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Abstract: In this paper, we present recent results in harmonic analysis in the real line R and in the
half-line R+, which show a closed relation between Hermite and Laguerre functions, respectively,
their symmetry groups and Fourier analysis. This can be done in terms of a unified framework based
on the use of rigged Hilbert spaces. We find a relation between the universal enveloping algebra
of the symmetry groups with the fractional Fourier transform. The results obtained are relevant in
quantum mechanics as well as in signal processing as Fourier analysis has a close relation with signal
filters. In addition, we introduce some new results concerning a discretized Fourier transform on the
circle. We introduce new functions on the circle constructed with the use of Hermite functions with
interesting properties under Fourier transformations.

Keywords: Fourier analysis; special functions; rigged Hilbert spaces; quantum mechanics;
signal processing

1. Introduction

The seminal work by Fourier of 1807, published in 1822 [1], about the solution of the heat equation
had a deep impact in physics and mathematics as is well known. Roughly speaking, the Fourier method
decomposes functions into a superposition of “special functions” [2,3]. In particular, trigonometric
functions were used by Fourier himself for this purpose . In addition, the Fourier method makes use
of other types of special functions; each of these types is often related with a group. Then, these special
functions have symmetry properties, which are inherited from the corresponding group. For instance,
this is the way in which harmonic analysis appears in group representation theory [4]. An interesting
aspect of Fourier analysis is the decomposition of Hilbert space vectors, quite often represented by
square integrable functions on some domain, into an orthogonal basis. This generalizes both the
standard Fourier analysis of trigonometric series and the decomposition of a vector in terms of an
algebraic basis of linearly independent vectors. Another generalization is the decomposition of a
self-adjoint or normal operator on a Hilbert space in terms of spectral measures, say through the
spectral representation theorem. We are mainly interested in these generalizations concerning Hilbert
space vectors and operators.

In recent works [5,6], we started an attempt to reformulate the harmonic analysis on the real
line to obtain a global description of the Hermite functions, the Weyl–Heisenberg Lie algebra and the
Fourier analysis in the framework of rigged Hilbert spaces (RHS) that we present here in a more formal
way. As is well known, the Fourier transform relates two continuous bases which are used in the
description of one-dimensional quantum systems on the whole real line. These are the coordinate and
momentum representations, naturally connected with the position and the momentum operator [7,8],
respectively. They span the Weyl–Heisenberg algebra together with the identity operator. Moreover,

Entropy 2018, 20, 816; doi:10.3390/e20110816 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/20/11/816?type=check_update&version=1
http://dx.doi.org/10.3390/e20110816
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 816 2 of 14

these two continuous bases can be related with a discrete orthonormal basis labeled by the natural
numbers via the Hermite functions. In consequence, we have continuous and discrete bases within the
same framework. However, only discrete bases as complete orthonormal sets have a precise meaning
in Hilbert space. If we have a structure allowing to work with these types of bases and to find relations
among them, one needs to extend the Hilbert space to a more general structure called the rigged
Hilbert space.

The fundamental message of the present paper is to show how a class of different and apparently
unrelated mathematical objects, such as classical orthogonal polynomials, Lie algebras, Fourier analysis,
continuous and discrete bases and RHS, can be fully wived as a branch of harmonic analysis, with
applications in quantum mechanics and signal processing, among other possible applications.

We have mentioned that the mathematical concept of RHS is very important in our work.
It has been introduced by Gelfand and collaborators [9] proving (although Maurin [10]) the nuclear
spectral theorem as was heuristically introduced by Dirac [11]. It is also generally accepted that the
eigenfunction expansions and the Dirac formalism are generalizations of the Fourier analysis for which
we need RHS [10,12] . It is also known that the spectral theory of infinitesimal operators of an arbitrary
unitary representation of a Lie group also need RHS [10,12] . In the physics literature, the similarities
between the Dirac formalism, classical Fourier analysis and generalized Fourier transforms have been
discussed within the RHS framework [13,14] . Another application of RHS, which has a particular
importance in our presentation, is signal processing. In particular, in the electrical engineering
literature, these aspects have been discussed in [15–18] .

Since the average physicists may not be acquainted with the concept of RHS, let us give a
definition and some remarks on this concept. A rigged Hilbert space or Gelfand triple is a set of three
vector spaces

Φ ⊂ H ⊂ Φ× ,

whereH is an infinite dimensional separable Hilbert space, Φ is a topological vector space endowed
with a topology finer than the Hilbert space topology and dense onH with the Hilbert space topology,
and Φ× is the dual of Φ (i.e., the space of linear (or antilinear) continuous mappings from Φ into the
complex numbers C) and it is endowed with a topology compatible with the pair (Φ, Φ×).

