Coordinatively unsaturated \([\text{RhCp}^*\text{Rf}_2]\) (\(\text{Cp}^* = \text{C}_5\text{Me}_5; \text{Rf} = \text{C}_6\text{F}_3\text{Cl}_2-3,5\)), general precursor to \(\text{Cp}^*\)-Diaryl and \(\text{Cp}^*\)-Halo-Aryl \(\text{Rh}^{\text{III}}\) complexes. Observing and testing the effect of \(\text{Cp}^*\) as electronic-buffer

Marconi N. Peñas-Defrutos, Camino Bartolomé,* Pablo Espinet*

IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071-Valladolid (Spain)
E-mail: espinet@qi.uva.es

http://gircatalisishomogenea.blogs.uva.es/

Supporting Information Placeholder

ABSTRACT: The pentacoordinated \([\text{RhCp}^*\text{Rf}_2]\) (\(\text{Rf} = \text{C}_6\text{F}_3\text{Cl}_2-3,5\)) and the octahedral (\(\mu\)-\text{Cl})\(_2\)[\text{RhCp}^*\text{Rf}]., obtained by stoichiometric rearrangement with (\(\mu\)-\text{Cl})\(_2\)[\text{RhCp}^*\text{Cl}], are general precursors of \([\text{RhCp}^*\text{Rf}L]\) (\(X = \text{Rf}, \text{Cl}; L = \text{ligand}\)) complexes, which were studied by NMR (L dissociation and fluxional processes) and X-ray diffraction (structural effects affecting the \(\text{Rh–Cp}^*\) distances) techniques. The \(\text{Rh–Cp}^*\)centroid distance decreases markedly for identical \(L\) in the order \([\text{RhCp}^*\text{Rf}_2L]\) > \([\text{RhCp}^*\text{RfClL}]\) > \([\text{RhCp}^*\text{ClL}]\), and are further influenced regularly within each family by the \text{trans influence} of \(L\) (longer distances for higher \text{trans influence} of \(L\)). The structural effects observed reveal a remarkable capability of \(\text{Cp}^*\) to act as an electron-density buffer, which attenuates the \(\text{Rh}\) electron density variations induced by the substituents in front of \(\text{Cp}^*\) by releasing towards \(\text{Rh}\) or polarizing towards \(\text{Cp}^*\), at demand, electron density of the \(\text{Rh–Cp}^*\) bonds. This buffer-effect explains the easy \(L\) dissociation from \([\text{RhCp}^*\text{Rf}_2L]\) and the accessibility to formally 16e pentacoordinated \([\text{RhCp}^*\text{Rf}_2]\).

INTRODUCTION

Pentamethylecyclopentadienyl (\(\text{Cp}^*\)) rhodium and iridium complexes, having as main precursor the dimer (\(\mu\)-\text{Cl})\(_2\)[\text{MCp}^*\text{Cl}]. (\(M = \text{Rh}, \text{Ir}\)), were first made available by the group of Maitlis, by a reaction involving Dewar hexamethylbenzene ring contraction.\(^1\) The synthesis was later improved to a procedure based on the deprotonation of pentamethylecyclopentadiene, which requires reflux for 21–48 h.\(^3\) A modern modification using microwave techniques has reduced this time to 5-10 minutes.\(^4\) More recently a similar procedure giving rapid access to ring substituted (\(\mu\)-\text{Cl})\(_2\)[\text{MCp}^*\text{Cl}]. (\(\text{Cp}^* = \text{C}_5\text{Me}_4\text{R}\)) complexes has been reported.\(^5\) The \(\text{MCp}^*\) moiety provides remarkable stability, solubility, easy NMR observation, and crystallinity to their complexes while the other three coordination positions are available to reactivity. Many recent catalytic studies confirm the present interest in \(\text{MCp}^*\) complexes,\(^6\) amongst them their use in \(\text{C–H}\) activation processes.\(^7\)

