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Abstract

The bilinear form with associated identity matrix is used in coding
theory to define the dual code of a linear code, also it endows linear
codes with a metric space structure. This metric structure was studied for
generalized toric codes and a characteristic decomposition was obtained,
which led to several applications as the construction of stabilizer quantum
codes and LCD codes. In this work, we use the study of bilinear forms over
a finite field to give a decomposition of an arbitrary linear code similar
to the one obtained for generalized toric codes. Such a decomposition,
called the geometric decomposition of a linear code, can be obtained in a
constructive way; it allows us to express easily the dual code of a linear
code and provides a method to construct stabilizer quantum codes, LCD
codes and in some cases, a method to estimate their minimum distance.
The proofs for characteristic 2 are different, but they are developed in
parallel.

1 Introduction

Error-correcting codes are used in digital communications in order to re-
cover the information sent through a channel that may corrupt some of
the information. The most studied, and in practice used, codes are lin-
ear codes [22]. A linear code is a vector subspace of Fn

q , where Fq is the
finite field with q elements. The dual code C⊥ ⊂ Fn

q , of a linear code
C ⊂ Fn

q , is the orthogonal space to C with respect to the bilinear form
B : Fn

q × Fn
q → Fq, B(x, y) =

∑
xiyi. This bilinear form allows us to

consider Fn
q as a metric space.

Generalized toric codes are an extension of toric codes [17], they are
obtained by evaluating polynomials at the algebraic torus (F∗q)r. Their
metric structure was studied in [27], providing a direct method to compute
the dual code of a generalized toric code and deduce that there exist no
self-dual generalized toric codes. Moreover, J-affine variety codes [15],
which include generalized toric codes as a particular case, have a similar
metric structure. Stabilizer quantum codes with good parameters [12, 13,
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14, 15] and new binary and ternary LCD codes [16] were constructed using
this characteristic metric structure of J-affine variety codes.

Quantum error-correcting codes are essential for quantum computing
since they protect quantum information from decoherence and quantum
noise [29]. Although quantum information cannot be cloned, one can
construct stabilizer quantum codes from self-orthogonal classical codes
[4, 5, 6, 20]. A linear code C is self-orthogonal if C ⊂ C⊥.

A linear code C is called an LCD code (complementary dual code)
if C ∩ C⊥ = {0} [23]. LCD codes are used in cryptography [7], they
play an important role in counter-measures to passive and active side-
channel analyses on embedded cryptosystems. LCD codes are also useful
for obtaining lattices [19] and in network coding [3]. It has been proved
in [8] that q-ary LCD codes are as good as linear codes for q > 3. Hence
the study of LCD codes is mainly open for binary and ternary fields.

In this paper we give an affirmative answer to the natural question:
May the metric structure and its applications for generalized toric codes
or J-affine variety codes be extended for an arbitrary linear code? To
answer this question the classification of bilinear forms on a vector space
over a finite field is used [1, 9, 10, 11, 18]. We reproduce this classification
in Section 3 providing constructive proofs. The classification of bilinear
forms on vector spaces over finite fields has been already used in coding
theory for self-dual and self-orthogonal codes, originally by V. Pless [24,
25, 26] and subsequent papers.

For an arbitrary linear code, in Section 4, we compute a structure
similar to the one of generalized toric codes, called the geometric de-
composition of a linear code. The results and their proofs are different for
characteristic 2, but they are developed in parallel. The geometric decom-
position of a linear code allows us to extend, in Section 5, the applications
for generalized toric codes: it expresses the dual code of a linear code eas-
ily and gives a method to estimate their minimum distance (extending
the method in [21]). Moreover, we provide a method for constructing
stabilizer quantum codes and LCD codes.

2 Metric structure of generalized toric
codes

Let us introduce generalized toric codes and their metric structure in
this section (see [27]), this family of codes motivated this work, as we
mentioned in the previous section. They are an extension of toric codes,
which are algebraic geometric codes over toric varieties [17]. Let U ⊂
H = ({0, . . . , q − 2})r, T = (F∗q)r and the vector space Fq[U ] = 〈Y u =
Y u1
1 · · ·Y ur

r | u = (u1, . . . , ur) ∈ U〉 ⊂ Fq[Y1, . . . , Yr]. The generalized
toric code CU is the image of the Fq-linear map

ev : Fq[U ] → Fn
q

f 7→ (f(t))t∈T

where n = #T = (q − 1)r.
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Let B(x, y) =
∑
xiyi with x, y ∈ Fn

q . The following result considers
the metric structure of a generalized toric code CU ⊂ Fn

q and computes its
dual code.

Theorem 1. [2, 27] With notations as above, if u, v ∈ H, then

B(ev(Y u), ev(Y v)) =

{
0 if u+ v 6= 0,
(−1)r if u+ v = 0,

where u = u+ bu, with u ∈ H and bu ∈ ((q− 1)Z)r. Let U ⊂ H, u′ = −u
and U ′ = {u′ | u ∈ U}. Then, #U = #U ′ and the dual code of CU is
CU⊥ , where U⊥ = H \ U ′ = (H \ U)′.

Moreover we can order the elements of H in such a way that the matrix
of B in the basis {ev(Y u) | u ∈ H} of Fn

q has a characteristic form. We
consider first in H the pairs of elements u and u′, with u 6= u′, such that
u+ u′ = 0 (u 7→ u′ is an involution). Finally, we consider the elements
u ∈ H such that u = u′. The matrix N of B in such a basis verifies

(−1)rN =



0 1
1 0

. . .

0 1
1 0

1

. . .

1


.

The number of 1’s in the main diagonal of the matrix is 2r if q is odd
and 1 if q is even. Therefore, there are no self-dual generalized toric codes.
The previous basis and the characteristic matrix N allowed us to obtain
stabilizer quantum codes and LCD codes.

3 Bilinear forms on vector spaces over
finite fields

In this section, we present an introduction to bilinear forms on vector
spaces over finite fields. We refer the reader to [1, 9, 10, 11, 18] for a
deeper discussion of the definitions and results in this section. All proofs
provided are constructive.

A bilinear form over Fn
q is a bilinear map B : Fn

q × Fn
q → Fq. It is said

to be symmetric if B(x, y) = B(y, x) ∀x, y ∈ Fn
q and non-degenerate if

B(x, y) = 0 ∀y ∈ Fn
q ⇒ x = 0,

B(x, y) = 0 ∀x ∈ Fn
q ⇒ y = 0.

Let B = {x1, . . . , xn} be a basis of Fn
q ; the associated matrix to B in

the basis B is

N =

 B(x1, x1) · · · B(x1, xn)
...

...
B(xn, x1) · · · B(xn, xn)

 .
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Namely, if x = (x1, . . . , xn), y = (y1, . . . , yn) in the basis B, one has that
B(x, y) = xNyt, where yt is the transpose of y.

From now on, we will consider the metric structure given by the bilin-
ear form B(x, y) =

∑n
i=1 xiyi, which is used to define the dual code of a

linear code. Here and subsequently, Fn
q will be the vector space over Fq

with the non-degenerate symmetric bilinear form B whose associated ma-
trix is the identity matrix. Therefore, B is symmetric and non-degenerate.

