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For the things we have to learn before we can do them, we learn by doing
them.

— Aristotle, The Nicomachean Ethics



A B S T R A C T

Three-dimensional reconstruction is the process of estimating the unknown
depth of the points in a scene. There are several approaches to solve this
problem. For example, depth can be retrieved using active sensing (e. g., laser
scans) or passive sensing (e. g., digital images). The former provides more ex-
pensive, accurate and clean measurements, whereas the latter provides mul-
tiple affordable noisy measurements. Both of them can capture the color of
the point according to the radiance perceived by the sensor. Hence, the funda-
mental differences between active and passive sensing concern the acquisition
cost of the device and the accuracy of the delivered measurements.

Recent advances in passive sensing technologies have presented them as a
compelling alternative to active sensing. Digital cameras are ubiquitous nowa-
days thanks to the popularization of smartphones. However, conventional 3D
reconstruction is still not feasible on such devices due to the high computa-
tional demand of resources. The scientific community has stepped into this
possibility with outstanding contributions in the last five years. Our research
aims at joining to this effort, advancing in robust solutions that operate in
most devices and scenes. At the same time, a good accuracy is advisable,
especially in sequences recorded without challenging conditions.

Affordable and ubiquitous technologies for 3D reconstruction pave the way
for wider adoption of 3D digitalization. Three-dimensional reconstruction al-
lows users to digitize buildings and other environments that serve as a source
of documentation in more advanced applications. This sort of documentation
is highly demanded by the Architecture Engineering and Construction (AEC)
industry to keep track of the construction progress or to save the state of the
building before a refurbishment. In addition, information from traditional 2D
images can be augmented with the associated 3D model.

Passive devices capture information about their environment and repre-
sent it with images. Image-based 3D reconstruction estimates the depth of
any point based on its projection on multiple images. When this estimation is
repeated for a large number of corresponding points in images, a point cloud
of the scene is generated. In these devices, algorithms must deal with the un-
certainty introduced by a large number of noisy measurements. Fortunately,
such problems have been investigated by the robotics community in Simulta-
neous Localization and Mapping (SLAM), which comprises the algorithms for
tracking the camera pose at the same time that the map of the scene is being
reconstructed. In this sense, SLAM can be perceived as a natural extension of
3D reconstruction when applied to robot navigation.

Our aim is to provide an accurate 3D reconstruction with color point clouds
of the scene from an off-the-shelf single-lens camera moving around the scene.
In order to achieve this goal, we have developed KN-SLAM, a SLAM system
that takes advantage of the contributions introduced by Oriented FAST and
Rotated BRIEF (ORB)-SLAM [88]. The system follows a sparse indirect ap-
proach, guided by the ORB features detected on each frame. This is the most
suitable approach for commodity cameras since their rolling shutter intro-
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duces photometric artifacts that difficult the tracking of the pixels. The track-
ing, mapping, loop detection and relocalization stages of the SLAM pipeline
rely on the quality of such features. More concretely, our contributions are the
following:

• an adaptive bootstrapping procedure that takes into account the number
of failures;

• an exhaustive, non-greedy, 2D-3D guided matching algorithm that en-
sures correspondences with a minimum distance between descriptors;

• a constrained connectivity graph where each keyframe is linked to its
K-best keyframes to keep the minimum number of edges but preserve
the accuracy; and

• a loop detection procedure based on smart thresholds selected accord-
ing to the results achieved in previous optimizations.

