k.
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For algebraic geometric codes C2  C1, the above theorem exactly gives dm(C1)
and Mm(C1, C2) when g < m. In Proposition 12 and Proposition 13 below, we will
improve it in the case m ≤ g for one-point codes. From now on we will concentrate on
one-point algebraic geometric codes. That is, codes CL(D,G) or CL(D,G)⊥, where
G = µQ, Q is a rational place and µ ≥ −1. Writing νQ for the valuation at Q, the
Weierstrass semigroup corresponding to Q is

H(Q) = −νQ

(
∞⋃
µ=0

L(µQ)

)
= {µ ∈ N0 | L(µQ) 6= L((µ− 1)Q)}.

As is well-known, the number of missing positive numbers in H(Q) equals the genus
g of the function field. The conductor c is by definition the smallest element in H(Q)
such that all integers greater than or equal to that number belong to the set. The
following lemma is well-known [15, Th. 2.65]:

Lemma 10. For µ ≥ −1, k = dimCL(D,µQ) satisfies:

• k ≥ µ+ 1− g if µ ≤ 2g − 2,

• k = µ+ 1− g if 2g − 2 < µ < n, and

• k ≤ µ+ 1− g if n ≤ µ.

If µ = n+ 2g − 1, then CL(D,µQ) = Fnq .

From [12, Th. 19, 20] we have the following result.

Theorem 11. Let C1 = CL(D,µ1Q) and C2 = CL(D,µ2Q), with −1 ≤ µ2 < µ1.
Write k1 = dimC1, k2 = dimC2 and ` = k1 − k2. If 1 ≤ m ≤ `, then

1. Mm(C1, C2) ≥ n − µ1 + min{#{α ∈ ∪m−1s=1 (is + H(Q)) | α /∈ H(Q)} | −(µ1 −
µ2) + 1 ≤ i1 < . . . < im−1 ≤ −1}.

2. Mm(C⊥2 , C
⊥
1 ) ≥ min{#{α ∈ ∪ms=1(is+(µ1−H(Q))) | α ∈ H(Q)} | −(µ1−µ2)+

1 ≤ i1 < . . . < im ≤ 0}.

Choosing C2 = {0} in item 1, we obtain a bound on the GHWs of C1. Similarly,
choosing C1 = Fnq in item 2, we get a bound on the GHWs of C⊥2 .

Proposition 12. For 0 ≤ γ ≤ c, let hγ = # (H(Q) ∩ (0, γ]) and let µ ≥ −1 and
k = dimCL(D,µQ). If µ < n and 1 ≤ m ≤ min{k, g}, then

dm(CL(D,µQ)) ≥ n− k + 2m− c+ hc−m ≥ n− k + 2m− c.

Proof. We will apply item 1 in Theorem 11 for µ1 = µ and µ2 = −1. Consider
numbers −µ ≤ i1 < · · · < im−1 ≤ −1. We have [c −m + 1, c] \H(Q) ⊂ [max{0, c +
i1}, c]\H(Q) ⊂ {α ∈ ∪m−1s=1 (is+H(Q)) | α /∈ H(Q)}∩ [0,∞), where the first inclusion
comes from i1 ≤ −m+1. Now the number of elements in [c−m+1, c]∩H(Q) is at most
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(c− g)−hc−m, and we have that #
(
{α ∈ ∪m−1s=1 (is +H(Q)) | α /∈ H(Q)} ∩ [0,∞)

)
≥

m− (c−g)+hc−m. On the other hand, we have that {i1, . . . , im−1} ⊂ {α ∈ ∪m−1s=1 (is+
H(Q)) | α /∈ H(Q)}∩ (−∞, 0). Thus, from Theorem 11, we obtain dm(CL(D,µQ)) ≥
(n−µ) + (m− 1) + (m− c+ g+ hc−m). Since k ≥ µ− g+ 1 by Lemma 10, the result
follows.

Proposition 13. For γ ≥ 1, let h′γ = #([γ,∞) \ H(Q)) and let µ > 2g − 2 and
k = dimCL(D,µQ)⊥. If 1 ≤ m ≤ min{k, g}, then

dm(CL(D,µQ)⊥) ≥ n− k + 2m− c+ h′µ−c+m ≥ n− k + 2m− c.

