
REVIEW

Boundaries of air mass trajectory clustering: key points
and applications

I. A. Pérez1
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Abstract Calculating air mass trajectories is common in

atmospheric analyses. However, if explainable results are

to be achieved, several procedures are needed to process

the vast amount of information handled. Clustering meth-

ods are statistical tools usually considered for such a pur-

pose. Although they are based on rigorous algorithms,

certain questions still remain when these methods are

applied. The current review is organised in sections

according to the sequence followed by such procedures.

First, the types of clustering methods are described, with

their core being the distance used. One key point is the

stopping rule, which determines the final number of clus-

ters. A simple classification based on this number is then

suggested. Finally, the graphical presentation of the results

is examined and the main drawbacks are commented on. A

range of applications and results are considered to illustrate

each section, and certain caveats and recommendations are

also presented.

Keywords Airflow � Atmospheric science statistics �
Cluster analysis � Trajectory classification � Transport

patterns

Introduction

Since the atmosphere is not at rest, the effects of air masses

on receptors such as materials or living beings are deter-

mined by air mass history. When air masses travel over the

sea, they are loaded with moisture, whereas those moving

over the continent are drier (Sun et al. 2007).

Moreover, transport corridors of dirty and clean air may

be identified, since pollutants may be injected when air

masses sweep over sources such as cities or industrial

facilities, and pollutants are recorded at distant regions

from sources. Hence, the history of air masses needs to be

investigated, for which purpose calculating their trajectory

proves a suitable tool.

Two types of sites have been the object of such analyses.

The first comprises remote areas where measurements are

scarce or are assumed to be clean (Xu et al. 2011), and the

second comprises areas that are especially polluted (Lv

et al. 2015).

Although calculating trajectories complicates air mass

analysis, this additional effort is necessary in certain situa-

tions, such as the precise determination of sources linked to

singular events like volcanic eruptions (Karasiński et al.

2014) or pollen peaks (Lu et al. 2010). In fact, air mass

trajectory calculation has been used in several applications

and is a useful complement in atmospheric analyses (Pérez

et al. 2015a).

Different models have been employed to determine air

pollutant sources and atmospheric patterns such as the

FLEXible TRAjectory model, FLEXTRA (Stohl 1999),

recently used by Saini et al. (2014) to investigate air quality

in Agra, India, or the METeorological data Explorer,

METEX model (Zeng et al. 2010), applied by Kuramoto

et al. (2008) to study snowfall in the Japanese Alps, and by

Reddy et al. (2008) to analyse the characteristics of air
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mass trajectories over the Bay of Bengal. However, the

Hybrid Single Particle Lagrangian Integrated Trajectory

Model, HYSPLIT (Draxler et al. 2014), is the most widely

used model.

Isolated trajectories are frequently considered when

investigating the source of certain atmospheric compounds

such as aerosols (Freitas et al. 2009) or spores (Hermansen

and Torp 1981). In similar cases, the origin of air masses

may easily be determined (Egebäck et al. 2004). One

advantage of this kind of analysis is the detailed tracing of

the air mass trajectory evolution. One example is presented

by Zhao et al. (2011) who, with a 10-day analysis, con-

cluded that the arid regions of Central Asia were the main

pollution source during this period at the remote site of

Mount Bogda, China. Another important application is

provided by Niemi et al. (2006), who considered six

sampling periods to investigate background composition at

a rural site in southern Finland, with the corresponding

trajectories being grouped into two opposite directional

patterns.

However, air mass trajectories form the main part of

certain analyses. In such situations, different procedures

should be considered to handle the significant amount of

data provided by the models. Three methods are currently

used: trajectory sector analysis, the potential source con-

tribution function and trajectory cluster analysis (Li et al.

2012a).

This paper focuses on cluster analysis, which comprises

a range of statistical techniques aimed at grouping similar

objects. Its main advantage is that it replaces large numbers

of observations with few groups. However, several diffi-

culties are inherent in the process and the procedure is by

no means easy since some elaboration is needed. More-

over, it is not a particularly fast method, especially when a

lot of information is involved. Finally, results need to agree

with observations. Continued use of this procedure in the

future is ensured thanks to the varied applications of the

HYSPLIT model, which also allows clustering of

trajectories.