We have conducted an exhaustive evaluation of KN-SLAM in 47 sequences
belonging to four heterogeneous datasets. The file formats and ground truths
provided by these sequences have been normalized so that they can be com-
pared following the same methodology. Several metrics have been considered
to assess the performance, accuracy, and robustness of the trajectories esti-
mated by KN-SLAM and ORB-SLAM. Our experimental results determine
that, despite the high performance achieved by ORB-SLAM, KN-SLAM is able
to improve the accuracy and robustness in more than half of the sequences,
although it depends on the challenges introduced by such sequences. To gain
more insight, we have carried out a further analysis of the results taking into
account such challenges. We have assessed nine challenging characteristics
for each sequence with a value on a five-level scale. This characterization has
been combined with a class label for training a SVM classifier. This label cor-
responds to the system that achieves a lower Absolute Trajectory Error (ATE)
(KN-SLAM or ORB-SLAM). The coefficients of the trained classifier let us an-
alyze what characteristics of the scene make KN-SLAM more suitable than
ORB-SLAM. From this analysis, we have determined that KN-SLAM reduces
the ATE in sequences with a good balance between rotations and translations,
visual loops and poor illumination conditions. We conclude that the restricted
connectivity of the graph harms the accuracy of the tracking when the cam-
era is performing violent movements like pure rotations, but it helps to reach
lower ATE when loops are closed and the drift is still tolerable.

The output of a SLAM system is usually discrete (i. e., it is a point cloud in-
stead of a triangulated 3D mesh). The mesh can be achieved by an additional
3D reconstruction stage, which is based on the volumetric fusion of multiple
partial meshes. Different systems in different application domains can include
the information provided by the reconstructed mesh in certain functionalities.
One of the sectors more interested in 3D reconstruction and digitalization is
the AEC industry. For example, fast and cheap 3D models can be applied to
track the state of a construction w. r. t. the prior design. In addition, the sector
is slowly transitioning from a CAD-based methodology to the Building In-
formation Modelling (BIM) methodology, in which stakeholders collaborate
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around a shared model of the building. This model includes both the geom-
etry and the semantics of the structural parts and the constructive processes
of the building.

Despite the benefits of BIM for the AEC industry, its adoption is being quite
lazy. In most cases, it is imposed by the customer of the project. Given our
deep knowledge of the sector and the suggestions received from several BIM
stakeholders, we aim at fostering the adoption of the BIM methodology with
an easy-to-use cross-platform system called 3D-SIMOS. More specifically, our
goal is to reduce the gap and pitfalls found at moving from CAD to BIM in
the design phase. We address the challenge by providing AEC stakeholders
with a solution to manage constructive processes over the structure of the
building represented by a 3D mesh. Moreover, 3D-SIMOS does not only al-
low stakeholders to create, simulate, track and monitor the advances of the
construction but also to visualize information about the building (e. g., to
showcase the building to an interested customer).

Advanced Visualization techniques have been applied to design smart in-
terfaces over a cross-platform implementation that exploits the WebGL API of
modern web browsers. Any project in 3D-SIMOS is generated from standard
CAD 3D model and planning where the tasks and resources are arranged.
Information from both schemas is integrated into the framework proposed by
the Industry Foundation Classes (IFC) using a customized alignment between
IFC, MPP and COLLADA.

Furthermore, we have proposed an explicit symbolic representation to in-
clude dynamics of constructive processed over static representations of the
building like IFC. This representation is based on an expandable dual graph
that encodes the interconnected spaces of the building. In this graph, we have
defined a computational framework for the functionals that evaluates the dy-
namic attributes of constructive processes. The evolution of such attributes in
time describes a flow, which can be visualized with different types of fields.

This system has been evaluated by combining qualitative and quantitative
aspects extracted from interviews with experts of the AEC industry and our
experimental results. We have concluded that 3D-SIMOS can promote the
adoption of the BIM methodology by stakeholders that are still not accus-
tomed to applying it in their current workflow. In addition, the system oper-
ates with good performance on middle-end smartphones and desktops, and
it is also easy-to-use. However, some of the stakeholders have noted that the
rendering quality of the visualization may not be compelling for showcasing
the building to possible customers since computer-generated images are fre-
quently accepted for this task. Besides, the oversimplification of the available
functionalities makes the system naive from the perspective of a professional
user that would require to integrate more powerful tools with 3D-SIMOS. For-
tunately, the system was designed with extensibility in mind so the required
effort to aggregate new functionalities would be minimal thanks to the under-
lying BIM model.
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R E S U M E N

