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Abstract: We fabricate and study direct InP/Si heterojunction by corrugated epitaxial lateral 
overgrowth (CELOG). The crystalline quality and depth-dependent charge carrier dynamics 
of InP/Si heterojunction are assessed by characterizing the cross-section of grown layer by 
low-temperature cathodoluminescence, time-resolved photoluminescence and transmission 
electron microscopy. Compared to the defective seed InP layer on Si, higher intensity band 
edge emission in cathodoluminescence spectra and enhanced carrier lifetime of InP are 
observed above the CELOG InP/Si interface despite large lattice mismatch, which are 
attributed to the reduced threading dislocation density realized by the CELOG method. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Integration of III-V semiconductors on silicon is a major challenge in realizing efficient 
electronics-photonics integrated devices and systems. Several III–V compounds are direct 
bandgap materials and hence have favorable optical and electronic properties, such as 
efficient light emission and high carrier mobility. In particular, InP and related materials are 
important III-V semiconductors, used in long wavelength lasers, high performance 
photodetectors, high electron mobility transistors, etc [1,2]. High crystalline quality InP/Si 
are desired for Si based photonic integrated circuits and tandem solar cell applications. The 
three main approaches to integrate III-V and Si are: flip-chip integration [3], bonding 
technologies [4], and hetero-epitaxial growth [5]. Among them, heteroepitaxy would be the 
most desirable approach for integration because of better thermal dissipation, self-alignment 
(which provides high integration density), fewer processing steps, and device cost 
effectiveness [6]. However, the large lattice mismatch between InP and Si, the difference in 
the thermal expansion coefficients, and the polar/non-polar interfaces usually result in 
heteroepitaxial layers with high density of crystal defects. It is not uncommon to find misfit 
and threading dislocations, stacking faults, microtwins, and antiphase domains in those 
InP/Si layers. All these defects are detrimental to the optical devices made out of InP/Si, 
since they create deep electronic levels in the band gap, which can act as carrier traps, and 
non-radiative recombination centers (NRRCs) [7]. 
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Various approaches for defect reduction have been considered to achieve high crystalline 
quality III-V/Si substrates by epitaxial growth techniques [5,8]. The corrugated epitaxial 
lateral overgrowth (CELOG) method, a modified form of epitaxial lateral overgrowth 
(ELOG) [9], has been shown to be a potential solution for III-V/Si integration by hydride 
vapor phase epitaxy (HVPE) [10]. HVPE is an ideal method for III-V based solar cell 
fabrication since it uses cheap precursors [11], yields high growth rate and gives the growth 
selectivity necessary for CELOG [12]. Recently an n-InP/p-Si heterojunction photodiode was 
realized by the CELOG method in a HVPE reactor [13]. 

Understanding the minority carrier dynamics in InP/Si heterojunction is essential for 
achieving high performance devices, such as high efficiency solar cells. In InP/Si layers with 
high dislocation density, dislocations act as recombination centers which reduce the 
minority-carrier lifetime and diffusion length [14]. In heterojunction solar cells, where 
dislocation density is normally high, the predominant loss mechanism is recombination loss 
at dislocations which reduces the open-circuit voltage and increases the leakage current [15]. 
An enhanced carrier lifetime of InP on Si is desired for high performance photonic devices. 

Here, we report on the investigation of depth resolved carrier dynamics in CELOG InP/Si 
direct heterojunction. By conducting low temperature cathodoluminescence (LT-CL) and 
time resolved photoluminescence (TRPL) line scanning on the cross-section of CELOG 
InP/Si, we study the impurity and defect related radiative recombination and non-radiative 
recombination through surface and interface states. The advantage of CELOG InP/Si for 
dislocation reduction and carrier lifetime enhancement is demonstrated. High crystalline 
quality InP/Si interface without threading dislocations and comparable to that of wafer 
bonded interface was revealed in transmission electron microscopy (TEM) studies. This 
study shows that the CELOG method to fabricate direct InP/Si heterojunction is promising 
for realizing III-V multi-junction solar cells and optical light sources on silicon. 

2. Experiment details 

A heterojunction of n-InP layer on p-Si substrate (n-InP/p-Si) realized via the CELOG 
method in an HVPE reactor is studied in this report. The n-InP layer was grown on a p-Si 
substrate patterned with InP-seed layers. The substrate processing included metalorganic 
vapor phase epitaxy (MOVPE) for the growth of the InP-seed on a (001) Si substrate (off-cut 
4° toward [111]), plasma enhanced chemical vapor deposition (PECVD) for SiO2 mask and 
Si3N4 spacers, photolithography, and inductively coupled plasma (ICP) etching of the InP 
layer to form the InP-seed mesa. Process flow of InP-seed mesa fabrication is shown Figs. 
1(a)-1(d). A schematic of the InP-seed mesa pattern on Si processed for CELOG is shown in 
Fig. 1(e). The pattern consists of InP mesa (height = 2 μm) with Si3N4 spacer (sidewalls), 
where the silicon surface is exposed through the circular holes, of diameter 30 μm, arranged 
in a triangular lattice with center-to-center distance of 35 μm. Circular pattern is chosen to 
enhance the coalescence. CELOG on stripe openings were investigated [10,16]. We found 
that coalescence was hindered if the spacing between the stripes is too large and the lateral 
overgrowth rate is determined by the angle between stripe openings and [110] direction. By 
using symmetric circular opening, high rate lateral overgrowth front can be formed without 
intentional alignment of openings with respect to [110] direction. 