Bearing in mind these difficulties, the current study

analyses different applications following the clustering

procedure employed to form groups, the distance used to

merge the air mass trajectories, the stopping rule that

determines the end of the process and the final number of

clusters considered. The main drawbacks involved are

also discussed. Although reviews about air mass trajec-

tories, such as Kulshrestha and Kumar (2014), are avail-

able, the current analysis emphasises the clustering

procedure and shows its strengths and weaknesses. Since

air mass trajectories may be applied in a range of fields,

the present paper is not focused on specific processes or

chemicals.

Clustering procedures

Since air trajectories are a kind of time series, certain

clustering methods of time series may be used for trajec-

tories (Warren Liao 2005). One early application of such a

procedure was presented by Moody and Galloway (1988)

to investigate the relationship between atmospheric flow

patterns and precipitation composition in Bermuda. Clus-

tering procedures may be divided into two kinds of groups,

hierarchical and non-hierarchical methods.

Hierarchical methods

Donnelly et al. (2015) considered such a method to

investigate the effects of long range transport on PM10 and

NO2 concentrations in Ireland. They assumed an initial

number of clusters equal to the total number of trajectories.

They then merged two trajectories in one cluster following

a minimum distance calculation and followed the same

procedure until the last two clusters were merged. The

process must be stopped at a certain stage if useful infor-

mation is to be obtained.

Several similar procedures have been developed and

used. Kalkstein et al. (1987) evaluated three clustering

methods (Ward’s, average linkage and centroid) for clas-

sifying meteorological data and reported noticeable con-

trasts among the final groupings. Ward’s method (Ward

1963) produced groups with a similar size, its main dis-

advantage being that unequal observations may be found in

the same cluster. The centroid method produced contrast-

ing clusters, with one group being very large and many

groups containing only single observations. This study

concluded that the most realistic groupings and most

appropriate combinations of data were obtained by the

average linkage procedure.

Despite these drawbacks, Ward’s method was used by

Eneroth et al. (2003) to reveal the source regions and

transport pathways affecting Svalbard. They observed high

CO2 concentrations attributed to transport over Europe and

Siberia during winter, whereas low CO2 concentrations

were linked with trajectories from the Atlantic. Addition-

ally, Liu et al. (2013) applied the same technique to

identify the transport pathways responsible for elevated

pollutant concentrations in urban Lanzhou, China. Her-

nández-Ceballos et al. (2015) selected this procedure to

investigate the impact of weather conditions on airborne

pollen levels in south-western Spain due to the lack of

previous knowledge available on the number of clusters to

describe pollen variability.

Cape et al. (2000) considered the average linkage

method to classify trajectories at Mace Head, Ireland, fol-

lowing the prevailing weather conditions, although they
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needed to exclude observations affected by local pertur-

bations. Pérez et al. (2012) used the same method to

analyse CO2 transport during the night at a rural site in

northern Spain. Seven clusters were selected whose ranges

covered different directions and distances. Another appli-

cation is presented by Han et al. (2015), who considered six

groups of air masses and their ozone concentrations at an

observatory in the East China Sea.

Hierarchical methods may be suitable with a low num-

ber of observations. However, they evidence one notice-

able inconvenience, since calculation time may increase

substantially when handling a high number of trajectories.

Consequently, they must be replaced by alternative algo-

rithms when large databases are used. Another disadvan-

tage of these procedures is that reassigning each element to

another cluster is not possible (Seibert et al. 2007).

Non-hierarchical methods

The k-means procedure is an example of this kind of

clustering method (MacQueen 1967). It was considered by

Stock et al. (2014) to investigate the sources of aerosols in

the European Arctic. In this case, air masses from Europe

are not important. However, transport from the eastern

Arctic is linked to Arctic haze, and air masses from Siberia

and the central Arctic were responsible for increased

aerosol optical depth.

Dorling et al. (1992) detailed this procedure to cluster

3-day air mass trajectories reaching Eskdalemuir, south

Scotland, with the aim of investigating the relationship

between pollutant concentrations and synoptic meteorol-

ogy. They used a large number of seed trajectories to begin

the procedure. Each real trajectory was assigned to its

closest seed trajectory. Average trajectories were calcu-

lated in each group, and groups were reconsidered until all

the trajectories were correctly distributed. Two clusters

with the closest average trajectories were then merged, and

the procedure continued until the conclusion, which was

determined by a stopping rule. This paper is the basis of

numerous studies, although a brief comment is provided for

only a few. Cristofanelli et al. (2013) identified five cir-

culation patterns affecting Mt. Portella, Italy. They con-

cluded that transport from the Mediterranean Sea resulted

in decreasing O3 concentrations. Shi et al. (2014) formed

six groups of air masses affecting precipitation at the

Huangshan mountain range, China and found that trajec-

tories from Mongolia were liked to highly polluted rain-

water. Dimitriou et al. (2016) considered seven categories

of atmospheric trajectory patterns and linked them to

mortality levels in England.