La reconstrucción tridimensional consiste en ser capaz de estimar la profun-
didad o tercera dimensión de un punto de la escena. Este problema puede ser
abordado con diferentes dispositivos y algoritmos. Por ejemplo, los dispositi-
vos activos (e. g., escáner láser) se caracterizan por emitir una señal (normal-
mente un haz lumínico) que rebota en el objeto y retorna al dispositivo. El
tiempo de retorno es proporcional a la profundidad del punto. Por otro lado
los dispositivos pasivos (e. g., una cámara digital) simplemente capturan la in-
formación del entorno. Los primeros se caracterizan por ser más caros, pero
proporcionan información precisa y densa. Los segundos son mucho más ase-
quibles y proporcionan mucha más información, pero con mucho más ruido
e incertidumbre. Obviamente los algoritmos que se utilizan en cada caso son
radicalmente distintos.

Las cámaras digitales están integradas en multitud de dispositivos en la ac-
tualidad, lo que las convierte en candidatas a multitud de aplicaciones. Una
de ellas es la reconstrucción 3D. Sin embargo los algoritmos que se vienen
aplicando los últimos diez años no pueden implantarse sin más sobre dispo-
sitivos con tan escasos recursos. Desde la aparición de KinectFusion, muchas
han sido las aportaciones para intentar conseguir resultados similares a un
escáner pero con dispositivos mucho más asequibles. Sin embargo los requisi-
tos hardware siguen siendo muy altos y los resultados obtenidos sin cámaras
RGB-D no tienen la misma calidad visual. Existen multitud de aproximacio-
nes distintas en la literatura en función del hardware, del tipo de cámara y
de los resultados esperados. Nuestro objetivo es profundizar en este sentido
para el caso de una cámara convencional con una sola lente, tratando de ob-
tener una solución precisa y robusta al mismo tiempo en diferentes tipos de
escenas.

La simplificación y abaratamiento de las tecnologías de reconstrucción 3D
hace más accesibles sus resultados en diferentes aplicaciones. La digitaliza-
ción de edificios y entornos 3D es de suma utilidad para generar documenta-
ción 3D con múltiples fines en diferentes industrias. Por ejemplo, en la indus-
tria AEC se utiliza para seguir la evolución de la construcción de un edificio o
para capturar el estado actual antes de una rehabilitación. Además un modelo
3D proporciona información suplementaria que se puede superponer sobre la
imagen 2D convencional.

La reconstrucción 3D en imágenes está basada en las proyecciones de un
punto en el espacio sobre múltiples imágenes. Dicho procedimiento puede
repetirse en múltiples puntos correspondientes de imágenes relacionadas pa-
ra obtener una nubes de puntos. El principal problema radica en manejar
la incertidumbre y el ruido cuando se utilizan dispositivos de baja calidad.
Afortunadamente estos problemas han sido estudiados por la comunidad en
Robótica en la línea de investigación conocida como Simultaneous Localiza-
tion and Mapping (SLAM). Estos algoritmos permiten seguir la posición de
la cámara al mismo tiempo que se reconstruye el mapa de la escena, lo cual
encaja perfectamente con nuestro objetivo principal: obtener una reconstruc-
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ción 3D precisa en color de una escena arbitraria y la trayectoria de la cámara
que la recorre usando una cámara simple, de bajo coste y con una sola lente.

Para conseguir nuestros objetivos hemos desarrollado KN-SLAM, un sis-
tema SLAM basado en las contribuciones desarrolladas por ORB-SLAM. La
estrategia seguida es indirecta y dispersa, guiada por las características ORB
detectadas en cada nuevo frame. Esta estrategia es la que mejor se adapta a
cámaras de baja calidad debido a los artefactos creados por el rolling shutter.
Las principales etapas de la tubería de procesamiento dependen de la cali-
dad de las características detectadas: seguimiento, mapeado, relocalización y
detección de lazos. Más concretamente, nuestras contribuciones podrían resu-
mirse en:

• un procedimiento automático de arranque que se adapta al número de
fallos en los primeros intentos;

• una búsqueda exhaustiva y no avara de correspondencias entre puntos
3D y 2D que garantice que los pares resultantes son realmente los más
cercanos;

• un grafo de conectividad entre keyframes en el que el número de veci-
nos depende del número de observaciones representadas y está limitado
a las K mejores;

• un procedimiento de detección de lazos que aplique umbrales variables
en los procedimientos de filtrado de candidatos con RANSAC y las op-
timizaciones.