The formulation of quantum mechanics in terms of RHS was introduced by Bohm and Roberts
in the sixties of the last century and further developed later [19–26]. Continuous bases are not well
defined in Φ and H but only in Φ×. The action of a functional F ∈ Φ× on a vector ϕ ∈ Φ is written
as 〈ϕ|F〉 for keeping up with the Dirac notation. Since we will consider the scalar product on Hilbert
space antilinear to the left, we shall assume the antilinearity of the elements in Φ×.

The first part of the present paper is devoted to a review of a previous work by the authors [6]
concerning to the above-mentioned extension of Fourier analysis on the real line with the use of special
functions such us Hermite functions, which will be here for our main example. This is studied in
Section 2. The use of the Fractional Fourier transform (FFT) in this analysis is discussed in Section 3.

In addition, we give a second example in which the real line has been replaced by the semi-axis
R+ ≡ [0, ∞) and Hermite functions by Laguerre functions. In this latter case, we construct two different
Fourier-like transforms T ± and their eigenvectors are functions on the positive half-line. This is given
in Sections 4 and 5. Extensions to Rn using or not spherical coordinates are also possible, although
we shall not consider this option in the present manuscript [27]. In Reference [28], we revisited the
harmonic analysis on the group SO(2) using RHS. Furthermore, in Reference [29], we introduce a new
realization of the group SU(2) in the plane in terms of the associated Laguerre polynomials.

In Section 4, we introduce some new results concerning harmonic analysis on the circle. We
construct new functions on the circle using Hermite functions and taking advantage of their properties.
Again, these new functions give a unitary view of different mathematical objects that are often
considered as unrelated: Fourier transform, discrete Fourier transform, Hermite functions and RHS.

To understand the importance of the present research, let us remark that Hermite and Laguerre
functions are bases of spaces of square integrable functions, no matter whether real or complex, defined
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on R and R+, respectively. Square integrable real and complex (wave) functions play a similar role in
signal processing and quantum mechanics, respectively. In addition, the interest of signal processing
comes after the definition of two new types of filters. One is based in restrictions to subspaces of L2(R)
or L2(R+). We have systematically constructed these filters by the use of the FFT. The other requires
choosing low values of the index n in the span of a given function by either Hermite or Laguerre
functions (we may also use a combination thereof). These filters remove noise or other spurious effects
from the signal or the wave function.

In addition, since the basic operators related with these functions span some Lie algebras, such as
the io(2) [30] for the Hermite functions and the su(1, 1) for the Laguerre functions, we can introduce a
richer space of operators on L2(R) or L2(R+), related to the universal enveloping algebra (UEA) of
io(2) or su(1, 1), respectively [31].

These operator spaces connect functions describing the time evolution of the states under filters
or some kind of interaction.

Finally, we would like to add that this discussion may be related with some integral transforms of
the type Fourier-like, Laplace-like or Sumudu-like transforms [32–36].

2. Harmonic Analysis on R

The first example of Fourier analysis and its relation with group theory is provided by the
translation group in one spatial dimension T1 ' R (for the group SO(2) see [28]). The action of its
unitary irreducible representations,R, on the continuous basis {|p〉}p∈R, given by the eigenvectors of
the infinitesimal generator P of the group, is given by

R(x)|p〉 = e−iPx |p〉 = e−ipx |p〉 ; P |p〉 = p |p〉 , ∀p ∈ R , ∀x ∈ T1 . (1)

The vectors of the basis {|p〉} verify

〈p|p′〉 =
√

2π δ(p− p′) ,
1√
2π

∫ ∞

−∞
|p〉〈p| dp = I . (2)

Considering the position operator X and a continuous basis {|x〉}x∈R of its eigenvectors, i.e.,

X |x〉 = x |x〉 , ∀x ∈ R ' T1 . (3)

Via the Fourier transform, we can relate both (conjugate) bases {|p〉} and {|x〉}

|x〉 = 1√
2π

∫ ∞

−∞
e−ipx |p〉 dp, |p〉 = 1√

2π

∫ ∞

−∞
eipx |x〉 dx, (4)

such that we find for the basis {|x〉} that

〈x|x′〉 =
√

2π δ(x− x′) ,
1√
2π

∫ ∞

−∞
|x〉〈x| dx = I . (5)

Moreover, X, P together with I determine the Weyl–Heisenberg algebra

[X, P] = i I , [·, I] = 0 . (6)

For more details, see Reference [37].

