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Abstract

Code-based cryptography is an interesting alternative to classic
number-theoretic public key cryptosystem since it is conjectured to
be secure against quantum computer attacks. Many families of codes
have been proposed for these cryptosystems such as algebraic geome-
try codes. In [62] � for so called very strong algebraic geometry codes
C = CL(X ,P, E), where X is an algebraic curve over Fq, P is an n-
tuple of mutually distinct Fq-rational points of X and E is a divisor
of X with disjoint support from P � it was shown that an equivalent
representation C = CL(Y,Q, F ) can be found. The n-tuple of points is
obtained directly from a generator matrix of C, where the columns are
viewed as homogeneous coordinates of these points. The curve Y is
given by I2(Y), the homogeneous elements of degree 2 of the vanishing
ideal I(Y). Furthermore, it was shown that I2(Y) can be computed
e�ciently as the kernel of certain linear map. What was not shown
was how to get the divisor F and how to obtain e�ciently an adequate
decoding algorithm for the new representation. The main result of this
paper is an e�cient computational approach to the �rst problem, that
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is getting F . The security status of the McEliece public key cryptosys-
tem using algebraic geometry codes is still not completely settled and
is left as an open problem.
Keywords: Public key cryptosystem, Code-based cryptography, Al-
gebraic Geometry codes, Gröbner basis.

1 Introduction

[67] introduced the �rst public key cryptosystem (PKC) based on error-
correcting codes. The security of this scheme is based on the hardness of
the decoding of random linear codes, or equivalently the problem of �nding
a minimum-weight codeword in a large linear code without any visible struc-
ture. This property makes the scheme of McEliece an interesting candidate
for post-quantum cryptography. Another advantage consists of its fast en-
cryption and decryption procedures. So one might hope that it is suitable
for constrained devices like RFID tags or sensor networks, see [22] for further
results related to this issue. However, it has one important disadvantage: its
low encryption size compared to its large key size. This does not mean that
code-based cryptography is inherently ine�cient. There have been many at-
tempts on how to reduce the key size while keeping the same level of security,
see for example [4, 9, 12, 29, 71, 70, 73]. There are other public-key prim-
itives based on the theory of error-correcting codes like signature schemes
[17], stream ciphers [28] or hash functions [1].

The principle of the McEliece cryptosystem is as follows:
Key generation: Given C an [n, k, d] linear code de�ned over Fq with an

e�cient bounded distance decoding algorithm which corrects up to t ≤ bd−1
2
c

errors. Let:

1. G be a generator matrix of C,

2. S be an arbitrary nonsingular matrix of size k × k,

3. P be an arbitrary permutation matrix of size n× n.

Let G′ = SGP . Then the McEliece public key and the McEliece private key
are given respectively by

Kpub = (G′, t) and Ksecret = (G,S, P ) .
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Encryption: Suppose we want to send a message m ∈ Fk
q using the

public key (G′, t). First, we choose a random error vector e′ ∈ Fn
q with

Hamming weight at most t, and then, we compute the ciphertext y′ = mG′+
e′.

Decryption: Using the private key (G,S, P ) the receiver �rst computes

y := y′P−1 = mG′P−1 + e′P−1 = mSG+ e.

Since SG is also a generator matrix of the code C, he can apply the
decoding algorithm for C to �nd mS and �nally obtain the plaintext m from
mSS−1.

McEliece proposed to use a [1024, 524, 101] binary Goppa code. These pa-
rameters, however, do not attain the promised security level. We have mainly
two di�erent ways of cryptanalyzing the McEliece cryptosystem. There are
also some side-channel attacks [2, 87, 94] but they are beyond the scope of
this article.

1. Generic decoding attacks: The best known technique for addressing
the general decoding problem in cryptology is Information Set Decoding
(ISD). The �rst approach to this method was introduced in [81]. The
variants which are used today are derived mainly from the algorithms
of [92] and [56]. See [15, 80] and the reference therein, for recent im-
provements which were presented independently. [10] presents the �rst
successful attack on the original parameters of the McEliece's scheme
that required just under 8 days. More recent results [6, 11, 27, 66]
provide asymptotic improvements. Note that ISD, though much more
e�cient than a brute-force search, still needs exponential time in the
code length. Therefore, more e�cient generic attacks make the use of
larger codes in the McEliece scheme necessary.

Another technique is the Generalized Birthday Algorithm (GBA). This
method has been proposed in [97] and was generalized in [69]. GBA is
sometimes faster than ISD.

2. Structural attacks: These attacks try to retrieve the code structure
rather than attempting to use an unspeci�c decoding algorithm. It
addresses also the question of distinguishing a code with the prescribed
structure from a random one. Structural attacks were e�ciently applied
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to Reed Solomon codes [90], concatenated codes [85] and Reed-Muller
codes [68].

[86, 58] gave an attack using the Support Splitting Algorithm. It rec-
ognizes binary Goppa codes with a binary Goppa polynomial and the
secret-key is recovered for such codes of length 512 and 1024.

[25, 30] provided an algebraic attack which recovers the secret-key from
certain Goppa codes from the public-key using Gröbner basis compu-
tations. This attack is e�cient against quasi-dyadic and quasi-cyclic
codes but is infeasible for the original McEliece system. Therefore,
the McEliece scheme remains unbroken for suitable parameters choices.
This has lead to the statement that the generator matrix of a Goppa
code does not disclose any visible structure that an attacker could ex-
ploit. However, in [23] a polynomial-time algorithm is provided that
distinguishes between random codes and Goppa codes whose rate is
close to 1. This distinguisher is even more powerful in the case of
Reed-Solomon codes [18, 64].

Many attempts to replace Goppa codes by di�erent families of codes have
been proven to be insecure as for example using Generalized Reed-Solomon
(GRS) codes in [75] which was broken in [90]. Niederreiter's system di�ers
from McEliece's system in the public-key structure and in both encryption
and decryption mechanism. It uses a parity check matrix instead of a genera-
tor matrix. This is an improvement to reduce the key size. However, this dual
version of the McEliece cryptosystem is equivalent in terms of security. See
[57]. Note that GRS codes are maximum distance separable codes (MDS),
that is, they attain the maximum error detection / correction capability. In
the McEliece cryptosystem this is interpreted as shorter keys for the same
security level in comparison to the classical binary Goppa codes.

Although the Niederreiter scheme with GRS codes is completely bro-
ken, [8] proposed another version which is designed to resist the Sidelnikov-
Shestakov attack. The main idea of this variant is to work with subcodes
of the original GRS code rather than using the complete GRS code. How-
ever [98, 100] presented the �rst feasible attack to this scheme. Moreover,
in [63] the authors have characterized those subcodes which are weak keys
for the Berger-Loidreau cryptosystem. [99] proposed another variant of the
Niederreiter scheme where a few random columns are added to a generator
matrix of a GRS code. In [3] one more variant is presented. This time the
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structure is hidden di�erently than in the McEliece cryptosystem. In [18] a
cryptoanalysis of these schemes is provided.

Other classes of codes that have e�cient bounded decoding algorithms,
are proposed. [91] used Reed Muller codes which was cryptanalyzed by [68].
Also LDPC and MDPC codes [4, 70] were proposed but only MDPC codes re-
mained unbroken. See for instance [5]. Another proposal used convolutional
codes [59] and was broken by [49].