The n-InP/p-Si CELOG growth in a HVPE reactor consisted of a semi-insulating InP:Fe 
(SI-InP, resisitivity ~108 ohm.cm) growth followed by n-InP (n = 7 × 1016 cm−3 quantified by 
Hall measurements), for 5 min. and 25 min., respectively. The CELOG growth was 
conducted at 590°C at the reactor pressure of 20 mbar; the InCl and PH3 flows were 12 sccm 
and 120 sccm, respectively. A schematic of the CELOG InP/Si cross-section is shown in Fig. 
1(f). The dislocations in InP seed mesas can propogate to the surface of growth but will not 
bend downward to the surface of Si substrate in the lateral overgrowth region. This 
heterojunction has been processed to build up a photodiode. N-type contact pads (150 µm × 
150 µm) consisting of 90 nm AuGe/50 nm Ni/150 nm Au were formed on the n-InP surface 
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4 μm away from the interface. This suggests that 903 nm peak can be attributed to Si 
diffusion from the substrate into the CELOG layer [19,20]. Si incorporation into the CELOG 
region can also occur during growth, due to Si gas phase transport from the unmasked areas 
of the Si substrate [21]. As one approaches the top of the CELOG layer (S1 and S4 in Fig. 
3(a)), a CL band peaking at 967 nm becomes dominant. As shown in the monoCL image in 
Fig. 3(b), the emission at 967 nm is relatively non uniform; it is mainly observed in the top 
part of the CELOG layer and even spatially anticorrelated with the distribution of the 892 nm 
band. The emission at 967 nm could be due to a donor level created by an oxygen atom 
replacing a P atom [22,23] during the metallization process of the PIN diode fabrication 
(which is not presented here). In fact, the samples were annealed at 380°C for 5 min to make 
the ohmic contacts after metallisation. Phosphorous out-diffusion and oxygen in-diffusion 
from the native InP oxide layer can happen during the annealing step. Such oxygen 
complexes are expected to be at higher concentrations close to the top of the CELOG InP/Si 
layer where the contacts were formed, and indeed it is so as observed in Fig. 3(b) (967 nm 
map). Finally, a broad band emission at about 1120 nm is also observed, as shown in the low 
energy tail of the CL spectra of Fig. 3(a). This band is often referred as C-band in InP and is 
attributed to a complex or pair defect involving species such as a donor like phosphorus 
vacancy (VP) and an acceptor like indium vacancy (VIn) [24,25]. The intensity of the C-band 
emission is affected by the crystalline quality of InP, as observed in the mono-CL image. Its 
peak intensity in Fig. 3(a) in general is lower than the intensity of the other two peaks 
previously mentioned, but it is more conspicuous at the CELOG InP/Si interface region with 
respect to the other regions of the CELOG layer. The monochromatic CL images clearly 
establish the distribution of this band, which appears mainly localized at the CELOG region 
as Fig. 3(b) reveals. 

To characterize the carrier dynamics and lifetime in the CELOG InP layers, TRPL 
measurements were carried out on the cross-section of CELOG InP/Si samples. Nonradiative 
recombination and trapping of carriers depend on the concentration of surface and interface 
defects, as well as point and extended defects in the bulk [26]. The PL decay time is 
determined by both radiative (τR) and nonradiative (τNR) recombination times via. 1/τPL = 1/τR 
+ 1/τNR. Assuming that the radiative recombination time in bulk InP is spatially uniform, a 
longer PL lifetime is an indication of a reduced nonradiative recombination. For the same 
type of the prevailing nonradiative recombination centers, longer PL decay times indicate 
lower NRRCs density. 

