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Abstract

In this work, we study numerically a model which describes cell dwarfism.
It consists in a pure initial value problem for a first order partial differential
equation, that can be applied to the description of the evolution of diseases
as thalassemia. We design two numerical methods that prevent the use of the
characteristic curve x = 0, and derive their optimal rates of convergence. Nu-
merical experiments are also reported in order to demonstrate the predicted
accuracy of the schemes. Finally, a comparison study on their efficiency is
presented.
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1. Introduction

We analyze, from a numerical point of view, a cell population balance
model (CPBM) in which cells are distinguished by their individual size.
CPBM were introduced in the early 1960s within the framework of parti-
cle dynamics in chemical and cellular contexts [17, 6, 16]. From a formal
point of view, CPBM can be defined as the balance equation that accounts
for the various processes that change the number of cells in a population. In
general, it takes the form of a first-order integro-partial differential equation,
along with boundary and initial condition. From a theoretical point of view,
mathematical treatment of linear CPBMs has been developed since the early
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1980s [7, 12, 10], where the study of the well-posedness, the convergence
towards an asymptotically stable-size distribution and the stability analysis
were made. In the case of a nonlinear model, the theoretical properties of
existence and uniqueness of solutions have been adressed in [12].

The CPBM that we consider in this paper is based upon the model devel-
oped by Diekmann et al. [7], where cell-size is used to distinguish individuals
in the population. We use the version presented in [14],

ut(x, t) + (xu(x, t))x = (ν(x)− µ(x)− b(x))u(x, t) + 4 b(2x)u(2x, t),

0 < x < 1, t > 0, (1.1)

u(x, 0) = φ(x), 0 < x ≤ 1, (1.2)

where the population of cells is described by a density function u(x, t), t
represents time and x measure the cell-size. Functions µ, b and ν explain
different processes which take place within the population. In this model,
cells grow exponentially, x′(t) = x(t), as in a petri dish experiment, and die
with death rate µ(x) depending on cellular size. With respect to the divi-
sion process, we have considered a division in which the mother cell splits
into two equal cells [7]. Note that the exponential growth introduces the
unavailability of a boundary condition at size x = 0, thus cell renewal is
introduced through the division b(x) and immigration ν(x) rates. If we deal
with a closed system (petri dish), it is usual to consider ν(x) = 0, however
other biologically significant systems are not closed, for example the blood
production system which needs to replaced the red blood cells daily in order
to regulate the blood cells count (stem cell regulation). We want to point
out that a proper combination of growth, division and mortality rates would
introduce a natural maximum cell size [2], otherwise we could fix it as one
(normalized) and we would consider that larger cells may only grow and die.
As in [14], we assume µ and b are both positive, uniformly continuous func-
tions on (0, 1), with support in the interval [0, 1] and ν(x) is a nonnegative,
uniformly continuous function bounded above in the interval [0, 1]. We also
assume that the environment is unlimited and all possible nonlinear mecha-
nisms are ignored. Function φ is the initial state of the population density.

The usual CPBM, as developed in [7], assumes that a cell does not di-
vide until it reaches a minimal cell size a > 0, which generates a minimal
cellular size a/2. However, model (1.1)-(1.2) allows a cell of any size in the
interval (0, 1] to divide. Therefore, the minimal cellular size is a = 0. Al-
though the idea of a cell with zero size is biologically unrealistic, we use it
as the limiting value to describe an abnormality in the cellular division pro-
cess: the production of unfunctional ”dwarf” cells. These kind of cells are
observed in a group of inherit blood disorders that affect the body’s ability
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to produce hemoglobin and red blood cells: thalassemia. These hereditary
blood disorders (anemias) are one of the most common human genetic ab-
normalities known and they are prevalent in tropical and subtropical world
regions where malaria is still epidemic. Major α-thalassemia disorder (hy-
drops fetalis) has a high lethality rate and it has become an important public
health problem due to population migrations. Besides, carriers of (minor)
α-thalassaemia are found at high frequencies and they are usually asymp-
tomatics. The disorders are caused by the absent or decreased production
of the α chain of hemoglobin. In healthy persons, the synthesis of α and
β-globin chains is finely balanced during terminal erythroid differentiation,
giving rise to red blood cells of consistent size (reflected in the mean corpuscu-
lar volume (MCV)) and hemoglobin content (mean corpuscular hemoglobin
(MCH)). Thus, minor forms of thalassemia are associated with smaller red
blood cells than normal, a condition known as microcytosis which are only
distinguishable through MCV. Finally, these diseases also can be associated
with other blood disorders as the myelodysplastic syndrome [19, 9, 11].