Algebraic geometry codes (AG codes) were introduced by [32]. The inter-
ested reader is referred to [45, 93, 96]. These codes have e�cient decoding al-
gorithms that correct up to half the designed minimum distance [7, 45, 46, 55]
which is one of the main requirements for code-based cryptography. [48] pro-
posed to use the collection of AG codes on curves and their sub�eld subcodes
for the McEliece cryptosystem. Recall that the GRS codes can be seen as
the special class of algebraic geometry codes on the projective line, that is,
the algebraic curve of genus zero. Therefore, this proposal for curves of genus
zero is broken by the attack of Sidelnikov-Shestakov. Moreover, [26] proved
that curves of genus g ≤ 2 are a bad choise; their algorithm is an adaptation
of the previous attack. The security status of this proposal for higher genus
was not known.

The aim of this article is twofold. Firstly, to present a survey of the secu-
rity status of code-based cryptography using AG codes. In [62] the authors
addressed the question of retrieving a triple (Y ,Q, E) which is isomorphic to
the original representation triple of the very strong algebraic geometry code
(VSAG) C = CL(X ,P , F ) used in a McEliece cryptosystem. The problem
of retrieving such triple was solved from a theoretical point of view without
giving the computational details. Therefore, the second goal of this article
is to provide an e�cient way to compute this triple. E�cient decoding algo-
rithms for AG codes are known, but the e�cient construction of a decoding
algorithm for a given triple is still lacking.

Outline of the paper: In Section 2, we describe the basic notions
of algebraic geometry and give some speci�c techniques applied to coding
theory. It is important to note that we de�ne an AG code CL(X ,P , E) even
when the n-tuple P is not disjoint from the divisor E. In Section 3, we collect
the information from a generator matrix of a VSAG code C. In particular
we give the genus g of the curve X and the degree m of the divisor E such
that C = CL(X , P, E).

In Section 4 we present the main contributions of the paper, that is how to
compute the triple (Y ,Q, F ) e�ciently. In Section 4.1 we give a constructive
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proof of how to compute a set of generators of the ideal I(Y). In Section
4.2 we give some bounds for the complexity of obtaining local parameters
at the points Qj for j = 1, . . . , n. In Section 4.3 we describe a method for
determining the divisor F . At last, in Section 4.5 the main result of the paper
is given. Section 5 provides some examples to illustrate this procedure.

Finally, in Section 6, we indicate some decoding algorithms for the result-
ing AG-code that can be used in practice.

2 Generalized constructions of AG codes

Let Fq be a �nite �eld with q elements and let Fq[X] = Fq[X1, . . . , Xr] be the
polynomial ring in r variables over Fq. We denote by An the n-dimensional
a�ne space and by Pn, the n-dimensional projective space.

Let X be an absolutely irreducible nonsingular projective curve in Pr and
de�ned over Fq. The set of Fq-rational points of X is denoted by X (Fq). Let
I(X ) be the homogeneous vanishing ideal of X in the polynomial ring Fq[X].
The ring

R = Fq[X0, . . . , Xr]/I(X )
is an integral domain, since X is absolutely irreducible and I(X ) is a prime
ideal. Hence we can form Q(R), the �eld of fractions of R. The function �eld
of X , denoted by Fq(X ) is the sub�eld of Q(R) de�ned by

Fq(X ) =
{
F

G
| F,G ∈ R both nonzero and of the same degree

}
∪ {0}.

The elements of Fq(X ) are called rational functions. Thus, every rational
function of Fq(X ) could be written as a fraction of two homogeneous polyno-
mials F and G in Fq[X] of the same degree such that G(P ) 6∈ I(X ). Note that
the fractions F

G
and F̂

Ĝ
de�ne the same rational function if F̂G−FĜ ∈ I(X ).

Let P be a point on X . A rational function f ∈ Fq(X ) is called regular
at the point P if one can �nd homogeneous polynomials F and G of the
same degree, such that G(P ) 6= 0 and f is in the coset of F

G
. Note that, if

X is a�ne, then the coordinate ring of X coincides with the ring of regular
functions on X ; but if X is projective, then there are no regular functions on
X , except constant functions.

De�nition 1 Let P be a Fq-rational point of X . The set of rational functions
that are regular at P is the local ring OP (X ) of the point P , which is indeed a
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local ring in the algebraic sense. That is, it has a unique maximal idealMP

which consists of the set of functions in OP (X ) that are zero in P . The factor
ring FP = OP (X )/MP is a �eld called the residue class �eld of P which can
be identi�ed with the �eld of constants Fq. Note that, if f ∈ OP (X ), then its
coset moduloMP is in Fq and it is called the value or evaluation of f at P ,
denoted by f(P ).

Moreover, the maximal idealMP is a principal ideal domain. That is to
say, MP has one generator. See [45] for more details. Let p be a generator
of MP , called local parameter or prime element in P . Then, we can write
every nonzero rational function f ∈ Fq(X ) in a unique way as f = upm where
u is a unit of OP (X ) and m ∈ Z≥0. The integer m does not depend on the
chosen local parameter but only on the rational function f and the point P ;
and it is called the valuation of f at P , denoted by vP (f). If vP (f) = m > 0,
then P is a zero of f of multiplicity (or order) m and if vP (f) = m < 0,
then P is a pole of f of order −m. We use the convention vP (0) = ∞. It
is easily checked that the map vP : Fq(X ) −→ Z satis�es the following
properties:

1. vP (fg) = vP (f) + vP (g).

2. vP (f + g) ≥ min {vP (f), vP (g)}.

3. vP (λf) = vP (f) for all nonzero λ ∈ Fq.

4. vP (f) =∞ if and only if f = 0.

A Fq-rational point corresponds to a place of degree one. More generally,
if P is a place, then the residue class �eld of P , denoted by FP , is a �nite
extension of the �eld of constants Fq. The degree of this extension is called
the degree of the place. If f is regular at P , then f(P ), the value f at P , is
in FP , see [93].

Remark 2 . Let X be a nonsingular projective curve in Pr and de�ned over
Fq. Let P be a Fq-rational point of X . Let L be the tangent line of X at P .
Let h be a homogeneous linear function such that h = 0 de�nes the hyperplane
H. Note that the intersection multiplicity of H with X at P is at least one
if and only if P lies in H, and is at least two if and only if L lies in H.
Therefore, in order to get a local parameter at P one proceeds as follows. Let
h1 and h2 be two homogeneous linear functions that de�ne the hyperplanes
H1 and H2, respectively. Suppose that P is in H1 but H1 does not contain
L, and P is not in H2. Then p =

h1

h2
is a local parameter of X at P .
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De�nition 3 A divisor D on X is a formal �nite sum D =
∑

P∈X nPP
with nP ∈ Z. If all coe�cients nP are nonnegative, D is called an e�ective
divisor, denoted by D ≥ 0. The support supp(D) of a divisor D is the set
{P | nP 6= 0}. The degree deg(D) of a divisor D is the integer

∑
P∈X nP .

Let f ∈ Fq(X ) be an arbitrary nonzero rational function. De�ne the
divisor of f , denoted by (f), by

(f) =
∑
P∈X

vP (f)P = (f)0 + (f)∞

where

(f)0 =
∑

P zero of f vP (f)P and (f)∞ =
∑

P pole of f vP (f)P .

Therefore, (f) should be thought of as �the zeros of f minus the poles of
f �. The divisor of a rational function is called a principal divisor. Note
that the degree of a principal divisor is zero, since it is the di�erence of two
intersection divisors of the same degree.

Two divisors D and E on a curve are called rational equivalent if there
exists a rational function f on X such that E = D + (f), this is denoted by
D ≡ E. Moreover, the divisors D and E on a curve with disjoint support
with P = (P1, . . . , Pn) are called rational equivalent with respect to P, and
denoted by D ≡P E, if there exists a rational function f such that f has no
poles at the points of P, E = D + (f) and f(Pj) = 1 for j = 1, . . . , n.

