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Abstract

Curved momentum spaces associated to the κ-deformation of the (3+1) de Sitter and Anti-de Sitter
algebras are constructed as orbits of suitable actions of the dual Poisson-Lie group associated to the
κ-deformation with non-vanishing cosmological constant. The κ-de Sitter and κ-Anti-de Sitter curved
momentum spaces are separately analysed, and they turn out to be, respectively, half of the (6+1)-
dimensional de Sitter space and half of a space with SO(4, 4) invariance. Such spaces are made of
the momenta associated to spacetime translations and the ‘hyperbolic’ momenta associated to boost
transformations. The known κ-Poincaré curved momentum space is smoothly recovered as the vanishing
cosmological constant limit from both of the constructions.

1 Introduction

It is now understood that in models of Planck-scale deformed special relativity (DSR), where the Planck
energy plays the role of a second relativistic invariant besides the speed of light, momentum space has a
nontrivial geometry [1–5]. In particular, its curvature can be non-vanishing and governed by the Planck
energy [6, 7].

This realization recently allowed for a description of the phenomenological features of DSR as effects
induced by the geometrical properties of momentum space, dual to the effects we are familiar with in the
context of general relativity. For example, curvature of momentum space induces an energy dependence
in the distance covered by a free massless particle in a given time. This can be seen as the dual to the
well-known redshift of energy in curved spacetime [8]. Another effect that can be ascribed to a nontrivial
geometry of momentum space is the so-called dual-gravity lensing [9], such that the direction from which a
particle emitted by a given source reaches a faraway detector is energy dependent.

This kind of phenomenology raised considerable interest in the last two decades as it became clear that
it could induce observable effects on particles travelling over cosmological distances [10–14]. However, the
missing link to make the connection between properties of the momentum space and cosmological observa-
tions more stringent was the definition of momentum space when spacetime is itself curved. DSR models are
in fact modifications of special relativity, so that they need to be generalized to a curved-spacetime setting
in order to be applicable to physical frameworks where spacetime curvature cannot be neglected. Recently
several proposals to extend DSR to curved spacetime scenarios have been put forward [15–20], but it was
generally believed that it would not be possible to look at the geometrical properties of the momentum space
on its own, because the interplay between curvature of spacetime and of momentum space would make the
phase space too much intertwined [21].

In recent work we demonstrated that in fact it is possible to define momentum space in presence of a
cosmological constant [22]. The nontrivial interplay between curvature of spacetime and of momentum space
is resolved by generalizing the momentum space so that it contains the hyperbolic momenta associated to
boosts besides the momenta associated to spacetime translations. Our construction focussed on the mathe-
matical framework of quantum deformed algebras, which is known to be very effective in studying features of
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DSR models in the flat spacetime case [23–25]. Specifically, we constructed the generalized momentum space
associated to the κ-deformation of the de Sitter (dS) algebras in (1+1) and (2+1) dimensions. We obtained,
respectively, (half of) a (2+1)-dimensional dS manifold and (half of) a (4+1)-dimensional dS manifold. The
coordinates of these momentum spaces are the local group coordinates associated to spacetime translations
and boosts and the two spaces are the orbits of the corresponding dual Poisson-Lie group. The construction
crucially relied on the observation that spacetime translations and boosts play a similar role in the structure
of the algebra and coalgebra of κ-dS in both (1+1) and (2+1) dimensions. Additionally, in (2+1) dimensions
the rotation generator is not relevant to the construction of the generalized momentum space, since its role
is limited to generating the isotropy subgroup of the origin of the momentum space.

While this previous work provided a crucial proof of concept, of course the physically relevant scenario
is that with (3+1) spacetime dimensions. This is the case we focus on in this paper, where we construct
the generalized momentum space of the (3+1)-dimensional κ-dS algebra. Moreover, we also present the
construction of the curved momentum space associated to the κ-deformation of the (3+1) Anti-de Sitter
(AdS) algebra, which follows the same lines and –as it was conjectured in [22]– leads to a different manifold.
Also the nontrivial features that arise in the (3+1) construction with respect to the (2+1) case for both
quantum dS and AdS symmetries are emphasized.

We find it useful to begin in Section 2 with a summary of the construction of the curved momentum
space associated to the κ-deformed Poincaré algebra in (3+1) dimensions. While this is a repetition of known
results, it allows us to present the framework that will be adopted in the following within a context that
should be more familiar to the reader. Concretely, we construct the dual Poisson-Lie group associated to
the κ-Poincaré algebra and show that the orbits of this group define a curved momentum space manifold,
which is half of a (3+1)-dimensional dS space.

Section 3 is devoted to presenting the (3+1)-dimensional κ-(A)dS algebra and its dual Poisson-Lie group.
The two cases with positive and negative cosmological constant can be treated in a unified framework,
which also admits the κ-Poincaré case as the vanishing cosmological constant limit of either of κ-(A)dS. We
emphasize that the spacetime translation sector and the boosts enter in a very similar way in the structure
of the deformed coalgebra. Moreover, the fact that a momentum space relying only on the spacetime
translations cannot be constructed is made apparent by the fact that the coalgebra of translations does
not close on its own, but it contains generators of the Lorentz sector. These two features are analogous to
what we had observed for the lower-dimensional models studied in our previous paper (the mixing between
the translation sector and the Lorentz sector being somewhat less invasive in the (1+1) case, since it only
concerns the algebra sector). A new feature that arises in the (3+1)-dimensional scenario is the fact that
the rotations sector is no longer undeformed at the coalgebraic level.

In Sections 4 and 5 we construct the generalized momentum spaces associated to, respectively, the κ-
AdS and κ-dS algebra. Again, for each algebra the momentum space is generated by the orbits of the dual
Poisson-Lie group, and its coordinates are given by the local group coordinates associated to spacetime
translations and boosts. However, while, as we mentioned, the two algebras and their dual Poisson-Lie
groups admit a unified description, this is not the case for the two momentum spaces. This is because one
needs to adapt the construction in order to deal with the imaginary quantities that arise when dealing with
the two different signs of the cosmological constant. As a consequence, the generalized momentum spaces
that we find have different geometrical properties. The κ-AdS algebra has a momentum space that is half
of a SO(4, 4) quadric. The κ-dS algebra has a momentum space that is half of a (6+1)-dimensional dS
manifold. Similarly to what we had found in the lower-dimensional models, rotations do not enter in the
construction of the momentum space, and only generate the isotropy subgroup of the origin.

The concluding Section 6 summarizes our findings and additional insights on the nontrivial properties of
rotations that emerge in (3+1) dimensions are included into an Appendix.