Let x, y ∈ Fn
q , x and y are said to be orthogonal if B(x, y) = 0 and we

denote it x⊥y. Let U , W be two vector subspaces of Fn
q , U and W are

said to be orthogonal if x⊥y for all x ∈ U , y ∈ W . Let U ⊂ Fn
q be a vec-

tor subspace which is direct sum of pairwise orthogonal vector subspaces
U1, . . . , Ur, then we say that Fn

q is the orthogonal sum of U1, . . . , Ur and
will denote it by Fn

q = U1⊥ · · ·⊥Ur. Let U ⊂ Fn
q be a vector subspace, the

radical of U consists in the vectors of U that are orthogonal to U , that is
rad(U) = U∩U⊥. Let x, y in Fn

q , they are orthonormal if they are orthogo-
nal and B(x1, x1) = 1, B(x2, x2) = 1. A vector x ∈ Fn

q is called isotropic if
B(x, x) = 0, that is, if 〈x〉 ⊂ rad(〈x〉). A vector subspace U ⊂ Fn

q is called
isotropic if B(x, y) = 0 for all x, y ∈ U , that is, if U ⊂ rad(U). Every
isotropic space U satisfies dim(U) ≤

⌊
n
2

⌋
. An isotropic subspace U ⊂ Fn

q

is called maximal when it is not strictly contained in any other isotropic
subspace. The dimension of all of the maximal isotropic subspaces of a
non-singular space U is the same, it is called index of U .

A vector subspace U ⊂ Fn
q is said to be non-singular if rad(U) = (0),

and singular otherwise. One has that U is non-singular if and only if the
bilinear form restricted to U is non-degenerate. If U ⊂ Fn

q is non-singular,
then Fn

q = U⊥U⊥ and U⊥ is non-singular.
Let H ⊂ Fn

q be a two-dimensional vector subspace, H is said to be a
hyperbolic plane if there exist x1, x2 generating H such that

B(x1, x1) = 0,
B(x2, x2) = 0,
B(x1, x2) = 1.

hence, H is non-singular. Both ordered generators x1, x2 are called geo-
metric generators or geometric basis of H.

Lemma 2. Let Fq have odd characteristic. Then any two-dimensional
non-singular subspace of Fn

q which contains an isotropic vector is a hyper-
bolic plane.

Proof. Let x1 be a non-zero isotropic vector. Let y be a vector of the
considered two-dimensional subspace linearly independent to x1 and let
x2 = λ1x1 + λ2y, for λ1, λ2 ∈ Fq. One has that B(x1, x2) = λ2B(x1, y),
moreover, B(x1, y) 6= 0 since a plane is non-singular. Therefore, for λ2 =
B(x1, y)−1 6= 0, one has that B(x1, x2) = 1.

Moreover, B(x2, x2) = 0 if and only if 2λ1λ2B(x1, y) + λ2
2B(y, y) = 0.

Since λ2 6= 0 and B(x1, y) 6= 0 one has that if

λ1 =
−λ2B(y, y)

2B(x1, y)
=
−B(y, y)

2B(x1, y)2

then x2 is an isotropic vector.
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Note that the previous result does not hold in characteristic 2 as the
next example shows.

Example 1. Let Fq be a field of characteristic 2. Let x = (x1, x2) ∈
F2
q, x is an isotropic vector if and only if x21 + x22 = 0, that is, if and

only if (x2/x1)2 = 1. Hence, (1, 1) is an isotropic vector, moreover, only
the vectors generated by (1, 1) are isotropic, since we have the Frobenius
isomorphism. Therefore, F2

q contains an isotropic vector but it is not a
hyperbolic plane.

We say that a non-singular two-dimensional subvector space E ⊂ Fn
q

is an elliptic plane if it is not a hyperbolic plane and there exist x1, x2
generating E and such that

B(x1, x1) = 0,
B(x2, x2) = 1,
B(x1, x2) = 1.

We call x1, x2 the geometric generators or geometric basis of E.
For instance {(1, 1), (0, 1)} is a geometric basis of the elliptic plane F2

q,
with q even.

3.1 Characteristic different from 2

One has that −1 is a square element in the field Fq if and only if q ≡ 1
mod 4. A non-zero vector x = (x1, x2) ∈ F2

q is an isotropic vector if and
only if x21 +x22 = 0, that is, if and only if (x2/x1)2 = −1. If −1 is a square
element in the field, the previous equation has at least one solution and
therefore there exist isotropic vectors. If −1 is non-square element in Fq

there is no isotropic vector and therefore F2
q is not a hyperbolic plane

(neither an elliptic).
In Fn

q there exist orthonormal bases for the bilinear form B, for in-
stance the canonical basis. For x ∈ Fn

q one can only obtain a linearly
dependent vector y of x, with B(y, y) = 1, just by multiplying x with the
square root of B(x, x), if B(x, x) is a square element in Fq. Therefore, for
a linear variety L = 〈x〉 one has that B(x, x) is equal to a2 or a2g where
g is a fixed non-square element in Fq, moreover, multiplying x by a−1 we
can assume that B(x, x) = 1 or B(x, x) = g and then we say that x is
a geometric basis of L. From now on we regard g as a fixed non-square
element in Fq.

The following result [28, Section 1.7] is used in Proposition 4 and in
Lemma 5.

Lemma 3. Let a, b, c ∈ Fq be different from zero. Then the following
equation has at least one solution over Fq

aX2 + bY 2 = c

The following result shows whether a non-singular plane is a hyperbolic
plane, that is, whether it contains isotropic elements. And, moreover,
whether it can be generated by two orthonormal elements, when it is not
a hyperbolic plane.
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Proposition 4. Let P = 〈x1, x2〉 ⊂ Fn
q be a non-singular plane with

B(x1, x2) = 0, B(x1, x1) = a and B(x2, x2) = b. If a = 0 or b = 0 then P
is a hyperbolic plane. If a 6= 0 and b 6= 0, then

• For q ≡ 1 mod 4, P is a hyperbolic plane if and only if b/a is
a square element. When P is not a hyperbolic plane it cannot be
generated by two orthonormal vectors but can be generated by y1, y2 ∈
Fn
q such that B(y2, y2) = 0, B(y1, y1) = 1, B(y2, y2) = g, where g is

a non-square element in Fq.

• For q ≡ 3 mod 4, P is a hyperbolic plane if and only if b/a is a
non-square element. When P is not a hyperbolic plane it can be
generated by two orthonormal vectors.

Proof. If a = 0 or b = 0 then P is a hyperbolic plane by Lemma 2.
Let a 6= 0 and b 6= 0. Let λ1, λ2 ∈ Fq, B(λ1x1 + λ2x2, λ1x1 + λ2x2) =

λ2
1a + λ2

2b = 0 if and only if (λ1/λ2)2 = −b/a. Therefore, there are
isotropic vector in P (and hence P is a hyperbolic plane by lemma 2) if
and only if −b/a is a square element.

For q ≡ 1 mod 4, one has that c ∈ F∗q is a square element in Fq if and
only if −c is a square element in Fq, since −1 is a square element in Fq. Let
y1 = λ1x1 +λ2x2, B(y1, y1) = λ2

1a+λ2
2b. By lemma 3 there exist λ1, λ2 ∈

Fq such that B(y1, y1) = 1, since a 6= 0, b 6= 0. Let z ∈ P be non-zero and
orthogonal to y1. One has that B(λ1y1 + λ2z) = λ2

1 + λ2
2B(z, z). Since

there exist no isotropic vectors in P , −B(z, z) is a non-square element
in Fq or, equivalently, B(z, z) is a non-square element in Fq. Therefore,
B(λ2z, λ2z) 6= 1, but for a fixed non-square element g in Fq, there exists
λ2 ∈ Fq such that for y2 = λ2z, and one has that B(y2, y2) = g.