We de�ne the space of rational functions associated to the divisor D by

L(D) = {f ∈ Fq(X ) | f = 0 or (f) +D ≥ 0} .

Let P = (P1, . . . , Pn) be an n-tuple of mutually distinct Fq-rational points
of X and let P = P1 + · · ·+ Pn be the divisor whose support is the complete
set of points of P. Let E be a divisor of X with disjoint support from P ,
then the following evaluation map

evP : L(E) −→ Fn
q

is well de�ned by evP(f) = (f(P1), . . . , f(Pn)). Indeed, let f be a nonzero
element of L(E), that is, (f) ≥ −E, if Pj is not in the support of E, then
vPj

(f) ≥ 0 and f is regular at Pj, so f(Pj), the value of f at Pj, is well
de�ned.
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De�nition 4 Let X be an absolutely irreducible nonsingular projective curve
over Fq of genus g. Let P = (P1, . . . , Pn) be an n-tuple of mutually distinct
Fq-rational points of X and let E be a divisor of X of degree m with disjoint
support from P = P1 + · · · + Pn. Then, the algebraic geometry (AG) code
CL(X ,P , E) of length n over Fq is the image of L(E) under the evaluation
map evP .

Note that, if {f1, . . . , fk} is a basis for L(E), then the k × n matrix G
with entries fi(Pj) for i = 1, . . . , k, j = 1, . . . , n is a generator matrix of the
code CL(X ,P , E).

The parameters of this code satis�es the following bounds:

Theorem 5 If 2g− 2 < m < n, then CL(X ,P , E) has dimension m+1− g
and minimum distance at least n−m.

Proof. This is a classical result. See [32, 45, 96] and in particular [93,
Theorem 2.2.2].

Remark 6 Recall that the codes C and D are called generalized equivalent
if there exist a permutation matrix P and a diagonal matrixM with nonzero
entries on the diagonal such that PM(C) = D. The codes C and D are
called scalar equivalent [62, De�nition 2] if there exists a diagonal matrix M
with nonzero entries on the diagonal such that M(C) = D. There is an easy
and e�cient way to �nd such a diagonal matrix if the generators matrices
of two scalar equivalent codes are given. Furthermore, if the codes C and
D are scalar equivalent, and C has an e�cient decoding algorithm, then
this algorithm is easily and e�ciently transformed in an e�cient decoding
algorithm for D.

De�nition 7 Two representations (X ,P , E) and (Y ,Q, F ) are called equiv-
alent or isomorphic if there is an isomorphism of curves ϕ : X −→ Y
such that ϕ(P) = Q and ϕ(E) ≡ F . This isomorphism ϕ is called strict if
ϕ(E) ≡Q F .

Proposition 8 Let (X ,P , E) and (Y ,Q, F ) be two representation triples of
the algebraic-geometric codes C and D, respectively. Then:

1. If (X ,P , E) and (Y ,Q, F ) are equivalent, then C and D are scalar
equivalent.
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2. If (X ,P , E) and (Y ,Q, F ) are strict equivalent, then C = D.

Proof. See [62, Proposition 4].

De�nition 9 A code C over Fq is called very strong algebraic-geometric
(VSAG) if C is an AG code represented by a triple (X ,P , E) where the curve
X over Fq has genus g, P consists of n points and E has degree m such that

2g + 2 ≤ m < 1
2
n or 1

2
n+ 2g − 2 < m ≤ n− 4.

Remark 10 The dimension of such a code is k = m + 1 − g, thus the
dimension satis�es the following bounds

g + 3 ≤ k < 1
2
n− g + 1 or 1

2
n+ g − 1 < k ≤ n− g − 3.

Note that if a code has a VSAG representation then its dual is also VSAG.
Therefore by duality we may just assume that 2g + 2 ≤ m < 1

2
n.

From now on, let X be an irreducible nonsingular projective curve in Pr

and de�ned over Fq of degree l. Recall that the degree of a projective curve
is the maximal number of points in the intersection with a hyperplane not
containing the curve. Let Rd be the subspace of R = Fq[X]/I(X ) given by
cosets modulo I(X ) of homogeneous polynomials of degree d. Then, R is
a graded Fq-algebra with Rd as its graded part of degree d. Let f and g
be homogeneous polynomials of degree d that are not in I(X ). Therefore,
its cosets are in Rd and f = 0 and g = 0 de�ne hypersurfaces Y and Z,
respectively of degree d in Pr such that X is not contained neither in Y nor in
Z. By Bézout Theorem, the intersections X ·Y and X ·Z, where multiplicities
are counted, are divisors on X of degree ld and f/g is a rational function on
X with principal divisor (

f
g

)
= X · Y − X · Z.

In particular, if h is a homogeneous linear polynomial, then h = 0 de�nes
a hyperplane H. After a change of coordinates we may assume that h = X0.
Then, the complement of this hyperplane is the a�ne space Ar and the points
in this complement have coordinates (1 : x1 : · · · : xr). Let xi = Xi/X0. Then
the coordinate ring of Ar is Fq[x1, . . . , xr]. Furthermore X0 = X \ H is an
a�ne curve in Ar and its vanishing ideal is given by

I(X0) = {f(1, x1, . . . , xr) | f(X0 : X1 : . . . : Xr) ∈ I(X )} .
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This vanishing ideal is a prime ideal and its factor ring Fq[x1, . . . , xr]/I(X0),
is an integral domain and it is called the coordinate ring of X0 and is denoted
by Fq[X0]. Its �eld of fractions is isomorphic to the �eld of rational functions
of X :

Fq(X ) ' Q(Fq[X0]).

2.1 How to proceed when the n-tuple P do not meet all

the �normal� conditions?

Remark 11 Let P be an n-tuple of mutually distinct Fq-rational points of
X . It is convenient and usually assumed in the de�nition of the AG code
CL(X ,P , E) that the a�ne description of X0 = X \H of the projective curve
X is given and that the n-tuple P is disjoint from the hyperplane H, so that
it lies in the a�ne curve X0.

However, it might be di�cult to �nd a hyperplane that is disjoint from
P, or even that all hyperplanes that are de�ned over Fq have a nonempty
intersection with P. One can remedy this by taking an extension of Fq, as we
will see in Example 22. But then, the code is de�ned over this extension and
no longer over Fq itself. Alternatively, for every point Pj of P there exists a
hyperplane Hj over Fq that is disjoint from Pj, and one considers Pj in the
a�ne curve X \ Hj for every j separately.

Remark 12 Furthermore, it is usually assumed that P = (P1, . . . , Pn) is
disjoint from the support of the divisor E. This assumption is convenient but
not really necessary as we will see in the following lines. See [96, Chap. 3.1,
p. 271] for further details.

Suppose the divisor E is given by the formal sum E =
∑
mQQ, and let

f be a nonzero element of L(E), then (f) ≥ −E, that is, vQ(f) ≥ −mQ for
all places Q. If P = P1 + . . . + Pn is not disjoint from E, then Pj = Q for
some place with mQ 6= 0. Let pj be a local parameter at Pj. Then,

vPj

(
p
mq

j f
)
= mq + vPj

(f) ≥ 0,

that is, p
mQ

j f is regular at Pj. The value of f at Pj is now de�ned by the

value of p
mQ

j f .
Note that this de�nition depends not only on the Pj's but also on the

divisor E and the choice of the local parameter pj at Pj. Let p̂j be another
local parameter at Pj, then the evaluation f at Pj with respect to p̂j is the
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nonzero scalar (p̂j/pj)
mQ times the evaluation f at Pj with respect to pj. Let

p = (p1, . . . , pn) be an n-tuple, where pj is a local parameter at Pj. In this
way the evaluation map

evp,E : L(E) −→ Fn
q

is generalized to an arbitrary divisors E, that is without assuming that the
support of E is disjoint from P. The algebraic geometry code CL(X ,p, E)
constructed using the triple (X ,p, E) is the image of L(E) under the evalu-
ation map evp,E.