Some theoretical properties of the model (1.1)-(1.2) were developed in [14].
In that work, the author addressed the existence and uniqueness of gener-
alized solutions and their stability and unstability. On the one hand, he
established the conditions on the data functions bounds to obtain a strongly
stable solution, that biologically shows the extinction of the population. On
the other hand, he proposed the data functions properties that leads to the
topological transitivity of the different cellular generations. It includes the
erratic behaviour customarily associated with chaos. Such an issue has been
subsequently refined in [8, 18] and references therein.

These theoretical properties can be studied without a solution expres-
sion. However, the knowledge of their qualitative or quantitative behaviour
in a more tangible way is sometimes necessary. Therefore, numerical meth-
ods provide a valuable tool to obtain such an information. In the case of
general structured population models, many numerical methods have been
proposed to solve them (see [1, 13] and references therein). With respect to
the study of CPBMs, different techniques have been used for both symmet-
ric and asymmetric division rates (see [2, 4, 5, 3] and the references therein).
However, all of them are proposed for the solution of models with a minimal
cell division size, and it is very important to design numerical schemes spe-
cially adapted to the features of this particular CPBM. For this model, there
is an expression of the generalized solution but this formula does not possess
an easy computational form, even in simple situations [14].

In this work, we present and analyze two first-order procedures: a natural
grid method and an upwind scheme which are specially adapted to obtain
the solution to the problem (1.1)-(1.2).
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In Section 2 we describe the proposed numerical methods. In Section
3 we analyze their convergence to the exact solution and, in Section 4, we
carry out a representative numerical simulation, including a comparison of
the efficiency of the methods.

2. Numerical Methods

We will introduce two numerical methods of first order adapted to differ-
ent peculiarities of this particular model. On one hand, note that there is
a characteristic curve at x = 0. Therefore, we avoid to use this ”unknown”
information into our numerical schemes. On the other hand, the solution of
the problem is only first-order continuously differentiable, therefore we elude
higher order methods. The first proposal is based on the integration along
the characteristic curves, the other one consists on a finite difference method
connected to an upwind technique.

2.1. Natural grid method (NGM)

This numerical integration is based on the discretization of the solution
along the characteristic curves. Therefore, we define µ∗(x) = 1 + µ(x) +
b(x)− ν(x) and rewrite (1.1) as

ut(x, t) + xux(x, t) = −µ∗(x)u(x, t) + 4 b(2x)u(2x, t), (2.1)

0 < x < 1, t > 0. We denote by x(t; t∗, x∗) = x∗ exp (t− t∗), the character-
istic curve of the equation (2.1) (and (1.1)) which takes the value x∗ ̸= 0 at
time t∗, and define w(t; t∗, x∗) = u(x(t; t∗, x∗), t), t ≥ t∗. Thus

d

dt
w(t; t∗, x∗) = −µ∗(x(t; t∗, x∗))w(t; t

∗, x∗)

+ 4 b(2x(t; t∗, x∗))u(2x(t; t
∗, x∗), t), t > t∗,

w(t∗; t∗, x∗) = u(x∗, t
∗),

(2.2)

and the solution to (2.2) can be written as (see [4])

u(x(t; t∗, x∗), t) = u(x∗, t
∗) exp

{
−
∫ t

t∗
µ∗ (x(τ ; t∗, x∗)) dτ

}
+4

∫ t

t∗
exp

{
−
∫ t

τ

µ∗ (x(s; t∗, x∗)) ds

}
b(2x(τ ; t∗, x∗))u(2x(τ ; t

∗, x∗), τ)dτ, t ≥ t∗.

(2.3)
We propose a numerical method based on a discretization of the integral
representation (2.3) of the solution on a suitable mesh over the time and size
variables.
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We consider the numerical integration of model (1.1)-(1.2) along a finite
time interval [0, T ]. Thus, given a positive integer N , we define the time step
k = T/N , and introduce the discrete time levels as tn = n k, 0 ≤ n ≤ N .

Natural grid methods employ a nonuniform grid, called natural grid,
which was introduced and studied first in [15]. On one hand, it is invariant
due to the autonomous character of the ODE that rules the characteristic
curves, thus we compute this fixed mesh before the time procedure starts.
On the other hand, there exist suitable constants to bound the distance to
the border of the size-interval (see [1]). In this particular case, the explicit
form of the characteristics and the autonomous feature of the problem allow
us to generate the grid easier.

We define the following spatial grid: Xj = exp(−(J − j) k), 1 ≤ j ≤ J ,
where the integer J is chosen in order to satisfy the conditionX1 ≤ K1 k (J >
1− 1

k
log(K1 k), for k small enough), K1 is a suitable constant which does not

depend on k (we refer to [1] for further details on a numerical generation of the
natural grid). Note that the points (Xj, t

n) and (Xj+1, t
n+1), 1 ≤ j ≤ J − 1,

0 ≤ n ≤ N − 1, belong to the same characteristic curve, where the subscript
j refers to the grid point Xj, and the superscript n to the time level tn.