\(\text{RhCp}^*\) complexes are very predominantly octahedral 18e molecules, but a few have been reported that are pentacoordinated \([\text{RhCp}^*(\text{L–L}')]\) and contain a L-L' chelate ligand with the \(\text{RhLL'}\) metallacycle laying in a coordination plane perpendicular to the \(\text{Cp}^*\) plane. The first paper on such species was the catecholate complex \([\text{RhCp}^*(\text{O}_2\text{C}_6\text{H}_4)]\), which exhibited deep blue color due to ligand-to-metal charge transfer (LMCT).\(^8\) A number of related \([\text{RhCp}^*(\text{E}_2\text{C}_6\text{H}_4)]\) (\(E = \text{O, S, NR}\)) complexes have been reported since then (Figure 1, A).\(^9\) These formally 16e complexes are in fact stabilized by \(\pi\)-donation from lone pairs on \(E\), as identified by NBO analysis of some of the diamiido complexes.\(^10\) This means that it is more correct to say that they are not true 16e complexes, although they can function in some respects as if they were. For instance, pentacoordinated \(\text{MCp}^*\) (\(M = \text{Rh, Ir}\)) complexes with chelate ligands combining amido-amino or amido-pyridyl groups (Figure 1, B) have been thoroughly studied in the group of Carmona, both structurally and in their interesting reactivity towards small molecules (\(\text{CO, H}_2, \text{ethylene}\)).\(^11,12,13,14\) The reactions start by coordination of the small molecule (while the amido group retracts its lone electron pair) to give an octahedral intermediate.\(^15\) A similar analysis had been applied earlier to explain the stability of a T-shaped tricoordinated \(\text{[Pd}^\text{II}(\text{amido})\text{XL}]\) complexes.\(^16\) The reactions start by coordination of the small molecule (while the amido group retracts its lone electron pair) to give an octahedral intermediate.\(^15\) A similar analysis had been applied earlier to explain the stability of a T-shaped tricoordinated \(\text{[Pd}^\text{II}(\text{amido})\text{XL}]\) complexes.
The deep garnet 16e complex [RhCp*Rf][AgAr] is a pseudo-pentacoordinated RhCp* complex with aryl ligands. Compared to common aryl ligands, haloaryls provide higher stability, slower reactivity, and easy 19F NMR observation useful for mechanistic and structural studies. Interesting examples of multicyclic with haloaryls in rhodium(III) are the dianion [Rh(C6F5)2]3− and the homoleptic complex [Rh(C6Cl3)2], which were prepared using lithium or, respectively, magnesium reagents. Another complex is octahedral with κ(C)Cl-chelating C6Cl3 groups, [Rh(C6F5)2]3−, which has a square pyramidal structure. The reason for this stable pentacoordination was not discussed in the original paper, although probably the electronic richness of the dianionic Rh destabilizes the empty 4d and 5p orbitals of Rh enough as to make the metal center a very poor electrophile towards further coordination.

Compounds combining two organometallic functionalities, Cp* and R, are less common. Eighteen-electron [RhCp*RXL] (R = alkyl, aryl) complexes with piano-stool structures have been obtained by very different routes such as: alkyl transfer from Mg2+ or B2− derivatives; oxidative addition of C6F5I to isodperfluorocarbons to Rh complexes; and thermal or photochemical activation of perfluorobenzene. Some 18e [RhCp*Me2L] complexes have also been reported: [RhCp*Me2L] (L = DMSO, PPh3, dppe), using Al2Me6 as methylating agent, and [RhCp*Me2L] (L = DMSO, CO), derived from them by reaction with arenes (releasing methane), or aldehydes (releasing additionally DMSO and producing CO derivatives).

Formally sixteen-electron pentacoordinated complexes with two carbyl ligands, [RhCp*R2], are a rarity. A singular bis-organic compound [RhCp*(C6H5-4-OMe)2], defined as 16e pseudo-aromatic has been reported. Pentacoordinated bisarylated RhCp*Ar2 derivatives have not been reported until our recent communication of 16e [RhCp*Ar2] (Ar = C6F5 = PF; Ar = C6F5Cl2 = Rf). Finally, one amido-type C,N-cycloometallated complex [RhCp*(C=N)]6 and a cationic [RhCp*(C=O)] where a 2,6-dimesitylenenaphthenolate ligand displays mesityl Cl π-coordination to Rh, have also been published.

Coming back to our 16e [RhCp*Ar2] complexes, they were obtained using as arylating agent the corresponding [AgAr]nNCMe compound and (μ-Cl)[RhCp*Cl2](1), taking advantage of the insolubility of silver halides (Scheme 1).26,27 The deep garnet 16e complex [RhCp*PF2] (2) was directly obtained from the reaction, while the corresponding 18e yellow [RhCp*PF2(NCMe)] (3) was obtained in the same reaction conditions (Scheme 1) where the Rh center is slightly more acidic with Pf as aryl and retains the acetonitrile coming with the silver reagent. Deep garnet 16e [RhCp*PF2] can be obtained from 3 by controlled heating to eliminate the coordinated MeCN.

The Lewis acidity of [RhCp*Rf]. Synthesis of dialkyl RhCp* octahedral complexes. The reactivity of 2 with neutral or anionic ligands is shown in Scheme 2. Overall the reactions suggest a latent weak and soft acidic behavior towards sixth coordination (for instance, THF does not coordinate but tetrahydrothiophene does). Although the formal oxidation state of the metal center is RhIII, the Cp* group is strongly electron donor and the aryl groups are also strong σ donors compared to halides, which makes the RhIV center in 2 relatively electron rich. In fact, it refuses to coordinate weak donor ligands with hard donor atoms such as THF or OH2 that, however, coordinate to other RhIII cationic systems with higher electrophilicity. In contrast, 2 accepts stronger and softer neutral ligands to give the corresponding isolable complexes 4-10.