Para evaluar los resultados hemos utilizado un total de 47 secuencias de
4 conjuntos muy diferentes. Estas secuencias han sido normalizadas con el
mismo formato y convenciones para representar el fondo de verdad. Esto per-
mite evaluar todas las secuencias utilizando la misma metodología y agilizar
la evaluación de nuevas secuencias. Aunque hemos hemos evaluado diferen-
tes aspectos, nos hemos centrado en la precisión y la robustez en la trayectoria
de la cámara. Nuestros experimentos han demostrado que KN-SLAM mejora
los resultados de ORB-SLAM en más de la mitad de las secuencias.

Sin embargo hemos detectado que los resultados varían ligeramente depen-
diendo de los retos que presenta cada una de las secuencias. Hemos profun-
dizado en este análisis a través de una caracterización de las secuencias en
términos de sus retos característicos. Para ello hemos evaluado nueve caracte-
rísticas en una escala Likert de 5 niveles. Esta caracterización ha sido combi-
nada con una categorización binaria de las secuencias según KN-SLAM haya
obtenido una trayectoria más precisa o no. Estos datos son utilizados para
entrenar un clasificador SVM con un kernel lineal que simplifica su interpre-
tación geométrica. Los valores absolutos de los coeficientes del clasificador
son proporcionales a la importancia que cada característica tiene a la hora
de obtener mejores resultados y el signo indica si favorece a ORB-SLAM o
KN-SLAM.

De nuestro análisis se desprende que KN-SLAM obtiene mejores resultados
en secuencias donde la cámara realiza movimientos translacionales y rotacio-
nales a partes iguales, tiene algún lazo visual y presenta algunos tramos de
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baja iluminación. Podemos concluir que limitar la conectividad del grafo daña
la precisión de la trayectoria cuando la cámara realiza movimientos bruscos,
tiene relocalizaciones o rotaciones puras. Por otro lado, ayuda a obtener me-
jores resultados cuando en la optimización de los lazos siempre que la deriva
acumulada no sea excesivamente alta.

La salida proporcionada por SLAM es normalmente discreta, i. e., es una
nube de puntos y no una malla con textura. Para conseguir esta malla es
necesario incluir en la tubería una etapa adicional de reconstrucción 3D que se
basa normalmente en integrar todas las mallas parcialmente reconstruidas en
una parrilla volumétrica. La información 3D es aplicable en muchos dominios
para sus tareas convencionales. Este es el caso de la arquitectura, ingeniería y
construcción (AEC), que demandan digitalización 3D para la mayoría de sus
tareas cotidianas. Por ejemplo, para seguir los avances de una construcción
podrían reconstruir el resultado una vez obtenido y compararlo con el diseño.

Por otro lado, la industria AEC está evolucionando progresivamente desde
el tradicional diseño asistido por ordenador (CAD) hacia una nueva meto-
dología basada en el modelado de información del edificio (BIM). En esta
nueva metodología las partes involucradas en el diseño, construcción y fun-
cionamiento del edificio colaborar alrededor de un modelo compartido. Este
modelo incluye tanto información semántica como geométrica del modelo.

A pesar de las grandes ventajas que propone esta metodología, su penetra-
ción está siendo más lenta de lo previsto debido principalmente a la comple-
jidad del nuevo modelo. En la mayoría de casos es un requisito impuesto por
el cliente del proyecto. Gracias a nuestras buenas relaciones con los agentes
en la industria AEC hemos podido recoger sus sugerencias con el objetivo
de desarrollar una aplicación (3D-SIMOS) que ilustre las ventajas del uso de
BIM. Esta aplicación es sencilla de usar y entender, y es multi-dispositivo.
Con ella pretendemos reducir la brecha y los obstáculos iniciales que encuen-
tran muchos agentes cuando empiezan a utilizar la metodología BIM. Más
concretamente la aplicación permite visualización avanzada de proyectos a
partir de una planificación de obra y un modelo CAD 3D. Cualquier agente
puede crear, simular, seguir y monitorizar los avances del proyecto, además
de inspeccionar el modelo 3D y las tareas planificadas. Por ejemplo, el mismo
proyecto puede ser usado para determinar el estado actual de la construcción
y para mostrar el edificio diseñado a posibles clientes.