2.1. Hermite Functions and the Group IO(2)

Now, we consider the inhomogeneous orthogonal group IO(2) which is isomorphic to the
Euclidean group in the plane, E(2). In the study of the ray representations [38–40], we have to deal
with the central extended group [30]. Here, we use a non-standard technique related to the projective
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representations of IO(2) by considering the algebra of the harmonic oscillator that it is isomorphic to
the central extension mentioned above. To proceed, let us consider the operators

a :=
1√
2
(X + iP) , a+ :=

1√
2
(X− iP) , N := a a+ , I ,

which determine the Lie commutators

[a, a+] = I , [N, a] = −a , [N, a+] = a+ , [I, ·] = 0 ,

and the quadratic Casimir
C = {a, a+} − 2(N + 1/2) I .

In the representation with C = 0, we obtain the differential equation

C Kn(x) ≡
(
−D2

x + X2 − (2N + 1)
)

Kn(x) = 0 , (7)

where P = −i DX = −i d/dx and N is a kind of number operator such that for each index n ∈ N,
N Kn(x) = n Kn(x), where Kn(x) are solutions of the differential Equation (7). These solutions are the
Hermite functions

Kn(x) :=
e−x2/2√
2nn!
√

π
Hn(x) , (8)

with Hn(x) the Hermite polynomials. Thus, {Kn(x)}n∈N is an orthonormal basis in L2(R). As is
well known, ∫ ∞

−∞
Kn(x)Km(x) dx = δnm ,

∞

∑
n=0

Kn(x)Kn(x′) = δ(x− x′) . (9)

Note that we denote by N the set of positive integers or natural numbers together with 0 and by
N∗ = N− {0}.

We see that the spectrum of the operator N is countably infinite, so that we may construct a
countable orthonormal basis of eigenvectors of N, {|n〉}n∈N, in terms of the continuous basis related
to X and the Hermite functions. This is given by the following relation:

|n〉 := (2π)−1/4
∫ ∞

−∞
Kn(x) |x〉 dx , n = 0, 1, 2, . . . . (10)

From the properties of the continuous basis as well as of the Hermite functions, we obtain that

〈n|m〉 = δnm ,
∞

∑
n=0
|n〉〈n| = I . (11)

It is worth noticing that the Hermite functions are eigenfunctions of the Fourier transform:

[F Kn](p) ≡ K̃n(p) =
1√
2π

∫ ∞

−∞
eipx Kn(x) dx = in Kn(p) . (12)
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This expression allows us to write relations between the three bases: one discrete and two
continuous, which have been defined in this section. These relations are

|n〉 = in(2π)−1/4
∫ ∞

−∞
Kn(p) |p〉 dp , (13)

|x〉 = (2π)1/4
∞

∑
n=0

Kn(x) |n〉 , (14)

|p〉 = (2π)1/4
∞

∑
n=0

in Kn(p) |n〉 . (15)

We see that the Hermite functions are the elements of the “transition matrices” between the
continuous ad the discrete bases. We can express any ket | f 〉 in any of the three bases in terms of the
following equations:

| f 〉 = 1√
2π

∫ ∞

−∞
dx f (x) |x〉 , | f 〉 = 1√

2π

∫ ∞

−∞
dp f̃ (p)∗ |p〉 , | f 〉 = (2π)−1/4

∞

∑
n=0

an |n〉 , (16)

with

f (x) := 〈x| f 〉 =
∞

∑
n=0

cn Kn(x) , f̃ (p)∗ := 〈p| f 〉 =
∞

∑
n=0

(−i)n cn Kn(p) , (17)

and
cn = (2π)1/4 〈n| f 〉 =

∫ ∞

−∞
dx Kn(x) f (x) = in (2π)−1/4

∫ ∞

−∞
dp Kn(p) f̃ (p)∗ . (18)

Therefore, we have obtained three different manners of expressing a quantum state | f 〉 in terms
of three different bases: two of them are continuous and non-countable , {|x〉}x∈R and {|p〉}p∈R, and
the other one, {|n〉}n∈N, is countably infinite. The framework to deal together with all three of these
bases is the RHS [21].