RESULTS AND DISCUSSION

The Lewis acidity of [RhCp*Rf]. Synthesis of dialkyl RhCp* octahedral complexes. The reactivity of 2 with neutral or anionic ligands is shown in Scheme 2. Overall the reactions suggest a latent weak and soft acidic behavior towards sixth coordination (for instance, THF does not coordinate but tetrahydrothiophene does). Although the formal oxidation state of the metal center is RhIII, the Cp* group is strongly electron donor and the aryl groups are also strong σ donors compared to halides, which makes the RhIV center in 2 relatively electron rich. In fact, it refuses to coordinate weak donor ligands with hard donor atoms such as THF or OH2 that, however, coordinate to other RhIII cationic systems with higher electrophilicity. In contrast, 2 accepts stronger and softer neutral ligands to give the corresponding isolable complexes 4-10.

The molecular structure of [RhCp*Rf₂(PPH₃)] (6), depicted in Figure 2, shows that the two aryl rings are non-equivalent. Those of [RhCp*Rf₂(py)] (5), [RhCp*Rf₂(AsPh₃)] (7) and [RhCp*Rf₂(tht)] (8) are shown in Figures S2, S5, and S6, respectively.

The reaction of [RhCp*Rf₂(CNxylyl)] (2) with CO or CNXYlyl gives [RhCp*Rf₂(CO)] (9) or [RhCp*Rf₂(CNXYlyl)] (10), respectively. Both complexes are remarkably stable and do not show any sign of ligand dissociation in solution. The isocyanide complex is also resistant to migratory insertion and to nucleophilic attack by NHMe₂. In the IR spectra complex 9 shows an intense band at νCO = 2064 cm⁻¹ (νCN = 2143 cm⁻¹ in free CO), and complex 10 one at νCN = 2151 cm⁻¹ (νCN = 2120 cm⁻¹ in free CNXYlyl). The meaning of these values is commented later.

The X-ray diffraction structures of [RhCp*Rf₂(CO)] (9) (Figure 3, left) and [RhCp*Rf₂(CNXYlyl)] (10) (Figure 3, right) confirm the expected coordination of the ligands.

The coordination of the entering ligands is instantaneous in all the reactions performed (Scheme 2), always accompanied by the same dramatic color change from the deep garnet of [RhCp*Rf₂] (2) to orange or yellow, depending on the ligand used (Figure S13). A strong LMCT band at 505 nm (molar extinction coefficient = 780 M⁻¹ cm⁻¹) is responsible for the color of 2 but it is absent in the 18e complexes. UV-vis data in CH₂Cl₂ for 2 and 9 are given in the SI.

All the complexes 4-8 and 11-13, show dichroic behavior in solution due to dissociation equilibria (Eq 1). Their ¹⁹F NMR spectra show that, at low temperature (below 250 K) these equilibria are highly displaced to the left (only the non-dissociated [RhCp*Rf₂L]) is observed. This large equilibrium shift with temperature supports that the ΔHᵣᵣ contribution to ΔGₑᵣ is unexpectedly small in general, and the equilibrium displacement is largely under entropy control. This provokes that, for instance, the solutions in CH₂Cl₂ of [RhCp*Rf₂(NCMe)] (4) are deep garnet (color corresponding to large dissociation to 2) at room temperature, but become yellow (color of complex 4) at low temperature (200 K). The apparently thermochromic behavior of 4 is in reality the effect of temperature on the concentration of the 5- and 6-coordinate species in solution.¹⁵

For the PPh₃ (6) or AsPh₃ (7) complexes the spectroscopic studies by ¹H, ¹⁹F, and (when available) ³¹P NMR show that the exchange rates of equilibrium are slow at room temperature in the NMR timescale. The three components of the equilibrium can be individually observed at room temperature and integrated. The slowness of the process preserves the coupling...
constants through the Rh–L bonds that are broken. In addition, broadening of some bands reveal fluxional phenomena associated to restricted rotation, which were studied at variable temperature. As the most informative case, the behavior of the PPh₃ complex 6 is discussed. The case of 7 is very similar.

Figure 5 shows the ¹⁹F NMR spectra of a solution of 6 in CD₂Cl₂ at different temperatures At 305 K (blue spectrum) the F₆ and F₇ signals of 6 and the coordinatively unsaturated 2 can be distinguished separately, with integration of the corresponding peaks affording 2:6 = 1:3 ratio. This is confirmed in the ³¹P spectrum where free and coordinated PPh₃ are observed in the same 1:3 ratio and the coordinated PPh₃ signal is a doublet (Jₚₚ₈₉ = 142.8 Hz). However, only one broad F₆ and one sharp F₇ signals are observed, indicating that the two non-equivalent RF groups seen in the X-ray structure of 6 (Figure 2) are being interconverted (still too slowly for the F₆ signal).