One method modifying this was suggested by Mattis

(2001), who replaced the real seed trajectories of Dorling’s

procedure with synthetic seed trajectories, which lead to

fast convergence since they uniformly cover the whole

spread of the back trajectories. This procedure was

employed by Jorba et al. (2004) to investigate air masses

reaching the Barcelona area, Spain, and their seasonal

evolution.

Borge et al. (2007) considered a non-hierarchical algo-

rithm and proposed a two-stage clustering approach to

overcome the strong influence of trajectory length in the

usual one-stage cluster analysis, where short trajectories

are grouped, even if they come from a large variety of

regions, whereas long trajectories are disaggregated, even

if they come from the same region. In this procedure, short

trajectory clusters were first identified, then grouped and

finally re-analysed.

The main inconvenience of non-hierarchical procedures

is the influence of seed trajectories, which are fixed during

the process.

Finally, a combination of hierarchical and non-hierar-

chical approaches has been proposed in certain studies. Zhu

et al. (2011) considered hierarchical clustering as the first

stage when defining the number of clusters and their mean

trajectories, which acted as seeds for the second stage, the

k-means clustering stage.

The distance used

Distance measures the similarity or dissimilarity between

trajectories. The Euclidean distance between each air mass

trajectory and the cluster mean has often been used to

group trajectories, such as in Rozwadowska et al. (2010),

who investigated the influence of air mass trajectories on

aerosol optical properties at Svalbard. Moreover, Dimitriou

and Kassomenos considered this distance in several recent

studies focusing on particulate matter. The first investigates

its sources in two German cities (Dimitriou and Kas-

somenos 2014a), whereas a further two analyses identify

particulate matter sources in five major cities in northern

Europe: London, Paris, Hamburg, Copenhagen and

Stockholm (Dimitriou and Kassomenos 2014b), and four

large cities in southern Europe: Lisbon, Madrid, Marseille

and Rome (Dimitriou and Kassomenos 2013).

One noticeable drawback of using only geographical

coordinates in distance calculation is that similar shaped

trajectories are merged, whereas some important variables

are ignored. Mace et al. (2011) added the chemistry from

carbon monoxide data to propose an algorithm aimed at

being more informative and involving a low level of

subjectivity.

Engler et al. (2012) used a general expression of the

Euclidean distance including the following four variables:

geographical latitude and longitude, height above ground

and pseudo potential temperature, which were multiplied
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by certain weights to make them equitable magnitudes.

This procedure was used to study PM10 concentration in

Leipzig, Germany, the conclusion being the convenience of

local, national and international reduction measures to

avoid exceedances of the daily limit value.

A similar equation was used by Pérez et al. (2015b) to

investigate the seasonal evolution of the airflow pattern in

the northern plateau of the Iberian Peninsula, although

distances between corresponding points of the trajectories

were calculated using spherical trigonometry. Five clusters

were considered, three of which were associated with long

range transport.

Makra et al. (2013) used the Mahalanobis metric to

investigate transport patterns which impact on PM10 levels

in two cities of Eastern Europe, Szeged, Hungary, and

Bucharest, Romania. They found that long range transport

played a key role in the PM10 concentration measured.

Wang et al. (2006) preferred the angle distance, since

their analysis focused on the direction from which the air

masses reached XiAn, China. This distance has been applied

in several recent studies. Byčenkien_e et al. (2014) consid-

ered the long range transport of aerosols in the south-eastern

Baltic region and reported a significant contribution of

southern Europe in winter and wildfires in spring. Yan et al.

(2015) investigated the pollution recorded in Beijing, China,

and concluded that the surrounding provinces to the south

and south-west were the major sources.

The stopping rule

Once the clustering process has commenced, the main

question is to decide when it should be stopped. Wilks

(2011) stressed that selecting the best number of clusters is

not obvious, since some subjectivity is required depending

on the goals pursued.

In practice, several procedures have been proposed to

select this optimum number of clusters. One possibility is

based on the increase in the root-mean-square distance

between clusters. Another option is the sharp decrease in

the coefficient of determination, and the third is the number

of clusters containing more than 3 % of total trajectories.