Thus, we denote un
j = u(Xj, t

n), and let Un
j be a numerical approximation

to un
j , 1 ≤ j ≤ J , 0 ≤ n ≤ N . We propose a one-step method in order to

obtain it: starting from an approximation to the initial data (1.2) of the
problem (for instance, the grid restriction of φ), the numerical solution at a
new time level is described in terms of the previous one. Such a general step
is obtained by means of the following first-order discretization of (2.3). For
0 ≤ n ≤ N − 1,

Un+1
j+1 =

(
Un
j + 4 k b(2Xj) Ū

n
2·j
)
exp

(
−k µ∗

j

)
, 1 ≤ j ≤ J − 1, (2.4)

Un+1
1 =

(
Un
1 + 4 k b(2X∗

1 ) Ū
n
2·∗
)
exp (−k µ∗(X∗

1 )), (2.5)

where µ∗
j = µ∗(Xj), 1 ≤ j ≤ J . The points 2Xj, 1 ≤ j ≤ J − 1, do not

belong to the natural grid, then the aproximation to b(2Xj)u(2Xj, t
n) is

given by: b(2Xj) Ū
n
2·j = b(2Xj)U

n
M−1, if there exists M such that XM−1 ≤

2Xj < XM ≤ 1. Otherwise is zero. Notice that the calculus of Un+1
1 is

different because we do not use the value of the solution at the characteristic
curve x = 0. Therefore, we employ an extra grid node X∗

1 = X1 exp (−k).
We take Un

1 as the approximation to u(X∗
1 , t

n), and, Ūn
2·∗ = Un

M−1, where M
is such that XM−1 ≤ 2X∗

1 ≤ XM ≤ 1.

2.2. Upwind method (UM)

The following scheme is a finite difference method based on an upwind
technique. Again, we consider the numerical integration of model (1.1)-(1.2)
along a finite time interval [0, T ].
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First, we introduce a uniform grid on the size interval. Let J be a positive
integer, we consider the grid points Xj = j h, 1 ≤ j ≤ 2 J , where h = 1

2 J
is

the mesh size. Now, we fix a constant r ∈ R, and k = r h, thus N = [T/k],
and introduce the discrete time levels as tn = n k, 0 ≤ n ≤ N . Once more,
the subscript j refers to the grid point Xj, and the superscript n to the time
level tn.

Again, we denote un
j = u(Xj, t

n), and let Un
j be a numerical approxima-

tion to un
j , 1 ≤ j ≤ 2 J , 0 ≤ n ≤ N . As in the previous procedure, we

consider an approximation to the initial data (1.2) (again, the grid restric-
tion of φ is valid). Now, we propose the following one step method that is
obtained by discretizating the derivatives in (1.1) in the following way: for
0 ≤ n ≤ N − 1,

Un+1
j − Un

j

k
+Xj

Un
j − Un

j−1

h
= −µ∗

j U
n
j + 4 b2 j U

n
2 j, j = 2, . . . , 2 J, (2.6)

where µ∗
j = µ∗(Xj), bj = b(Xj), 1 ≤ j ≤ 2 J . As in the previous scheme, we

do not use the value at x = 0, therefore we compute an approximation to
u(X1, t

n+1) by means of the discretization of (2.3), in which the integral terms
inside the exponential are approximated using the rectangule rule based on
t = tn+1,

Un+1
1 = Un

1 exp {−k µ∗
1}+ 4 k b2 U

n+1
2 . (2.7)

Remark 1. We want to highlight that both schemes preserve the non neg-
ativity property of the biological model. This feature is not conserved by
other numerical methods adapted to the problem as, for example, the one
that discretize with implicit upwind procedures.
Remark 2. The fact that the support of b belongs to [0, 1] makes formu-
lae in (2.4) and (2.6) to be implemented in a different way when the term
b(2x)u(2x, t) vanishes (2x > 1).

3. Convergence Analysis

In this section, we carry out the convergence analysis of the schemes. It
is based on their consistency and stability properties.

3.1. Natural grid method

If u is the solution to problem (1.1)-(1.2), we define

un = (un
1 , . . . , u

n
J), un

j = u(Xj, t
n), 1 ≤ j ≤ J, 0 ≤ n ≤ N.