For q ≡ 3 mod 4, one has that c ∈ F∗q is a square element in Fq if
and only if −c is a non-square element in Fq since −1 is a non-square
element in Fq. Let y1 = λ1x1 + λ2x2, B(y1, y1) = λ2

1a+ λ2
2b. By Lemma

3, there exist λ1, λ2 ∈ Fq such that B(y1, y1) = 1, since a 6= 0, b 6= 0. Let
z ∈ P be non-zero and orthogonal to y1. One has that B(λ1y1 + λ2z) =
λ2
1 + λ2

2B(z, z). Since there exist no isotropic vectors in P , −B(z, z) is a
non-square element in Fq, or equivalently B(z, z) is a square element in
Fq. Therefore, there exists λ2 ∈ Fq such that for y2 = λ2z, one has that
B(y2, y2) = 1.

The following result computes an isotropic vector in a non-singular
space of dimension greater than or equal to 3.

Lemma 5. Let U ⊂ Fn
q be non-singular with dimension greater than or

equal to 3, then there exists at least one isotropic non-zero vector in U .

Proof. Let P be a non-singular plane of U and x1 ∈ P⊥, assume that
B(x1, x1) 6= 0 (in other case x1 is isotropic). By lemma 3 one has that
there exists x2 ∈ P such that B(x2, x2) = −B(x1, x1). Therefore x1+x2 6=
0, B(x1 + x2, x1 + x2) = 0 and the result holds.

Using the previous results one can prove the following proposition.

Proposition 6. Let U ⊂ Fn
q be a non-singular m-dimensional vector

space. If q is odd, then one can decompose U in the following way:
If m is odd, then
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(1) U = H1⊥ · · ·⊥H(m−1)/2⊥L, where each Hi is a hyperbolic plane
and L is linear subspace of dimension 1.

If m is even, then

(2) If the index of U is m/2: U = H1⊥ · · ·⊥Hm/2, where each Hi is a
hyperbolic plane.

(3) If the index of U is m/2 − 1: U = H1⊥ · · ·⊥H(m−2)/2⊥L1⊥L2,
where each Hi is a hyperbolic plane and L1 and L2 are two linear
subspaces of dimension 1.

Proof. Let m be odd. Then one can apply Lemmas 2 and 5 to obtain a
hyperbolic plane H1 and therefore one has that U = H1⊥(H⊥1 ∩U). In the
same way for H⊥1 ∩U , one obtains another orthogonal hyperbolic planes.
Iterating this process, one writes U as the orthogonal sum of (m − 1)/2
hyperbolic planes and a linear variety of dimension 1.

In the same way, when m is even, we can apply Lemmas 2 and 5
successively until we compute (m − 2)/2 pairwise orthogonal hyperbolic
planes and a linear variety W of dimension 2. By lemma 4, we may check
whether W contains isotropic vectors and therefore it is a hyperbolic plane
and U is decomposed as the orthogonal sum of m/2 hyperbolic planes,
or on the contrary, it does not contain isotropic vectors and therefore it
may be generated by two orthogonal elements and U is decomposed as
the orthogonal sum of m/2− 1 hyperbolic planes and two linear varieties
of dimension 1.

Note that as a corollary of the previous result, one has that the index
of an m-dimensional vector subspace is equal to (m − 1)/2, if m is odd,
and m/2 or m/2− 1, if m is even.

3.2 Characteristic 2

In characteristic different from 2, whenever there exists an isotropic vector
in a plane, one has a hyperbolic plane. However, as we have seen in
Example 1, if q is a power of 2, then F2

q is a non-singular plane which
contains an isotropic vector but it cannot be generated by two isotropic
vectors.

Another important difference between even and odd characteristic is
that every element of Fq is a square element in characteristic 2 (by the
Frobenius isomorphism), while this is not the case in odd characteristic.
Hence, if x is a non-isotropic vector, then one can always find y ∈ 〈x〉 such
that B(y, y) = 1 since every element in F∗q is a square element. Thus, we
may say that y is a geometric basis of L = 〈x〉.

The following result allows us to compute a basis of the isotropic vec-
tors in Fn

q .

Proposition 7. A vector x ∈ Fn
q , x is isotropic if and only if

∑n
i=1 xi = 0.

The n − 1 vectors y1 = (1, 1, 0, . . . , 0), y2 = (0, 1, 1, 0, . . . , 0),. . ., yn−1 =
(0, . . . , 0, 1, 1) form a basis of the vector space S of isotropic vectors in Fn

q .
Furthermore, S is non-singular if n is odd and singular if n is even.
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Proof. One has that x is isotropic if and only if B(x, x) = 0. That is,∑n
i=1 x

2
i = 0 if and only if (

∑n
i=1 xi)

2 = 0 or, equivalently, if
∑n

i=1 xi = 0.
The isotropic vectors of Fn

q form a vector space. Trivially, one has that
yi is isotropic ∀i and that y1, . . . , yn−1 are linearly independent. Let us
check that {y1, . . . , yn−1} generates the vector space of isotropic vectors.
Let x = (x1, . . . , xn) be isotropic, we define then the coefficients of the
linear combination 

λ1 = x1,
λ2 = x1 + x2,
...
λn−1 = x1 + x2 + · · ·+ xn−1.

One has that
∑n−1

i=1 λiyi = (x1, . . . , xn−1,
∑n−1

i=1 xi) = (x1, . . . , xn−1, xn).
The last equality follows from xn =

∑n−1
i=1 xi, since x is isotropic. One

has that S⊥ = 〈(1, . . . , 1)〉 and the result holds because (1, . . . , 1) ∈ S if
and only if n is even.

As a corollary of this result, we have that Fn
q with n even, cannot

be decomposed as an orthogonal sum of n/2 hyperbolic planes. Note
the difference between this case and the one when Fq is of characteristic
different from 2.

Another consequence of the previous result is that, when n is even, z =
(1, . . . , 1) ∈ Fn

q is orthogonal to every isotropic vector in Fn
q . Therefore,

no plane containing z can be a hyperbolic plane and we will have to
consider an elliptic plane for this element. This explains the phenomenum
of Example 1.

Although the following result follows from the previous proposition,
we present a constructive proof that will allow us to compute a geometric
basis.

Lemma 8. If P ⊂ Fn
q is a vector subspace of dimension greater than or

equal to 2, then there exists at least one isotropic vector in P .

Proof. Let x1, x2 be two linearly independent vectors of P that are
non-isotropic. Let y = λ1x1 + λ2x2, with λ1, λ2 ∈ Fq. One has that
B(y, y) = λ2

1B(x1, x1) + λ2
2B(x2, x2) = 0, if and only if (λ1/λ2)2 =

B(x2, x2)/B(x1, x1). Since in a field of characteristic 2 every element
is a square, one has that for λ1 =

√
B(x2, x2) and λ2 =

√
B(x1, x1), y is

isotropic.

The following result shows that any non-singular vector space of di-
mension 2 is either a hyperbolic plane or an elliptic plane.

Proposition 9. Let P ⊂ Fn
q be a two-dimensional non-singular vector

subspace. Then P is a hyperbolic plane if and only if
∑
xi = 0 for all

x ∈ P . If P is not a hyperbolic plane then it is an elliptic plane and it
may be generated by two orthonormal elements.