In particular, the set {|n〉 ≡ Kn(x)}n∈N is a discrete basis of Φ ≡ S (the Schwartz space) and
H ≡ L2(R) and the continuous bases belong to Φ× ≡ S× (the space of tempered distributions). More
precisely, we have two equivalent RHS: one is abstract Φ ⊂ H ⊂ Φ× and the other admits a realization
in terms of functions, S ⊂ L2(R) ⊂ S×. They are related through the unitary map U : H 7−→ L2(R)
defined by U|n〉 = Kn(x). There is another interesting fact related with the use of RHS: the space
S belongs to the domain of the operators in UEA[io(2)]. All of these operators can be extended by
duality to continuous (under any topology on S× compatible with the dual pair) operators on S×. For
a detailed exposition of the actual case, see [6] and references therein.

2.2. UEA[io(2)] and Fractional Fourier Transform

Let us consider the kets |n〉 that form a complete orthonormal system in the abstract Hilbert space
H. For any n ∈ N and 0 < k ≤ n ∈ N, we consider the natural numbers, q and r such that n = k q + r ,
where r = 0, 1, 2, . . . , k − 1. For k fixed, the set {|k q + r〉} is a complete orthonormal system in H.
Let us define the operators Q and R as

Q |k q + r〉 := q |k q + r〉 , R |k q + r〉 := r |k q + r〉 . (19)

These operators also act on Φ ⊂ H and can be extended by duality to Φ×.
Infinitely many copies of the Lie algebra io(2) are contained in UEA[io(2)]. Thus, for any

positive integer k, each of the pairs (k, r) with 0 ≤ r ≤ k − 1 labels a copy of io(2), here denoted
as iok,r(2). Furthermore,

k−1⊕
r=0

iok,r(2) ⊂ UEA[io(2)] .
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We define the family of operators A†
k,r and Ak,r in UEA[io(2)] by

A†
k,r := (a†)k

√
N + k− r√

k ∏k
j=1(N + j)

, Ak,r :=
√

N + k− r√
k ∏k

j=1(N + j)
(a)k ,

where A†
k,r is the formal adjoint of Ak,r and viceversa. They are continuous on Φ and can be

continuously extended by duality to Φ×. Their action on the vectors |k q + r〉 is

A†
k,r |k q + r〉 =

√
q + 1 |k (q + 1) + r〉 , Ak,r |k q + r〉 = √q |k (q− 1) + r〉 .

For each pair of integers k and r with 0 ≤ r < k, the operators Q, A†
k,r, Ak,r and I close a io(2) Lie

algebra, here denoted as iok,r(2). The commutation relations are

[Q, A†
k,r] = + A†

k,r , [Q, Ak,r] = − Ak,r ,

[Ak,r, A†
k,r] = I , [I, ·] = 0 .

Note that, for any pair (k, r), the kets |k q + r〉 span subspaces Hk,r of H and L2
k,r(R) of L2(R).

Hence, we have that

H =
k−1⊕
r=0
Hk,r , L2(R) =

k−1⊕
r=0

L2
k,r(R) . (20)

We can easily obtain the spaces Φk,r and Sk,r. A vector |φ〉 belongs to Φk,r if and only if

|φ〉 =
∞

∑
q=0

cq |k q + r〉 , (21)

such that
∞

∑
q=0

(q + 1)2p |cq|2 < ∞ , ∀p ∈ N .

A similar result can be obtained for any Sk,r, just replacing |k q + r〉 by Kk q+r(x) in Label (21).
Moreover, the corresponding RHS can be obtained:

Φk,r ⊂ Hk,r ⊂ Φ×k,r ,

Sk,r ⊂ L2
k,r(R) ⊂ S

×
k,r .

(22)

One can also prove that an operator O belongs to UEA[iok,r(2)] if and only if O is an operator
onHk,r.

The split of L2(R) as a direct sum of subspaces L2
k,r(R) is connected with the FFT, which is is a

generalization of the Fourier transform [36]. It is very interesting that we can also relate the FFT with
the Hermite functions Kn(x) (8) in a simple manner. Let us first define the fractional Fourier transform of
f ∈ L2(R) associated to a ∈ R, F a f , as

[F a f ](p) :=
∞

∑
n=0

cn ei n a π/2 Kn(p) , (23)

where

f (x) =
∞

∑
n=0

cn Kn(x) , cn =
∫ ∞

−∞
f ∗(x)Kn(x) dx . (24)

The convergence of the series in (23) is in the L2(R) norm as well as in the more generalized sense
given in (21) if f (x) ∈ S , so that F a f ∈ S if f ∈ S .