El soporte multi-plataforma está basado en WebGL, un API que proporcio-
nan los navegadores web para obtener acceso a la aceleración por hardware de
la GPU. Los proyectos se crean reutilizando artefactos generados en la meto-
dología CAD como una planificación en MPP y un modelo 3D en COLLADA.
Esta información es integrada en el estándar IFC mediante un alineamiento
manual de conceptos que se muestra como una contribución adicional. Ade-
más, hemos propuesto un nuevo marco de trabajo para BIM dinámico basado
en una representación simbólica en forma de un grafo dual expansible que
recoge tanto aspectos estructurales del edificio como de los procesos que se
desarrollan en sus espacios. Estos procesos se representan mediante funciona-
les que evalúan atributos representables mediante diferentes tipos de campos.

Esta segunda parte de nuestra investigación ha sido evaluada combinando
aspectos cualitativos (e. g., facilidad de uso) y cuantitativos (e. g., rendimiento)
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extraídos de entrevistas con expertos y de nuestros resultados experimenta-
les. Hemos concluido que 3D-SIMOS ayuda a entender mejor las ventajas de
la metodología BIM, especialmente para aquellos agentes que no la conocen
debido a su facilidad de uso y sencillez práctica. La aplicación funciona co-
rrectamente en dispositivos móviles de gama media y equipos de escritorio.
Sin embargo algunos agentes han indicado en su evaluación que el modelo 3D
visualizado carece de la suficiente calidad para mostrar el edificio a posibles
clientes. Esta diferencia se aprecia debido a que se comparan los resultados
con las imágenes generadas por computador que se utilizan habitualmente
en las promociones. También han hecho notar que las simplificación de las
funcionalidades en 3D-SIMOS podría resultar excesiva desde el punto de vis-
ta de un profesional. En estos casos el sistema está preparado para extender
sus funcionalidades bajo el paraguas del modelo BIM subyacente.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth[69]
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1 I N T R O D U C T I O N

Information Systems have greatly evolved since the beginning of Computa-
tion. Computer Science is relatively young when it is compared to other dis-
ciplines, such as Mathematics and Physics. Nevertheless, nowadays most of
the business models of innovative companies are powered by some kind of
underlying technology and computation model. Moreover, the biggest com-
panies in the world are technology-related (e. g., Apple, Google, Amazon or
Microsoft). These companies also invest a huge amount of resources in re-
search and development activities that contribute to the improvement of the
computation systems they use in their business.

The advances introduced in computing systems have motivated the devel-
opment of new applications that were unimaginable before. The more com-
puting power, the higher the application requirements to understand, model
and solve complex problems. This power improvement allows us to tackle
new problems. Most of them have been introduced by the broad variety of
devices able to perceive or “sense” the environment, commonly known as
sensors.

The information captured by these sensors is powering a lot of new applica-
tions to multimedia and digitalization. Modeling, reality understanding and
interaction are involved in both areas. These applications are of interest for di-
verse sectors, such as entertainment, architecture, civil engineering, medicine
or tourism, e.g.. The huge amount of information provided by sensors has led
to the emerging of new disciplines like big data or deep learning.

Digital cameras are among these sensors since they capture the light emit-
ted or reflected by the objects in the scene. A matrix of pixels represents this
information with functions defined on pixels whose number depends on the
resolution of the camera. Since a camera only receives information about the
environment without emitting any signal, they are considered passive sensors.
Laser scanners and Time of Flight (ToF) cameras are examples of active sen-
sors that transmit and receive a light signal to measure distances according to
the time the signal takes to return to the device.