We can write the numerical scheme as Un+1 = A(k)Un, 0 ≤ n ≤ N − 1,
where A(k) = (aij)

J
i,j=1 is a sparse matrix: at each row, there are at most
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two nonzero entries. That is, for 1 ≤ j ≤ J − 1, aj+1,j = exp (−k µ∗
j), and,

when there exists M such that XM−1 ≤ 2Xj < XM ≤ 1, then aj+1,M−1 =
4 k b(2Xj) exp (−k µ∗

j). In the case of the first row, which has a different
formula, a11 = exp (−k µ∗(X∗

1 )), and a1,M−1 = 4 k b(2X∗
1 ) exp (−k µ∗(X∗

1 )),
where M is such that XM−1 ≤ 2X∗

1 < XM ≤ 1. Of course, U0 is the vector
with the initial approximation to φ in (1.2).

Thus we define, on the one hand, the local discretization error, τ n+1 =
(τn+1

1 , . . . , τn+1
J ), 0 ≤ n ≤ N − 1 as given by

τ n+1 =
1

k

(
un+1 −A(k)un

)
, 0 ≤ n ≤ N − 1. (3.1)

On the other hand, the global discretization error as En = (En
1 , . . . , E

n
J ),

En
j = un

j − Un
j , 1 ≤ j ≤ J , 0 ≤ n ≤ N . Thus,

En+1 = A(k)En + k τ n+1, 0 ≤ n ≤ N − 1.

The consistency analysis and the boundness of ∥A(k)∥∞ will give us the
convergence. For a vector v = (v1, . . . , vJ), we denote by ||v||∞ its maximum
norm. Henceforth, C will denote a positive constant which is independent
of k, n (0 ≤ n ≤ N) and j (1 ≤ j ≤ J); C possibly has different values in
different places.

Lemma 1 (Stability). Let µ∗ have bounded and continuous first derivatives
on (0, 1] and b bounded on (0, 1]. Then

∥A(k)∥∞ ≤ 1 + C k, (3.2)

for k enough small.

Proof : ∥A∥∞ is defined as

∥A(k)∥∞ = max
1≤i≤J

{
J∑

j=1

|aij|

}
.

Therefore,

∥A(k)∥∞ ≤ max

{
e−k µ∗(X∗

1 ) (1 + 4 k b(2X∗
1 )),

max
1≤i≤J∗−1

{
e−k µ∗

i (1 + 4 k b(2Xi))
}
, max
J∗≤i≤J−1

{
e−k µ∗

i
}}

,
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where J∗ is the minimum index that satisfies 2XJ∗ ≥ 1. Function µ∗ is
continuously differentiable and b is bounded, so

e−k µ∗
i ≤ 1 + C k and 4 k b(2Xi)) ≤ C k, 1 ≤ i ≤ J,

and we conclude the estimate (3.2). In fact, if ν(x) = 0, we could bound
e−k µ∗

i ≤ 1, 1 ≤ i ≤ J .

Lemma 2 (Consistency). Let µ∗, b have bounded and continuous first deriva-
tives on (0, 1], and u have Lipschitz continuous first derivatives on (0, 1] ×
[0, T ]. Then, as k → 0, the following estimates hold

||τ n+1||∞ = O(k), 0 ≤ n ≤ N − 1. (3.3)

Proof : From equations (2.4)-(2.5), we can write the components of the local
discretization error as

τn+1
1 =

1

k

(
un+1
1 − (un

1 + 4 k b(2X∗
1 ) ū

n
2·∗) e

−k µ∗(X∗
1 )
)
, (3.4)

τn+1
j+1 =

1

k

(
un+1
j+1 −

(
un
j + 4 k b(2Xj) ū

n
2·j
)
e−k µ∗

j
)
, 1 ≤ j ≤ J − 1.

(3.5)

If we use equation (2.3) in (3.4), we obtain

τn+1
1 =

1

k

(
u(X1 e

−k, tn) exp

{
−
∫ tn+1

tn
µ∗ (x(τ ; tn, X1 e

−k)
)
dτ

}

+4

∫ tn+1

tn
exp

{
−
∫ tn+1

τ

µ∗ (x(s; tn, X1 e
−k)
)
ds

}
b(2x(τ ; tn, X1 e

−k))u(2x(τ ; tn, X1 e
−k), τ)dτ

−
(
un
1 + 4 k b(2X1 e

−k) ūn
2·∗
)
e−k µ∗(X1)

)
.