Entropy 2018, 20, 816 7 of 14

When a = 4/k, with k ∈ N∗, we have

f̃ k(p) := [F 4/k f ](p) =
∞

∑
n=0

cn e2 π i n/k Kn(p) . (25)

In this case, we recover the standard Fourier transform for k = 4, which means that a = 1.
Since for every k ∈ N∗, any n ∈ N can be decomposed as n = k q + r with q ∈ N and 0 ≤ r ≤ k− 1 , we
have the following decomposition of f̃ k given by

f̃ k(p) =
∞

∑
q=0

ckq e2π(kq)i/k Kkq(p) +
∞

∑
q=0

ckq+1 e2π(kq+1)i/k Kkq+1(p)

+ · · ·+
∞

∑
q=0

ckq+k−1 e2π(kq+k−1)i/k Kkq+k−1(p)

= f̃ k
0 (p) + f̃ k

1 (p) + · · ·+ f̃ k
k−1(p) ,

(26)

where

f k
r (x) :=

∞

∑
q=0

ckq+r Kkq+r(x) , f̃ k
r (p) := e2 π r i/k f k

r (p) .

Relation (26) gives a split of L2(R) into an orthonormal direct sum of subspaces because the
vectors f̃ k

r , (r = 0, 1, . . . , k − 1) are mutually orthogonal. Moreover, each term in the direct sum is
an eigen-subspace of F 4/k with eigenvalue ei2πr/k since f̃ k

r (p) ≡ [F 4/k f k
r ](p). The decomposition is

given by
L2(R) = L2

k,0(R)⊕ L2
k,1(R)⊕ · · · ⊕ L2

k,k−1(R) ,

so that we have recovered the decomposition (20).

3. Harmonic Analysis on R+

Let L2(R+) be the space of square integrable functions on R+ ≡ [0,+∞). As is well known a
basis in L2(R+) is determined by the Laguerre functions

Mα
n(y) =

√
Γ(n + 1)

Γ(n + α + 1)
yα/2 e−y/2 Lα

n(y) , (27)

with −1 < α < +∞, n = 0, 1, 2, . . . , and Lα
n(y) the associated Laguerre polynomials [41,42].

Indeed, Mα
n(y) verify the following orthonormality and completeness relations

∫ ∞

0
Mα

n(y) Mα
m(y) dy = δnm ,

∞

∑
n=0

Mα
n(y) Mα

n(y
′) = δ(y− y′) . (28)

3.1. Harmonic Analysis on su(1, 1)

Let us define the following operators on L2(R+)

N Mα
n(y) := n Mα

n(y) , I Mα
n(y) := Mα

n(y) ,

Y Mα
n(y) := y Mα

n(y) , Dy Mα
n(y) := Mα

n(y)
′ =

d
dy

Mα
n(y) .

(29)

Using the operators defined in (29), we may define some others:

J+ :=
(

Y Dy + N + 1 +
α−Y

2

)
, J− :=

(
−Y Dy + N +

α−Y
2

)
. (30)
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These operators act on Mα
n(y) as

J+Mα
n(y) =

√
(n + 1)(n + α + 1)Mα

n+1(y) ,

J−Mα
n(y) =

√
n(n + α)Mα

n−1(y).
(31)

These two operators, together with

J3 := N +
α + 1

2
I , J3 Mα

n(y) =
(

n +
α + 1

2

)
Mα

n(y) ,

define the Lie algebra su(1, 1) because their commutation relations are

[J3, J±] = ±J± , [J+, J−] = −2 J3 . (32)

The Casimir operator C of su(1, 1) is

C = J 2
3 −

1
2
{J+, J−} =

α2 − 1
4

I . (33)

From (30), we obtain that Y = −(J+ + J−) + 2N + (α + 1) I , and from the Casimir we may obtain
the differential equation defining the associated Laguerre polynomials.

Omitting the technical details which can be found in Reference [6], let us say that there exists a set
of generalized eigenvectors of Y, {|y〉}y∈R+ , (or more strictly of U−1YU, where U : H 7−→ L2(R+) is a
unitary operator andH is a separable Hilbert space) such that

Y|y〉 = y|y〉 , 〈y|y′〉 = δ(y− y′) ,
∫ +∞

−∞
|y〉〈y| dy = I . (34)

Actually, we have two families, depending on α, of equivalent RHS Φα ⊂ H ⊂ Φ×α and Dα ⊂
L2(R+) ⊂ D×α . All the elements and their extensions of the UEA(su(1, 1)) are continuous on both RHS.