2 The κ-Poincaré momentum space

The aim of this Section is to summarize the construction of the curved momentum space corresponding to
the (3+1) κ-Poincaré quantum algebra [26–29]. We follow the presentation of [7], and make use of the group-
theoretical framework recently introduced in [22]. We show that the κ-Poincaré curved momentum space can
be obtained as a specific orbit of the action of the dual κ-Poisson-Lie group on a (4+1)-dimensional ambient
Minkowski space, and it turns out to be (half of) the (3+1) dS space. The rest of this paper is devoted to the
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generalization of this construction to the κ-deformed spacetime symmetries with non-vanishing cosmological
constant.

The starting point for the construction is the Poisson version of the (3+1) κ-Poincaré algebra in the
so-called bicrossproduct basis [30]. This is given by the Poisson brackets (the notation P

2 = P 2
1 + P 2

2 + P 2
3

will be used hereafter for vectors):

{Ja, Jb} = ǫabcJc, {Ja, Pb} = ǫabcPc, {Ja,Kb} = ǫabcKc,

{Ka, P0} = Pa, {Ka,Kb} = −ǫabcJc, {P0, Ja} = 0,

{P0, Pa} = 0, {Pa, Pb} = 0,

{Ka, Pb} = δab

(

1

2z

(

1− e−2zP0

)

+
z

2
P

2

)

− zPaPb ,

(1)

together with the compatible (as a Poisson algebra homomorphism) coproduct map:

∆z(P0) = P0 ⊗ 1 + 1⊗ P0,

∆z(Pa) = Pa ⊗ 1 + e−zP0 ⊗ Pa, (2)

∆z(Ja) = Ja ⊗ 1 + 1⊗ Ja,

∆z(Ka) = Ka ⊗ 1 + e−zP0 ⊗Ka + z ǫabcPb ⊗ Jc .

We define z = 1/κ as the (Planck scale) quantum deformation parameter, with a, b, c = 1, 2, 3 (sum over
repeated indices is assumed) and ǫabc is the totally antisymmetric tensor, with ǫ123 = 1. As usual, the
generators Pa, Ja and Ka denote respectively translations, rotations and boosts.

This quantum deformation of the Poincaré algebra induces a deformed Casimir function Cz for the Poisson
algebra (1), given by:

Cz =
4

z2
sinh2(zP0/2)− ezP0P

2 =
2

z2
[

cosh(zP0)− 1
]

− ezP0P
2. (3)

This deformed Casimir constitutes the keystone for the interpretation of the κ-Poincaré algebra (in bi-
crossproduct basis) as the modified kinematical symmetry underlying deformed dispersion relations arising
in the quantum gravity context [2,7]. 1 It is also worth recalling that a second invariantWz does exist for the
Poisson structure (1), which is just a deformed analogue of the square of the modulus of the Pauli-Lubanski
four-vector:

Wz =

(

cosh(zP0)−
z2

4
ezP0P

2

)

W 2
z,0 −W

2
z ,

where the deformed components are:

Wz,0 = e
z

2
P0 J ·P, Wz,a = −Ja

sinh(zP0)

z
+ ezP0ǫabc

(

Kb +
z

2
ǫbklJkPl

)

Pc .

We would like to stress that all the expressions included in this paper are analytic in the deformation
parameter z, and the non-deformed limit z → 0 always gives rise to the usual (3+1) relativistic symmetries.

When dealing with Hopf algebra kinematical symmetries, the coproduct can be interpreted as the compo-
sition law for observables. In particular, the coproduct (2) is such that the κ-deformation induces a nonlinear
composition rule for momenta in interaction vertices. As we are going to show, it is because of this deformed
composition rule that curvature in the κ-Poincaré momentum space emerges. In more technical terms, the
curvature of the momentum space arises as a consequence of the non-cocommutativity of the coproduct map
for the translation generators, and such a curved momentum space can be explicitly constructed as follows.

Firstly, the non-cocommutativity of the κ-translations can be characterized by writing the skew-symmetric
part of the first-order deformation (in z) of the coproduct. Namely, if we write the coproduct (2) for the
translation generators as a power series expansion in terms of the deformation parameter z we obtain

∆z(P0) = P0 ⊗ 1 + 1⊗ P0, ∆z(Pa) = Pa ⊗ 1 + 1⊗ Pa − z P0 ⊗ Pa + o[z2],

1A different choice of basis for the κ-Poincaré algebra would result in a different Casimir and thus characterise a different
dispersion relation and associated kinematical symmetries.
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and the skew-symmetrization of the first-order term in z of the previuos expresions gives rise to the map

δ(P0) = 0,

δ(P1) = z (P1 ∧ P0) ,

δ(P2) = z (P2 ∧ P0) ,

δ(P3) = z (P3 ∧ P0) ,

which is called the cocommutator map and it endows the Poincaré algebra g with a Lie bialgebra structure
δ : g → g⊗ g. Moreover, δ characterizes the Hopf algebra deformation through the first-order information it
encodes (see [31–33] and references therein for details).

Secondly, the dual δ∗ : g∗ ⊗ g∗ → g∗ of the cocommutator map defines the Lie algebra g∗ of the so-called
dual Poisson-Lie group G∗. In the κ-Poincaré case, if we denote by {X0, X1, X2, X3} the generators in g∗

dual to, respectively, {P0, P1, P2, P3}, their dual Lie brackets are given by:
[

X0, X i
]

= −z X i,
[

X i, Xj
]

= 0, i, j = 1, 2, 3. (4)

Note that when the deformation parameter vanishes, z → 0, then all the coproducts are cocommutative
(∆0(Y ) = Y ⊗ 1+ 1⊗ Y ). As a consequence, δ vanishes and the dual Lie algebra (and group) is Abelian. It
is also worth recalling that the dual Lie algebra of the translations sector given by (4) is just the so-called
κ-Minkowski spacetime [34–37].

2.1 Dual Poisson-Lie group and curved momentum space

The dual Poisson-Lie group G∗ can be explicitly constructed starting from the 5-dimensional faithful repre-
sentation ρ of the dual Lie algebra g∗, given by:

ρ(X0) = z













0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0













, ρ(X1) = z













0 1 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0













,

ρ(X2) = z













0 0 1 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 −1 0 0













, ρ(X3) = z













0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 −1 0













.

(5)

If {p0, p1, p2, p3} are the local dual group coordinates associated, respectively, to {X0, X1, X2, X3}, then the
dual Lie group element can be constructed through the exponentiation:

G∗(p0, p1, p2, p3) = exp
(

p1ρ(X
1)
)

exp
(

p2ρ(X
2)
)

exp
(

p3ρ(X
3)
)

exp
(

p0ρ(X
0)
)

,

which explicitly reads:

G∗(p) =













cosh(zp0) + 1
2 e

z p0 z2 p̄2 zp1 zp2 zp3 sinh(zp0) + 1
2 e

z p0 z2 p̄2

ez p0 zp1 1 0 0 ez p0 zp1
ez p0 zp2 0 1 0 ez p0 zp2
ez p0 zp3 0 0 1 ez p0 zp3

sinh(zp0) − 1
2 e

z p0 z2 p̄2 −zp1 −zp2 −zp3 cosh(zp0) − 1
2 e

z p0 z2 p̄2













, (6)

where we have defined p̄2 = p21 + p22 + p23.