Proof. Let S ⊂ Fn
q be the vector space of isotropic vectors, there exist

two independent isotropic vectors in P if and only if P ⊂ S. One has that
P ⊂ S if and only if

∑
xi = 0, ∀x ∈ P by Proposition 7.
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Let P ⊂ S, then there exist x1, x2 ∈ P isotropic and linearly in-
dependent, therefore λ = B(x1, x2) is not equal to zero (because B is
non-degenerate). Let y1 = x1, y2 = λ−1x2, one has that y1, y2 are the ge-
ometric generators of a hyperbolic plane, that is, B(y1, y1) = B(y2, y2) = 0
and B(y1, y2) = 1.

Let P 6⊂ S, then there exist x1, x2 ∈ P isotropic and linearly inde-
pendent, with x1 isotropic and x2 non-isotropic. Let λ = B(x1, x2) and
µ = B(x2, x2) 6= 0. One has that y1 = (λ−1√µ)x1 and y2 =

√
µ−1x2 are

the geometric generators of an elliptic plane, that is, B(y1, y1) = 0 and
B(y1, y2) = B(y2, y2) = 1.

Let y1, y2 be the two generators of the elliptic plane P , then y′1 =
y1 + y2, y′2 = y2 . One has that y′1, y

′
2 form a basis of P , since they

are linearly independent. Moreover, B(y′1, y
′
1) = 1 and B(y′1, y

′
2) = 0,

therefore P can be generated by two orthonormal elements.

The following lemma decomposes a non-singular vector space of di-
mension greater than or equal to 3 as the orthogonal sum of a hyperbolic
plane and its orthogonal subspace.

Lemma 10. Let U ⊂ Fn
q be a non-singular vector subspace of dimension

greater than or equal to 3. Then there exists a hyperbolic plane H such
that U = H⊥U ′ where U ′ is a non-singular vector subspace.

Proof. By Lemma 8, we can find an isotropic vector x ∈ U and one has
that U = 〈x〉⊥U1, where U1 = 〈x〉⊥∩U . Since U1 is a non-singular vector
subspace of dimension greater than or equal to 2, by Lemma 8, there exists
an isotropic vector y ∈ U . Therefore, by Proposition 9, {x, y} generates
a hyperbolic plane H, and U = H⊥U ′, where U ′ = H⊥ ∩ U .

The following result decomposes a non-singular subspace of dimension
greater than or equal to 3 as an orthogonal sum of hyperbolic planes and
a linear subspace of dimension lower than or equal to 2

Proposition 11. Let U ⊂ Fn
q be an m-dimensional non-singular vector

subspace with characteristic of Fq equal to 2. One can decompose U in the
following way:

If m is odd

(1) U = H1⊥ · · ·⊥H(m−1)/2⊥L, where each Hi is a hyperbolic plane
and L is a one-dimensional linear subspace.

If m is even

(2) U = H1⊥ · · ·⊥Hm/2, where each Hi is a hyperbolic plane.

(3) U = H1⊥ · · ·⊥Hm/2−1⊥L1⊥L2, where each Hi is a hyperbolic plane
and L1, L2 are one-dimensional linear subspaces.

Proof. Let m be odd, we can apply lemma Lemma 10 to obtain a hy-
perbolic plane H1 and therefore one has that U = H1⊥(H⊥1 ∩ U). In
the same way, we can make further computations in H⊥1 ∩ U to obtain
more hyperbolic planes pairwise orthogonal. Thus, repeating the process,
we write U as the orthogonal sum of (m − 1)/2 hyperbolic planes and a
one-dimensional linear variety.

9



In the same way, when m is even, we can apply Lemma 10 successively
in order to obtain m/2 − 1 pairwise orthogonal hyperbolic planes and a
two-dimensional linear variety. By Proposition 9, this two-dimensional
linear variety is a hyperbolic plane when every element x in it verifies∑
xi = 0. Otherwise it can be generated by two orthonormal vectors.

Let U = Fn
q with n even, then U can only have a decomposition of

type (3), because in Fn
q there are just n− 1 linearly independent isotropic

vectors (Proposition 7).

4 Geometric decompositions of linear codes

For an arbitrary linear code, in this section we compute a structure similar
to the one of generalized toric codes, called the geometric decomposition
of a linear code.

4.1 Characteristic different from 2

Let Fq be a finite field of characteristic different from 2. Using the previous
results we can write Fn

q as the orthogonal sum of hyperbolic planes and
linear varieties of dimension 1.

We say that Fn
q has a geometric decomposition of type r, s, t if

Fn
q = H1⊥ · · ·⊥Hr⊥L1⊥ · · ·⊥Ls+t

whereH1, . . . , Hr are hyperbolic planes and L1, . . . , Ls+t are one-dimensional
linear varieties, such that each hyperbolic plane is generated by two ge-
ometric generators Hi = 〈x2i−1, x2i〉, i = 1, . . . , r, each linear variety
of dimension 1 is generated by Li = 〈x2r+i〉, with B(x2r+i, x2r+i) = 1,
i = 1, . . . , s, and the other varieties of dimension 1 are generated by
Li = 〈x2r+s+i〉, with B(x2r+s+i, x2r+s+i) = g, i = 1, . . . , t, where g is a
fixed non-square element in Fq. One has that {x1, . . . , xn} is a basis of
Fn
q and we say that it is a basis of the geometric decomposition.

Let M be the matrix whose rows are the elements of the basis of the
geometric decomposition, then one has that MM t = Jr,s,t. That is, Jr,s,t
is the matrix of B in such a basis, then we have

Jr,s,t =



0 1
1 0

. . .

0 1
1 0

1

. . .

1
g

. . .

g


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where g is a fixed non-square element in F∗q .
A basis {x1, . . . , xn} of Fn

q is said to be a compatible basis with
respect to a decomposition of type r, s, t if each {x2i−1, x2i}, with
i = 1, . . . , r, is a geometric basis of a hyperbolic plane, and each x2r+i,
with i = 1, . . . s + t, generates a one-dimensional linear variety in such a
way that all of these subspaces are pairwise orthogonal. Or equivalently,
if the matrix of B in such a basis is equal to Jr,s,t.

Let C ⊂ Fn
q be a linear code, we say that C is compatible with a geo-

metric decomposition of type r, s, t if there exists a basis {x1, . . . , xn}
of Fn

q compatible with such a decomposition, in such a way that there ex-
ists I ⊂ {1, . . . , n} such that {xi | i ∈ I} is a basis of C.

The following results allows us to compute a geometric decomposition
compatible with a given code in characteristic different from 2.

Theorem 12. Let the characteristic of Fq be different from 2. Any lin-
ear code C ⊂ Fn

q is compatible with at least one geometric decomposition.
Furthermore, there is a computable geometric basis, called standard, com-
patible with C, of type r, s, t with s+ t ≤ 4 and t ≤ 2.

Proof. Let C = rad(C)⊥C1, where rad(C) = 〈x1, . . . , xl〉.
We claim that we can compute x′1, . . . , x

′
l ∈ Fn

q such that xi, x
′
i are the

geometric generators of a hyperbolic plane and, moreover, the hyperbolic
planes Hi = 〈xi, x′i〉 and C1 are pairwise orthogonal. That is, one has that

C′ = H1⊥ · · ·⊥Hl⊥C1,

where C′ contains C and is non-singular. We prove the construction of C′
by induction on l (this is Theorem 3.8 in [1]).