In analogy with the case of the whole real line, a decomposition like (20) for any k 6= 0 ∈ N, we
also obtain here that

H =
k−1⊕
r=0
Hk,r , L2(R+) =

k−1⊕
r=0

L2
k,r(R

+) . (35)

We define the vectors |n, α〉 ∈ Φα as

|n, α〉 :=
∫ ∞

0
dy Mα

n(y)|y〉 , ∀n ∈ N , α ∈ (−1,+∞) , (36)

which after (28) and (34), they have the properties

〈n, α|m, α〉 = δnm ,
∞

∑
n=0
|n, α〉〈n, α| = I . (37)

Hence, |n, α〉with n ∈ N (and α fix) is an orthonormal basis inH. Taking into account the unitarity
of the operator U, we have that U|n, α〉 = Mα

n. For y ≥ 0, we easily obtain

〈y|n, α〉 =
∫ ∞

0
dy′ Mα

n(y
′) 〈y|y′〉 = Mα

n(y) . (38)

In analogy with the previous case in which we have considered functions on the whole real line,
we also have two different bases spanning the vectors in Φα ⊂ H: a continuous one {|y〉}y∈R+ and
another discrete {|n, α〉}n∈N whose elements are eigenvectors of the operator U−1NU where N was
defined in (29).
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3.2. Fourier-Like Transformations on R+

In Section 2.2, we have introduced the FFT related to the Hermite functions. Now, after the results
displayed in the previous section that show a close analogy between the formalisms on R and on R+,
we may consider an extension of the FFT valid for the generalized Laguerre functions. However, this
is not possible since the Laguerre functions, Mα

n(y), are not eigenfunctions of the Fourier transform
unlike the Hermite functions. Fortunately, there exists a partial way out due to the relations among
Hermite and Laguerre polynomials

H2n(x) = (−1)n 22n n! L−1/2
n (x2) , H2n+1(x) = (−1)n 22n+1 n! x L+1/2

n (x2)

that allow us to relate the above-mentioned functions as

K2n(x) = (−1)n (x2)1/4 M−1/2
n (x2) , K2n+1(x) = (−1)n x (x2)−1/4 M1/2

n (x2) .

Thus, we can define the transforms T± on functions f (y) ∈ L2(R+) by

[T± f ](s) :=
1√
2π

∫ ∞

0
dy

S±(
√

s y)
(s y)1/4 f (y) , S+(·) = cos(·), S−(·) = sin(·) , (39)

such that they verify the relation

[T±M±1/2
n ](s) = (−1)n M±1/2

n (s) , (40)

which means that M±1/2
n (s) are eigenfunctions with eigenvalues (−1)n of T±. In consequence, we

have two relevant values of the label α: ±1/2. Then, since, for any f (y) ∈ L2(R+),

f (y) =
∞

∑
n=0

c±n M±1/2
n (y) , c±n =

∫ ∞

0
f ∗(y)M±1/2

n (y) dy . (41)

We may introduce two new families of FFT T a
± (a ∈ R) by

[T a
± f ](s) :=

∞

∑
n=0

c±n ei n a π/2 M±1/2
n (s) .

Thus, if we choose a = 4/k with k ∈ N∗, we have

f̃ k
±(s) := [T 4/k

± f ](s) =
∞

∑
q=0

c±kq e−2π(kq)i/k M±1/2
kq (s) +

∞

∑
q=0

c±kq+1 e−2π(kq+1)i/k M±1/2
kq+1 (s) + . . .

· · ·+
∞

∑
q=0

c±kq+k−1 e−2π(kq+k−1)i/k M±1/2
kq+k−1(s) (42)

= f k
0,±(s) + e−2πi/k f k

1,±(s) + · · ·+ e−2π(k−1)i/k f k
k−1,±(s) ,

with

f k
r,±(s) :=

∞

∑
q=0

c±kq+r M±1/2
kq+r (s) .

We have recovered the splitting (35) of L2(R+) for the particular cases of α = ±1/2

L2(R+) = L2
k,0(R

+)± ⊕ L2
k,1(R

+)± ⊕ · · · ⊕ L2
k,k−1(R

+)± ,

where each of the closed subspaces L2
k,r(R

+)± is an eigen-subspace of T± with eigenvalue e−2 π r i/k.