The significance of the dual Poisson-Lie group relies on the fact that the coproduct (2) is just the group
law for G∗ (see [33] for details). In fact, if we multiply two matrices of the type (6) we get another group
element

G∗(p′′) = G∗(p) ·G∗(p′) .

It can be straightforwardly checked that the group law p′′ = f(p, p′) reads:

p′′0 = p0 + p′0, p′′i = pi + e−zp0 p′i, (7)
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which is consistent with (4) in the sense that X0 generates a dilation and the X i generators correspond to
(dual) translations.

Now, by making use of the Poisson version of the quantum duality principle [38–40], the group multipli-
cation law (7) can be immediately rewritten in algebraic terms as a comultiplication map ∆z through the
identification of the two copies of the dual group coordinates as

p ≡ p⊗ 1, p′ ≡ 1⊗ p. (8)

In this algebraic language, the multiplication law for the group G∗ can be written as a coproduct in the
form:

∆z(p0) ≡ p′′0 = p0 ⊗ 1 + 1⊗ p0, ∆z(pi) ≡ p′′i = pi ⊗ 1 + e−zp0 ⊗ pi, i = 1, 2, 3 . (9)

This coproduct is just the one for the translation sector of the κ-Poincaré algebra in bicrossproduct basis
once the following identification between the dual group coordinates and the generators of the κ-Poincaré
algebra is performed:

p0 ≡ P0, p1 ≡ P1, p2 ≡ P2, p3 ≡ P3.

Note that if a different ordering is chosen for the exponentials, one would recover the coproducts correspond-
ing to a different basis of the κ-Poincaré algebra. Moreover, the unique Poisson-Lie structure on G∗ that is
compatible with the coproduct (9) and has the undeformed Poincaré Lie algebra as its linearization is given
by the κ-Poincaré Poisson brackets for the translation sector.

Under this approach, the κ-Poincaré momentum space admits a straightforward geometric interpreta-
tion [7]. The entries of the fifth column in G∗ can be rewritten as the following Si functions:

S0 = sinh(zp0) +
1

2
ezp0 z2 p̄2,

S1 = z ezp0 p1,

S2 = z ezp0 p2,

S3 = z ezp0 p3,

S4 = cosh(zp0) − 1

2
ezp0 z2 p̄2 .

(10)

Surprisingly enough, these satisfy the defining relation of the (3+1)-dimensional dS space:

−S2
0 + S2

1 + S2
2 + S2

3 + S2
4 = 1.

This means that the κ-Poincarémomentum space parametrized by the ambient coordinates (S0, S1, S2, S3, S4)
can be obtained as the orbit arising from a linear action of the Lie group matrix G∗(p) onto a (4+1)-
dimensional ambient Minkowski space and passing through the point (0, 0, 0, 0, 1). Namely:

G∗ · (0, 0, 0, 0, 1)T = (S0, S1, S2, S3, S4)
T . (11)

Moreover, the ambient coordinates fulfil the condition:

S0 + S4 = ez p0 > 0,

which means that only half of the (3+1)-dimensional dS space is generated through the action (11). We
will denote this manifold as MdS4

. Note that in the limit z → 0 the dual Lie group G∗ generated by (4) is
Abelian.

3 The κ-(A)dS algebra and its dual Poisson-Lie group

The aim of this paper is the generalization of the previous construction to the case with non-vanishing
cosmological constant, by following the approach presented in [22] for the (1+1)- and (2+1)-dimensional dS
cases. In this way, a global picture of the interplay between the cosmological constant and the Planck-scale
deformation parameter z = 1/κ can be presented. In our approach the cosmological constant Λ = −ω is
included as an explicit deformation parameter and all the expressions are analytic both in terms of Λ and
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z. The construction of the (3+1) κ-(A)dS algebra was first exposed in [41]. It turns out to be much more
complicated than its κ-Poincaré limit, which is recovered when Λ → 0.

Before getting into the κ-deformed case, let us briefly revisit the so-called AdSω algebra as a unified way
to describe the AdS, dS and Poincaré symmetries (see [41]). In the kinematical basis the AdSω Lie algebra
{P0, Pa,Ka, Ja} is defined by the brackets:

[Ja, Jb] = ǫabcJc, [Ja, Pb] = ǫabcPc, [Ja,Kb] = ǫabcKc,

[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka,Kb] = −ǫabcJc,

[P0, Pa] = ωKa, [Pa, Pb] = −ωǫabcJc, [P0, Ja] = 0 .

(12)

As we mentioned, the parameter ω is related to the cosmological constant via ω = −Λ. Therefore, the
one-parametric AdSω algebra reduces to the AdS Lie algebra so(3, 2) when ω > 0, to the dS Lie algebra
so(4, 1) when ω < 0, and to the Poincaré Lie algebra iso(3, 1) when ω = 0.

The algebra (12) has two Casimir invariants [42]. The first one is quadratic and comes from the Killing–
Cartan form:

C = P 2
0 −P

2 + ω
(

J
2 −K

2
)

.

The second one is a fourth-order invariant:

W = W 2
0 −W

2 + ω (J ·K)
2
,

where W0 = J · P and Wa = −JaP0 + ǫabcKbPc are the components of the (A)dS analogue of the Pauli–
Lubanski 4-vector. We recall that in the Poincaré case ω = 0 the invariant W 2

0 −W
2 provides the square of

the spin/helicity operator, which in the rest frame is proportional to the square of the angular momentum
operator. It is worth emphasising that the presence of a non-vanishing ω implies that the quadratic invariant
(the one linked to dispersion relations) has a new contribution coming from the Lorentz sector of the AdSω
algebra.

By making use of this unified description, the three (3+1) Lorentzian symmetric homogeneous spaces
with constant sectional curvature ω are defined as the coset spaces AdS

3+1
ω ≡ SOω(3, 2)/SO(3, 1), namely:

• When ω > 0 (Λ < 0) we have the AdS spacetime AdS
3+1 ≡ SO(3, 2)/SO(3, 1).

• When ω < 0 (Λ > 0) we get the dS spacetime dS
3+1 ≡ SO(4, 1)/SO(3, 1).

• The Minkowski spacetime M
3+1 ≡ ISO(3, 1)/SO(3, 1) arises when ω = Λ = 0.

Explicit ambient space coordinates for these three maximally symmetric Lorentzian spacetimes can be ob-
tained by making use of a suitable realization of the Lie groups obtained by exponentiation of a faithful
representation of the AdSω Lie algebra (see [43–45] for details in the (2+1)-dimensional case).