For l = 0 there is nothing to prove. The subspace C0 = 〈x1, . . . , xl−1〉⊥C1
is orthogonal to xl but does not contain it. One has that xl ∈ C⊥0
but xl 6∈ rad(C⊥0 ) = rad(C0), therefore there exists y ∈ C⊥0 such that
B(xl, y) 6= 0. The plane generated by {xl, y} is non-singular, is contained
in C⊥0 and by lemma 2 is generated by a geometric basis Hl = 〈xl, x′l〉.
Since Hl ⊂ C⊥0 , then C0⊥Hl and C0 ⊂ H⊥l . As the radical of C0 has di-
mension l−1, by inductive hypothesis we can find geometric bases {xi, x′i}
of Hi in H⊥l , for i = 1, . . . , l − 1 such that they are pairwise orthogonal
and also to C1, and since they are orthogonal to Hl and Hl is orthogonal
to C1, the construction of C′ holds.

Therefore, we have C′ = H1⊥ · · ·⊥Hl⊥C1, where Hi = 〈xi, x′i〉, with
x′i /∈ C. Moreover, C′ is non-singular and one has that Fn

q = H1⊥ · · ·⊥Hl⊥C1⊥C′⊥.
Since C1 is non-singular, by Proposition 6, we can write C1 as a sum

of hyperbolic planes and a one or two-dimensional linear space W (if
the dimension of C1 is lower than 3 we do not consider any hyperbolic
plane and C1 = W ). Hence, we have C1 = Hl+1⊥ · · ·⊥Hm⊥W , where
Hl+i = 〈xl+i, x

′
l+i〉.

By Proposition 6, we have 3 different geometries for W

(a) If dim(W ) = 1, we write W = 〈x〉. Moreover, x is non-isotropic
since B is non-degenerate. We can consider xm+1 ∈ W such that
B(xm+1, xm+1) is equal to 1 (if (B(xm+1, xm+1) is a square element)
or g, where g is a fixed non-square element and W = L1 = 〈xm+1〉.
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(b) If dim(W ) = 2 and W contains some isotropic vector, then W is a
hyperbolic plane and W = Hm+1 = 〈xm+1, x

′
m+1〉, by Lemma 2.

(c) If dim(W ) = 2 and W does not contain any isotropic vector, then
W can be generated by two orthogonal vectors L1 = 〈xm+1〉, L2 =
〈xm+2〉, where W = L1⊥L2, by Proposition 4.

We decompose C′⊥ in the same way as C1 (using Proposition 6) to
obtain

C′⊥ = H ′1⊥ · · ·⊥H ′m′⊥W ′

Therefore, with notations as above, we have the geometric decompo-
sition of Fn

q

(a) Fn
q = H1⊥ · · ·⊥Hm⊥L1⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm, x

′
m, xm+1〉

(b) Fn
q = H1⊥ · · ·⊥Hm⊥Hm+1⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm+1, x

′
m+1〉

(c) Fn
q = H1⊥ · · ·⊥Hm⊥L1⊥L2⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm, x

′
m, xm+1, xm+2〉

From the construction of the previous basis of Fn
q and Proposition 4, it

follows that a linear code can be written as the linear subspace generated
by a part of a geometric basis of type r, s, t with s + t ≤ 4, because we
have generated hyperbolic planes until their complement (W and W ′)
is a linear subspace of dimension lower than or equal to two. We also
have that t ≤ 2 because in the bases of W and W ′ there is at most one
element x such that B(x, x) = g. Note that for q ≡ 3 mod 4 one has that
t = 0.

We say that a linear code C given by the generators C = 〈x1, . . . , xk〉 is
given in the standard geometric form if the matrix of B restricted to
x1, . . . , xk is the same matrix as the one of B restricted to the generators
of C of the basis obtained in Theorem 12.

Next example shows a geometric decomposition of F12
3 compatible with

the Golay code G12 [22], which is a self-dual code.

Example 2. The Golay code G12 is a self-dual code over F3 with generator
matrix [22]:

G =


1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 2 2 1 2
0 0 1 0 0 0 1 0 1 2 2 2
0 0 0 1 0 0 2 1 0 1 2 2
0 0 0 0 1 0 2 2 1 0 1 2
0 0 0 0 0 1 1 2 2 1 0 2


One has that for G12 ⊂ F12

3 , the standard decomposition of F12
3 com-

patible with G12 is the orthogonal sum of 6 hyperbolic planes, where the
first geometric generator of each one belongs to the code and the second
one does not. The matrix M of a standard geometric decomposition is
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M =



1 0 0 0 0 0 1 1 1 1 1 0
2 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 2 2 1 2
0 2 0 0 0 0 0 1 2 2 1 2
0 0 1 0 0 0 1 0 1 2 2 2
0 0 2 0 0 0 1 0 1 2 2 2
0 0 0 1 0 0 2 1 0 1 2 2
0 0 0 2 0 0 2 1 0 1 2 2
0 0 0 0 1 0 2 2 1 0 1 2
0 0 0 0 2 0 2 2 1 0 1 2
0 0 0 0 0 1 1 2 2 1 0 2
0 0 0 0 0 2 1 2 2 1 0 2


A basis of the code are the rows 1,3,5,7,9,11. One has that

J6,0,0 = MM t =



0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0


4.2 Characteristic 2

Now let Fq be a field of characteristic two. By the results in Section 3 we
can write Fn

q as an orthogonal sum of hyperbolic planes, one-dimensional
linear varieties and, at most, one elliptic plane.

We say that Fn
q has a geometric decomposition of type r, s, t if

Fn
q = H1⊥ · · ·⊥Hr⊥L1⊥ · · ·⊥Ls, with t = 0, or

Fn
q = H1⊥ · · ·⊥Hr⊥L1⊥ · · ·⊥Ls⊥E, with t = 1

where H1, . . . , Hr are hyperbolic planes, L1, . . . , Ls are non-isotropic one-
dimensional linear varieties and E is an elliptic plane. Each hyperbolic
plane is generated by two geometric generators Hi = 〈x2i−1, x2i〉, i =
1, . . . , r, each one-dimensional linear variety is generated by a geometric
generator Li = 〈x2r+i〉, i = 1, . . . , s and the elliptic plane is generated
by two geometric generators, E = 〈xn−1, xn〉 if t = 1. One has that
{x1, . . . , xn} is a basis of Fn

q , called basis of the geometric decompo-
sition.

Let M be the matrix whose rows are the elements of the the geometric
decomposition, then one has that MM t = Jr,s,t. That is, Jr,s,t is the
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matrix of B in such a basis.

Jr,s,0 =



0 1
1 0

. . .

0 1
1 0

1

. . .

1



Jr,s,1 =



0 1
1 0

. . .

0 1
1 0

1

. . .

1
0 1
1 1


A basis {x1, . . . , xn} of Fn

q is said to be a compatible basis with
respect to a decomposition of type r, s, t if each {x2i−1, x2i}, with
i = 1, . . . , r, is a geometric basis of a hyperbolic plane; each x2r+i, with
i = 1, . . . s, generates a one-dimensional linear variety; {x2r+s+1, x2r+s+2}
is a geometric basis of an elliptic plane (if t = 1) in such a way that all of
these subspaces are pairwise orthogonal. Or equivalently, if the matrix of
B in such a basis is equal to Jr,s,t.

Let C ⊂ Fn
q be a linear code, we say that C is compatible with a geo-

metric decomposition of type r, s, t if there exists a basis {x1, . . . , xn}
of Fn

q compatible with such a decomposition, in such a way that there ex-
ists I ⊂ {1, . . . , n} such that {xi | i ∈ I} is a basis of C.