Proof. We will apply item 2 in Theorem 11 for µ1 = n+ 2g − 1 and µ2 = µ to prove
that Mm(C⊥2 , C

⊥
1 ) ≥ k2 + 2m − c + h′µ2−c+m, where k2 = dimC2. Consider numbers

−(µ1 − µ2) + 1 ≤ i1 < · · · < im ≤ 0. First, (im + µ1 − H(Q)) ∩ [0, µ2] contains the
set [0, µ1 − c − (µ1 − µ2) + m] = [0, µ2 − c + m], since im ≥ −(µ1 − µ2) + m and
µ1 − c − (µ1 − µ2) + m ≤ µ2. Here, we used the assumption m ≤ g and the fact
that g ≤ c. Thus, # ((im + µ1 −H(Q)) ∩H(Q) ∩ [0, µ2]) is greater than or equal
to (µ2 − c + m + 1) − (g − h′µ2−c+m). On the other hand, {µ1 + i1, . . . , µ1 + im}
is contained in {α ∈ ∪ms=1(is + (µ1 − H(Q))) | α ∈ H(Q)}, which are m elements
in the range (µ2, µ1]. Thus, from the previous theorem we obtain Mm(C⊥2 , C

⊥
1 ) ≥

(µ2− c+m+ 1− g+hµ2−c+m) +m. Since k2 ≤ µ2− g+ 1 and C1 = Fnq by Lemma 10,
the result follows.

5 Asymptotic analysis for algebraic geometric codes
As a preparation step to treat the parameters Λ(1)(ε1) and Λ(2)(ε2) of sequences of
schemes based on algebraic geometric codes, in this section we derive asymptotic
consequences of the non-asymptotic results derived in the previous section. We start
our investigations by commenting on [24, Th. 5.9], which if true would imply that the
codes in Theorem 8 would attain the Singleton bound (12) in all cases 1

q
< R2 < R1 <

1− 1
q
and for all 0 ≤ ε1, ε2 ≤ 1. Below we reformulate [24, Th. 5.9] with the needed

modification which ensures that the Singleton bound is reached when 1/A(q) < ρ, in
contrast to 0 ≤ ρ, as it appears in [24]. We also adapt the formulation to better fit
our purposes of constructing asymptotically good sequences of secret sharing schemes.
We include the proof from [24] to explain why this modification is needed.

Theorem 14. Let (Fi)∞i=1 be an optimal tower of function fields over Fq. Consider
R, ρ with 0 ≤ ρ ≤ R ≤ 1. Let (Ci)

∞
i=1 be an optimal sequence of one-point algebraic

geometric codes defined from (Fi)∞i=1 such that dimCi/ni → R. For all sequences of
positive integers (mi)

∞
i=1 with mi/ni → ρ, it holds that δ = lim infi→∞ dmi

(Ci)/ni ≥
1−R + ρ− 1

A(q)
and, if 1/A(q) < ρ, then δ = 1−R + ρ.

Proof. The first bound on δ is an easy consequence of the Goppa bound (the first
part of Theorem 9). Now assume 1/A(q) < ρ. By assumption, for i large enough
we have mi > g(Fi), which by the last part of Theorem 9 implies that dmi

(Ci) =
ni − dimCi +mi. Dividing by ni and taking the limit, we obtain the result.

10



The theorem states that the Singleton bound (10) can be asymptotically reached
when 1/A(q) < ρ, which implies 1/(

√
q − 1) < ρ by (14). However, this leaves

the cases 1/A(q) ≥ ρ undecided. In the following, we shall concentrate on finding
asymptotic results for the cases 1/A(q) ≥ ρ. We will need [24, Cor. 3.6] and Wei’s
duality theorem [26, Th. 3], which we now recall in this order:

Lemma 15. For every linear code C ⊂ Fnq we have that

dm(C) ≥ d1(C)
qm − 1

qm − qm−1
, m = 1, . . . , dimC.

Lemma 16. Let C ⊂ Fnq be a linear code, dimC = k. Write dr = dr(C), d⊥s = ds(C
⊥)

for 1 ≤ r ≤ k, 1 ≤ s ≤ n− k. Then,

{1, . . . , n} = {d1, . . . , dk} ∪ {n+ 1− d⊥n−k, . . . , n+ 1− d⊥1 }.