Remark 13 From Remark 6 and 12 we conclude that if p and p̂ are two n-
tuples such that pj and p̂j are local parameters of Pj for all j, then CL(X , p̂, E)
is scalar equivalent with CL(X ,p, E). Hence we have shown that the code
CL(X ,P , E) is well de�ned up to scalar equivalence, even if P is not disjoint
from the support of E.

The second way to deal with this problem is to take a rational function f
such that the support of E+(f) is disjoint from P . See [79, Remark 20]. The
existence of such a function is assured by the Approximation Theorem [93,
I.6.4]. Then the code CL(X ,P , E + (f)) is well de�ned. If we take another
rational function f ′ such that the support of E+(f ′) is disjoint from P , then
f ′/f is regular at Pj and λj = (f ′/f)(Pj) 6= 0 for all j. Therefore the codes
CL(X ,P , E + (f)) and CL(X ,P , E + (f ′)) are both well de�ned and scalar
equivalent with diagonal matrix whose diagonal entries are (λ1, . . . , λn).

The connection between the two approaches is as follows. Let pj be local
parameter at Pj and E =

∑
mQQ. Let

f =
∏
Pj=Q

p
mQ

j .

If pi is regular at Pj and not zero for all i 6= j, then the support of E + (f)
is disjoint from P and

CL(X ,P , E + (f)) = CL(X ,p, E).

Example 14 This is treated in [79, Remark 26]. Consider the projective
plane curve X over F2 of genus 3 given by the nonsingular equation:

X1X2(X1 +X2)(X1 +X0) +X1X
2
0 (X1 +X0) +X2

2X0(X2 +X0) = 0.
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Then this curve has the 7 points of the Fano plane P2(F2) as its F2-rational
points. Let P be the 7-tuple of these rational points. The 7 points and the 7
lines of the Fano plane and the intersection divisors of these lines with the
curve are given in Table 1.

i Pi Li Li · X
1 (1:0:0) X1 = 0 2P1 + P2 + P3

2 (0:0:1) X0 = 0 2P2 + P4 + P6

3 (1:0:1) X0 +X2 = 0 2P3 + P4 + P7

4 (0:1:0) X2 = 0 P1 + 2P4 + P5

5 (1:1:0) X0 +X1 = 0 P2 + 2P5 + P7

6 (0:1:1) X0 +X1 +X2 = 0 P3 + P5 + 2P6

7 (1:1:1) X1 +X2 = 0 P1 + P6 + 2P7

Table 1: The 7 points and the 7 lines of the Fano plane with the intersection
divisors of Example 14.

All these 7 lines intersect X in 3 points. So there is no line de�ned over
F2 that is disjoint from X . The a�ne equation of the curve that is in the
complement of the line L2 with equation X0 = 0 is given by

x1x2(x1 + x2)(x1 + 1) + x1(x1 + 1) + x22(x2 + 1) = 0,

with a�ne coordinates x1 = X1/X0 and x2 = X2/X0. Then, the points P2,
P4 and P6 lie on the line L2 at �in�nity�. The points P1, P3, P5 and P7 lie
in the a�ne part of the curve and have a�ne coordinates (0, 0), (0, 1), (1, 0)
and (1, 1), respectively. De�ne

E = L2 · X = 2P2 + P4 + P6.

Then E is a canonical divisor and the divisors of X1/X0 and X2/X0 are
given by (

X1

X0

)
= L1 · X − L2 · X = 2P1 + P3 − P2 − P4 − P6

and (
X2

X0

)
= L1 · X − L2 · X = P1 + P4 + P5 − 2P2 − P6.
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So the functions f0 = 1, f1 = X1/X0 and f2 = X2/X1 are elements of
L(E) and l(E) = g = 3. Hence, f0, f1 and f2 form a basis of L(E). These
functions are easily evaluated at the points P1, P3, P5 and P7 (see Table 2),
since they have a�ne coordinates (x1, x2) = (0, 0), (0, 1), (1, 0) and (1, 1),
respectively.

evp,E P1 P3 P5 P7

f0 = 1 1 1 1 1
f1 = x1 0 0 1 1
f2 = x2 0 1 0 1

Table 2: Evaluation of f0, f1 and f2 at the points P1, P3, P5 and P7.

We need to �nd local parameters at P2, P4 and P6 to evaluate those func-
tions at these three points. By Remark 11, the points P4 and P6 lie on the
a�ne chart U1, where U1 is complement of the hyperplane H1 with equation
X1 = 0. Then, the a�ne curve X1 = X \ H1 = X ∩ U1 has a�ne equation

x2(1 + x2)(1 + x0) + x20(1 + x0) + x22x0(x2 + x0) = 0,

with a�ne coordinates x0 = X0/X1 and x2 = X2/X1. The basis of L(E) has
in these coordinates the form f0 = 1, f1 = X1/X0 = 1/x0 and f2 = X2/X0 =
x2/x0. Using Remark 2, we see that p1 = X0/X1 is a local parameter at P4

and P6.

evp,E P4 P6

p1f0 = x0 0 0
p1f1 = 1 1 1
p1f2 = x2 0 1

Table 3: Evaluation of f0, f1 and f2 at the points P4 and P6.

Now p2 = X1/X2 is a local parameter at P2, but the multiplicity of E at P2

is 2. So we have to evaluate p22f0 = X2
1/X

2
2 , p22f1 = X3

1/X0X
2
2 and p22f2 = X2

1/X0X2

14



at P2. The divisors of these functions are given by(
X2

1

X2
2

)
= 2P1 + 2P2 + 2P3 − 4P4 − 2P5,(

X3
1

X0X2
2

)
= 4P1 + P2 + 2P3 − 5P4 − P5 − P6,(

X2
1

X0X2

)
= 3P1 + P3 − 3P4 − P6.

Thus, p22f0, p22f1 and p22f2 are regular at P2 and

p22f0(P2) = 0, p22f1(P2) = 0 and p22f2(P2) 6= 0 .

The only option for p22f2(P2) is 1, since the value is binary and not zero.

evp,E P2

p22f0 = x21 0
p22f1 = x31/x0 0
p22f2 = x21/x0 1

Table 4: Evaluation of f0, f1 and f2 at the point P2.

Therefore the code CL(X ,p, E) has generator matrix

G =

 1 0 1 0 1 0 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1

 ∈ F3×7
2 .

Remark 15 We mention the following papers that are devoted to the con-
struction of the Rieman-Roch space L(E) using the theory of Brill-Noether
and Coates and the construction of AG codes by [33], [53, 52, 54], [20, 21],
[47], [43, 44], [50, 51], [65] and [40, 41]. Computer algebra packages are
developed for Axiom by [36, 39, 37, 38], for Magma by [78, 77, 101] and for
Singular by [13, 14].

3 Retrieving the genus and the degree of the

divisor

Let X be a curve over the perfect �eld F of genus g. Let E be a divisor on X .
Let L(E)(d) be the vector space generated by d-fold products of elements in
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L(E), that is generated by f1 · · · fd, with f1, . . . , fd ∈ L(E). Let C be a linear
code in Fn

q . Then C(d) is the subcode of Fn
q that is generated by c1 ∗ · · · ∗ cd,

with c1, . . . , cd ∈ C, where ∗ is the component-wise or Schur product of Fn
q .