The next results allows us to compute a geometric decomposition com-
patible with a given code in characteristic 2.

Theorem 13. Let Fq be of characteristic 2. Any linear code C ⊂ Fn
q is

compatible with at least one geometric decomposition. Furthermore, there
is a computable geometric basis, called standard, compatible with C, of
type r, s, t with s ≤ 4 and t = 0, or, s ≤ 2 and t = 1. A geometric
decomposition with an elliptic plane (s ≤ 2, t = 1) is only possible when
(1, . . . , 1) ∈ rad(C), that is, when (1, . . . , 1) ∈ C and all the elements of C
are isotropic.

Proof. One has that C = rad(C)⊥C1. We shall consider two cases, z =
(1, . . . , 1) ∈ rad(C) with n even, and the general case. In this particular
case (z ∈ rad(C) with n even) we consider an elliptic plane because z
cannot belong to a hyperbolic plane, since, as we proved in proposition 7,
there exists no isotropic vector in Fn

q orthogonal to z.
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Let z ∈ C, one has that z ∈ rad(C) if and only if all the elements of C are
isotropic, that is, if C ⊂ S. For instance, for a self-dual code we consider
an elliptic plane: let C be a self-dual code, one has that z ∈ C = rad(C)
because otherwise the direct sum of C and 〈z〉 would be a vector subspace
of index n/2 + 1.

First, we prove the general case and, then, the case (1, . . . , 1) ∈ rad(C)
with n even. Let C = rad(C)⊥C1, where rad(C) = 〈x1, . . . , xl〉. Let S′ be
equal to S for n odd and to 〈y1, . . . yn−2〉 for n even, where {y1, . . . , yn−2, (1, . . . , 1)}
is a basis of S. One has that S′ is non-singular, has dimension greater
than or equal to n− 2 and that rad(C) ⊂ S′ (by Proposition 7).

We claim that we can compute x′1, . . . , x
′
l ∈ Fn

q such that xi, x
′
i are the

geometric generators of a hyperbolic plane and, moreover, the hyperbolic
planes Hi = 〈xi, x′i〉 and C1 are pairwise orthogonal. That is, one has that

C′ = H1⊥ · · ·⊥Hl⊥C1

where C′ contains C and is non-singular. We prove the construction of C′
by induction on l.

For l = 0 there is nothing to prove. The subspace C0 = 〈x1, . . . , xl−1〉⊥C1
is orthogonal to xl but does not contain it. One has that xl ∈ C⊥0 but
xl 6∈ rad(C⊥0 ) = rad(C0). Let C⊥0 = 〈x1, . . . , xl−1〉⊥U . One has that U ∩S′
is a non-singular vector space that contains xl. Therefore there exists
y ∈ U ∩ S′ such that B(xl, y) 6= 0, since xl is isotropic. The plane gen-
erated by xl, y is non-singular and is contained in C⊥0 , so by Proposition
9 it is generated by a geometric basis Hl = 〈xl, x′l〉. Since Hl ⊂ C⊥0 , then
C0⊥Hl and C0 ⊂ H⊥l . As the radical of C0 has dimension l − 1, by in-
ductive hypothesis we can compute geometric bases {xi, x′i} of Hi in H⊥l ,
for i = 1, . . . , l − 1 such that they are pairwise orthogonal and also to
C1, and since they are orthogonal to Hl and Hl is orthogonal to C1, the
construction of C′ holds.

Therefore, we have C′ = H1⊥ · · ·⊥Hl⊥C1, where Hi = 〈xi, x′i〉, with
x′i /∈ C. Moreover, C′ is non-singular and one has that Fn

q = H1⊥ · · ·⊥Hl⊥C1⊥C′⊥.
Since C1 is non-singular, by Proposition 11 we can consider C1 as a

sum of hyperbolic planes and a vector subspace W of dimension 1 or 2
(if the dimension of C1 is lower than 3 we do not consider any hyperbolic
plane and C1 = W ). Hence, we have C1 = Hl+1⊥ · · ·⊥Hm⊥W , where
Hl+i = 〈xl+i, x

′
l+i〉.

By Proposition 11 we can have three different geometries for W :

(a) If dim(W ) = 1, we write W = 〈x〉. Moreover, x is non-isotropic
sinceB is non-degenerate. We consider xm+1 ∈W such thatB(xm+1, xm+1)
is equal to 1 and W = L1 = 〈xm+1〉.

(b) If dim(W ) = 2 and W contains two linearly independent isotropic
vectors (or equivalently

∑
xi = 0, for all x ∈ W ) then W is a

hyperbolic plane, W = Hm+1 = 〈xm+1, x
′
m+1〉, by proposition 9.

(c) If dim(W ) = 2 and W does not contain two lines of isotropic vectors
(or equivalently, there exists x ∈W with

∑
xi 6= 0) then, by Propo-

sition 9, W is an elliptic plane and it can be generated by two or-
thonormal vectors L1 = 〈xm+1〉, L2 = 〈xm+2〉, where W = L1⊥L2.

15



We decompose C′⊥ in an analogous way to C1 (using Proposition 11)
and we obtain

C′⊥ = H ′1⊥ · · ·⊥H ′m′⊥W ′

With notations as above, we have the following geometric decomposi-
tion of Fn

q

(a) Fn
q = H1⊥ · · ·⊥Hm⊥L1⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm, x

′
m, xm+1〉

(b) Fn
q = H1⊥ · · ·⊥Hm⊥Hm+1⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm+1, x

′
m+1〉

(c) Fn
q = H1⊥ · · ·⊥Hm⊥L1⊥L2⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm, x

′
m, xm+1, xm+2〉

From the construction of the previous basis of Fn
q , it follows that a

linear code C, such that (1, . . . , 1) 6∈ rad(C) with n even, can be written as
the linear subspace generated by a part of a geometric basis of type r, s, t
with s ≤ 4 and t = 0, because we have generated hyperbolic planes until
their complement (W and W ′) is a linear subspace of dimension lower
than or equal to two which may be decomposed using Proposition 9.

Let us consider z ∈ rad(C), when n is even. Let rad(C) = 〈x1, . . . , xl, z〉
and R = 〈x1, . . . , xl〉. Let CR = R⊥C1, since z 6∈ rad(CR) = R, as in the
general case, we can compute x′1, . . . , x

′
l ∈ Fn

q such that xi, x
′
i are the

geometric generators of a hyperbolic plane and, moreover, the hyperbolic
planes Hi = 〈xi, x′i〉, and C1 are pairwise orthogonal. That is, one has
that

C′R = H1⊥ · · ·⊥Hl⊥C1
where C′R contains CR and is non-singular.

Since C1 is non-singular, by Proposition 11 we can consider C1 as a
sum of hyperbolic planes, that is, we have the geometry (b) of the general
case since all the elements of C1 are isotropic. Therefore, we have C1 =
Hl+1⊥ · · ·⊥Hm, where Hl+i = 〈xl+i, x

′
l+i〉.

Hence, since all the elements of CR are isotropic, one has that U ,
the direct sum of C′r and 〈z〉 can be written in the following way U =
H1⊥ · · ·⊥Hm⊥〈z〉. We claim that in U⊥ there exists a non-isotropic
vector z′ such that z′ is orthogonal to C′R and B(z, z′) = 1. Let E = 〈z, z′〉,
we have that E is an elliptic plane. Such vector z′ is one solution of the
following linear system with at most n equations and n variables

B(x1, z
′) = 0,

B(x′1, z
′) = 0,

...
B(xm, z

′) = 0,
B(x′m, z

′) = 0,
B(z, z′) = 1,
B(z′, z′) = 1.