TRPL were measured on the (110) cross section surface along [001] growth direction 
above the CELOG InP/Si heterojunction (CELOG-scan) with a step size of 1 µm and above 
InP-seed region (seed-scan) with a step size of 2 µm. Position dependent PL decays are 
observed in both CELOG-scan and seed-scan as shown in Figs. 4(a) and 4(c). The TRPL 
decay curves in CELOG-scan measured close to the top of the growth surface and adjacent to 
the InP/Si interface show double exponential PL decay, as indicated by the decay curves 
measured at 3 µm and 21 µm from the InP surface as shown in Fig. 4(a). On the other hand, 
the TRPL spectra measured in the middle of the grown InP layer show single exponential PL 
decay. Such position dependent PL decay is also observed in seed-scan shown in Fig. 4(c). 
The single exponential PL decay process is dominated by bulk recombination with carrier 
lifetime τ, whilst PL transients yielding double exponential indicate two recombination 
mechanisms with a fast (τ1) and a slow (τ2) decay processes. The carrier lifetimes, τ1 and τ2, 
for double exponential decay and τ for single exponential decay extracted from the TRPL 
decay curves in CELOG-scan and the seed-scan are plotted as a function of the distance from 
the top of the growth surface in Figs. 4(b) and 4(d), respectively. The depth dependent carrier 
lifetimes in Fig. 4(b) and 4(d) can be divided in to three regions in both CELOG and seed-
scans. In region I, within 7 µm below the top surface, the TRPL decay curves of both seed-
scan and CELOG-scan show double exponential decays and both lifetimes, τ1 and τ2 increase 
with the distance from the top surface, which indicates that a similar decay mechanism 
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fraction of photoexcited carriers reach the surface and τ1 decreases accordingly. The longer 
decay time component may also be affected by the carrier diffusion since the non-radiative 
recombination at (001) surface acts as a sink and increases the gradient in photo-excited-
carrier concentration, which speeds up the diffusion process and thereby the PL decay. 

The TRPL measured in region II shows single exponential decay and the carrier lifetime 
decreases toward the InP surface in both seed- and CELOG-scans (Figs. 4(b) and 4(d)). As 
shown in the CL characterization, Fig. 3, the progressive increase of the 967 nm band 
emission at 80 K towards the top surface suggests that the higher contribution of this 
recombination channel weakens the near band edge (NBE) emission, reducing the minority 
carrier lifetime in this region. The surface recombination at the (001) surface might also be 
affecting the PL decay in this region as deduced in the 2-D simulation of carrier dynamics in 
(2PE) TRPL experiments in semiconductors: it leads to an increase of the single exponential 
carrier lifetime, τ, when increasing the distance from the surface, reaching the maximum 
value once the surface recombination on (001) plane has negligible impact on the PL decay 
[27]. Such saturated carrier lifetime is only observed in region II in the CELOG-scan, while 
in the seed-scan it shows premature declination after reaching a maximum value of 640 ps. In 
region II of seed-scan, the higher lifetimes (~640 ps) observed away from the interface 
(around 10 μm) indicates better quality InP, which could be due to the annihilation process of 
dislocations propagating from the seed layer [29]. The InP growth starts on the defective InP-
seed; as the growth proceeds, the threading dislocations propagating from the seed can get 
eliminated by creating dislocation loops for increasing InP layer thickness. In region II of 
CELOG-scan, the lifetime increases as the excitation laser spot approaches the InP/Si 
interface. The longest lifetimes (~700 ps) were observed from 5 μm to 2 μm close to the 
InP/Si interface. It indicates that the material near the interface has a low concentration of 
dislocations, which is consistent with the high CL intensity observed in that region of the 
CELOG layer (see Fig. 2). In this region, the original dislocations in the InP-seed layer were 
filtered away since the dislocations propagate only towards the top surface and cannot bend 
downwards to the surface of Si. Lifetimes near the CELOG interface are longer than the 
highest value in the seed-scan (~640 ps), which suggests that CELOG is more efficient in 
reducing dislocation density than the mere increasing of the layer thickness in InP/Si 
heteroepitaxy. In the seed-scan, the reduced carrier lifetimes in region III are due to the high 
density of dislocations (~109cm−2) in the seed, which could cause nonradiative 
recombination. In CELOG-scan, as the excitation laser spot reaches further close to the 
interface (~2 µm from interface) or at the interface in region III, the lifetime drops, and the 
decay follows a double exponential. Misfit dislocations could be confined to the CELOG 
interface. Therefore, the faster decay near CELOG InP/Si interface might be due to non-
radiative recombination at the InP/Si interface where dangling bonds associated with misfit 
dislocations are present. The CELOG InP/Si interface partially neutralizes the dangling 
bonds, thereby reducing the surface recombination velocity (SRV) as compared to the top 
surface, which will be shown in the TEM inspection of the InP/Si interface revealing a 
coherent InP layer epitaxially fused to Si. Therefore, the depth dependent carrier lifetime 
distribution can only be seen in a narrow region close to the InP/Si interface in CELOG-scan. 
This difference in the SRV of the InP/Si interface and the InP top surface is the reason for the 
lifetime differences observed in the top and the interface regions in the CELOG-scan. 