See [16, �4 De�nition 6] and [100, 62].
We consider C(2), for retrieving the genus and the degree m of the divisor.

We shall use the following results.

Proposition 16 Let X be a curve over the perfect �eld F of genus g. Let E
be a divisor on X of degree m. If m ≥ 2g + 1 and d ≥ 1, then

L(E)(d) = L(dE).

Proof.See [74, 82]. In case E is a canonical divisor on a nonhyperelliptic curve
this is called the Theorem of Max Noether-Enriques-Petri. See [76, 83], [34,
Chap. 2 �3] and [84, Theorem 1.2].

Corollary 17 Let X be a curve over Fq of genus g. Let E be a divisor on
X of degree m. Let C = CL(X ,P , E). If m ≥ 2g + 1 and d ≥ 1, then

C(d) = CL(X ,P , dE).

Proof.Notice that CL(X ,P , E)(d) = evP(L(E)(d)), since evP(fg) = evP(f) ∗
evP(g) for all f, g in L(E). Now this corollary is a direct consequence of
Proposition 16.

Proposition 18 Let C be an AG code represented by the triple (X ,P , E).
Let g denote the genus of the algebraic curve X and let m be the degree of
the divisor E. Let k1 and k2 be the dimension of C and C(2), respectively. If
2g + 1 ≤ m < 1

2
n, then

m = k2 − k1 and g = k2 − 2k1 + 1.

Proof.Let (X ,P , E) be a representation of C. Assume that 2g+2 ≤ m < 1
2
n.

Then C(d) = CL(X ,P , dE) for all d by Corollary 17. So k1 = m− g + 1 and
k2 = 2m− g+1, since deg(dE) < n for d = 1 and d = 2. Hence k2− k1 = m
and k2 − 2k1 + 1 = g.

Therefore any attacker, knowing a generator matrix G ∈ Fk1×n
q of a VSAG

code C, will be able to obtain the values of m and g, since by duality we may
assume that 2g + 2 ≤ m < 1

2
n.
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4 Computing the triple (Y ,q, F )
Suppose that we are using algebraic geometry codes in the McEleice public
key cryptosystem. In the following we make a distinction in notation between
the secret key (X ,p, E) and the triple (Y ,q, F ) that will be obtained from
the public key, that is a generator matrix G of the code CL(X ,p, E). Now X
is a projective curve of genus g in Pr and de�ned over Fq, P is an n-tuple of
mutually distinct Fq-rational points of X and E is a divisor of X of degree
m. Let I(X ) be the homogeneous vanishing ideal of X in the polynomial
ring Fq[X0, X1, . . . , Xr] with factor ring R = Fq[X0, X1, . . . , Xr]/I(X ).

In [62] the authors address the question of retrieving a triple (Y ,Q, F )
that is isomorphic to the triple (X ,P , E) from a given k × n generator ma-
trix G of a very strong algebraic geometry (VSAG) code CL(X ,P , E), see
de�nition 9. Then, the dimension k of this code is m+ 1− g. By duality we
may, from now on, assume that 2g + 2 ≤ m < 1

2
n. Let s = k − 1, take the

columns of G as homogeneous coordinates of points in Ps(Fq), this gives the
associated projective system Q = (Q1, . . . , Qn). By [62, Proposition 7] there
exists an embedding of the curve X in Ps of degree m

ϕE : X −→ Ps

P 7−→ ϕE(P ) = (f0(P ), . . . , fs(P ))

where {f0, . . . , fs} is a basis of L(E) such that X is isomorphic to the curve
Y = ϕE(X ) in Ps of degree m that is de�ned over Fq. Now Q = ϕE(P) is an
n-tuple of mutually distinct Fq-rational points of Y . And ϕE(E) ≡ Y ·H for
all hyperplanes H of Ps, see [42, Theorems 7.33 and 7.40]. Moreover, if E is
e�ective, then ϕE(E) = Y ·H for some hyperplane H and if F = ϕE(E), then
(Y ,Q, F ) is also a representation of the code C which is strict isomorphic to
the original triple (X ,P , E).

In fact any hyperplane H outside the points of Q will do. But sometimes
there is no such hyperplane. In order to meet with this problem, the construc-
tion of the AG code, CL(X ,P , E), is generalized to the code CL(X ,p, E) in
Section 2, where p is an n-tuple of local parameters at the points of P . Now
it is allowed that the hyperplane H and the divisor F have a nonempty inter-
section with Q. The triple (Y ,q, F ) is called isomorphic with (X ,p, E) if ϕE

gives an isomorphism of curves from X to Y , ϕE(E) ≡ F and pj and ϕ∗(qj)
are local parameters at the same point for all j. If (Y ,q, F ) is isomorphic to
(X ,p, E), then CL(Y ,q, F ) is scalar equivalent with CL(X ,p, E).
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Let I(Y) be the homogeneous vanishing ideal of Y in the polynomial ring
Fq[Y0, Y1, . . . , Ys] with factor ring S = Fq[Y0, Y1, . . . , Ys]/I(Y).

Remark 19 What is meant by: "to compute e�ciently the triple (Y ,q, F )"?
Suppose we have as input the generator matrix G of the VSAG code C =
CL(X ,p, E).
Then as output we ask for:

1. An l-tuple G = (g1, . . . , gl) of polynomials in Fq[Y0, Y1, . . . , Ys] that gen-
erates I(Y).

2. An n-tuple q where qj is a local parameter of Qj for all j = 1, . . . , n.

3. The triple (X ,p, E) is isomorphic to (Y ,q, F ), where H is a hyperplane
of Ps(Fq),

4. A Gröbner basis F of the vanishing ideal of F = Y · H,

5. A basis B of the vector space L(F ),

6. The complexity of obtaining the quadruple (G,q,F ,B) is polynomial in
n.

A stronger version of (1) is given by:

(1') A Gröbner basis G of I(Y),

but we were not able to get a result for this stronger version.

4.1 Generators of the ideal I(Y)
Note that [62, Corollary 1] states that the construction of I(Y) is reduced
to the computation of a set of generators of I2(Q) which can be performed
in O

(
n2
(
s
2

))
elementary operations. Recall that I2(Q) is the ideal generated

by the homogeneous elements of degree 2 in the vanishing ideal of Q. In the
following lines we present a constructive proof of how to compute the set of
generators of the ideal I2(Q).

Lemma 20 Let Q be an n-tuple of points in Ps(Fq) not in a hyperplane. An
upper bound on the complexity of the computation of I2(Q) is given by O(n4).
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Proof. Let k = s + 1 and GQ be the k × n matrix associated to Q and C
be the subspace of Fn

q generated by the rows of GQ. We enumerate the rows
of GQ by {g1, . . . ,gk}. Let S2(C) be the second symmetric power of C, i.e.
the symmetric tensor product of C by itself. If xi = gi, then S2(C) has basis
{xixj | 1 ≤ i ≤ j ≤ n} and dimension

(
k+1
2

)
. Now we consider the linear

map σ : S2(C) −→ C(2) where xixj is mapped to gi ∗ gj. We denote
the kernel of this map by K2(C). By [62, Proposition 15], a basis of K2(C)
gives directly a generating set of I2(Q). Recall that C(2) is generated by the
elements {gi ∗ gj | 1 ≤ i ≤ j ≤ k}, which form a matrix M of size m × n,
where m =

(
k+1
2

)
. The vector space K2(C) is equal to the right kernel ofMT .

Performing Gaussian elimination by rows onMT gives a matrix N in row
reduced row echelon form. If the pivots of N are all at the left hand side,
then N is of the form (Il|B) after deleting the zero rows. Then the right
kernel of MT is equal to the right kernel of (Il|B) and is generated by the
rows of (−BT |Im−l). A similar result holds if the pivots are not all at the
start.