Entropy 2018, 20, 816 10 of 14

4. A New Harmonic Analysis on the Circle

The set Hermite functions Kn(x) is a good tool so as to construct a countable set of periodic
functions, which is a system of generators of the space of square integrable functions on the unit circle
L2(C), i.e., the functions f (φ) : C 7−→ C with norm

∣∣∣∣ f (φ)∣∣∣∣ defined by

|| f (φ)||2 :=
1

2π

∫ π

−π
| f (φ)|2 dθ < ∞ . (43)

Let us define the periodic functions (with period 2π)

Kn(φ) :=
∞

∑
k=−∞

Kn(φ + 2kπ) , −π ≤ φ < π , n = 0, 1, 2, . . . . (44)

It can be proven that the series defining the Kn(φ) are absolutely convergent and also that every
Kn(φ) is bounded and square integrable on the interval −π ≤ φ < π. Using this property and the
Lebesgue theorem, we may also prove that

∫ π

−π
eimφ dφ

∞

∑
k=−∞

Kn(φ + 2kπ) =
∞

∑
k=−∞

∫ π

−π
eimφ Kn(φ + 2kπ) dφ . (45)

A Discretized Fourier Transform on the Circle

Let us compare the space L2(C), which we may also denote as L2[−π, π], to the space l2(Z) of
2-power summable sequences. As is well known, an orthonormal basis on L2(C) is {(2π)−1 einφ} with
n ∈ Z. Hence, any f (φ) ∈ L2(C) admits the following span into exponential Fourier series given by

f (φ) =
1

2π ∑
n∈Z

fn einφ , fn ∈ C , (46)

with
fn =

1
2π

∫ π

−π
f (φ) e−inφ dφ . (47)

The sum (46) converges in the sense of the norm (43). Moreover, for any continuous function f (φ),
the series also converge pointwise. The properties of orthonormal basis in Hilbert spaces show that

1
2π ∑

n∈Z
| fn|2 = || f (φ)||2 . (48)

We may call to the sequence of complex numbers { fn}n∈Z, the components of f .
The Hilbert space l2(Z) is a space of sequences of complex numbers A ≡ {an}n∈Z such that

||A||2 :=
1

2π ∑
n∈Z
|an|2 < ∞ , (49)

with scalar product given by

〈A|B〉 :=
1

2π ∑
n∈Z

a∗n bn . (50)

An orthonormal basis for l2(Z) is given by the sequences Ek = {δk,n}n∈Z with k ∈ Z. Any
f ∈ l2(Z) with components { fn}n∈Z may be written as

f =
1

2π ∑
n∈Z

fn En ,
1

2π ∑
n∈Z
| fn|2 = || f ||2 < +∞ . (51)
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Therefore, there exists a unitary correspondence between L2(C) and l2(Z) which maps any
f (φ) ∈ L2(C) as in (46) into f as in (51), provided that in both cases the sequence { fn}n∈Z is the same.

Expression (46) gives the expansion into Fourier series of the functions in L2(C). From this point
of view, we may say that the Fourier series is a unitary mapping, F , from L2(C) onto l2(Z). It admits
an inverse, F−1, from l2(Z) onto L2(C), which is also unitary and is sometimes called the discrete
Fourier transform, i.e.,

F [ f (φ)] =
1

2π ∑
n∈Z

fn einφ ≡ { fn}n∈N , F−1[{an}n∈N] =
1

2π ∑
n∈Z

an einφ ≡ a(φ) , (52)

with fn ∈ C and given by (47).
As we mention in the introduction, we will give a unitary version of concepts that are often

introduced separately, like Fourier transform, Fourier series and discrete Fourier transform in one side
and the Hermite functions on the other.

We start by constructing a set of functions in l2(Z) using the Hermite functions Kn(x). We
introduce the sequences χn associated to Kn(x) as follows:

χn := {Kn(m)}m∈Z , n ∈ N . (53)

These sequences χn are in l2(Z). Moreover, they are linearly independent and span l2(Z).
The proof can be find in [43] and they are based on the fact that∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(−N) . . . H0(0) . . . H0(N)

H1(−N) . . . H1(0) . . . H1(N)

. . . . . . . . . . . . . . .

H2N(−N) . . . H2N(0) . . . H2N(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 , (54)

and ∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(0) H0(1) . . . H0(N)

H1(0) H1(1) . . . H1(N)

. . . . . . . . . . . .

HN(0) HN(1) . . . HN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 , (55)

for any N ∈ N, where Hn(k) is the Hermite polynomial Hn(x) evaluated at the integer k (remember
that Kn(x) = e−x2/2 Hn(x)/

√
2nn!
√

π).
Since the functions Kn(φ) are in L2[−π, π], they admit a span in terms of the orthonormal basis

{(2π)−1 eimφ}m∈Z in L2[−π, π]. Thus, we can write

Kn(φ) =
1√
2π

∞

∑
m=−∞

km
n e−imφ , (56)

with
km

n =
1√
2π

∫ π

−π
eimφ Kn(φ) dφ . (57)

The continuity of the functions Kn(φ) on [−π, π] guarantees the pointwise convergence of (56)
and since the Kn(φ) are periodic with period 2π, hence (56) is valid for all φ ∈ R.