Due to the regularity hypothesis on µ∗, b and u, the convergence properties of
the rectangular quadrature rule, the mean value theorem and that X1 ≤ C k,

|τn+1
1 | ≤ 1

k

∣∣u(X1 e
−k, tn)− u(X1, t

n)
∣∣ e−k µ∗(X∗

1 )

+
1

k
u(X1 e

−k, tn)

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(τ ; tn, X1 e

−k)
)
dτ

}
− e−k µ∗(X∗

1 )

∣∣∣∣∣
+
4

k

∣∣∣∣∣
∫ tn+1

tn
exp

{
−
∫ tn+1

τ

µ∗ (x(s; tn, X1 e
−k)
)
ds

}
b(2x(τ ; tn, X1 e

−k))u(2x(τ ; tn, X1 e
−k), τ)dτ
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−k exp

{
−
∫ tn+1

tn
µ∗ (x(s; tn, X1 e

−k)
)
ds

}
b(2X1 e

−k)u(2X1 e
−k, tn)

∣∣∣∣∣
+ 4

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(s; tn, X1 e

−k)
)
ds

}
− e−k µ∗(X∗

1 )

∣∣∣∣∣ b(2X1 e
−k)u(2X1 e

−k, tn)

+ 4 e−k µ∗(X∗
1 )
∣∣b(2X1 e

−k)u(2X1 e
−k, tn)− b(2X1) ū

n
2·∗
∣∣

≤ C

k
X1

(
1− e−k

)
(1 + C k) + C k + C (1 + C k)X1

(
1− e−k

)
≤ C k. (3.6)

Now, we use equation (2.3) in (3.5) to obtain

τn+1
j+1 =

1

k

(
u(Xj, t

n) exp

{
−
∫ tn+1

tn
µ∗ (x(τ ; tn, Xj)) dτ

}
− un

j e
−k µ∗

j

+4

∫ tn+1

tn
exp

{
−
∫ tn+1

τ

µ∗ (x(s; tn, Xj)) ds

}
b(2x(τ ; tn, Xj))u(2x(τ ; t

n, Xj), τ)dτ

−4 k b(2Xj) ū
n
2·j e

−k µ∗
j

)
, 1 ≤ j ≤ J − 1.

And, with the use of the same previous arguments and taking into account
that Xj+1 −Xj ≤ C k, 1 ≤ j ≤ J − 1, we arrive at

|τn+1
j+1 | ≤

1

k
u(Xj, t

n)

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(τ ; tn, Xj)) dτ

}
− e−k µ∗

j

∣∣∣∣∣
+
4

k

∣∣∣∣∣
∫ tn+1

tn
exp

{
−
∫ tn+1

τ

µ∗ (x(s; tn, Xj)) ds

}
b(2x(τ ; tn, Xj))u(2x(τ ; t

n, Xj), τ)dτ

−k exp

{
−
∫ tn+1

tn
µ∗ (x(s; tn, Xj)) ds

}
b(2Xj)u(2Xj, t

n)

∣∣∣∣∣
+ 4

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(s; tn, Xj)) ds

}
− e−k µ∗

j

∣∣∣∣∣ b(2Xj)u(2Xj, t
n)

+ 4 e−k µ∗
j b(2Xj)

∣∣u(2Xj, t
n)− ūn

2·j
∣∣

≤ C k. (3.7)

Thus, inequalities (3.6)-(3.7) allow us to arrive to the estimation (3.3)
In the following result, we prove the convergence of the numerical method.
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Theorem 3 (Convergence). Under the hypotheses of Lemma 2, if ∥E0∥∞ =
O(k), as k → 0, then

∥En∥∞ = O(k), 0 ≤ n ≤ N, (3.8)

as k → 0.

Proof : From the definition of the global discretization error, we have

En = A(k)En−1 + k τ n = A(k)n E0 + k

n−1∑
l=0

A(k)l τ n−l, 1 ≤ n ≤ N.

Thus

∥En∥∞ ≤ (∥A(k)∥∞)n ∥E0∥∞ + k
n−1∑
l=0

(∥A(k)∥∞)l ∥τ n−l∥∞, 1 ≤ n ≤ N.

Therefore, the use of (3.2) and (3.3), produces (3.8).

3.2. Upwind method

Now, we define, again,

un = (un
1 , . . . , u

n
2 J), un

j = u(Xj, t
n), 1 ≤ j ≤ 2 J, 0 ≤ n ≤ N,

where u is the solution to problem (1.1)-(1.2). We write the numerical scheme
as Un+1 = A(k, h)Un, 0 ≤ n ≤ N − 1, where A(k, h) = (aij)

2 J
i,j=1 is again

a sparse matrix, in this case with at most three non zero entries at each
row. It is defined as, for 2 ≤ j ≤ 2 J , ajj = 1 − k (j + µ∗

j), aj,j−1 = j k;
and for 2 ≤ j ≤ J , aj,2 j = 4 k b2 j. The values in the first row, which
employs a different formula, are given by a11 = exp (−k µ∗

1) + 8 k2 b2, a12 =
4 k b2 (1− k (2 + µ∗

2)) and a14 = (4 k)2 b2 b4. Of course, U0 is the vector with
the initial approximation to φ in (1.2).