Our first result is a strict improvement to Theorem 14.

Theorem 17. Let (Fi)∞i=1 be an optimal tower of function fields over Fq. Con-
sider R, ρ with 1/A(q) ≤ R ≤ 1 and q

q−1
1

A(q)
− 1

q−1R ≤ ρ ≤ R. Let (Ci)
∞
i=1 be an

optimal sequence of one-point algebraic geometric codes defined from (Fi)∞i=1 such
that dimCi/ni → R. There exists a sequence of positive integers (mi)

∞
i=1 such that

mi/ni → ρ and dmi
(Ci)/ni → δ = 1−R + ρ.

Proof. In this proof we use the notation ki = dimCi. Let f : N → N be a function
such that f(i) → ∞ and f(i)/ni → 0, as i → ∞. Now fix i. The Goppa bound
(Theorem 9) together with Lemma 15 tell us that

df(i)(C
⊥
i ) ≥ qf(i) − 1

qf(i) − qf(i)−1
(ki − g(Fi)).

Write h(i) for the right-hand side, that is, df(i)(C⊥i ) ≥ dh(i)e. Observe that h(i) > 0,
since asymptotically ki > g(Fi). If we write d⊥s = ds(C

⊥
i ) for 1 ≤ s ≤ ni − ki, we

have that ni + 1− dh(i)e ≥ ni + 1− d⊥f(i). From this inequality and the monotonicity
of GHWs, it follows that the sets

{ni + 1− dh(i)e, ni + 2− dh(i)e, . . . , ni} and

{ni + 1− d⊥ni−ki , ni + 1− d⊥ni−ki−1, . . . , ni + 1− d⊥f(i)+1}

are disjoint. Therefore, from Lemma 16 it follows that

dki−dh(i)e+f(i)(Ci) ≥ ni + 1− dh(i)e. (15)

Now take a sequence of positive integers (mi)
∞
i=1 such that

ki − dh(i)e+ f(i) ≤ mi ≤ ki (16)

11



(observe that the left-hand side is smaller than ki for large i). From (15), (16) and
the monotonicity of GHWs we get

dmi
(Ci) ≥ dki−dh(i)e+f(i)(Ci) +mi − ki + dh(i)e − f(i)

≥ ni − ki +mi − f(i) + 1.
(17)

Dividing by ni and letting i→∞, (16) and (17) become

q

q − 1

1

A(q)
− 1

q − 1
R ≤ ρ ≤ R,

δ = lim
i→∞

dmi
(Ci)

ni
= 1−R + ρ.

We have the following result for lower values of ρ.

Theorem 18. Let (Fi)∞i=1 be an optimal tower of function fields over Fq. Consider
R, ρ with 0 ≤ ρ ≤ R ≤ 1. Let (Ci)

∞
i=1 be an optimal sequence of one-point algebraic

geometric codes defined from (Fi)∞i=1 such that dimCi/ni → R. For all sequences
of positive integers (mi)

∞
i=1 with mi/ni → ρ, the number δ = lim infi→∞ dmi

(Ci)/ni
satisfies

δ ≥ q

q − 1

(
1−R− 1

A(q)

)
+ ρ.

Proof. Let 0 < ε < 1 be an arbitrary fixed number. From the Goppa bound (Theorem
9) and Lemma 15 we obtain that

ddεmie(Ci)

ni
≥ qεmi − 1

qεmi − qεmi−1

(
1− dimCi

ni
− gi
ni

)
.

Using again the monotonicity of GHWs we obtain that

dmi
(Ci)

ni
≥ qεmi − 1

qεmi − qεmi−1

(
1− dimCi

ni
− gi
ni

)
+
mi(1− ε)

ni
.

Now, letting i→∞ first and then ε→ 0, we obtain

δ = lim inf
i→∞

dmi
(Ci)

ni
≥ q

q − 1

(
1−R− 1

A(q)

)
+ ρ.