At 200K (red spectrum) the signals of 2 are not observed, and only coordinated PPh₃ is shown in the ³¹P spectrum, confirming total equilibrium displacement towards [RhCp*RF₆(PPh₃)] (6). Interestingly, the fluxional processes affecting the molecule at 305 K have been frozen efficiently at 200K, and the ¹⁹F NMR spectrum has collapsed to the pattern predicted for a structure with two non-equivalent RF groups: two F₆ signals, and four F₇ signals, revealing that the non-equivalent RF groups can only tilt around the RF–Rh bond but full rotation is hindered. Consequently the two non-equivalent F₆ atoms on each RF group are give rise to four signals. Restricted rotation around the Rh–PPh₃ is confirmed in the aromatic region of ¹H NMR spectra at 200 K (Figure S3). Other restricted rotations about M–PR₃ bonds in stereochemically crowded systems have been reported, and activation barriers to M–Cipso rotation in different fluoroaryl complexes have been studied. The only movement that remains fully active at 200 K is Cₚ–Rh rotation, which produces five equivalent Me groups, in contrast with the solid-state condition. The large difference between the chemical shifts of the F₆ signals for the two components (about 10 ppm) is noticeable, and it is always observed for all the coordinatively saturated [RhCp*RF₆L] complexes synthesized.

Figure 5. ¹⁹F NMR spectra of [RhCp*RF₆(PPh₃)] (6) in CD₂Cl₂ at different temperatures. An expansion of the F₆ region is shown in the frame.

At 250 K (Figure 5, green line) the ¹⁹F NMR spectrum shows that ligand dissociation has already become very thermodynamically disfavored, to the point that only 6 is observed. The two F₆ singlets, very close in chemical shift, are already above their coalescence temperature showing a slightly broadened signal. The F₇ signals are not observed because they are in the range of their coalescence temperature. At 305 K these signals have already coalesced to a broad singlet.

The dissociation equilibrium for the py complex 5 is much faster (Figure S1). This complex, as well as 9 and 10, having ligands with less steric requirement, show free rotation of the RF group at least down to 200K. Some spectroscopic studies are provided in the SI.

Synthesis of monoarylated derivatives (µ-Cl)₂[RhCp*RF₆] (14) and [RhCp*RF₆L] (15-19). Whereas different procedures for the synthesis of aryl halo complexes [RhCp*RXL] have been reported, none of them affords a general precursor. Having observed fast aryl exchange between [RhCp*Ar₂] complexes, catalyzed by syn-(µ-OH)₂[RhCp*RF₆], we hypothesized that complex [RhCp*RF₆] (2) should be a good arylationating candidate to transfer an aryl group to Rh₁₁1 halo derivatives. Indeed, the reaction of 1 with (µ-Cl)₂[RhCp*Cl₆] yields quantitatively (µ-Cl)₂[RhCp*RF₆] (14) (Scheme 3). In view of the transition state for Ar/OH transmetallation calculated in our previous study, anti-(µ-Cl)(µ-Rf) [RhCp*RF₆]Cl can be proposed as transmetallation transition state for RF/Cl rearrangement.

Scheme 3. Symmetrization between [RhCp*RF₆] and (µ-Cl)₂[RhCp*Cl₆] to obtain monoarylated compounds.

The molecular structure of complex 14 is shown in Figure 6. The asymmetric unit is only one-half of the dimer. The RF aryls are mutually anti in the crystal studied. This is the only isomer observed by ¹H and ¹⁹F NMR in solutions made at 213 K in CDCl₃, confirming that the whole solid is anti. Upon warming, a syn:anti = 1:7 equilibrium is formed, and the unequivocal assignment of the signals of both isomers could be made (Figure 7). In CDCl₃ the equilibrium ratio is different (syn:anti = 1:2.4) due to the change of solvent polarity.

Figure 6. X-Ray structure of anti-(µ-Cl)₂[RhCp*RF₆]Cl (14). H atoms omitted for clarity. Selected bond lengths (Å): Rh(1)–C(11)
Bridge splitting with different ligands (L = CO, CNXylyl, py, PPh3, AsPh3) leads to [RhCp*RfClL] complexes (15-19). These were characterized by NMR spectroscopy and by single crystal X-Ray diffraction studies (Figures S9-S13).

Interestingly, attempts at producing [RhCp*RfClL] failed for L = MeCN or X. Although these ligands formed [RhCp*Rf2L] complexes and the Rh center in 14 might be expected to be more acidic (the substitution of one Rf for one more electronegative Cl increases the acidity of the sixth coordination position), the splitting of the Cl bridges in the dimer is thermodynamically unfavorable for these weak ligands. In contrast the reaction works for stronger σ-donor ligands, including isocyanide, yielding complexes 16-18. The case is less clear for L = CO when weak σ-donation needs to be synergistically reinforced with strong back-donation. The fact is that coordination of CO in 19 is easily reversed under vacuum, regenerating 14, in contrast to the high stability of 9 in the same conditions.

The suspect that the Rh center should be less electron rich and more acidic in [RhCp*RfClL] than in [RhCp*Rf2L] complexes might be examined looking at the ν(CN) or ν(CO) stretching frequencies in the corresponding complexes. For the isocyanide complexes the νCN wavenumbers follow the trend [RhCp*Cl(CNXylyl)]10(2172 cm⁻¹) > [RhCp*RfCl(CNXylyl)] (2159 cm⁻¹) > [RhCp*Rf2(CNXylyl)] (2151 cm⁻¹), which confirm that the higher νCN appear when coordinated to the expectedly less electron rich Rh center. This is also the case for the trend in carbonyl complexes ([RhCp*Cl2(CO)] does not exist): [RhCp*RfCl(CO)] (2067 cm⁻¹) > [RhCp*Rf2(CO)] (2064 cm⁻¹). Yet the very small variation in wavenumbers is a bit surprising and its meaning will be considered later in the paper.