In the following Subsections we summarize the main aspects of the κ-deformation of the AdSω Poisson
algebra by making use of this unified description, and then we construct its associated dual Poisson-Lie
group. The construction and analysis of the associated curved momentum spaces are performed separately
for the AdS and dS cases, since their geometric properties turn out to be different.

3.1 The κ-deformation of the (3+1) AdSω algebra

The generalization of the (3+1) Poisson κ-Poincaré algebra to the non-vanishing ω case has been recently
presented explicitly in [41]. In particular, the deformed coproduct for the AdSω algebra reads:

∆z(J3) = J3 ⊗ 1 + 1⊗ J3,

∆z(J1) = J1 ⊗ ez
√
ωJ3 + 1⊗ J1,

∆z(J2) = J2 ⊗ ez
√
ωJ3 + 1⊗ J2,

(13)
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∆z(P0) = P0 ⊗ 1 + 1⊗ P0,

∆z(P1) = P1 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗ P1 −

√
ωK2 ⊗ sinh(z

√
ωJ3)

− z
√
ωP3 ⊗ J1 + zωK3 ⊗ J2 + z2ω

(√
ωK1 − P2

)

⊗ J1J2e
−z

√
ωJ3

− 1

2
z2ω

(√
ωK2 + P1

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆z(P2) = P2 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗ P2 +

√
ωK1 ⊗ sinh(z

√
ωJ3)

− z
√
ωP3 ⊗ J2 − zωK3 ⊗ J1 − z2ω

(√
ωK2 + P1

)

⊗ J1J2e
−z

√
ωJ3

− 1

2
z2ω

(√
ωK1 − P2

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆z(P3) = P3 ⊗ 1 + e−zP0 ⊗ P3 + z
(

ωK2 +
√
ωP1

)

⊗ J1e
−z

√
ωJ3

− z
(

ωK1 −
√
ωP2

)

⊗ J2e
−z

√
ωJ3 ,

(14)

∆z(K1) = K1 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗K1 + P2 ⊗

sinh(z
√
ωJ3)√

ω

− zP3 ⊗ J2 − z
√
ωK3 ⊗ J1 − z2

(

ωK2 +
√
ωP1

)

⊗ J1J2e
−z

√
ωJ3

− 1

2
z2

(

ωK1 −
√
ωP2

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆z(K2) = K2 ⊗ cosh(z
√
ωJ3) + e−zP0 ⊗K2 − P1 ⊗

sinh(z
√
ωJ3)√

ω

+ zP3 ⊗ J1 − z
√
ωK3 ⊗ J2 − z2

(

ωK1 −
√
ωP2

)

⊗ J1J2e
−z

√
ωJ3

+
1

2
z2

(

ωK2 +
√
ωP1

)

⊗
(

J2
1 − J2

2

)

e−z
√
ωJ3 ,

∆z(K3) = K3 ⊗ 1 + e−zP0 ⊗K3 + z(
√
ωK1 − P2)⊗ J1e

−z
√
ωJ3

+ z(
√
ωK2 + P1)⊗ J2e

−z
√
ωJ3 .

(15)

Notice that this coproduct is written in a ‘bicrossproduct-type’ basis that generalizes the one corresponding
to the (2+1) κ-AdSω algebra [44, 45].

As it can be easily checked, the κ-Poincaré coproduct (2) is obtained from the above expressions in the
limit ω → 0. A direct comparison between both sets of expressions makes it evident that the degree of
complexity of the κ-deformation is greatly increased when the cosmological constant ω is turned on. In
fact, the κ-AdSω algebra can be thought of as a two-parametric deformation, which is ruled by a ‘quantum’
deformation parameter z = 1/κ (the Planck scale) and a ‘classical’ deformation parameter ω = −Λ (the
cosmological constant) which has a well-defined geometrical meaning. As we show in the following, the roles
of the two deformation parameters are interchanged when the dual Poisson-Lie group is considered, in the
spirit of the ‘semidualization’ approach to (2+1) quantum gravity [46, 47].

There are several differences between the coproducts (13)-(15) and (2) that have to be emphasized. First,
∆z(K) and ∆z(P ) are structurally similar when ω 6= 0, in contrast with (2). Second, translations in (14) do
not close a Hopf subalgebra, since when ω 6= 0 the coproducts ∆z(P ) contain boosts and rotations as well.
Finally, in the non-vanishing cosmological constant case the rotation sector (13) is deformed, whilst in (2)
all of the coproducts for Ja are primitive. In particular, the rotation generators have no longer all the same
role in the coalgebra, signaling a departure from standard isotropy. Further comments on this are found
below, as well as in the concluding section.2 These three features are induced by the interplay between the
cosmological constant and the quantum deformation, and the first two will be essential for the construction
of the curved momentum space when ω 6= 0.

We do not reproduce here the deformed brackets for the Poisson version of the κ-AdSω algebra which
can be explicitly found in [41], since they are quite involved and strongly present non-linear expressions
when compared to the AdSω Lie algebra (12). It is worth stressing that, in contradistinction to (1), the full

2Some technical comments on the deformation (13) of the rotation subalgebra in the (3+1)-dimensional κ-AdSω algebra are
presented in the Appendix. In fact, this last feature is quite different from other kinds of deformations that have been studied
in the context of Planck-scale deformed symmetries and –to the best of our knowledge– has not been appropriately emphasized
in the literature.
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Lorentz sector has now deformed Poisson brackets like, for instance

{J1, J2} =
e2z

√
ωJ3 − 1

2z
√
ω

− z
√
ω

2

(

J2
1 + J2

2

)

, {J1,K2} = K3 − z
√
ωJ1K1,

{K2,K3} = −1

2
J1

(

1 + e−2z
√
ωJ3

[

1 + z2ω
(

J2
1 + J2

2

)]

)

− z
√
ωK1K3,

which show evident differences with respect to its ω → 0 limit (1), and where the role of the J3 generator is
neatly distinguished with respect to the one played by J1 and J2.

The deformed quadratic Casimir for the κ-AdSω algebra reads:

Cz =
2

z2
[

cosh(zP0) cosh(z
√
ωJ3)− 1

]

+ ω cosh(zP0)(J
2
1 + J2

2 )e
−z

√
ωJ3

−ezP0

(

P
2 + ωK2

)

[

cosh(z
√
ωJ3) +

z2ω

2
(J2

1 + J2
2 )e

−z
√
ωJ3

]

(16)

+2ωezP0

[

sinh(z
√
ωJ3)√

ω
T3 + z

(

J1T1 + J2T2 +
z
√
ω

2
(J2

1 + J2
2 )T3

)

e−z
√
ωJ3

]

,

where Ta = ǫabcKbPc. Again, the ω → 0 limit is just (3), and comparing (16) to its ‘flat’ limit (3) gives
a clear idea of the kind of deformation we are dealing with. This deformed invariant (16) is relevant in
what follows, since it is connected to the deformed dispersion relation that can be deduced from the curved
momentum space with cosmological constant that we are going to construct.