Therefore, one has that U ′ = H1⊥ · · ·⊥Hm⊥E is non-singular and
contains C. We decompose U ′⊥ using proposition 11 and obtain

U ′⊥ = H ′1⊥ · · ·⊥H ′m′⊥W ′
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With notations as above, we have the following geometric decomposi-
tion of Fn

q :

(d) Fn
q = H1⊥ · · ·⊥Hm⊥E⊥H ′1⊥ · · ·⊥H ′m′⊥W ′ and
C = 〈x1, . . . , xl, xl+1, x

′
l+1, . . . , xm+1, x

′
m+1, z〉

From the construction of the previous basis of Fn
q , it follows that a

linear code C, such that (1, . . . , 1) ∈ rad(C) with n even, can be written
as the linear subspace generated by a part of a geometric basis of type
r, s, t with s ≤ 2 and t = 1, because we have generated hyperbolic planes
in U ′⊥ until W ′ is a linear subspace of dimension lower than or equal to
two that may be decomposed using Proposition 9.

We say that a linear code C given by the generators C = 〈x1, . . . , xk〉 is
given in the standard geometric form if the matrix of B restricted to
x1, . . . , xk is the same matrix as the one of B restricted to the generators
of C of the basis obtained in Theorem 13.

From Theorem 13 it follows that the standard geometric decomposition
of C = Fn

q is of type n/2− 1, 2, 0 for n even, and (n− 1)/2, 1, 0 for n odd.
The following example shows the geometric decomposition of a self-dual
code in characteristic 2.

Example 3. Let C ⊂ F6
2 be the code with generator matrix

G =

 1 1 0 0 0 0
1 1 1 0 1 0
1 1 1 1 1 1


One has that C is a self-dual code because it has dimension n/2 and

the sum of the coordinates of the generators of the code, that is, the rows
of the generator matrix, are 0 (Proposition 7).

Hence, the standard decomposition is given by 2 hyperbolic planes and
an elliptic plane. In particular, one has that the matrix M of a standard
geometric decomposition is

M =


1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 1
0 0 0 0 0 1


A basis of the code are the rows 1, 3 and 5 of the matrix M , which in

this case form the same basis as we have previously considered. The geo-
metric decomposition obtained is F6

2 = H1⊥H2⊥E. That is, a geometric
decomposition of type 2,0,1, hence

J2,0,1 =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1


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The following example illustrates how to deal with an elliptic plane
when (1, . . . , 1) 6∈ rad(C).
Example 4. Let C be the linear code over F2 with generator matrix

G =

(
1 1 0 0
0 0 0 1

)
Let x1 = (1, 1, 0, 0) and x2 = (0, 0, 0, 1). One has that x1 is an isotropic

vector and that x2 is non-isotropic. Let x′1 = (0, 1, 1, 0), one has that
x1, x

′
1 are a geometric basis of an hyperbolic plane H1 = 〈x1, x′1〉 which is

orthogonal to x2. An orthogonal vector to H1 and linearly independent to
x2 is y = (1, 1, 1, 1). One has that y is isotropic and y, x2 form a geometric
basis of an elliptic plane. However, we can consider x3 = x2 + y =
(1, 1, 1, 0) in such a way that L2 = 〈x2〉 and L3 = 〈x3〉 are two non-
isotropic linear varieties. Therefore, one has a geometric decomposition
of F4

2 compatible with C of type 1, 2, 0, given by F4
2 = H1⊥L1⊥L2.

5 Linear codes and bilinear algebra

Since we have proved that a linear code is compatible with a geometric
decomposition for arbitrary characteristic, from now on, we will work over
an arbitrary positive characteristic.

Let {x1, . . . , xn} be a geometric basis of a geometric decomposition of
type r, s, t. Let i ∈ {1, . . . , n}. We define i′ as

• i+ 1 if xi is the first generator of a hyperbolic plane H,

• i− 1 if xi is the second generator of a hyperbolic plane H,

• i if xi generates a one-dimensional linear space L,

• i+ 1 if xi is the first generator of an elliptic plane E.

We do not define i′ when xi is the second geometric generator of an
elliptic plane, because we only consider geometric decompositions with at
most one elliptic plane E and where only the first generator of E belongs
to the code. In the case where both geometric generators of the elliptic
plane E belong to the code, by Proposition 9, we consider two orthonormal
generators of linear subspaces L (as in Example 4).

For I ⊂ {1, . . . , n} we define I ′ = {i′ | i ∈ I} and I⊥ = {1, . . . , n} \ I ′.
In this way we can compute the dual code of a linear code using the
following result. Note that this result extends Theorem 1 for an arbitrary
linear code.

Theorem 14. Let C be a linear code with geometric decomposition of type
r, s, t given by the basis {x1, . . . , xn} of Fn

q . Let I ⊂ {1, . . . , n} such that
C = 〈xi | i ∈ I〉. Then the dual code of C is C⊥ = 〈xi | i ∈ I⊥〉.

Proof. From the matrix Jr,s,t of the bilinear form B in the geometric
basis it follows that 〈xi〉⊥ = 〈xj | j 6= i′〉. Therefore, C⊥ = 〈xj | j /∈ I ′〉 =
〈xi | i ∈ I⊥〉.
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Let C be a linear code of dimension k with a geometric decomposition
of type r, s, t given by the basis {x1, . . . , xn} of Fn

q and I ⊂ {1, . . . , n}
such that C = 〈xi | i ∈ I〉. Furthermore, let M be the n × n-matrix
whose rows are the elements of the basis {x1, . . . , xn}, then one has that
MM t = Jr,s,t. Let M(I) be the k × n-matrix consisting of the k rows
given by I, then M(I) is a generator matrix of C. In the same way, M(I⊥)
is a control matrix of C, that is, M(I⊥) is a generator matrix of the dual
code C⊥ of C.
Example 5. Consider the Matrix M given in Example 3 and the geo-
metric decomposition of type 2,0,1 given by the rows of the matrix M ,
{x1, . . . , x6}. One has that F6

2 = H1⊥H2⊥E.
Let I = {1, 2, 3} and C = 〈xi | i ∈ I〉. By Theorem 14, the dual code of

C is 〈xi | i ∈ I⊥〉, where I ′ = {2, 1, 4} and I⊥ = {1, . . . , 6} \ I ′ = {3, 5, 6}.
We have only considered an elliptic plane at the geometric decom-

position when the first geometric generator of the elliptic plane belongs
to the code and the second one does not. Its motivation rests on the
following fact: if xi is the second generator of an elliptic plane, then
〈xi〉⊥ = 〈xj | j 6= i, i − 1〉 + 〈xi + xi−1〉, but xi + xi−1 is not an element
of the basis of Fn

q considered.

5.1 Stabilizer quantum codes

Stabilizer codes can be constructed from self-orthogonal classical linear
codes using the CSS construction (due to Calderbank, Shor and Steane
[6, 29]).

Theorem 15. [6, 20] Let C be a linear [n, k, d]q error-correcting code such
that C ⊂ C⊥. Then, there exists an [[n, n− 2k,≥ d⊥]]q stabilizer quantum
code, where d⊥ denotes the minimum distance of C⊥.