In the following, we concentrate on Garcia and Stichtenoth’s second tower [11]
of function fields (Fi)∞i=1 over Fq where q is an arbitrary perfect square. From [21]
we have a complete description of the corresponding Weierstrass semigroups and [23]
gives an efficient method for constructing the corresponding optimal sequences of
one-point algebraic geometric codes. We will apply the two new bounds on GHWs

12



given in Proposition 12 and Proposition 13 to this tower. In the rest of this section,
q is always a perfect square and by (Fi)∞i=1 we mean Garcia and Stichtenoth’s second
tower [11]. We will need the following properties of each Fi ([11, 21]): its number of
rational places satisfies N(Fi) > q

i−1
2 (q −√q), its genus is given by

g(Fi) =

{
(q

i
4 − 1)2 if i is even,

(q
i+1
4 − 1)(q

i−1
4 − 1) if i is odd,

and it has a rational place Qi such that the conductor of H(Qi) is given by

ci =

{
qi/2 − qi/4 if i is even,
qi/2 − q(i+1)/4 if i is odd.

In the rest of the section, (Ci)
∞
i=1 is an optimal sequence of one-point algebraic ge-

ometric codes defined from (Fi)∞i=1, and where Ci is of the form CL(Di, µiQi) or
CL(Di, µiQi)

⊥. Recall from [23] that we may assume without loss of generality that
Di is chosen in such a way that Ci can be constructed using O(ni

3 log3
q(ni)) operations

in Fq.

Theorem 19. Let (Fi)∞i=1 be Garcia-Stichtenoth’s second tower of function fields over
Fq, where q is a perfect square. Let (Ci)

∞
i=1 be a corresponding optimal sequence of one-

point algebraic geometric codes as described above. Consider R, ρ with 0 ≤ R ≤ 1 −
1√
q−1 and 0 ≤ ρ ≤ min{R, 1√

q−1}, and assume that dimCi/ni → R. For all sequences
of positive integers (mi)

∞
i=1 with mi/ni → ρ, it holds that δ = lim infi→∞ dmi

(Ci)/ni
satisfies

δ ≥ 1−R + 2ρ− 1
√
q − 1

.

Proof. We may assume that Ci is of the form CL(Di, µiQi) or CL(Di, µiQi)
⊥, with

2g(Fi)− 2 < µi < ni and (µi− g(Fi))/ni → R. As limi→∞ ci/ni = limi→∞ g(Fi)/ni =
1/(
√
q − 1), the result follows from Proposition 12 or Proposition 13.

6 The parameters Λ(1)(ε1) and Λ(2)(ε2) for algebraic
geometric code based schemes

In Section 3 we estimated Ω(1) and Ω(2) for asymptotically good sequences of schemes
based on algebraic geometric codes coming from optimal towers of function fields,
the sequences being called asymptotically good if Ω(1) > 0 and Ω(2) < 1. Employing
the analysis in Section 5 together with (7) and (9) we are now able to give a more
complete picture of the information leakage and reconstruction by providing also
estimates on Λ(1)(ε1) and Λ(2)(ε2). We emphasize that the below theorems apply also
in the cases where one or both of the conditions Ω(1) > 0 and Ω(2) < 1 fails to hold.
Throughout the section recall that by definition the numbers ε1 and ε2 always satisfy
0 ≤ ε1, ε2 ≤ 1.
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Theorem 20. For the sequence of linear ramp secret sharing schemes described in
Theorem 8 we have the following estimates: If 1/A(q) ≤ 1−R2 and ε1 ≥

(
q
q−1

1
A(q)
−

1
q−1(1 − R2)

)
/L then Λ(1)(ε1) ≥ R2 + ε1L. If 1/A(q) ≤ R1 and ε2 ≥

(
q
q−1

1
A(q)
−

1
q−1R1

)
/L then Λ(2)(ε2) ≤ R1 − ε2L.

Proof. Apply Theorem 17 with ρ = ε1L and ρ = ε2L, respectively, in combination
with (7) and (9), respectively.

Theorem 21. For the sequence of linear ramp secret sharing schemes described in
Theorem 8 we have the following estimates: Λ(1)(ε1) ≥ q

q−1(R2 − 1
A(q)

) + ε1L and
Λ(2)(ε2) ≤ q

q−1(R1 + 1
A(q)

)− 1
q−1 − ε2L.

Proof. Apply Theorem 18 in combination with (7) and (9).