3.2 The dual Poisson-Lie group

Mimicking the procedure used in the previous Section, the first step for the construction of the curved
momentum spaces of the κ-(A)dS algebras is to obtain the cocommutator map δ associated to the κ-deformed
coproduct map with non-vanishing cosmological constant. This can be found by extracting the first-order
deformation in z of the coproduct (13)-(15), which has a skew-symmetric part given by [41]:

δ(P0) = 0, δ(J3) = 0,

δ(J1) = z
√
ωJ1 ∧ J3, δ(J2) = z

√
ωJ2 ∧ J3,

δ(P1) = z
(

P1 ∧ P0 − ωJ2 ∧K3 + ωJ3 ∧K2 +
√
ωJ1 ∧ P3

)

,

δ(P2) = z
(

P2 ∧ P0 − ωJ3 ∧K1 + ωJ1 ∧K3 +
√
ωJ2 ∧ P3

)

,

δ(P3) = z
(

P3 ∧ P0 − ωJ1 ∧K2 + ωJ2 ∧K1 −
√
ωJ1 ∧ P1 −

√
ωJ2 ∧ P2

)

, (17)

δ(K1) = z
(

K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2 +
√
ωJ1 ∧K3

)

,

δ(K2) = z
(

K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3 +
√
ωJ2 ∧K3

)

,

δ(K3) = z
(

K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1 −
√
ωJ1 ∧K1 −

√
ωJ2 ∧K2

)

.

The differences between the (A)dS and Poicaré deformations which were mentioned in the previous Subsec-
tion leave their traces in the δ map. In particular, we stress two main features of the cocommutator (17):
firstly, that δ(P ) does not close a sub-Lie bialgebra since it includes the full Lorentz sector in the defini-
tion of the cocommutator; secondly, that δ(P ) and δ(K) are structurally similar when ω 6= 0. The latter
statement is just the footprint of a general property of classical dS and AdS symmetries, that disappears in
the Poincaré limit, since the AdSω Lie algebra (12) with ω 6= 0 can be straightforwardly endowed with the
following automorphism that interchanges the Pa and Ka generators:

P̃0 = P0, P̃a =
√
ωKa, K̃a = − 1√

ω
Pa, J̃a = Ja. (18)

It can directly be checked that the transformed generators close the commutation rules (12), and that the
cocommutator (17), coproduct (13)-(15) and deformed Poisson brackets given in [41] remain in the same
form, provided that the deformation parameter z is unchanged. Therefore, when the cosmological constant
does not vanish, translations and boosts have similar algebraic properties and play complementary geometric
roles (see [45] for a more detailed discussion in the context of homogeneous spaces of worldlines).
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As a consequence, the main idea introduced in [22] for the construction of curved momentum spaces for
the κ-(A)dS algebras in (2+1) dimensions becomes fully applicable: when ω 6= 0 the momentum space has
to be enlarged by including the angular momenta associated to the rotation symmetries and the ‘hyperbolic’
momenta associated to boosts. This means that the momentum space arises as the orbit of an appropriate
action of the dual Poisson-Lie group G∗

ω, whose Lie algebra g∗ω is obtained by dualizing δ. Namely:
[

R1, R2
]

= 0,
[

R1, R3
]

= z
√
ωR1,

[

R2, R3
]

= z
√
ωR2,

[

R1, X1
]

= −z
√
ωX3,

[

R1, X2
]

= zL3,
[

R1, X3
]

= −z(L2 −√
ωX1),

[

R2, X1
]

= −zL3,
[

R2, X2
]

= −z
√
ωX3,

[

R2, X3
]

= z(L1 +
√
ωX2),

[

R3, X1
]

= zL2,
[

R3, X2
]

= −zL1,
[

R3, X3
]

= 0,
[

R1, L1
]

= −z
√
ωL3,

[

R1, L2
]

= −zωX3,
[

R1, L3
]

= z(
√
ωL1 + ωX2),

[

R2, L1
]

= zωX3,
[

R2, L2
]

= −z
√
ωL3,

[

R2, L3
]

= z(
√
ωL2 − ωX1),

[

R3, L1
]

= −zωX2,
[

R3, L2
]

= zωX1,
[

R3, L3
]

= 0,
[

La, X0
]

= zLa,
[

La, Lb
]

= 0,
[

La, Xb
]

= 0,
[

Xa, X0
]

= zXa,
[

Xa, Xb
]

= 0,
[

X0, Ra
]

= 0 ,

(19)

where {X0, X1, X2, X3, L1, L2, L3, R1, R2, R3} are dual to {P0, P1, P2, P3,K1,K2,K3, J1, J2, J3}, respec-
tively. Notice that (18) induces, through duality and provided that ω 6= 0, the following automorphism
for the generators of the dual Lie algebra g∗ω

X̃0 = X0, X̃a =
1√
ω
La, L̃a = −

√
ωXa, R̃a = Ra,

which leaves the commutation relations (19) invariant and shows that the Xa and La generators can be also
interchanged at the dual Lie algebra level.

Next from the expressions (19) we deduce that in g∗ω there exists a seven-dimensional solvable Lie sub-
algebra generated by:

[X0, X i] = −zX i, [X0, Li] = −zLi, [X i, Lj ] = 0, [X i, Xj] = 0, [Li, Lj] = 0, i = 1, 2, 3. (20)

This subalgebra is ω-independent, and the dual of the rotation sector generates a three-dimensional solvable
subalgebra:

[

R1, R2
]

= 0,
[

R1, R3
]

= z
√
ωR1,

[

R2, R3
]

= z
√
ωR2 .

In the limit ω → 0 this turns out to be Abelian, which is the dual counterpart of the fact that ∆z(Ja) =
∆0(Ja) when the quantum deformation disappears.

We stress that the first-order noncommutative κ-AdSω spacetime would be given by the dual of the
translations sector, namely:

[X0, X i] = −zX i, [X i, Xj] = 0, i = 1, 2, 3.

This is indeed ω-independent but, as it was shown in [44, 48], when the all-orders quantum group is com-
puted, the quantum spacetime with non-vanishing ω is a nonlinear algebra whose higher-order contributions
explicitly depend on the cosmological constant.