The NMR behavior of the [RhCp*Rf2L] complexes and their [RhCp*RfClL] analogs confirms many similarities but also reveals some unexpected differences. For instance, the restriction to RF rotation observed in the biaryl complex with PPh3 (6) upon cooling also operates in the mono-aryl complex 16, as observed in Figure 8, in this case at room temperature. At variance with 6, where only were JMe,p = 2.8 Hz and JRh,p = 142.8 Hz are detected, in complex 16 JMe,p = 3.2 Hz and JRh,p = 144.2 Hz, but also JFo,Rh = 6.0 Hz and JFp,Rh = 19.3 Hz coupling to one of the two non-equivalent F’s are observed. This coupling system gives rise to the doublet of doublets in Figure 8. The observation of the two additional couplings in 16 is somehow in line with the expectations of stronger Rh–L bonds compared to 6, even if the increase of coupling constant values is minimal. Perhaps the more striking evidence is that PPh3 dissociation equilibrium in CD2Cl2 is measurable for 6 and undetectable for 16. Assuming that a signal of 2% intensity might be detected by NMR this roughly suggests that the stability of 16 vs. 14 is at least about 3 kcal mol⁻¹ higher than the stability of 6 vs. 2. Due to the very different structures of 2 and 14 this estimated ΔGdis difference cannot be attributed to the different strengths of the corresponding Rh–PPh3 bonds.
ences mentioned, reveal interesting variations as the number of electronnegative Cl (chloro) groups increases. For L = py, the Rh–L distance progressively decreases, as expected. For PPh₃ and AsPh₃, the effect is almost negligible. For the strong π acceptor CO and CNXylyl ligands, the bond length increases. This can be understood as an effect of increasing electrophilicity of the metal center when more electronnegative Cl (chloro) groups replace good σ-donor RF groups. The progressive replacement is favorable for σ-donating ligands (entry 5), detrimental for large π-back-acceptor ligands (entry 1 < entry 2), and almost neutral for ligands with both components more balanced (entries 3 and 4).

<table>
<thead>
<tr>
<th>Entry</th>
<th>L</th>
<th>RhCp*RF₂L</th>
<th>RhCp*RFClL</th>
<th>RhCp*Cl₂L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO</td>
<td>1.879(5)</td>
<td>1.907(7)</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>CNXylyl</td>
<td>1.935(3)</td>
<td>1.949(5)</td>
<td>1.9675(14)</td>
</tr>
<tr>
<td>3</td>
<td>PPh₃</td>
<td>2.3482(12)</td>
<td>2.3505(6)</td>
<td>2.3439(5)</td>
</tr>
<tr>
<td>4</td>
<td>AsPh₃</td>
<td>2.4580(11)</td>
<td>2.4555(3)</td>
<td>2.4440(13)</td>
</tr>
<tr>
<td>5</td>
<td>py</td>
<td>2.155(3)</td>
<td>2.152(4)</td>
<td>2.127(2)</td>
</tr>
</tbody>
</table>

Table 1. Rh–L bond distances (Å) in [RhCp*RF₂L], [RhCp*RFClL], and [RhCp*Cl₂L] complexes.

Remarkable role of Cp* as electron-density buffer. The availability of a high number of structures from the previous sections allows us to make some structural observations that can be analyzed qualitatively assuming that the structural features observed are the consequence of each molecule having achieved its optimal electron-density distribution. Basically, it is the electron density in orbitals in the valence shell that is involved. We propose as a simple approximation that a 18e transition metal center, contributing to the system many electrons and a nucleus with many protons, is very much defining its own electronic density contour, which will not be prone to be much altered upon coordination or dissociation of one ligand, if ligands facilitating delocalization and polarization are accessible to keep this density contour more constant. This is exactly the basis of the structural trans influence phenomenon (strong σ donors elongate the bonds in trans position to their coordination positions), studied mostly in square-planar Pt⁶ complexes. In fact this trans influence was explained by a polarization theory as early as 1935. Applied to octahedral complexes [RhCp*X₃L] (X² = RF₂, RFCl, Cl₂) the Rh center will tend to minimize externally induced electron density changes, by polarizing electron density through their bonds to these ligands. Note that in this qualitative approach we are not specifying orbitals, and we are considering the electron density as a whole being susceptible of delocalization and polarization.