Observe that from Theorem 21 we get an estimate on Λ(1)(0) wich is q/(q − 1)
times as large as the estimate on Ω(1) in Section 3. Hence, the studied sequences of
secret sharing schemes are more secure than previously anticipated. A similar remark
holds regarding reconstruction.

Theorem 22. Let q be a perfect square. For the sequence of linear ramp secret sharing
schemes described in Theorem 8 we have the following estimates: If R2 ≥ 1/(

√
q− 1)

and ε1 ≤ 1√
q−1

1
L
then Λ(1)(ε1) ≥ R2 + 2ε1L− 1√

q−1 . If R1 ≤ 1− 1√
q−1 and ε2 ≤ 1√

q−1
1
L

then Λ(2)(ε2) ≤ R1−2ε2L+ 1√
q−1 . The i-th scheme in the sequence can be constructed

using O(n3
i log(ni)

3) operations in Fq.

Proof. Apply Theorem 19 in combination with (7) and (9).

We finally remark that when q is a perfect square, then similarly to Theorem 22,
one can assume in Theorem 20 and Theorem 21 that the i-th scheme in the sequence
can be constructed using O(n3

i log(ni)
3) operations in Fq.
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A Proof of Theorem 4
In this appendix we give a proof of Theorem 4. The theorem is an improvement of [20,
Th. 9], the improvement stating that the RGHWs of primary and dual nested linear
code pairs can get simultaneously asymptotically as close to the Singleton bound (10)
as wanted. We use the notation and results in [13, 18, 19, 20]. In particular, we use
the concept of relative dimension length profile (RDLP) as appears in [18, Sec. III].
For 1 ≤ d ≤ n, and linear codes C2 ( C1 ⊂ Fnq define

Kd(C1, C2) = max{dim(C1 ∩ VI)− dim(C2 ∩ VI) |
I ⊂ {1, . . . , n},#I = d},

where VI = {x ∈ Fnq | xi = 0 if i /∈ I}. The sequence (Kd(C1, C2))
n
d=1 is then the

RDLP of the pair C2  C1 and is known to be non-decreasing [18, Prop. 1]. Our
interest in the RDLP comes from the following result corresponding to the first part
of [18, Th. 3]:

Mm(C1, C2) = min{d | Kd(C1, C2) ≥ m}. (18)

As in [13, 19], we define for integers a, u, v, w the numbers:

N1(w, u) =

∏u−1
i=0 (qw − qi)∏u−1
i=0 (qu − qi)

, N2(w, u, v) =

∏v−1
i=0 (qw − qu+i)∏v−1
i=0 (qv − qi)

,

and N3(w, u, v, a) = N1(u, a)N2(w − a, u− a, v − a). The meaning of N1 is [13], [19,
Lem. 5 and 6]:

Lemma 23. Let W be an Fq-linear vector space and let u, v, w = dimW be non-
negative integers. If u ≤ w, then N1(w, u) is the number of subspaces U ⊂ W of
dimension u. Furthermore, if U is fixed and u ≤ v ≤ w, then N1(w− u, v− u) is the
number of Fq-linear vector spaces V such that U ⊂ V ⊂ W and dimV = v.

From [19, Lem. 9] we have:

Lemma 24. Consider fixed integers 1 ≤ k2 < k1 < n and a fixed set I ⊂ {1, . . . , n}
with #I = d. Let s be an integer with s ≤ min{d, k1 − k2}. The number of linear
code pairs C2  C1 ⊂ Fnq such that dimC1 = k1, dimC2 = k2, and dim(C1 ∩ VI) −
dim(C2 ∩ VI) = s, equals

N4(n, k1, k2, d, s) =

min{d−s,k1−s,k2}∑
a=0

(
N1(d, a)

N2(n− a, d− a, k2 − a)N3(n− k2, d− a, k1 − k2, s)
)
.