4 The κ-AdS curved momentum space

In this Section and the following we separately analyze the κ-AdS and κ-dS dual Poisson-Lie groups and
construct the associated momentum spaces, since their geometric properties are different. The matrix rep-
resentation for the Lie algebra (19) when ω > 0 can be found to be

D(X0) = z

























0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























, D(X1) = z

























0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

























,
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D(X2) = z

























0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

























, D(X3) = z

























0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0

























,

D(L1) = z
√

ω

























0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

























, D(L2) = z
√

ω

























0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0

























,

D(L3) = z
√

ω

























0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0

























, D(R1) = z
√

ω

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 −1 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0

























,

D(R2) = z
√

ω

























0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0
0 0 −1 0 1 0 0 0
0 0 0 0 0 0 0 0

























, D(R3) = z
√

ω

























0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























.

This faithful representation has been found by imposing that its ω → 0 limit should lead to a reducible
representation in which the matrices (5) can be obtained by suppressing appropriate rows and columns. After
that, the rest of entries were found through direct computation by imposing the commutation rules (19) to
hold.

If we denote as {p0, p1, p2, p3, χ1, χ2, χ3, θ1, θ2, θ3} the local dual group coordinates that correspond, re-
spectively, to {X0, X1, X2, X3, L1, L2, L3, R1, R2, R3}, a representation of the Lie group G∗

ω can be explicitly
obtained as:

G∗
ω(θ, p, χ) = eθ3D(R3)eθ2D(R2)eθ1D(R1)ep1D(X1)ep2D(X2)ep3D(X3)eχ1D(L1)eχ2D(L2)eχ3D(L3)ep0D(X0). (21)

Moreover, a long but straightforward computation shows that if we multiply two G∗
ω elements:

G∗
ω(θ

′′, p′′, χ′′) = G∗
ω(θ, p, χ) ·G∗

ω(θ
′, p′, χ′),

the group law

θ′′ = f(θ, θ′, p, p′, χ, χ′), p′′ = g(θ, θ′, p, p′, χ, χ′), χ′′ = h(θ, θ′, p, p′, χ, χ′),

can be explicitly obtained and it can be exactly written as the coproduct (13)-(15) for ω > 0, provided the
identification

θa ≡ Ja, p0 ≡ P0, pa ≡ Pa, χa ≡ Ka, (22)

is assumed and by following the convention (8). Similarly to what observed for the ω = 0 case, the fact that
we are able to recover the coproducts of the algebra in the bicrosscroduct basis is due to the specific choice
of ordering of the exponential in (21). A different ordering choice would reflect into a group law compatible
with the coproduct of the algebra in a different basis. We recall that the ordering (21) was just the one
introduced in [41] in order to obtain the κ-deformation of the (3+1) AdS algebra presented in Section 3, and
this choice guarantees the self-consistency of all the new results here presented.
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Now, the κ-AdS momentum space can be constructed by considering the left action of the group element
G∗

ω(θ, p, χ) on an 8-dimensional ambient space. The points that can be reached from the origin O ≡
(0, 0, 0, 0, 0, 0, 0, 1) under such action are those with coordinates (S0, S1, S2, S3, S4, S5, S6, S7) given by:

G∗
ω · (0, 0, 0, 0, 0, 0, 0, 1)T = (S0, S1, S2, S3, S4, S5, S6, S7)

T .

These can explicitly be written as:

S0 = sinh(zp0) +
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

,

S1 = A
(

p1 B+
21 +

√
ω
(

C + χ2 B−
21

))

,

S2 = A
(

p2 B+
12 +

√
ω
(

D − χ1 B−
12

))

,

S3 = zezp0

(

p3 − z
√
ω
(

θ1 p1 + θ2 p2 +
√
ω (θ1 χ2 − θ2 χ1)

))

,

S4 = A
(

−p2 B
−
21 +

√
ω
(

D + χ1 B+
21

))

, (23)

S5 = A
(

−p1 B
−
12 +

√
ω
(

C − χ2 B+
12

))

,

S6 = −z
√
ω ezp0

(

χ3 − z
(

θ2 p1 − θ1 p2 +
√
ω (θ1 χ1 + θ2 χ2)

))

,

S7 = cosh(zp0)−
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

,

where we have defined:

p̄2 = p21 + p22 + p23,

χ̄2 = χ2
1 + χ2

2 + χ2
3,

A =
1

2
z ez(p0−θ3

√
ω),

B±
ij = ω z2 (θ2i − θ2j ) + e2z

√
ωθ3 ± 1, i ∈ {1, 2}, (24)

C = 2z
(

θ2
√
ω
(

z θ1
(

−p2 +
√
ω χ1

)

− χ3

)

+ θ1 p3
)

,

D = 2z
(

θ1
√
ω
(

z θ2
(

−p1 −
√
ω χ2

)

+ χ3

)

+ θ2 p3
)

.

Note that, when evaluated at (θ1, θ2, θ3) = (0, 0, 0), the last four functions give A → 1
2ze

zp0 , B+
ij → 2,

B−
ij → 0, C → 0 and D → 0.

We would like to stress that the ω → 0 limit of these expressions makes S4, S5 and S6 vanish, and for
the remaining ambient coordinates we get exactly the κ-Poincaré curved momentum space (10). In other
words, this means that for ω = 0 the matrix (21) is a reducible representation of the dual κ-Poincaré group,
which is consistent with the fact that the ambient space has been enlarged when the cosmological constant
has been introduced.

From (23) we can deduce the geometrical properties of the κ-AdS momentum space. In fact, it is
straightforward to check that the following relations hold:

−S2
0 + S2

1 + S2
2 + S2

3 − S2
4 − S2

5 − S2
6 + S2

7 = 1, S0 + S7 = ez p0 > 0. (25)

This means that, if we consider an R
4,4 ambient space, the κ-AdS momentum space is (half of) a SO(4, 4)

quadric. From the expressions (23) it is also straightforward to check that the subgroup of dual rotations,

G0 = eθ3D(R3)eθ2D(R2)eθ1D(R1) , (26)

leaves the point O invariant. The action of the remaining 7-parameter subgroup (generated by the Lie
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subalgebra (20)) is obtained by evaluating (23) at (θ1, θ2, θ3) = (0, 0, 0):

S0 = sinh(zp0) +
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

,

S1 = z ezp0 p1,

S2 = z ezp0 p2,

S3 = z ezp0 p3,

S4 = z ezp0

√
ω χ1,

S5 = −z ezp0

√
ω χ2,

S6 = −z ezp0

√
ω χ3,

S7 = cosh(zp0)−
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

.

(27)

These expressions encode the essential information concerning the non-vanishing cosmological constant gen-
eralization of (10), since dual rotations leave the point O invariant. Therefore, we can think of the κ-AdS
momentum space (25) as the 7-dimensional orbit in R

4,4 that can be parametrized through (27) in terms of
the dual translation and boost coordinates, while the dual rotation coordinates θ do not play any role in the
description of the curved momentum space.