In Fig. 5, the carrier lifetimes of CELOG InP/Si layers are compared with that of direct 
heteroepitaxial InP/Si by MOVPE (InP-seed/Si). The carrier lifetime on the (001) surface of 
CELOG InP/Si (denoted as CELOG top in the figure) extracted from a single exponential 
decay is 745 ps. The decay curve measured close to this site but on the (110) cross-section 
(denoted as CELOG CS_2 µm) is double exponential and the lifetime of the lower decay rate 
is 220 ps. Because of the proximity of the measurement sites the lifetimes are expected to be 
the same in contrast to what is being observed. This suggests that the active contribution of 
carrier diffusion to the (001) surface and surface recombination could reduce the carrier 
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dislocations. They are confined to the interface as in wafer-bonding technology [32]. The 
CELOG process appears as a bonding process taking place during the growth, as if the 
growing InP layer is fused to the Si surface at high temperatures. The results of Matsumoto et 
al. indicate that subsequent epitaxial growth on bonded wafer can cause dark line defects due 
to thermal mismatch [33]. In our case the heterointerface is already formed at high 
temperature and hence low risk for threading dislocation during subsequent growth of e.g. 
laser devices. Off-cut Si substrate was used to avoid APDs (antiphase domains) in the InP-
seed grown with MOVPE. No APDs were observed in the CELOG region by TEM and CL. 

4. Conclusions 

We studied monolithically integrated InP/Si heterojunction with high crystalline quality InP 
and coherent InP/Si interface realized by self-aligned corrugated epitaxial lateral overgrowth 
(CELOG) method in HVPE. CL spectra acquired at 80 K in different regions of the CELOG 
cross-section present following transitions: 1) near-BE band at 892 nm (1.39 eV); 2) a band 
at 903 nm (1.37 eV) related to Si diffussion from the Si substrate; 3) a band peaking at 967 
nm (1.28 eV) associated with an oxygen donor level due to replacement of P site; 4) a broad 
band around 1120 nm (1.11 eV) attributed to a complex defect pair, due to donor like VP and 
acceptor like VIn. The intensity distribution of these emissions has been studied by 
hyperspectral CL images. The monochromatic CL images of 892nm and 1120 nm emissions 
taken on the cross-sections showed strong contrast between CELOG regions (bright) and 
defective seed regions (dark), suggesting high crystalline quality InP/Si heterojunction in the 
CELOG region. The depth dependence of InP carrier lifetime in CELOG InP/Si cross-section 
was measured at room temperature by time resolved photoluminescence. Depending on the 
positions, single and double exponential decays were observed, and the related 
recombination mechanisms have been discussed. An enhancement of carrier lifetime was 
observed near the CELOG InP/Si interface with respect to seed layer accounting for its better 
crystalline quality. We notice that the value of carrier lifetime measured by TRPL at the 
cross-section of CELOG InP/Si is affected by photo-carrier diffusion and associated non-
radiative recombination through surface states on (001) InP plane and interface states in the 
misfit dislocation network at InP/Si direct heterojunction. Appropriate carrier confinement 
structure would be essential for enhancing carrier lifetime in CELOG InP/Si heterojunction. 
TEM characterization also revealed high crystalline quality of InP at the CELOG InP/Si 
interface without threading dislocations in the InP layer, but misfit dislocations presumably 
exist at the interface as shown in cross-sectional HRTEM in a manner observed in wafer 
bonding heterointerface. The selected area electron diffraction pattern acquired at the film-
substrate interfacial region has revealed a coherent CELOG InP/Si interface free of 
amorphous layer. This work has demonstrated that CELOG is an efficient method for 
dislocation reduction and carrier lifetime enhancement in heteroepitaxial InP growth on Si. 
Location-dependent multiple bands and dislocation densities in this approach cause 
challenges to the devices grown on CELOG. Chemical mechanical polishing (CMP) will be 
used to remove the top layer of InP to expose the high quality CELOG region. Devices will 
be fabricated on the CELOG region by isolating the seed regions from electrically active 
regions. Ideally the seed site and its pattern density should be small to achieve large area 
CELOG region for planar photonic devices. But these have not been investigated in detail in 
this work. As shown in this work, the regrown materials in CELOG region have high 
crystalline quality but they will be isolated islands after CMP to expose the CELOG layer, 
which are separated by defective InP seeds. Large area and uniform low dislocation InP layer 
on Si are desired for in-plane photonic integrated circuit (PIC) applications. By conducting 
InP planarization growth after removing the original InP seeds between CELOG InP islands, 
a uniform high crystalline quality InP/Si layer can be expected. The CELOG approach is 
generic and can be extended to the formation of other III-V/Si heterostructures. Thus III-V 
material with long carrier lifetime on silicon fabricated by CELOG method will facilitate the 
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realization of cost effective integrated photonic devices and III-V multi-junction solar cells 
on silicon with bandgap combinations desirable for high efficiency. 
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