We recall that the Hermite functions Kn(x) are eigenfunctions of the Fourier transform with
eigenvalue (−i)n (12), i.e., [F Kn](p) = (−i)n Kn(p). Thus, Kn(x) are eigenfunctions of the inverse
Fourier transform with eigenvalue in, i.e., [F−1 Kn](x) = in Kn(x). From this fact, we can find an
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explicit expression of the coefficients km
n (57) in terms of the values of the Hermite functions at

the integers

km
n =

1√
2π

∫ π

−π
eimφ dφ

[
∞

∑
k=−∞

Kn(φ + 2kπ)

]
=

1√
2π

∞

∑
k=−∞

∫ π

−π
eimφ Kn(φ + 2kπ) dφ

=
1√
2π

∞

∑
k=−∞

∫ π+2kπ

−π+2kπ
eims Kn(s) ds =

1√
2π

∫ ∞

−∞
eims Kn(s) ds = in Kn(m) ,

where s := φ + 2kπ and eimφ = eim(φ+2kπ) = eims. Hence, (56) and (57) can be written, respectively, as

Kn(φ) =
in
√

2π

∞

∑
m=−∞

Kn(m) e−imφ , Kn(m) =
(−i)n
√

2π

∫ π

−π
Kn(φ) eimφ dφ , (58)

where km
n = in Kn(m).

The systems of generators in L2[−π, π] ≡ L2(C), {Kn(φ)}n∈Z, and in l2(Z), given by the set of
sequences {χn}n∈Z, are not orthonormal basis. The scalar product on L2[−π, π] is related with the
scalar product in l2(Z)

〈Kn|Km〉 =
∫ π

−π
K∗n(φ)Km(φ) dφ =

1
2π

∫ π

−π
dφ

∞

∑
j=−∞

∞

∑
k=−∞

(−i)n im K∗n(j)Km(k) e−i(k−j)φ

=
∞

∑
j=−∞

∞

∑
k=−∞

δj,k im−n K∗n(j)Km(k) =
∞

∑
j=−∞

im−n K∗n(j)Km(j)

= im−n (χn, χm) .

The Gramm–Schmidt procedure allows us to obtain orthogonal bases in both spaces.

5. Conclusions

In this paper, we have presented a unified framework where Hermite functions, or alternatively
Laguerre functions, their symmetry groups, Fourier analysis and RHS fit in a perfect manner. Hermite
functions are basic in the study of quantum mechanics and signal processing on the real line R, while
Laguerre functions play the same role on the half-line R+. We have also studied the particular relation
between both situations. In both cases, these functions are eigenvectors of the Fourier transform and
this is an essential property.

It is precisely the use of RHS that allows the use of bases of different cardinality on a simple and
interchangeable manner. This makes RHS the correct mathematical formulation that encompasses
both quantum mechanics and signal processing. Here, Hermite functions act as transition elements
of transition matrices between continuous and discrete bases. This is not strictly new as was
already discussed in [21], although we introduce a general point of view which could be relevant for
computational and epistemological purposes in quantum theory.

We have shown how Fourier analysis allows for the decomposition of RHS into direct sums of
RHS. This may permit the filtering of noise or any other undesirable signal. The same applies to
operators as we may restrict their evolution to a sub-algebra, which has been chosen among infinite
other possibilities in the universal enveloping algebra of the corresponding symmetry group. The
decomposition of RHS is consistent with the FFT. This is the cornerstone of the filtering procedure.
We have extended the formalism to functions over the semi-axis R+ by the construction of a pair of
“Fourier-like” transformations which play the role before reserved to the Fourier transform on R. FFTs
may be defined after these Fourier-like transforms and also serve for filtering. Moreover, the algebraic
approach associated to the Lie symmetry algebra and its universal enveloping algebra extends the
discussion from the vector spaces to the space of operators acting on them.
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All of these results can be also translated, in some sense, to the circle. We have constructed some
special functions on the circle out of Hermite functions and have taken advantage of the properties of
Hermite functions in order to use Fourier analysis on the circle as well. This work is still in process.

As a final remark, let us insist that we have given a unitary point of view of mathematical
objects that are often considered as unrelated such as Fourier transform, discrete Fourier transform,
Hermite and Laguerre functions and RHS.
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