An upper bound on the complexity of bringingMT in reduced row echelon
form is given by O(mnmin{m,n}) which is at most O(n3) if m ≤ n and
O(n4) if m ≥ n, since m = O(n2).

4.2 The n-tuples Q and q

Obtaining the n-tuple Q is trivial, since Q = (Q1, . . . , Qn) is the projective
system associated to G. So Qj is the point in Ps(Fq) which has as homoge-
neous coordinates the j-th column of G.

In order to construct a representation of the code C = CL(Y ,Q, F ) in Ps,
we need to �nd a local parameter qj at Qj for all j. Let Q be a Fq-rational
point. Let L be the tangent line of Y at Q. Let h1 and h2 be homogeneous
linear polynomials that de�ne the hyperplanes H1 and H2 such that Q is in
H1, but H1 does not contain L and Q is not in H2. Then h1/h2 is a local
parameter of Y at Q as it is explained in Remark 2.

Let the vanishing ideal I(Y) in Fq[Y0, Y1, . . . , Ys] be generated by f1, . . . , fl.
Then the tangent line L of Y at Q = (Q0 : Q1 : · · · : Qs) is de�ned by the
intersection of the hyperplanes with equations

s∑
i=0

∂fj
∂Yi

(Q)(Yi −Qi) = 0 for j = 1, . . . , l.
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After a coordinate change we may assume that Q = (1 : 0 : · · · : 0) and that
the tangent line L is given by the equations Y2 = 0, . . . , Ys = 0. Therefore
we can take h1 = Y1 and h2 = Y0.

Let d be the maximal degree of the polynomials fj. Then the complexity
of the computation of the value of the partial derivatives ∂fj

∂Yi
(Q) is upper

bounded byO(ls
(
s+d+1

d

)
). The complexity de�ning the tangent line in normal

form is given by O(lsmin{l, s}), since it is obtained by Gaussian elimination
of a linear system of l equations in s+ 1 variables.

In the particular situation of Section 4.1 we have a k×n matrix as input.
So s = k−1 and I(Y) is generated by l =

(
k+1
2

)
polynomials of degree d = 2.

Therefore O(nk5) and O(n6) are bounds for the complexity of obtaining the
local parameters of all the Qj for j = 1, . . . , n, since it is dominated by the
complexity of the computation of the partial derivatives.

4.3 Gröbner basis for I(Y · H)
Let H be the hyperplane given by the linear equation g(Y ) = 0. We claim
that the vanishing ideal Y ∩ H is the sum ideal 〈I2(Y)〉 + 〈g〉. Indeed, the
vanishing ideal I(Y) is generated by polynomials of degree 2 and the result
holds by [62, Corollary 1].

Note that the ideal I = 〈I2(Y)〉+ 〈g〉 is of projective dimension zero, that
is Fq[Y0, Y1, ..., Ys]/I is graded of Krull dimension one and thus the variety
V (I) consists of a �nite number of projective points. [60] has recently devised
a procedure to compute the (projective) points of such type of variety. He
associates an a�ne ring of dimension zero whose multiplications matrices
coincide with the projective multiplication matrices of the projective ring.

The following is adapted from [60, Algorithm 5.6] to our special case:

1. First, compute the Gröbner basis elements of degree 1 and 2 of the
ideal

I = 〈I2(Y)〉+ 〈g(X)〉 ⊆ K[Y1, . . . , Ys].

Note that the maximal degree of the elements of the Gröbner basis of
I is bounded by m that denotes the degree of the divisor F which we
know in advance (see Proposition 18), since the degree of a function
determines the maximum number of solutions that a function can have
and F = Y · H. This bound is sharp and is attained for one-point
divisors using the lexicographic ordering (see for instance Example 23).
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2. If q < m, where m is again the degree of the divisor F , then we must
enlarge our �eld Fq by a �eld extension Fqe such that this extension
contains at least m elements. The complexity of �nding an extension
Fqe such that qe ≥ n ≥ m, is polynomial in n. See [88, 89].

3. Choose a random change of coordinates{
Ŷ0 := Y0 + a1Y1 + · · · asYs,
Ŷi := Yi for all i = 1, . . . , s.

such that Ŷ0 is non zero at all points in the variety V (I) over the exten-
sion �eld Fqe , in other words Ŷ0 is a non-zero divisor of Fq[Y0, . . . , Ys]/I.

Note that equivalently to stage K3 of [60, Algorithm 5.6] if we could
not �nd such a change of coordinates then we go back to Step 1 and
we compute Gröbner basis elements of degree d with d = 3, . . . ,m
following a sequential order until we get such a non-zero divisor. Note
that for the right d, for almost all changes of coordinates Ŷ0 is a non-
zero divisor. Moreover, [60, Proposition 3.2] gives a constructive proof
which directly provides an algorithm for computing a nonzero divisor.

4. Apply the FGLM algorithm [24] to �nd the rational points of the a�ne
variety with coordinates Ŷi/Ŷ0 for i = 1, . . . , s. We suggest to use the
FGLM algorithm but any other method for �nding roots of an a�ne
variety is also suitable here.

Recall that there is a one-to-one correspondence between the rational
points on a�ne varieties de�ned by a zero-dimensional ideal and com-
mon eigenvectors of the so-called multiplication matrices. This step
provides multiplication matrices for the a�ne ring. If we add to this
set the identity matrix then it coincides with the projective multipli-
cation matrices for the projective ring. This step is equivalent to the
stages K4-K6 of [60, Algorithm 5.6].

5. Finally, for each projective point obtained (which is de�ned over the
extension �eld Fqe) apply the inverse coordinate transformation given
on Step 3 and check whether it belongs to the original de�ning �eld
Fq. This step is equivalent to the stage K7 of [60, Algorithm 5.6].

The overall complexity of the procedure is dominated by steps (3) and (4).
Thus, the main time of the algorithm is devoted to compute Gröbner basis
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element of I. However, we will not su�er from explosive exponent growth
since the maximal degree of elements in our Gröbner basis is bound by the
degree of the divisor F .

[60] shows that the behavior of the proposed method is asymptotically
better than the classical Buchberger-Möller algorithm, see [61]. The com-
plexity of the proposed method is at most O (min(m, s)m3), where m is the
degree of the divisor F , or equivalently the degree of the curve Y , which is
de�ned in the projective space Ps, see [60] for a detailed complexity analysis.

4.4 A basis of the vector space L(F )
Let g(Y ) be the linear polynomial that de�nes the chosen hyperplane H.
Then the quotients Yi/g(Y ) of the cosets of Yi and g(Y ) in Fq[Y0, Y1, ..., Ys]/I
form a basis of L(F ). This step is immediate and does not contribute to the
complexity of obtaining the quadruple (G,q,F ,B).

4.5 Overall complexity

Compiling the above results we can conclude the following theorem which
determines the complexity of obtaining a representing triple of a VSAG code
from its generator matrix.

Theorem 21 Let G be a k × n generator matrix of a VSAG code C de�ned
over Fq and Qj be the point in Pk−1 which has as homogeneous coordinates
the j-th column of G for j = 1, . . . , n. Then, a representing triple (Y ,q, F ) of
the code C or its dual, C⊥, can be retrieved e�ciently with complexity O (n6).

The triple (Y ,q, F ) is de�ned by Y which is a projective curve in Pk−1 de-
�ned over Fq, by the n-tuple q = (q1, . . . , qn) such that qj is a local parameter
of Qj for all j, and by the divisor F of the curve Y of degree m.