We recall that the deformed Poisson brackets for the κ-AdS algebra would be the ones in [41] for ω > 0,
and (22) allows them to be interpreted as a Poisson-Lie structure on the dual Lie group G∗

ω for which the
multiplication on G∗

ω (i.e. the coproduct (13)-(15) for the κ-AdS algebra) is a Poisson map. If we now apply
the identification (22) onto the deformed Casimir function (16) and afterwards we project it onto the curved
momentum space parametrized by the p and χ coordinates by setting θi → 0, we obtain

Cz =
2

z2
(cosh(z p0)− 1)− ez p0

(

p̄2 + ωχ̄2
)

, (28)

which could be considered as the deformed dispersion relation that corresponds to the (3+1) κ-AdS momen-
tum space.3 The physical interpretation of such a dispersion relation requires to give a physical meaning to
the hyperbolic momenta χa. This can be done thanks to the identification (22), which states that the local
group coordinates have the same Poisson brackets as the generators of the κ-(A)dS algebra, as discussed in
detail in [22]. It is then possible to represent the local coordinates of the dual group in terms of the usual
phase space coordinates πµ and xν with {πµ, x

ν} = δνµ, following a procedure similar to that found in [8,49].
In particular, the χa are expected to be given by a combination of both the components πµ and xν of the
phase space. An explicit example of this is found in [49], where the (1+1) κ-de Sitter algebra is represented
on phase space.4 In that case it is found that the dispersion relation depends on both momenta and spatial
coordinates in a way that encodes a deformed gravitational redshift. We would expect something similar to
show in this higher-dimensional model, however we are not yet at the stage where the explicit dependence
of the dispersion relation on the phase space coordinates can be exposed. In fact, finding the appropriate
phase space realization of the (3+1) κ-(A)dS algebra is a nontrivial task, that is work in progress and will
be presented in a forthcoming publication [50], along with a thorough analysis of the physical implications
of the findings presented here.

5 The κ-dS curved momentum space

As it could be expected, if we apply the construction presented in the previous Section to the case ω < 0 we
obtain the same kind of geometric construction for the κ-dS momentum space, that should generalize the
(2+1) results presented in [22]. The only aspect we have to be careful about is the appearance of complex
quantities when ω < 0, due to the presence of

√
ω in some of the expressions (for instance, see (17)). This

3As we show in the following section, for ω < 0 this same expression describes the deformed dispersion relation corresponding
to the (3+1) κ-dS momentum space.

4Note that the algebra appearing in [49] is written in a different basis than the one used here. While both algebras are of
bicrossproduct type, for z → 0 the algebra in [49] reduces to the de Sitter algebra in the comoving basis, while the one used
here reduces to the de Sitter algebra in kinematical basis. It is worth stressing that the comoving momenta are defined as a
linear superposition of kinematical translations and boosts, which is again consistent the mixing of both type of kinematical
transformations within (28).
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is not a major obstacle to the construction of the momentum space, since, as we are going to show, all the
complex contributions are linked to the dual of the rotation subgroup, which is again the isotropy subgroup
of the origin of the momentum space. So they disappear when we consider the projection to the submanifold
parametrized by momenta and boost coordinates.

The matrix representation of the algebra (19) when ω < 0 can be found to be

D(X0) = z

























0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























, D(X1) = z

























0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

























,

D(X2) = z

























0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

























, D(X3) = z

























0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0

























,

D(L1) = z
√

−ω

























0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0

























, D(L2) = z
√

−ω

























0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0

























,

D(L3) = z
√

−ω

























0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0

























, D(R1) = z
√

−ω

























0 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 0 0 0 0 −1 0
0 −i 0 0 0 1 0 0
0 0 0 0 0 0 i 0
0 0 0 −1 0 0 0 0
0 0 1 0 −i 0 0 0
0 0 0 0 0 0 0 0

























,

D(R2) = z
√

−ω

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 i 0 0 0 0
0 0 −i 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 i 0
0 −1 0 0 0 −i 0 0
0 0 0 0 0 0 0 0

























, D(R3) = z
√

−ω

























0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























.

Again, the left linear action of (21) onto the point O = (0, 0, 0, 0, 0, 0, 0, 1) gives rise to an orbit whose
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points have ambient coordinates in R1,7 given by:

S0 = sinh(zp0) +
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

,

S1 = A
(

p1 B+
21 + i

√
−ω

(

C + χ2 B−
21

))

,

S2 = A
(

p2 B+
12 + i

√
−ω

(

D − χ1 B−
12

))

,

S3 = zezp0

(

p3 − i z
√
−ω

(

θ1 p1 + θ2 p2 + i
√
−ω (θ1 χ2 − θ2 χ1)

))

,

S4 = A
(

i p2 B−
21 +

√
−ω

(

D + χ1 B+
21

))

, (29)

S5 = A
(

−i p1 B−
12 −

√
−ω

(

C − χ2 B+
12

))

,

S6 =
√
−ω z ezp0

(

χ3 − z
(

θ2 p1 − θ1 p2 + i
√
−ω (θ1 χ1 + θ2 χ2)

))

,

S7 = cosh(zp0)−
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

,

where A,B±
ij , C,D are the same functions appearing in (24). It is straightforward to check that such coor-

dinates obey the constraints:

−S2
0 + S2

1 + S2
2 + S2

3 + S2
4 + S2

5 + S2
6 + S2

7 = 1, S0 + S7 = ez p0 > 0,

so that we obtain (half of) the (6+1) dS space as the curved momentum space for the κ-dS quantum algebra.

Again, the isotropy subgroup for O is generated by the subgroup of dual rotations (26), and each point
of the curved momentum space can be charaterized by the seven momenta and rapidities by evaluating (29)
at (θ1, θ2, θ3) = (0, 0, 0):

S0 = sinh(zp0) +
1

2
ezp0z2

(

p̄2 − ωχ̄2
)

,

S1 = z ezp0 p1,

S2 = z ezp0 p2,

S3 = z ezp0 p3,

S4 = z ezp0

√
−ω χ1,

S5 = z ezp0

√
−ω χ2,

S6 = z ezp0

√
−ω χ3,

S7 = cosh(zp0)−
1

2
ezp0 z2

(

p̄2 − ωχ̄2
)

.

Note that these ambient space coordinates (30) are all real, since all the complex contributions in (29)
are linked to the action of the dual rotation subgroup.

Finally, the projection of the deformed Casimir onto the curved momentum space leads to (28), which
can again be interpreted as the dispersion relation for the ω < 0 case. Also, the ω → 0 Poincaré limit of all
of these expressions is straightforward, and leads to the results presented in Section 2.