If we have a geometric decomposition, we can easily check whether
a linear code is self-orthogonal and construct a quantum code using the
CSS construction.

Theorem 16. Let C be a linear [n, k, d] code with geometric decompo-
sition of type r, s, t given by the basis {x1, . . . , xn} of Fn

q . Consider
I ⊂ {1, . . . , n} such that C = 〈xi | i ∈ I〉. Let I ⊂ I⊥, then there ex-
ists an [[n, n− 2k,≥ d⊥]]q stabilizer quantum code.

Proof. By Theorem 14, the dual code of C is C⊥ = 〈xi | i ∈ I⊥〉. Thus
if I ⊂ I⊥, the code C is self-orthogonal and, by Theorem 15, the result
holds.

Example 6. Consider the Matrix M given in Example 3 and the geo-
metric decomposition of type 2,0,1 given by the rows of the matrix M ,
{x1, . . . , x6}. One has that F6

2 = H1⊥H2⊥E.
Let I = {1, 3} and C = 〈xi | i ∈ I〉. Then I ′ = {2, 4} and I⊥ =

{1, . . . , 6} \ I ′ = {1, 3, 5, 6}. By Theorem 16, we can construct a stabilizer
quantum code from C since I ⊂ I⊥.
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The technique given in the previous result was used in [12, 13, 14, 15]
to compute stabilizer quantum codes of J-affine variety codes (and toric
codes). Theorem 16 shows which codes, with a geometric decomposition
as in section 4, can provide stabilizer quantum codes. That is, one can
extend the method in [12, 13, 14, 15] for an arbitrary family of codes.
Algebraic-geometric codes will be considered in future works. Moreover,
an analogous CSS construction also holds for Hermitian duality when the
classical code C is defined over Fq2 . The Hermitian metric structure will
be studied in future works as well.

5.2 LCD codes

LCD codes are linear codes whose radical is equal to zero [23], that is, C
is LCD if C ∩ C⊥ = {0}. If we have a geometric decomposition, we can
easily check whether a linear code is LCD.

Theorem 17. Let C be a linear code with geometric decomposition of type
r, s, t given by the basis {x1, . . . , xn} of Fn

q . Let I ⊂ {1, . . . , n} such that
C = 〈xi | i ∈ I〉. One has that C is LCD if and only if I ∩ I⊥ = ∅.

Proof. By Theorem 14, the dual code of C is C⊥ = 〈xi | i ∈ I⊥〉. Thus,
I ∩ I⊥ = ∅ if and only if C ∩ C⊥ = {0}.

Example 7. Consider the Matrix M given in Example 3 and the geo-
metric decomposition of type 2,0,1 given by the rows of the matrix M ,
{x1, . . . , x6}. One has that F6

2 = H1⊥H2⊥E.
Let I = {1, 2, 3, 4} and C = 〈xi | i ∈ I〉. We have that I ′ = {2, 1, 4, 3}

and I⊥ = {1, . . . , 6}\I ′ = {5, 6}. By Theorem 17, C is an LCD code since
I ∩ I⊥ = ∅.

The tecnique given in the previous result was used in [16] to compute
new LCD codes from J-affine variety codes (and toric codes). Theorem
17 shows which codes, with a geometric decomposition as in section 4, are
LCD. In the same way as for quantum codes, one can extend the method
in [16] for an arbitrary family of codes. LCD codes coming from affine
variety codes will be considered in future works.

5.3 Minimum distance of a linear code

The following result extends [21, Proposition 1] and [27, Proposition 8] of
generalized toric codes for arbitrary linear codes.

Theorem 18. Let C be a linear code of dimension k with geometric
decomposition of type r, s, t given by the basis {x1, . . . , xn} of Fn

q and
I ⊂ {1, . . . , n} such that C = 〈xi | i ∈ I〉. Let M be the n×n-matrix such
that MM t = Jr,s,t, where a generator matrix of C is M(I) and M(I, J)
is the submatrix of M corresponding to the rows of I and columns of J ,
i.e. M(I, J) = (mi,j)i∈I,j∈J .

(a) Let d be the lowest positive integer such that for every set J ⊂
{1, . . . , n} with #J = n − d + 1 there exists some K ⊂ J with
#K = k such that detM(I,K) 6= 0. Then the minimum distance of
C is d.
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(b) Let d be the largest positive integer such that for all J ⊂ {1, . . . , n}
with #J = d − 1 there exists D ⊂ I⊥ with #D = d − 1 such that
det(D, J) 6= 0. Then the minimum distance of C is d.

Besides, both previous ways of computing the minimum distance are
equivalent.

Proof. (a) One has that the minimum distance of a linear code is d if
for any n − d + 1 columns of a generator matrix there exist k linearly
independent columns and there are n− d columns that do not contain k
linearly independent columns. A generator matrix of C is M(I), hence
the minimum distance of C is the greatest positive integer d such that any
n − d + 1 columns of M(I) contain k linearly independent columns, and
the result holds.

(b) One has that the minimum distance of a linear code is d if any
d−1 columns of a control matrix are linearly independent and there exist
d linearly independent columns. A control matrix of C is M(I⊥), hence
the minimum distance of C is the largest positive integer d such that any
d − 1 columns of M(I⊥) are linearly independent, which is equivalent to
the fact that for every J ⊂ {1, . . . , n}, #J = d− 1, there exists one minor
M(I⊥, J) of size d − 1 whose determinant is different from 0, and the
result holds.

The equivalence between these two results is clear because both com-
pute the minimum distance of a linear code C and, moreover, both ways
of computing the minimum distance are dual. In order to prove it we use
Plücker geometry.

LetM be the matrix whose rows are the elements of the basis {x1, . . . , xn}
of Fn

q , that is, the matrix of the linear transformation from the canonical
basis {e1, . . . , en} into {x1, . . . , xn}, N = {1, . . . , n} and M∗ the matrix
of the linear transformation from the canonical basis {e∗1, . . . , e∗n} into
{x∗1, . . . , x∗n}. Therefore, x1∧· · ·∧xk =

∑
ji∈N det(M(I,K))ej1∧· · ·∧ejk ,

where K = j1, . . . , jk. Since MM t = Jr,s,t, one has that M∗ = Jr,s,tM .
Let ζ(x1 ∧ · · · ∧ xk) = x∗k+1 ∧ · · · ∧ x∗n. Then

ζ(x1 ∧ · · · ∧ xk) =
∑

ji∈N\K

det(M∗(N \ I,N \K))e∗j1 ∧ · · · ∧ e
∗
jn−k

but since ζ is linear, one has that ζ(x1 ∧ · · · ∧ xk) =∑
ji∈K

det(M(I,K))ζ(ej1 ∧ · · · ∧ ejk ) =
∑
ji∈K

det(M(I,K))e∗j1 ∧ · · · ∧ e
∗
jk

Hence one has that det(M(I,K)) = det(M∗(N \ I,N \K)) =
det(Jr,s,tM(N \ I,N \ K)) = det(M(I \ I ′, N \ K)) = det(M(I⊥, N \
K)).

In [21, Proposition 1], which is extended by the previous result, the
structure of Vandermonde matrix in several variables of the generator
matrix of the generalized toric code is used to compute explicitly the
minimum distance of two families of codes. For an arbitrary linear code we
do not have such an structure and the previous result is not a priori useful.
However, the geometric decomposition of a linear code may give rise to
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the explicit computation of the minimum distance of certain families of
linear codes. This will be studied in future works.
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édition). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5,
Springer-Verlag (1971).
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