Proof. Let s = k−1. Note that the construction of an l-tuple G = (g1, . . . , gl)
of polynomials in Fq[Y0, . . . , Ys] that generates I(Y) can be performed in
O (n4) elementary operations by Lemma 20. Moreover, Subsection 4.2 states
that the complexity of obtaining the n-tuple q = (q1, . . . , qn) where qj is a
local parameter ofQj for all j = 1, . . . , n is at mostO (n6). Finally, a Gröbner
basis of the vanishing ideal of the divisor F is at most O (min(m, s) ·m3) by
[60, Algorithm 5.6]. However, since C is a VSAG code then m < 1

2
n. Thus,

O (min(m, s) ·m3) is bounded by O
(
n
(
n
2

)3) ∼ O (n4).
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Therefore, in the worst case the complexity of our method is polynomial
on the length of the code since it is upper bounded by O (n6).

As a �nal remark, note that we have assumed by duality that 2g + 2 ≤
m < 1

2
n. Therefore, we are able to retrieve a representation for C or its dual.

The following example illustrates our method for retrieving a represen-
tation of a VSAG code C with the only knowledge of a generator matrix of
C.

Example 22 Consider the curve X of Example 14. The line L with equation
X0 = 0 intersects the curve X in three points P2, P4 and P6. Let us compute
this set of projective points using the previous algorithm.

First note that the number of F2-rational points of our curve is 7 which is
greater than the cardinality of the de�ning �eld. Therefore we need to enlarge
the �eld to F8 = F2[α], where α is a root of X3+X+1. Actually we only need
to enlarge the �eld to F4 but let us assume that we do not know in advance
the number of intersections points. Recall that, in the situation of the curve
Y that comes form a VSAG codes, if we know a generator matrix of the code,
then we know its degree by Proposition 18.

Note that the change of coordinates T de�ned by:{
X̂0 := X0 + αX1 + α2X2,

X̂i := Xi for i = 1, 2.

veri�es that T (X̂0)(Pj) 6= 0 for all points Pj of X . Now the set of points of
X becomes

P̂1 = (1 : 0 : 0) P̂5 = (1 + α : 1 : 0)

P̂2 = (α2 : 0 : 1) P̂6 = (α + α2 : 1 : 1)

P̂3 = (1 + α2 : 0 : 1) P̂7 = (1 + α + α2 : 1 : 1)

P̂4 = (α : 1 : 0)

Now we can take the a�ne equation of the curve X and the line L with a�ne
coordinates x1 = X̂1/X̂0 and x2 = X̂2/X̂0:

X : x1x2(x1 + x2)(x1 + 1) + x1(x1 + 1) + x22(x2 + 1) = 0
and L : 1 + αx1 + α2x2 = 0.

If we compute a Gröbner basis of the a�ne zero-dimensional ideal gener-
ated by the above polynomials, which could be solved by FGLM techniques we
obtain:

x21(x1 + α2 + 1)(x1 + α + 1) and x2 + (α2 + 1)x1 + (α2 + α + 1)
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This gives the intersection a�ne points and their multiplicities: 2P̂2+P̂4+P̂6,
where

P̂2 = (0, α2 + α + 1), P̂4 = (α2 + 1, 0) and P̂6 = (α + 1, α+ 1).

Once we unmake the change of coordinates described in Equation 22 we rise to
three projective points in P3(F2) which correspond to the original intersection
points P2, P4 and P6.

5 Examples

We consider in this section several examples. These are low-dimensional
examples to illustrate the complete process of recovering the triple (Y ,Q, F )
from a generator matrix of a VSAG code.

Example 23 Consider the Hermitian curve X over F16 with homogeneous
equation

X5
1 −X0X

4
2 −X4

0X2 = 0.

The a�ne equation of X is x51 − x42 − x2 = 0 with x1 = X1/X0 and
x2 = X2/X0. This curve has genus g = 6. Moreover, X has Q = (0 : 1 : 0)
as the only point at in�nity and other 64 distinct F16-rational points. Let
P1, . . . , P64 be an enumeration of all the F16-rational points of X except the
point at in�nity Q .

If we consider a divisor of the form E = mQ, then the algebraic code C
de�ned by the triple (X ,P , E) where P = {P1, . . . , P64}, has length n = 64
and dimension k = m−g+1. Let fi,j = xi1x

j
2. Then a basis for the Riemann-

Roch space L(E) is{
xi1x

j
2 | 0 ≤ i ≤ 4 and 4i+ 5j ≤ m

}
.

Table 5 gives the basis of functions and their corresponding pole orders
also called weights:

For m = 14 = 2g + 2 we have k = l(E) = 9. A basis for L(E) is

B =

{
f0 = 1, f1 = x1, f2 = x2, f3 = x21, f4 = x1x2,

f5 = x22, f6 = x31, f7 = x21x2, f8 = x1x
2
2

}
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x52
x42 x1x

4
2

x32 x1x
3
2 x21x

3
2

x22 x1x
2
2 x21x

2
2 x31x

2
2 x41x

2
2

x2 x1x2 x21x2 x31x2 x41x2
1 x1 x21 x31 x41

25
20 24
15 19 23
10 14 18 22 26
5 9 13 17 21
0 4 8 12 16

Table 5: Basis of functions of L(E) and their corresponding weights.

A generator matrix G of C is by de�nition the matrix obtained by eval-
uating the functions fi ∈ B for i = 1, . . . , 9 at P = {P1, . . . , P64}, that is a
generator matrix for C is given by

G =

 f0(P1) . . . f0(P64)
...

. . .
...

f8(P1) . . . f8(P64)

 ∈ F9×63
16 .

The only information available to the attacker is the matrix G. Then:

• Take the columns of G as homogeneous coordinates of projective points
in P8(F16). We obtain the projective system Q = (Q1, . . . , Q64) where
Qj is given by (f0(Pj) : . . . : f8(Pj)).

• De�ne the curve Y as the set of solutions of the vanishing ideal gener-
ated by the elements of K2(C). Since 1

2
n ≥ m ≥ 2g+2 [62, Propositon

15] states that a generator set of I(Y) is generated by the following set
of quadrics in F16[Y0, Y1, . . . , Y8]:

1. Y0Y2 + Y6Y3 + Y 2
5 2. Y0Y3 + Y 2

1 3. Y8Y5 + Y0Y4 + Y 2
6

4. Y0Y5 + Y 2
2 5. Y0Y6 + Y3Y1 6. Y0Y7 + Y3Y2

7. Y8Y0 + Y4Y2 8. Y8Y5 + Y 2
6 + Y2Y1 9. Y4Y1 + Y3Y2

10. Y5Y1 + Y4Y2 11. Y6Y1 + Y 2
3 12. Y7Y1 + Y4Y3

13. Y8Y1 + Y 2
4 14. Y6Y2 + Y4Y3 15. Y7Y2 + Y 2

4

16. Y8Y2 + Y5Y4 17. Y5Y3 + Y 2
4 18. Y7Y3 + Y6Y4

19. Y8Y3 + Y6Y5 20. Y7Y4 + Y6Y5 21. Y8Y4 + Y7Y5
22. Y8Y6 + Y 2

7

• Since the �rst row of G is the all-ones vector, the hyperplane at in�nity
Y0 = 0 is an hyperplane of P8(F16) that is disjoint from the set Q. A
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Gröbner basis of the ideal I = 〈I2(Y)〉 + 〈Y0〉 gives us the points and
their multiplicities that constitute the divisor F . For this purpose, we
will use the adaptation of Lundqvist's Algorithm presented in Section
4.3.

1. We make the following change of variables:

Ŷ8 = Y8 + Y4 + Y0 and Ŷi = Yi for i = 0, . . . , 7,

such that T (Yi)(P ) 6= 0 for all points P ∈ V (I).