Morgan et al. (2009) used these methods in their study into

the chemical composition of sub-micron aerosols from

north-western Europe and the north-east Atlantic.

Kumar et al. (2011) considered a sharp increase in the

total spatial variance as a stopping rule. This quantity is the

sum of the cluster spatial variances, which were calculated

as the sums of squared distances between the endpoints of

the cluster trajectories and the mean trajectory in each

cluster. Piñero-Garcı́a et al. (2015) used this procedure

when analysing the influence of air masses reaching the

south-east of Spain on aerosol radioactivity.

Another approach is the L-method suggested by Sal-

vador and Chan (2005). In this procedure, the distance or

an evaluation quantity of the clusters is represented versus

the number of clusters. Three regions may be considered in

the resulting curve: a region with a sharp slope to the left, a

curved transition region or the ‘‘knee’’ of the graph, in the

middle, and a nearly flat region to the right. The aim is to

determine the number of clusters associated with the exact

location of the knee, since it represents a balance between

adjacent regions. The L-method fits these adjacent regions

to straight lines, and its intersection determines the number

of clusters. Kassomenos et al. (2010) used this procedure to

identify air masses affecting Athens, Greece, and to com-

pare three clustering methods.

Another procedure, albeit one which is scarcely used, is

silhouette analysis (Rousseeuw 1987), whose peaks reveal

optimum cluster size. This method was used by Notaro

et al. (2013) to investigate dust sources reaching 13 stations

in Saudi Arabia.

Final number of groups of trajectories

Although some subjectivity may be removed in the

aggregation process, cluster analysis is not an objective

method for classification. Sources of subjectivity are the

algorithm selection, the choice of distance and the number

of clusters.

One example which evidences that selecting the cluster

number is not easy is given by Cheng et al. (2013), who

investigated the impact of trans-boundary air pollutant

transport on air quality at Guangzhou in southern China

and tested numbers of clusters ranging from three to seven

in order to choose the number that best represented trans-

port pathways at the site.

Several classifications have been suggested to simplify

the information provided by trajectories. The simplest do

not involve algorithms. Classifications made with geo-

graphical or time criteria are widely used due to the lack of

specific requirements. Additionally, plots are used to

clearly communicate large amounts of information. One

desirable property is that isolated trajectories should not

constitute clusters. Moreover, mean trajectories of clusters

should appear separately so as to clearly reveal the path

followed by the air masses.

Geographical classifications

The simplest classification of air mass trajectories com-

prises only two groups, one example being the classifica-

tion presented by Li et al. (2011a), which focused on the

range and height of the trajectories reaching the measuring

site at a mountain summit in east China.
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Another classification which depends on geographical

criteria is employed by Zhang et al. (2010), who investi-

gated the impact of anthropogenic air pollutants over

Xiaoyangshan Island, East China Sea. Air trajectories

revealed that the most polluted day corresponded to flow

from the continent.

Three groups of air mass trajectories were identified by

Costa et al. (2014) in their analysis of Ethiopian precipi-

tation sources. They found that the main source was the

Indian Ocean, 80 %, followed by the Congo Basin, 13 %

and the Northern Seas, 6 %, over a 12-year period,

2000–2011.

Ma et al. (2013) presented four groups of trajectories to

investigate the transport of polycyclic aromatic hydrocar-

bons (PAH) in Lhasa, China, the first originating from

Southeast Asia, the second from India, the third from

Northwest China and the fourth from West Asia.

Temporal classifications

Limiting the time extension to certain intervals may

sometimes simplify the interpretation of the trajectory plot.

Pavuruli et al. (2010) considered just a few days in early

winter, late winter and summer, to obtain three transport

pathways reaching Chennai, on the southeast coast of

India. Similarly, Prijith et al. (2012) used two periods of air

trajectories, the first and second halves of the campaign, in

their study of the role played by wind parameters in the

long range transport of aerosols over the Bay of Bengal in

winter.

One development from the preceding classification is

formed by trajectories grouped by seasons following the

climate at the site. Co et al. (2014) considered dry, wet and

transitional seasons in northern Vietnam. Similarly,

Yongjie et al. (2009) presented the distribution of trajec-

tories reaching Mount Gongga, China, and concluded that

northeast India is the source of fourteen elements in the

particulate matter recorded in spring and winter.