We next extend [19, Cor. 3].
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Theorem 25. Consider fixed integers 1 ≤ k2 < k1 < n, 1 ≤ d ≤ n, 1 ≤ d⊥ ≤ n,
1 ≤ s ≤ min{d, k1 − k2}, and 1 ≤ s⊥ ≤ min{d⊥, k1 − k2}. There exists a nested
linear code pair C2 ( C1 ⊂ Fnq such that dimC1 = k1, dimC2 = k2, Ms(C1, C2) > d
and Ms⊥(C⊥2 , C

⊥
1 ) > d⊥, if

N1(n, k2)N1(n− k2, k1 − k2) >
(
n

d

) k1−k2∑
σ=s

N4(n, k1, k2, d, σ)

+

(
n

d⊥

) k1−k2∑
σ⊥=s⊥

N4(n, n− k2, n− k1, d⊥, σ⊥).

Proof. By Lemma 23, the term N1(n, k2)N1(n − k2, k1 − k2) is the total number of
pairs C2 ( C1 ⊂ Fnq such that dimC1 = k1 and dimC2 = k2. On the other hand, by
Lemma 24, the number of pairs C2 ( C1 ⊂ Fnq such that dimC1 = k1, dimC2 = k2

and Kd(C1, C2) ≥ s is at most
(
n
d

)∑k1−k2
σ=s N4(n, k1, k2, d, σ). Similarly, the number

of pairs C2 ( C1 ⊂ Fnq such that dimC1 = k1, dimC2 = k2 and Kd⊥(C⊥2 , C
⊥
1 ) ≥

s⊥ is at most
(
n
d⊥

)∑k1−k2
σ⊥=s⊥ N4(n, n − k2, n − k1, d

⊥, σ⊥). The inequality therefore
ensures the existence of a code pair C2 ( C1 ⊂ Fnq with dimC1 = k1, dimC2 =
k2, Kd(C1, C2) < s and Kd⊥(C⊥2 , C

⊥
1 ) < s⊥. But the RDLP is non-decreasing and

Kn(C1, C2) = Kn(C⊥2 , C
⊥
1 ) = k1 − k2 which is larger than or equal to s and s′.

Therefore there exists a smallest index j such that Kj(C1, C2) ≥ s and a smallest
index j⊥ such that Kj⊥(C⊥2 , C

⊥
1 ) ≥ s⊥ and j > d as well as j⊥ > d⊥ hold. The

theorem now follows from (18).

To apply Theorem 25 in an asymptotic setting we will need a couple of lemmas.

Lemma 26. Define π(q) =
∏∞

i=1(1− q−i). Then

π(q)qu(w−u) ≤ N1(w, u) ≤ π(q)−1qu(w−u), (19)
N2(w, u, v) ≤ π(q)−1qv(w−v),

N3(w, u, v, a) ≤ π(q)−2qa(u−a)q(v−a)(w−v). (20)

Proof. The inequality (19) is [14, Cor. 2] and the last two inequalities correspond
to [20, Lem. 3] except that π(q)−2 in (20) by a mistake was there written π(q)−1 and
similarly qa(u−a) was written qu(u−a).

The next lemma corresponds to [9, Ex. 11.1.3].

Lemma 27.Let Hq(x) = −x logq(x)− (1− x) logq(1− x), then

1

n+ 1
qnHq(m/n) ≤

(
n

m

)
≤ qnHq(m/n).

With the above machinery we can now give the promised proof.
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Proof of Theorem 4. Let R1, R2, δ, δ⊥, τ and τ⊥ be as in the theorem
(in particular assume (13) to hold). Let (ni)

∞
i=1 be a strictly increasing sequence of

positive integers and define k1(i) = bniR1c, k2(i) = dniR2e, s(i) = dniτe, s⊥(i) =
dniτ⊥e, d(i) = bniδc and d⊥(i) = bniδ⊥c. Using Theorem 25, we will show that for i
large enough there exist nested linear codes C2(i) ( C1(i) ⊂ Fni

q of dimensions k2(i)
and k1(i), respectively, with

Ms(i) ≥ d(i), and Ms⊥(i) ≥ d⊥(i). (21)

Observe that (13) implies that

k1(i) + d(i)− ni − s(i) < 0, (22)

(ni − k2(i)) + d⊥(i)− ni − s⊥(i) < 0, (23)

which we will need later in the proof. For brevity, we will write k1, k2, d, d⊥, s, s⊥,
and n rather than k1(i), k2(i), d(i), d⊥(i), s(i), s⊥(i), and ni. Applying Lemma 26,
Lemma 27, and Theorem 25 we see that a sufficient condition for the existence of a
linear code pair satisfying (21) is