In this work, we have focused on digital cameras understood from a Com-
puter Vision approach. We have dived into the process of capturing and mod-
eling the environment using fundamental concepts of photogrammetry. This
technique estimates the depth of a 3D point based on its corresponding pro-
jections on multiple images. The distance between two projections is called
parallax. Images can be captured by multiple cameras or by placing a single
camera at different locations at different times. In this way, it is plausible to
estimate the depth of one point in a scene from a single camera if this camera
travels around the scene. The recovering of the third dimension of this point
is the key for 3D reconstruction. Furthermore, each camera can contain one or
more lenses (e. g., binocular cameras or RGB-D cameras). Hence, the selected
approach to tackle the problem must always consider the type of camera and
the sensors it includes.

1
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The 3D reconstruction problem has been tackled from different approaches.
They have evolved along the last 30 years from the very basic perspective
2.5D models to the real-time dense 3D reconstructions that we can achieve
nowadays. However, most of them are based on specific sensors, which are
usually expensive or only affordable for custom-tailored applications. In other
cases, the algorithms require a powerful parallel computer architecture to run
properly in real-time. Obviously, these requirements depend on the desired
degree of accuracy and completeness for the reconstruction, or on that the
desired artifact is a pure cloud or a triangulated mesh.

While the state of the art has advanced in high-performance high-quality
reconstruction (e. g., Multiple View Stereo (MVS) and Structure from Motion
(SfM) in COLMAP [112]), new low-cost hardware setups have appeared in
the recent years associated with mobility and the Internet of Things. These
new setups do not provide the same computing power as their traditional
alternatives but they are still able to reconstruct scenes with enough level
of detail to serve for several different purposes and applications. Algorithms
and systems have evolved to support these new computing architectures.

The Robotics community is accustomed to operating in hardware environ-
ments with limited resources. There are two approaches coming from this
community that can be applied to a low-cost reconstruction system. One of
them is Visual Odometry (VO), which is the process of determining the po-
sition and orientation of a robot in a local environment by analyzing the im-
ages captured by the camera. The other concept is Simultaneous Localization
and Mapping (SLAM). SLAM consists in the concurrent construction of a
model of the scene (the map) in a global environment at the same time that
the camera pose is estimated. Both concepts are related since SLAM can be
understood as an improvement over VO or VO can be understood as part
of SLAM (more details in Section 2.3.1). The Robotics and Computer Vision
communities have made astonishing progress over the last 30 years in both
areas, enabling large-scale real-world applications and witnessing a steady
transition of this technology to industry.

Our aim is to contribute to the widespread adoption of 3D reconstruction,
i. e., to put 3D digitalization within reach of any user with low-cost com-
modity cameras such as webcams or smartphones. To achieve this goal, our
research is focused on the investigation of affordable SLAM algorithms to
generate 3D information in devices with limited resources. This research has
been addressed without a specific application in mind in Chapter 3. Later, 3D
models can be incorporated in applications particularly tailored for a particu-
lar purpose, e. g., the building industry or, more generally, the AEC industry.

The building industry is progressively transitioning from the traditional
manufacturing processes to more industrialized processes aided by technol-
ogy. An important piece of this technology is the Building Information Mod-
elling (BIM). Actually, BIM proposes a completely different methodology to
integrate all the information about the building in a single framework. Every
agent linked to the building in one of its stages across its lifespan produces
and consumes this information.

Despite the power of the BIM methodology, there is still a relatively low
adoption by the AEC industry. One of the main barriers to extended adoption
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is the complexity of the model. The other problem concerns the cumbersome
task of annotating geometry with semantics like the construction phases of
a building. The second part of our research is committed to addressing both
issues. Once the model is properly tagged, enriched applications can use the
information to provide valuable insights. One of these insights is the moni-
toring of the construction progress that will let the manager detect offsets in
time and space. The model also enables a simulation of the evolution in con-
struction processes. The elements of the building affected by the construction
activities can be inspected individually by the user. This application of 3D
reconstruction to these tasks will be studied in Chapter 4.