Clustering procedures as an exploratory analysis

tool

When clustering algorithms are used to explore air mass

trajectories, practical reasons determine the final number of

groups, since only the number of clusters that reveal a

meaningful structure of air mass trajectories should be

accepted.

According to the simplest classification procedures, a

low number of clusters, such as three at most, are some-

times proposed since it proves easiest to explain. Li et al.

(2011b) considered only three clusters whose mean tra-

jectories presented contrasting ranges and directions to

investigate the origin of aerosols in central Asia. Similarly,

Kang et al. (2013) investigated a long-lasting haze episode

in Nanjing, China. In this study, they found three main air

pathways, the first and least frequent was linked to long

range transport processes. The second comprised the

greatest frequency of trajectories. However, the third

pathway, although with an intermediate number of trajec-

tories, was the most noticeable, since many fire spots were

linked with it, implying the partial influence of biomass

burning in the haze pollution episode. Song et al. (2016)

also used three clusters to investigate the long range

transport of air pollutants from atmospheric aerosol anal-

ysis at Jeju Island, Korea.

A lower intermediate number of clusters, such as four or

five, are chosen as a simple option that retains some degree

of detail. Xin et al. (2016) presented a seasonal analysis

where four clusters are considered to investigate transport

pathways at Xining, China. Yang et al. (2014) investigated

the differences between the particulate matter recorded at

an urban and a rural site in Beijing, China. They considered

five clusters and concluded that around 60 % of air masses

reaching both sites originated from the south and south-

east.

A higher intermediate number of clusters, from six to

eight, provide a greater degree of detail, although com-

plexity also increases.

One desirable result would be for the mean trajectories

of the clusters to be clearly separated so as to yield infor-

mation about different air mass origins. Several applica-

tions illustrate this result. Li et al. (2012b) presented six

mean trajectories reaching Lushan Mountain, China, in a

study of precipitation chemistry, five of them with varied

directions. Hermanson et al. (2010) considered six clusters

of air masses reaching Svalbard, Norway. Five of the mean

trajectories were of a similar length, and their directions

were similarly distributed. However, the mean trajectory of

the sixth cluster corresponded to the shortest range and its

direction did not differ from the rest. Park et al. (2007) used

seven clusters in their study of the relationship between

pollution sources and health outcomes in Boston, Mas-

sachusetts. Since the cluster number is not low, some

overlapping is observed.

Another desirable result is that different ranges and

directions should be covered by the mean trajectories of the

clusters, such as in Pietruczuk and Jarosławski (2013),

whose study into transport patterns in the Mazovia Region,

Poland, considers five clusters. The shortest mean trajec-

tory corresponds to local effects, whereas the longest

comes from near Canada. Moreover, different ranges are

obtained for trajectories in the continent and over the sea.

Masiol et al. (2012) used seven clusters linked to geo-

graphical regions to analyse the influence of air masses on

particulate matter and PAH affecting Venice-Mestre, Italy.

They reported the influence of the Po Valley on PM2.5
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concentrations, whereas the contribution to PAH was low

for external sources. Three pairs of mean trajectories may

be considered. Each pair is formed by trajectories with the

same direction, but with a different range, the lowest fre-

quencies corresponding to the longest ranges.

A high number of clusters provide a large degree of

detail. However, interpreting the results may be more

complex and frequency distribution may be formed by

contrasted values. Im et al. (2013) used twelve clusters to

investigate ozone levels in Istanbul, Turkey. They concluded

that most transport was observed from the Eastern Europe

and Mediterranean region, together with the recirculation

over the city associated with high-pressure systems. Markle

et al. (2012) proposed subjectively classifying a greater

number than usual. They considered that around twenty

clusters were desirable to prevent meteorologically distinct

although spatially similar paths from being grouped.

Drawbacks

When a high number of clusters are used, one inconve-

nience is that some may overlap. Pongkiatkul and Kim

Oanh (2007) used six clusters made up of 10-day back

trajectories, which differed in length, shape, height and

departure locations, to assess the possible contribution of

long range transport from populated regions to particulate

air pollution in Bangkok, Thailand. However, two pairs

were formed by very close mean trajectories.

The same number was used by Xu et al. (2014) to

demonstrate that the northern boundary of the Tibetan

Plateau is affected by mineral dust from arid regions of

northwest China, while urban areas to the east of the

measurement site were the source of anthropogenic aero-

sols. In this case, two mean trajectories were similar in

range and direction.