With these simple premises in mind we can check, to start with, how the 5-coordinate complexes 2 (an atypical example of A in Figure 1), and 20 (a typical example of B in Figure 1) respond to the incorporation of an entering ligand (Scheme 4). Complex 2 is an example 5-coordination stabilized by two strongly σ-donor RF ligands; it is likely that the fluorinated aryl will be only scarcely able to provide some π donation to Rh, and this is why we call it atypical compared to the so far available 5-coordinate complexes A. Complex 20, however, produces important π donation from the amido N atom to Rh, which is reflected in an appreciable shortening of the N–Rh bond. Both complexes, 2 and 20, have their octahedral partners with the ligands Cl⁻ (chloride) or CNXylyl. The N–Rh distance in 20 (1.98 Å) elongates to 2.11 Å (a single N–Rh bond distance) in 21–22 upon ligand coordination. In contrast, L coordination to 2 scarcely affects the RF–Rh bond distances in 10–11: the most different RF–Rh distances, 2.06 and 2.11 Å, are found in the octahedral complex 10, while the distances in the pentacoordinated 2 are 2.06 and 2.07 Å. All these Rh–C distances are consistent with single bonds as reported for fluoroaryl-Rh⁴⁰ complexes.

Table 4. Coordination of Cl⁻ or CNXylyl to two kinds of pentacoordinated RhCp* complexes.

Table 2 collects the Rh–Cp*centroid distances (distances to the geometrical center of the Cp*) for the six complexes in Scheme 4 and highlight how much they change upon coordination of Cl⁻ or CNXylyl (Ad). Comparing entries 2 and 5, corresponding to Cl⁻ coordination, we see that Ad is close to zero in 21 but quite large (0.090 Å) in 11. We could say that, as the Cl⁻ nucleophile approaches Rh, complex 21 fully compensates the additional electron density brought to Rh by the entering Cl⁻ by giving back to N the π electron density that had been delocalized into Rh to stabilize complex 20. This electron density returns to the most stable N orbital and the overall electronic effect on Rh is almost neutral. For the better donor CNXylyl in 22, this compensation is not enough and the Rh atom polarizes some additional electron density towards Cp*, which elongates the Rh–Cp*centroid distance, as shown in Table 2. For complexes 11 and 10 the coordination of L produces in both cases much larger elongations of the Rh–Cp*centroid distance, suggesting that the RF group is simply a strong σ-donor that cannot respond to L coordination, and all the electron-density compensation around Rh has to be made by delocalizing and polarizing more electron density of the Rh–Cp* bonds (which involve soft π and π* aromatic Cp* orbitals) towards Cp*.
Since Cp* undergoes free rotation in solution (interconverting their five C atoms), and also in order to simplify the comparison of data, we decided to use Rh–Cp* centroid distances for the analysis of the X-ray characterized RhCp* complexes, as applied above and later. However, the whole set of X-ray structures available shows that the five C atoms of Cp* can be far from being equidistant from Rh. Moreover, they show distances that can be related to the structural effect associated to the well-known trans influence of ligands, observed in square planar complexes. For instance, in complex [RhCp*RF2(tht)] (8) the X-ray structure shows two slightly different molecules. The data for one of them (the other is similar) has a Cp* carbon atom almost exactly trans to the S atom of tht, with \(d_{\text{Rh-C}} = 2.191(4)\) Å. Each position trans to the RF carbons is almost the center of the bond of a pair of Cp* carbon atoms, with distances \(d_{\text{Rh-C}} = 2.256(4), 2.253(4)\) Å for one pair, and \(d_{\text{Rh-C}} = 2.235(5), 2.222(4)\) Å for the other. The largest distances are found trans to the RF groups, which have higher trans influence than tht.

We examine now the wide collection of Rh–Cp* centroid data gathered in Figure 10, including data for [RhCp*RF2(L)], [RhCp*RCI(L)], and [RhCp*Cl(L)] complexes. Note that all the complexes are octahedral but their precursors differ: Complex 2 is pentacoordinated and L coordination only requires a structural rearrangement, but complexes 1 and 14 are octahedral with Cl-bridges and L coordination requires splitting these bridges, which is somehow equivalent to a ligand substitution reaction. Upon L coordination to the octahedral complexes 1 and 14 the Rh atom will lose electron density from the bridging Cl (which was acting as the 2e ligand making the split bond) and will gain electron density from the new incoming 2e L ligand, hence it looks reasonable that in these two series the Rh center should gain less electron density upon L coordination than in the octahedral complexes derived from the pentacoordinated 2. In order to keep relatively unaltered the electronic density around Rh, a structural change occurs in the three cases, affecting the Rh–Cp* centroid distance. As expected, the elongation of the Rh–Cp* centroid distance in the complexes derived from 2, which have gained more incoming electron density upon L coordination, is larger than in those originated by bridge-for-L substitutive-splitting. In fact, this is clearly observed comparing the initial step of the three lines in Figure 10.

Figure 10. Plot of Rh–Cp* centroid distances in complexes reported in this paper (blue and red lines) or in the literature (green line).