π(q)2qk2(n−k2)q(k1−k2)(n−k1)

> qnHq(d/n)

k1−k2∑
σ=s

min{d−σ,k1−σ,k2}∑
a=0

[
π(q)−1qa(d−a)

π(q)−1q(k2−a)(n−a−k2+a)π(q)−2qσ(d−a−σ)q(k1−k2−σ)(n−k2−k1+k2)
]

+qnHq(d⊥/n)
k1−k2∑
σ⊥=s⊥

min{d⊥−σ⊥,n−k2−σ⊥,n−k1}∑
a=0

[
π(q)−1qa(d

⊥−a)

π(q)−1q(n−k1−a)(n−a−n+k1+a)π(q)−2qσ
⊥(d⊥−a−σ⊥)q(k1−k2−σ

⊥)k2

]
.

But then another sufficient condition (named Condition A) for the existence of a
nested code pair satisfying (21) is

qk2(n−k2)+(k1−k2)(n−k1) >

f(q, n) max

{
qa(d−a)+(k2−a)(n−k2)+σ(d−a−σ)+(k1−k2−σ)(n−k1)

∣∣
s ≤ σ ≤ k1 − k2, 0 ≤ a ≤ min{d− σ, k1 − σ, k2}

}
+

f⊥(q, n) max

{
qa(d

⊥−a)+(n−k1−a)k1+σ⊥(d⊥−a−σ⊥)+(k1−k2−σ⊥)k2
∣∣

s⊥ ≤ σ⊥ ≤ k1 − k2, and

0 ≤ a ≤ min{d⊥ − σ⊥, n− k2 − σ⊥, n− k1}
}
,
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where f(q, n) = π(q)−6qnHq(d/n)n2, and where f⊥(q, n) = π(q)−6qnHq(d⊥/n)n2. Con-
sider now the expression σ(k1 + d− n− σ − a), which contains the terms in the first
exponent on the right-hand side of Condition A related to σ. As a function in σ, this
is a downward parabola intersecting the first axis in σ = 0. For s ≤ σ, it follows
from (22) and 0 ≤ a that k1 + d − n − σ − a < 0. Hence, the maximal value of
σ(k1 + d−n−σ− a) for s ≤ σ is attained when σ = s, and we therefore substitute σ
with s in Condition A. In a similar fashion, we see from (23) that σ⊥ can be replaced
with s⊥. After these substitutions, the terms related to a in the first exponent on the
right-hand side of Condition A become −a2 +a(k2 +d−n−s), which is equal to 0 for
a = 0 and negative for a > 0, as a consequence of (22). Similarly, the terms related
to a in the last exponent on the right-hand side become −a2 + a(d⊥− k1− s⊥) which
again is equal to 0 for a = 0 and negative for a > 0 as a consequence of (23). Hence,
we can substitute a with 0 in Condition A. After the above substitutions, Condition
A simplifies to

qk2(n−k2)+(k1−k2)(n−k1) > f(q, n)qk2(n−k2)+s(d−s)+(k1−k2−s)(n−k1)

+ f⊥(q, n)q(n−k1)k1+s
⊥(d⊥−s⊥)+(k1−k2−s⊥)k2 .

In this formula, we now replace the two expressions on the right-hand side with the
largest one multiplied by 2. We then take the logarithm over q and finally divide by
n2. Assume that the first term on the right-hand side of Condition A is greater than
or equal to the last term. After simplifying equal terms on both sides and using the
definition of k1, d and s, we see that Condition A holds if

0 > g(i) + τ(δ − τ)− τ(1−R1), (24)

where g(i) = logq(2f(q, ni))/n
2
i , which goes to 0 as i goes to infinity. Similarly, if the

last term on the right-hand side is greater than or equal to the first term, we see that
Condition A holds if

0 > g⊥(i) + τ⊥(δ⊥ − τ⊥)− τ⊥R2, (25)

where g⊥(i) = logq(2f
⊥(q, ni))/n

2
i , which again goes to 0 as i goes to infinity. Finally,

for i large enough, (24) follows from the first part of (13), since τ > 0, and (25)
follows from the last part of (13), since τ⊥ > 0. Therefore, Condition A holds for i
large enough and we are done. �
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