Katragkou et al. (2009) considered eight clusters to

investigate the origin of PM10 recorded in Thessaloniki,

Greece. They found that high concentrations were recorded

with north-eastern and southern flows superposed to bio-

mass burning and Sahara dust events, respectively. Cross-

ing some of the mean trajectories presented in this analysis

evidences the noticeable mixing of air masses.

Clusters are sometimes presented separately, with each

spaghetti plot showing the trajectories contained in each

cluster, such as in Harpaz et al. (2014), who presented the

relationship between the cool summer temperatures in the

East Mediterranean and four circulation regimes.

However, including trajectory means is a very common

approach. One example is the study by Petrou et al. (2015),

who analysed the relationship between atmospheric pat-

terns and heat-induced mortality in five regions in England.

They found a link between human thermal stress and

atmospheric stagnation. Another example is the analysis by

Dimitriou and Kassomenos (2015) to investigate air masses

linked to episodes of tropospheric ozone in Ioannina and

Athens, Greece. The information provided concerning the

dispersion of trajectories and their geographical distribu-

tion are the main advantages of this kind of representation,

with the impossibility of comparing mean trajectories

being the major drawback. In order to overcome this

inconvenience, in their analysis into transport of 7Be to

Vladivostok, Russia, Neroda et al. (2016) presented spa-

ghetti plots for the isolated clusters accompanied by spa-

ghetti plots of all the air mass trajectories together with the

cluster means.

One alternative to spaghetti plots is given by Kahl et al.

(1997) in their analysis of the seasonal transport pattern of

air masses reaching Summit, Greenland, between 1946 and

1989. They presented the mean trajectories surrounded by

envelopes comprising the areas traversed by individual

trajectories. Pérez et al. (2015b) represented the average

trajectory bounded by its horizontal standard deviations to

study air mass trajectories on the northern plateau of the

Iberian Peninsula. A simpler choice was used by Dumka

et al. (2013), drawing vertical bars over the mean line to

represent the latitudinal spread of each cluster when ana-

lysing the evolution of air flow over Hyderabad, India and

its relationship with observed aerosols. In contrast, Makra

et al. (2010) considered a more complex representation

with convex hulls that envelop the trajectories of each

cluster. They used said analysis to investigate the atmo-

spheric pathways influencing pollen levels in three Euro-

pean cities.

Conclusion

Although simple procedures based on geographical or

temporal criteria are used to group air mass trajectories,

cluster algorithms are commonly used. However, certain

questions linked to the complexity and subjectivity of these

methods may arise.

Due to the great number of variables involved when

calculating air mass trajectories, hierarchical methods may

be recommended when trajectories are short or their

number is low. In contrast, non-hierarchical procedures are

preferred for high numbers of trajectories, since their cal-

culation time is shorter.

The Euclidean distance is a simple procedure to merge

trajectories in clusters. Moreover, it is flexible enough to

include additional variables other than geographical

coordinates.

Although varied algorithms have been developed to

determine the final number of clusters, the number chosen

must agree with the interpretation of the airflow patterns. A
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low number allows a simple explanation at the expense of

the lack of detail. In contrast, large numbers may lead to

clusters that are barely representative.

Although one desirable property is that directions and

ranges of mean trajectories should be regularly distributed,

in practice, this objective may be not so easy to achieve.

Overlapping and crossing mean trajectories should be

justified.

Scant information is provided by local trajectories, since

they are normally associated with low wind speeds or

stagnant conditions. In addition, their range is small and

they are extremely curved and mixed. Mean trajectories of

clusters with this kind of trajectories only reveal spatial

extent, but are not illustrative of airflow direction.

Although spaghetti plots are widely used, these graphs

should be complemented with a numerical statistics.

Moreover, mean trajectories are usually considered as

representative of clusters. However, the inclusion of

spread, skewness and flatness of trajectory distribution in

each cluster is barely used.

The application of clustering procedures should consider

that eliminating certain drawbacks may prove difficult or

even impossible, since assigning complex trajectories to a

specific group may not be easy, particularly if the number

of clusters is low, even though a numerical procedure is

used. However, despite these constraints, these methods

may produce results that are illustrative of airflow patterns.

Several procedures should be assayed to select the method

whose results may best be justified.

Finally, existing algorithms of clusters should be used

when analysing air mass trajectories, taking into account

the observations commented on in the current paper.

However, efforts to develop new clustering procedures

adapted to the specificities of air mass trajectories should

be made so as to overcome the drawbacks of known

methods.
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