Thus, we define again the local discretization error, τ n+1 = (τn+1
1 , . . . , τn+1

2 J ),
0 ≤ n ≤ N − 1 as

τ n+1 =
1

k

(
un+1 −A(k, h)un

)
, 0 ≤ n ≤ N − 1, (3.9)

and the global discretization error as En = (En
1 , . . . , E

n
2 J), E

n
j = un

j − Un
j ,

1 ≤ j ≤ 2 J , 0 ≤ n ≤ N . Then,

En+1 = A(k, h)En + k τ n+1, 0 ≤ n ≤ N − 1.

And, we carry out the consistency analysis and the boundedness of ∥A(k, h)∥∞
to obtain the convergence. For a vector v = (v1, . . . , v2 J), we denote by ||v||∞
its maximum norm. From now on, C will denote a positive constant which
is independent of k, n (0 ≤ n ≤ N) and h, j (1 ≤ j ≤ 2 J); C possibly has
different values in different places.
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Lemma 4 (Stability). Let µ∗ have bounded and continuous first derivatives
on (0, 1], b bounded on (0, 1], and r a fixed constant, 0 < r ≤ 1, with k = r h.
Then

∥A(k, h)∥∞ ≤ 1 + C k. (3.10)

Proof : ∥A∥∞ is defined as

∥A(k, h)∥∞ = max
1≤i≤2 J

{
2 J∑
j=1

|aij|

}
.

Therefore,

∥A(k, h)∥∞ ≤ max
{
e−k µ∗

1 + 8 k2 b2 + 4 k b2 (1− k (2 + µ∗
2)) + (4 k)2 b2 b4,

max
2≤i≤J

{|1− k (i+ µ∗
i )|+ k (i+ 4 b2 i)},

max
J+1≤i≤2 J

{|1− k (i+ µ∗
i ))|+ k i}

}
.

On the one hand, we have that function µ∗ is continuously differentiable and
b is bounded, so

e−k µ∗
1 + 8 k2 b2 + 4 k b2 (1− k (2 + µ∗

2)) + (4 k)2 b2 b4 ≤ 1 + C k.

On the other hand, the boundedness of µ∗ and b and the property r ≤ 1
allows us to write

|1− k (i+ µ∗
i ))|+ k (i+ 4 b2 i) = |(1− k i)− k µ∗

i )|+ k (i+ 4 b2 i)

≤ 1 + k |µ∗(xi)|+ 4 k b2 i

≤ 1 + C k.

And, by means of the same argument,

|1− k (i+ µ∗
i )|+ k i ≤ 1 + C k,

which concludes with the estimate (3.10).

Lemma 5 (Consistency). Let functions µ∗ and b be C1((0, 1]), k = r h,
and let u have Lipschitz continuous first derivatives in (0, 1]× [0, T ]. Then,
as k → 0, the following estimates hold

||τ n+1||∞ = O(k), 0 ≤ n ≤ N − 1. (3.11)
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Proof : From (2.6)-(2.7) we can write

τn+1
1 =

1

k

(
un+1
1 −

(
exp (−k µ∗

1)u
n
1 + 4 k b2 u

n+1
2

))
, (3.12)

τn+1
j =

un+1
j − un

j

k
+Xj

un
j − un

j−1

h
−
(
µ∗
j u

n
j + 4 b2 j u

n
2 j

)
, j = 2, . . . , 2 J,

(3.13)

Thus, from equation (3.13) we arrive at

τn+1
j = (ut)

n
j +Xj (ux)

n
j + µ∗

j u
n
j − 4 b2 j u

n
2 j

+

∫ 1

0

(ut(Xj, t
n + θ k)− ut(Xj, t

n)) dθ,

+Xj

∫ 1

0

(ux(Xj + σ h, tn)− ux(Xj, t
n)) dσ, j = 2, . . . , 2 J.

and, due to the smoothness properties of u, we have

|τn+1
j | ≤ C (k + h), j = 2, . . . , 2 J. (3.14)

Finally, from equations (2.3) and (3.12), we have

τn+1
1 =

1

k

(
u(X1 e

−k, tn) exp

{
−
∫ tn+1

tn
µ∗ (x(τ ; tn+1, X1)

)
dτ

}
− exp (−k µ∗

1)u
n
1

+ 4

∫ tn+1

tn
exp

{
−
∫ tn+1

τ

µ∗ (x(s; tn+1, X1)
)
ds

}
b(2x(τ ; tn+1, X1))u(2x(τ ; t

n+1, X1), τ)dτ

−4 k b2 u
n+1
2

)
.