6 Discussion and concluding remarks

In [22] we constructed the generalized momentum space associated to quantum deformed spacetime sym-
metries in presence of a cosmological constant. We focused on the κ-dS algebra, which can be seen as a
deformation of the standard Poincaré algebra governed by two deformation parameters: the cosmological
constant Λ = −ω is a classical deformation parameter, controlling the effects of spacetime curvature, while
z = 1/κ is the quantum deformation parameter, controlling the Planck-scale effects (which in turn induce
curvature in momentum space). The interplay between these two deformations is nontrivial and intertwines
the coordinates of the whole phase space. So, while it was known for a while already that in the ω → 0 limit
(where the symmetries are described by the κ-Poincaré algebra) the geometrical properties of the momentum
space are those of half of a dS manifold, it was generally thought that it would not be possible to make an
analogous analysis once ω 6= 0.

Our recent result was an important breakthrough in this respect, since it demonstrated that the joint
effects of spacetime curvature and of the quantum deformation can be taken into account if one constructs
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the momentum space by considering not just the momenta linked to spacetime translations, but also the
hyperbolic momenta associated to boost transformations. Still, [22] focussed only on low-dimensional cases,
namely the κ-dS algebras in (1+1) and (2+1) dimensions. Of course the physically relevant model is that
with (3+1) dimensions, which, as explained in the introduction, allows to connect to the phenomenology
of particles propagating over cosmological distances. Describing the generalized momentum space of both
quantum-deformed dS and AdS algebras with a cosmological constant in (3+1) dimensions was the goal of
the work presented here.

Going from the (2+1)-dimensional case to the one with (3+1) dimensions entails dealing with a deformed
rotation sector, which is still classical in lower dimensional models. Specifically, the coalgebra of the rotations
is modified in (3+1) dimensions, in such a way that one of the rotation generators takes a special role
compared to the others (see the Appendix). This might raise worries that the model breaks spatial isotropy.
However, just as the deformed boost transformations do not break relativistic invariance, but simply deform
the laws of transformation between inertial frames, the deformed rotations could imply that the concept of
isotropy has to be adapted to fit within the new transformation rules. What the observational consequences
of this deformed isotropy could be is still a matter of investigation.

Despite these novel features, the analysis of the generalized momentum space of the κ-dS algebra in
(3+1) dimensions led to a higher-dimensional version of the results found in [22]: the momentum space
is half of a (6+1)-dimensional dS manifold and the rotations are the group of isotropy of its origin. The
lower-dimensional results are recovered via canonical projection.

We expanded our construction to the κ-AdS algebra, which can be defined starting from the κ-dS algebra
and changing sign to the cosmological constant parameter. While the difference between the two models is
minimal at the level of the algebra and coalgebra, we found that the momentum space is characterized by a
qualitatively different geometry. This is because the change of sign of the cosmological constant produces the
appearance of complex quantities due to the presence of

√
ω factors. This analysis provides the first example

where quantum effects do not produce a momentum space with dS geometry, but something different –we
found that the κ-AdS algebra has a momentum manifold with SO(4, 4) invariance.

Finally, we would like to comment that the non-relativistic limit of the results here presented is indeed
worth to be studied, since it would give rise to the momentum spaces associated to quantum deformations of
the (3+1) Newton-Hooke symmetries when ω 6= 0, and to quantum Galilei symmetries in the case ω = 0. In
this respect, we recall that the Galilean limit of (2+1) quantum gravity based on quantum deformations of
the Galilei and Newton-Hooke algebras was formerly presented in [51] and [52], and further studied in [53].
Work on this line is in progress.
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Appendix

Let us recall that since δ in Eq. (17) is a coboundary Lie bialgebra, there exists a classical r-matrix such
that δ(X) = [X ⊗ 1 + 1⊗X, r]. For coboundary deformations classical r-matrices provide the simplest way
to condense the information of a given quantum algebra. In this case (see [41, 54]) such classical r-matrix
reads

rω = z
(

K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 +
√
ωJ1 ∧ J2

)

, (A.1)

and its κ-Poincaré limit ω → 0 is the well-known classical r-matrix

r = z (K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) . (A.2)
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Note that rotations appear in the r-matrix only in (3+1) dimensions. In fact, the (2+1) κ-AdSω deformations
are generated by the classical r-matrix given by (see [43, 44])

r = z (K1 ∧ P1 +K2 ∧ P2) , (A.3)

which does not depend on ω and is just the projection of (A.1) to the (2+1)-dimensional case, obtained
by supressing the J1, J2, P3 and K3 generators. The J1 ∧ J2 term, which does not appear in (A.3), is the
one responsible for the non-vanishing δ(J) in the (3+1) case and, therefore, is the term that induces the
deformation (13) of the rotation subalgebra.

At this point it is natural to wonder whether there could exist another quantum AdSω algebra in (3+1)
dimensions that generalizes the κ-Poincaré algebra and has a non-deformed rotation subalgebra, δ(J1) =
δ(J2) = δ(J3) = 0. This question can be addressed by recalling that in [43, 55] it was proven that all AdSω
deformations in (3+1) dimensions with primitive coproducts for P0 and J3 (i.e. with δ(P0) = δ(J3) = 0) are
generated by one of the two (disjoint) families of two-parametric classical r-matrices:

rz1,z3 = z1
(

K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 ±
√
ω J1 ∧ J2

)

+ z3P0 ∧ J3, (A.4)

rz2,z3 = z2
(

P1 ∧ P2 + ωK1 ∧K2 − ω J1 ∧ J2 ±
√
ωP3 ∧K3

)

+ z3P0 ∧ J3. (A.5)

Therefore, if we impose that the κ-Poincaré algebra has to be obtained in the limit ω → 0 (which means that
the classical r-matrix that generates the deformation should still have (A.2) as its ω → 0 limit), this implies
that the only viable solution is (A.4), that is, (A.1) plus an additional twist generated by z3P0 ∧ J3. We
point out that both classical r-matrices (A.4) and (A.5) are invariant under the automorphism (18) provided
that the deformation parameters z1, z2 and z3 remain unchanged.

It can also be proven [43] that a linear change of basis X → X̂ in the κ-AdSω algebra transforms the
r-matrix (A.4) into

rz1,ẑ3 = z1

(

K̂1 ∧ P̂1 + K̂2 ∧ P̂2 + K̂3 ∧ P̂3 ±
√
ω√
3

(

Ĵ1 ∧ Ĵ2 + Ĵ2 ∧ Ĵ3 + Ĵ3 ∧ Ĵ1

)

)

+ẑ3P̂0 ∧
(

Ĵ1 + Ĵ2 + Ĵ3

)

,

where ẑ3 = z3/
√
3, in such a way that the three rotation generators seem to play the same role, although

now it can be checked that the primitive generator for the rotation subalgebra turns out to be Ĵ1 + Ĵ2 + Ĵ3.
As a consequence, we can state as a general result that the generalization of the κ-Poincaré algebra to
the non-vanishing cosmological constant case implies a non-trivial Planck scale deformation of the rotation
sector, unless we are willing to deform the time-translation sector.
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