2. We compute a Gröbner basis G of the a�ne zero-dimensional ideal
generated by the a�ne equations of I2(Y) with a�ne coordinates

yi =
Ŷi

Ŷ8
for i = 1, . . . , 7 and the hyperplane Y0 = 0 with respect to

the lexicographical order induced by the following ordering on the
variables y0 > y1 > y2 > y3 > y4 > y5 > y6 > y7 is{

y0, y1 + y107 , y2 + y97, y3 + y117 + y67,
y4 + y57, y5 + y97 + y47, y6 + y127 + y77 + y27, y

14
7

}
Therefore the a�ne solution is (0, 0, 0, 0, 0, 0, 0, 0) with multiplicity
14, whether the corresponding projective point is P = (0 : 0 : 0 :
0 : 0 : 0 : 0 : 0 : 1).

Thus the search divisor is F = 14P ∈ P8(F16).

By Theorem [62, Proposition 7], (Y ,Q, F ) is a representation of C that is
strict isomorphic to (X ,P , E).

Example 24 Consider again the Hermitian curve of Example 23 but now
we take a multipoint divisor E = mP∞ − aP00, where P∞ = (0 : 1 : 0) is the
point at in�nity and P00 = (1 : 0 : 0).

By [19, Lema 6.2] we obtain a basis for L(E) by excluding the monomials
that have zeros at P00 of multiplicity less than a. In other words, a basis for
the space L(D) where D = d(4 + 1)P∞ − aP∞ − bP00 for d ∈ Z, 0 ≤ a and
b ≤ 4, is given by the monomials:

xi1x
j
2 such that


0 ≤ i ≤ 4, 0 ≤ j and i+ j ≤ d
a ≤ i for i+ j = d
b ≤ i for j = 0
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In particular, for E = 15P∞ − P00 we have the following basis for its
Riemman-Roch space:

B =

{
f0 = x1, f1 = x21, f2 = x31, f3 = x2, f4 = x1x2,

f5 = x21x2, f6 = x22, f7 = x1x
2
2, f8 = x32

}
We consider the algebraic code C de�ned by the triple (X ,P , E) where P

is the set of 63 rational points of X that do not belong to the support of E.
This code has length n = 63 and dimension k = 9.

Let P1, . . . , P63 be an enumeration of all the set of points of P. A gener-
ator matrix G of C is the matrix given by

G =

 f0(P1) . . . f0(P63)
...

. . .
...

f8(P1) . . . f8(P63)

 ∈ F9×63
16 .

Observe that all the coordinates of the second row of G are nonzero.
Therefore we replace the matrix G by the matrix Ĝ = λ ∗ G where λ =
(1/g21, . . . , 1/g2n) and gij denotes the entry of G in the ith row and the jth
column. Thus the second row of the new matrix consist of ones.

In this case the attacker:

• Take the columns of Ĝ as the projective system Q = (Q1, . . . , Q63).

• De�ne the curve Y whose vanishing ideal is generated by the following
set of quadrics in F16[Y0, Y1, . . . , Y8].

1. Y7Y4 + Y 2
5 + Y1Y0 2. Y3Y0 + Y2Y1 3. Y4Y0 + Y3Y1

4. Y5Y0 + Y 2
2 5. Y6Y0 + Y3Y2 6. Y7Y0 + Y 2

3

7. Y8Y0 + Y4Y3 8. Y8Y4 + Y6Y5 + Y 2
1 9. Y5Y1 + Y3Y2

10. Y6Y1 + Y 2
3 11. Y7Y1 + Y4Y3 12. Y8Y1 + Y 2

4

13. Y4Y2 + Y 2
3 14. Y6Y2 + Y5Y3 15. Y7Y2 + Y5Y4

16. Y8Y2 + Y6Y4 17. Y6Y3 + Y5Y4 18. Y7Y3 + Y6Y4
19. Y8Y3 + Y7Y4 20. Y7Y5 + Y 2

6 21. Y8Y5 + Y7Y6
22. Y8Y6 + Y 2

7

This set of quadrics coincides with the right kernel of a generator matrix
of the square code C(2).

• A Gröbner basis of the ideal 〈I2(Y)〉 + 〈Y1〉 gives us the points and
their multiplicities that constitute the divisor F . Similar to the previous
example, for this purpose:
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1. We make the following change of variables:

Ŷ1 = Y1 + Y0 + Y8 and Ŷi = Yi for i = 0, 2, . . . , 8

such that T (Ŷ1)(P ) 6= 0 for all points in the vanishing ideal I(Y)+ <
Y1 >.

2. We compute a Gröbner basis G of the a�ne zero-dimensional ideal
generated by the a�ne equations of I2(Y) with a�ne coordinates

yi =
Ŷi

Ŷ1
and the hyperplane Y1 = 0, relative to the lexicographical

ordering induced by the following ordering on the variables: y0 >
y8 > y6 > y5 > y4 > y3 > y2 > y7.

G =

{
y0 + y8 + 1, y28 + y8, y8y2 + y77, y8y7 + y7, y6 + y27,
y5 + y22 + y37, y4 + y57, y3 + y67, y

4
2, y2y7 + y87, y

10
7

}
Thus we have two a�ne solutions which gives the two associated
projective points: P1 = (1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0) with
multiplicity 4 and P2 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1) with
multiplicity 10.

Therefore the search divisor is F = 4P1 + 10P2.

By Theorem [62, Proposition 7], (Y ,Q, F ) is a representation of C that is
strict isomorphic to (X ,P , E).

6 Some remarks on decoding

Once we have recovered the triple (Y ,Q, F ), the last computation for re-
covering the message in a McEliece PKC consists in applying a decoding
algorithm for the resulting AG-code. Note that proposing a novel decoding
algorithm is not the purpose of this paper but to give the complete descrip-
tion of the code and to indicate some decoding algorithms that can be used
in practice, without considering their feasibility, that is we do not claim in
this work that an e�cient decoding is always possible.

Note that previous steps in this paper can be seen as a pre-computation
from the point of view of decoding, and therefore also for the recovering of
the message. We remark that one should consider decoding algorithms for
(possible) multipoint evaluation AG-codes de�ned from a non-plane curve.
Taking into account the previous remarks we propose to use [7, 46, 55].
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The algorithm in [55] works for general AG codes. In order to apply this
algorithm one should �rst compute the Miura-Pellikaan or standard form of
the curve [31, 72]. Such a representation of the curve relies on a Gröbner basis
computation involving the ideal of the curve and the basis of the Riemman-
Roch space by [95, Theorem 4.1]. Once we have precomputed such a form,
that can become a bottleneck since a Gröbner basis computation is involved,
the remaining steps are very fast, the decoding complexity is O((n+4g)(n+
2g)g).

Another algorithm for decoding general AG codes is given in [7, 46].
This algorithm is based on a syndrome formulation of the basic algorithm
and an interpolation step followed by a majority voting scheme. The au-
thors of [7] extend this algorithm for performing list-decoding, this algo-
rithm is equivalent to the well-known Guruswami-Sudan algorithm [35] but
it solves a smaller system of equations and hence it is faster than the original
Guruswami-Sudan algorithm. The precise size of the system of equations can
be found in [7, Section 2.7].

Note that both procedures decode up to half of some generalized order
bounds. One might defend the message by introducing a number of errors,
where this number is between one half these bounds and the error correcting
capability of the code. In this case it is clear from the coding theory point of
view that a list-decoding algorithm will provide a list with a single element
for those type of errors. For instance, one may consider the list-decoding
algorithm in [7].
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