On the other hand, we could expect that the ligands donating more overall electron density to Rh should produce also longer Rh–Cp* centroid distances, more or less following the order of trans influence series available in the literature. In fact this is the case in the three series. Moreover, after the first step the three series run reasonably parallel. Overall, it seems that the relationship between Rh–Cp* centroid distance and ligand trans influence makes much sense. Finally, the relative positions of the three series clearly reflect the expected decrease in overall electron density donated by the R or X groups and the L ligand (overall electron density RhRF2L > RhRCI(L) > RhCl2), which is compensated on Rh by producing shorter Rh–Cp* centroid distances as Rf groups are replaced by more electronegative Cl (chloro) groups. Other examples in the literature fit this analysis. For instance, the Rh–Cp* centroid distance is larger in [RhCp*PhCl(PPh3)] than in [RhCp*RCI(PPh3)] (16) (1.887(4) Å vs. 1.854(2) Å); or in [RhCp*Mes(s-DMSO)] than in [RhCp*RF2(tht)] (8) (1.890(4) Å vs. 1.871(4) Å).

All the data discussed so far are not in contradiction with the initial proposal that the RhIII center in RhCp* complexes is comfortable with an electron density environment that will be kept fairly constant as much as their ligands allow for structural changes that minimize the effect of the disturbing forces. In this respect, the π-bonded ligands provide a higher flexibility because they can rearrange electron density in the molecule with less energetic cost. As we have seen, the π electron density of the Namiho-Rh bond is the first resource used by Carmo’s complex 20 to accommodate the entering ligand and keep the electronic density in the proximity of the Rh center with just little variation. When this is not possible (as in our complexes), or when it is not sufficient, the abundant and soft π electron density of Cp* is easily delocalized and polarized towards the Cp* domain to produce a similar effect. Thanks to this high polarizability, Cp* is able to behave as a powerful electron-density buffer, simply by changing the bond distances to Rh. The practical consequence of this is that the loss of electron density around the metal center upon dissociation of one ligand from the 18e octahedral complex can be attenuated by shortening the Rh–Cp* centroid distance. In other words, the hypothetical 18e/16e switch in the electron count around Rh does not represent the real variation and dissociative processes (the usual way octahedral processes start their reactions) are facilitated in RhCp* complexes compared to RhCp homologues because Cp* is better donor than Cp.

This electronic-buffer effect can be compared to the well known “indenyl effect”, thoroughly examined in the last two decades of the 20th century. It was proposed to explain how 18e indenyl complexes undergo associative ligand substitution reactions much faster than their cyclopentadienyl homologues. The main reason is that the indenyl complexes can facilitate the attack of nucleophiles without increasing the electron count on the metal center, by means of an easy slippage of the metal from η^5- to η^6-bonded; this slippage is energetically compensated in part by the increase of aromaticity in the six-membered ring and avoids a much higher in energy 20e transition state. The cyclopentadienyl (Cp) complexes probably follow a similar pattern but, lacking this possibility of aromaticity compensation, have much higher activation energy val-
ues for associative processes. However, Cp* is richer in electron density and softer than Cp and, according to our analysis, the Cp* complexes do have an efficient way to mitigate large changes of electron density in the valence shell of Rh by shifting the Cp* ring closer or farther away from Rh, as required (Scheme 5).

![Scheme 5](image)

Scheme 5. "18e to 18e" structural conversions facilitating ligand association (Left: indenyl effect, Rh slippage) or dissociation (Right: Cp* buffering compensation).

CONCLUSIONS

The *functionally 16e* [RhCp*RF₂] complex is an excellent starting material to obtain clean and selectively many bisarylated compounds. The comproportionation reaction between [RhCp*RF₂] and (μ-Cl)_2[RhCp*Cl]₂ leads to the dimer (μ-Cl)₂[RhCp*RF₂], which is precursor of monoa rylated [RhCp*RCIL] complexes. The study of many X-ray molecular structures offers data to observe structural effects in octahedral [RhCp*RF₂L] and [RhCp*RFCL] complexes. The analysis of the structures available suggests that the overall electron density changes, induced by the ligands (RF, Cl, L) additional to Cp*, are counterbalanced by variations of Rh–Cp* bond distances that delocalize and polarize the electron density of the Rh–Cp* bonds, from or towards the Cp* group. This is the expected structural effect of the *trans influence* of the ligands, which translates the electronic polarization of a L–M bond to the M–L bond in trans position. This structural effect is also produced upon exchange of RF (more donor) for Cl (chloro, more electronegative) groups, which shortens the Rh–Cp* distance as the number of more electronegative Cl groups increases. Thus, an interesting feature of the *buffer effect* of Cp* is that it provides infrequent experimental observations of the structural *trans influence* of ligands in octahedral complexes.

The reactivity of 18e octahedral complexes, usually starting by L dissociation, is facilitated by the high buffer effect of Cp*. This is clearly supported by the fact that L dissociation from [RhCp*RF₂L] is very efficient for ligands that, in other circumstances, should require very different dissociation energies. Furthermore, a most interesting extrapolation for reactivity is that the buffer effect of Cp* should be able to influence reactions occurring at the other side of the molecule. It is reasonable to suggest that, in reactions taking place in the three reactive positions in front of Cp*, the energy differences between intermediates and transition states may be somehow shortened by influence of the *buffer effect*, and reactions occurring on RhCp* complexes might benefit from lower activation energies than, for instance, reactions occurring on RhCp moieties.