Next, we use the regularity properties of µ∗, b and u, the convergence prop-
erties of rectangular quadrature rules and the mean value theorem to obtain

|τn+1
1 | ≤ 1

k

(
u(X1 e

−k, tn)

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(τ ; tn+1, X1)

)
dτ

}
− exp (−k µ∗

1)

∣∣∣∣∣
+ exp (−k µ∗

1)
∣∣u(X1 e

−k, tn)− un
1

∣∣)
+

4

k

(∫ tn+1

tn
exp

{
−
∫ tn+1

τ

µ∗ (x(s; tn+1, X1)
)
ds

}
b(2x(τ ; tn+1, X1))u(2x(τ ; t

n+1, X1), τ)dτ

− k b2 u
n+1
2

)
.

≤ C k. (3.15)

Then (3.14)-(3.15) produce the estimate (3.11).
In the following result, we prove the convergence of the numerical method.
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Theorem 6 (Convergence). Under the hypotheses of Lemma 5, if ∥E0∥∞ =
O(k), as k → 0, then

∥En∥∞ = O(k), 0 ≤ n ≤ N, (3.16)

as k → 0.

Proof : From the definition of the global discretization error, we have

En = A(k, h)En−1 + k τ n = A(k, h)nE0 + k

n−1∑
l=0

A(k, h)l τ n−l, 1 ≤ n ≤ N.

Thus

∥En∥∞ ≤ (∥A(k, h)∥∞)n ∥E0∥∞ + k
n−1∑
l=0

(∥A(k, h)∥∞)l ∥τ n−l∥∞, 1 ≤ n ≤ N.

Therefore, the use of (3.10), (3.11) and k = r h produces (3.16).

4. Numerical experiments

We have checked experimentally both numerical methods. The following
experiment shows their optimal rate of convergence and allows us to compare
their efficiency.

In this first experiment, we suppose that µ(x) = ν(x). This situation
also includes the case in which there is neither cellular death (µ(x) = 0)
nor migration (ν(x) = 0). Now, following the work in the case of a positive
minimal division size [4], we take the size-specific division rate function as

b(x) = 26 x3 (1− x)3 , 0 < x ≤ 1,

and the initial data employed in [3] with m = 4

φ(x) = C (1− x)x3 sin (π (4x+ 1) + 1), 0 < x ≤ 1,

where C is chosen to obtain max0≤x≤1 (φ(x)) = 1.
We have carried out an extensive simulation with both numerical schemes

(UW and NGM) for different values of the discretization parameters. In this
experiment we compute the solution until the final time T = 1. In this test
problem, we do not know the analytical solution so, in order to compare
with the numerical solution, we take as the exact solution the computed
approximation with a sufficiently small value of the size step k (and h where
it is necessary). We have employed k∗ = 2.441406e − 4 in the case of the

13



natural grid method (NGM), and h∗ = k∗ = 3.05176e − 5 for the upwind
method (UM).

With respect to the natural grid method, for each k, we compare at every
time step tn = n k, 0 ≤ n ≤ N , the numerical solution computed by the
NGM, Un

k , 0 ≤ n ≤ N , with the representation of the solution corresponding
to k∗ at the coarsest grid obtained with k, and the corresponding time levels
tn: Ũ

n

k . This is made with the global error computed as,

ek = max
0≤n≤N

∥Un
k − Ũ

n

k∥∞.

Left-hand side plot in Figure 1 shows the error obtained with the values
of k = 6.25e − 2, k = 3.125e − 2, k = 1.5625e − 2, k = 7.8125e − 3,
k = 3.90625e − 3, k = 1.95313e − 3 and k = 9.76563e − 4 (dashed line).
Experimentally, we observe that the NGM is a first-order method, verifying
the theoretical analysis made in Theorem 3.
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Figure 1: Global error plots.
On the left: Errors obtained with the NGM (dashed line). Solid line shows order 1.
On the right: Errors obtained with the UM with different values of r (dashed lines). Solid
line shows order 1.

In the case of the upwind method, for each h and k, we compare at every
time step tn = n k, 0 ≤ n ≤ N , the numerical solution computed by the UM,
Un

k,h, 0 ≤ n ≤ N , with the representation of the solution corresponding to
h∗ and k∗ at the coarsest grid obtained with h and k, and the corresponding
time levels tn: Ũ

n

k,h. This is made with the global error computed as,

ek,h = max
0≤n≤N

∥Un
k,h − Ũ

n

k,h∥∞.