ASSOCIATED CONTENT

Supporting Information

PDF (36 pages): Synthesis and full characterization of the complexes, additional data and X-ray structures. The Supporting Information is available free of charge on the ACS Publications website.

The crystallographic data for this paper, CCDC 1833306-1833319, are freely available from the Cambridge Crystallographic Data Centre.

AUTHOR INFORMATION

Corresponding Authors

* Pablo Espinet phone (+34)983186336; e-mail, espinet@qi.uva.es; web, http://cinquima.uva.es
* Camino Bartolomé (experimental): phone (+34)983184521; e-mail, caminob@qi.uva.es

ORCID

Pablo Espinet: 0000-0001-8649-239X
Camino Bartolomé: 0000-0002-8492-6825
Marconi N. Peñas-Defrutos: 0000-0003-4804-8751

Author Contributions

All the authors have contributed to the manuscript and have given approval to the final version.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Thanks are given to the Spanish MINECO projects CTQ2016-80913-P, CTQ2014-52796-P, and CTQ2017-89217-P; the Junta de Castilla y León (V051P17); and the Spanish MECD for a FPU grant (M. N. Peñas-Defrutos).

DEDICATION

We are very happy to congratulate Ernesto Carmona, an outstanding example of the best Inorganic and Organometallic Spanish Chemistry, on occasion of his birthday. He may be officially 70 from now on, but he is functionally 40 in research.

REFERENCES

24 Gómez, M.; Kisenyi, J. M.; Sunley, G. J.; Matílis, P. M. Reaction of the rhodium and iridium complexes [C(Me)5Me2(MeSO)] with aldehydes to give [C(Me)5MeM(MeR)(CO)]J. Organomet. Chem. 1985, 296, 197–207.

31 The silver complexes [Ag(FCI)] and [Ag(FCI)2] have been used before to obtain pentafluorophenyl complexes of several metal centers, including RhIII and RhI: (a) García, M. P.; Jiménez, M. V.; Lahoz, F. J.; Oro, L. A. Synthesis and Reactivity of Mononuclear Anionic Pentafluorophenyl Compounds of Rhodium(I) and Iridium(I). X-ray Structure of [(P(OPh)Me)2RhAg(PhF)] Inorg. Chem. 1995, 34, 2153–2159. (b) Bennett, R. L.; Bruce, M. I.; Gardner, R. C. F. Polyfluoroaromatic derivatives of metal carbonyls. Part IX. Reactions of pentafluorophenysilven(I) with some transition-metal halogeno-complexes; oxidative-addition reactions of the complex carbonyl(pentafluorophenyl)bis(triphenylphosphine)iridium(I). J. Chem. Soc., Dalton Trans. 1973, 2653–2657.

32 The C donor atom in these aryls has not lone pairs but only the aromatic ν electron density of the PF or RF ring to stabilize pentacoordination versus octahedral coordination, if the strongly electron withdrawing F substituents permit.

33 For instance, although the electronegativity of CF3 has been compared to that of Br, C3F7 shows a large trans influence in many X-ray structures of Pd complexes, while Br has a low trans influence.

35 The concept thermochromism is usually applied to color changes provoked by temperature changes due to phenomena conserving basically unaltered the molecular structure, which is not the case.

36 Ligand dissociation was reported for the related 16e complex [RhCp*(O2CCH3)] (O2CCH3 = catecholate) and its 18e L complexes [RhCp*(O2CCH3)L]X. In that case, however, the coupling constants through the P–Rh bond were lost at room temperature (at 60 MHz) for L = PPh3, but retained for L = P(η5-C5H5).

38 Espinet, P.; Albéniz, A. C.; Casares, J. A.; Martinez-Illarduya, J. M.

42 A similar observation was reported for [RhCp*(CsF)x(PMe3)] (X = Cl): (a) References 19 and 21c.

43 The Cl (chloro) groups, which count for the RhII oxidation state, should not be mistaken with the Cl (chloride) anionic ligand. The former contributes only 1e to the bond electron pair shared with rh and, being Cl more electronegative, formation of this bond diminishes the electron density on Rh. The later contributes the 2e to bond formation, and one negative charge to the complex, increasing the electron density on Rh as any other donating ligand.

45 Therrien, B.; Burrell, A. K. Di-chloro[η5-pentamethyl-cyclo-penta

51 Hypothetically some aromatic electron density from the C6F5Cl1-3,5 ring might be used to increase the Rh–RF bond order in complex 2 and then be recovered in 11 and 10, but the electronegative substituents make unlikely this contribution to be significant. Moreover, the large
Rh–Cp* centroid elongation observed confirms that it absorbs all the effect of ligand coordination. The location of the CO ligand is problematic due to strong σ,π synergistic effects upon coordination to different centers but, in the references given above, its position in the series is in coincidence with its position in Figure 10.