Right-hand side plot in Figure 1 shows the results obtained with different
values of r and different values of k ( r = 1: k = 1.95313e−3, k = 9.76563e−
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4, k = 4.88281e−4, k = 2.44141e−4, k = 1.22070e−4 and k = 6.10352e−5;
r = 0.5: k = 9.76563e−4, k = 4.88281e−4, k = 2.44141e−4, k = 1.22070e−
4, k = 6.10352e − 5 and k = 3.05176e − 5; and r = 0.25: k = 9.76563e − 4,
k = 2.44141e−4, k = 1.22070e−4, k = 6.10352e−5, and k = 3.05176e−5).
Note that the method is of first-order, experimentally, corroborating the
theoretical analysis demonstrated in Theorem 6. Besides, we have observed
that the method is not able to obtain the solution of the problem when the
CFL condition is not satisfied. This situation is shown in Lemma 4, where
the condition r ≤ 1 is needed for the convergence of the method.

In order to compare the efficiency of the numerical methods, it is usual to
analyze it through log-log efficiency charts: the vertical axis corresponds to
the error and the horizontal axis is the computational cost. So, for different
values of the discretization parameters, we plot the error produced by the
corresponding approximation versus the computational effort required. In
Figure 2, we show efficiency plots for the numerical methods. In the plot on
the left, we compare the UM results for different values of r. We observe that
the most efficient relationship among k and h is r = 1. Then, in the plot
on the right, we compare the results obtained with the NGM and the values
collected with such a best relationship of the spatial and time discretization
parameters (r = 1) in the UM. It is clear that this best relationship in the
UM is more efficient than the NGM.
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Figure 2: Efficiency plots.
On the left: UM with different values of r.
On the right: UM solid line (r = 1), NGM dashed line.

We also consider a second experiment in which we analyze the dynamics
of the solution depending on the mortality and migration rates, therefore
we consider µ(x) = ν(x) + C, C ∈ R, in order to see the different behavior
in the population. We do not modify the other functions in the previous
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experiment. The hypotheses that allow the population to arrive to a stable
situation (extinction) were introduced in [14]. However, other situations were
not studied theoretically. Here, we have carried out an extensive simulation
with both numerical schemes for a long time integration. Numerically, we
have observed only two possible behaviors depending on C: extinction or an
unbounded population. More precisely, for different values of the parameter
C ∈ [−2, 4], we have computed tup: the time at which the approximated
total population is higher than 1e + 20 (unbounded solution), or tdown: the
time at which it is lower than 1e − 20 (extinction). Figure 3 shows these
times (tup or tdown) obtained by means of the UM with k = 6.1035e− 05 and
r = 1 (NGM provides similar values). We observe a change in the dynamics
of the solution for an estimated value of the parameter C∗ ≈ 0.261. As a
conclusion, the balance in the population ruled by the partial differential
equation (1.1) allows us to assure extinction for C > C∗ and an unbounded
population for C < C∗.
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Figure 3: Behavior of the solution depending on C. tup (solid line): time at which the
approximated total population is higher than 1e+20 (unbounded solution). tdown (dashed
line): time at which it is lower than 1e−20 (extinction). Time is represented in logarithm
scale.

Finally, we declare that all the calculations were carried out using double
precision arithmetic on a personal computer with i7-4790 CPU.

5. Conclusions

The study of cell populations by means of the use of structured population
models, and their numerical simulation, are current and important topics.

In this work, we deal with a specific problem that describes the dynamics
of a size-structured cell population, in which the reproduction process is
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considered to be by division into two equal parts. A remarkable point is
that the division of all-sizes cells is allowed. This characteristic enables to
consider the phenomena of ”dwarfism” and its application to the description
of the dynamics of thalassemia disease.

Its mathematical description is based on an initial value problem for a first
order partial differential equation without boundary conditions, because the
recruitment is made by either fission or other mechanisms that could occur
within an open system (controlled by ν(x)). We have designed two numerical
methods to attain the solution to such model. They are based on proposals
that we developed previously in the case of the existence of a positive minimal
size of division. To our best knowledge, they are the only numerical meth-
ods considered in the literature for this model. Both of them are specially
adapted to the features of the model and prevent the use of the values at the
characteristic x = 0, in contrast with other general numerical techniques as,
for instance, general finite difference and finite element methods.

The proposed schemes are based on different procedures. On one hand,
the integration along the characteristic curves of the problem with the use
of the natural grid. On the other hand, a finite different method (with an
upwind technique). Both are completely analyzed: we have proved their
first-order convergence using their consistency and stability properties. Also,
we carried out numerical experimentation that corroborates our theoretical
results. The comparison of both methods shows that, for this problem, the
first order UM with r = 1 offers much better approximations than the NGM
at the same computational cost. Finally, these methods allow to describe the
dynamics of the solution.

Acknowledgments

Authors are very grateful to the referees for their careful reading of the
original manuscript and their aid to improve it.

This work was supported in part by projects MTM2014-56022-C2-2-P
and MTM2017-85476-C2-1-P of the Spanish Ministerio de Economı́a y Com-
petitividad and European FEDER Funds. Also by project VA138G18 of
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