The research in these fields is motivated by the growing interest in the
worldwide industry for this kind of technologies. There are two powerful
applications to hold this demand steady in the long-term: the necessity of in-
telligent computing systems able to understand what they are doing, and the
digitalization of the environment. They have motivated an equally important
growth in the research of new algorithms and technologies for 3D digital-
ization, autonomous navigation, and augmented/virtual reality. In fact, the
development of three-dimensional applications for the industry has grown
exponentially in the last decade and this pace is expected to continue. The
average Compound Annual Growth Rate (CAGR) estimated for the next five
years is currently around 20%.

The remainder of this chapter is devoted to framing our work in a specific
niche inside a wider field of research. It is structured as follows: Section 1.1
proposes the general framework to place the reader in the context of this
research and highlights our contributions; Section 1.2 includes the main goals
pursued with our contributions.

1.1 the research framework

This section is intended to supply the reader a broader view of the framework
in which our research can be described. The conceptual pipeline of this frame-
work is depicted in Figure 1.1. In this pipeline we have distinguished three
main components, with our contributions focused on the components one
and three. On the one hand, the components in the upper half of Figure 1.1
are application-agnostic, i. e., they can be applied to different purposes in mul-
tiple contexts. On the other hand, the component in the lower half is entirely
devoted to solving problems for the AEC industry.

The pipeline begins with a sequence of pictures captured by a simple, low-
cost camera. These pictures can be analyzed and processed to provide the
location of the observer and a map of the scene. This problem is tackled
by a general-purpose SLAM system that we call KN-SLAM. The resulting
sparse map can be converted into a textured 3D mesh by a 3D reconstruction
algorithm, represented as the second component of the pipeline. The textured
3D mesh can be of use in several settings and applications. In particular, we
aim at a solution for construction managers in the AEC industry that we
call 3D-SIMOS. This solution is represented by the third component of the
pipeline.



1.1 the research framework 4

KN-SLAM
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3D reconstruction

3D-SIMOS

planning

3D CAD
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3D point cloud
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Figure 1.1: The three components of the framework of our research. Our contri-
butions are focused on the component one (KN-SLAM) and three (3D-
SIMOS).

In the first component, we aim at advancing in the state of the art of low-
cost, accurate SLAM. Three-dimensional reconstruction and digitalization is a
fast growing industry with many applications. However, there are significant
barriers that limit a wide adoption. One of the biggest challenges is to reduce
these barriers, allowing SLAM to run to its best in devices with a limited
amount of resources. This research has been addressed from a basic point
of view in Chapter 3, i. e., without considering the particular interest of any
industry.

It is also important to note that besides the ground truth of the sequences,
our research must also be compared with the up-to-date state of the art. Thus,
we shall start by defining the operating conditions of our system in a quantita-
tive and closed way that allows us to choose the best approaches to compare
KN-SLAM.

Despite most SLAM approaches share the same theoretical background,
they exhibit subtle differences depending on the operating conditions. These
conditions include the number of cameras, the type of lens, the shutter of
the camera, the Central Processing Unit (CPU) architecture or even the com-
piler. Recording conditions of the sequence are also considered since they
affect the accuracy and performance of SLAM. For instance, short sequences
with strong camera rotations have different requirements than long sequences
where the camera describes a straight trajectory. The kind and the number of
lenses are the most significant conditions to pick a specific SLAM strategy.
The presence of additional sensors would also require modifications in the
algorithms. By taking this into account, we shall constrain ourselves to the
following operating conditions:

• The acquisition of the images is performed using a low-cost passive
device with a single lens, i. e., a commodity monocular digital camera.
As a reference, the estimated cost of the camera should be below 50 e.
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• Color information provided by the sensor should be included in the
points of the map.

• The Field of View (FOV) of the lens is between 60°-70°, i. e., we do not
consider fish-eye lenses.

• The sensor area is below 5mm2.

• The sensor uses Complementary Metal–Oxide–Semiconductor (CMOS)
technology.

• The camera may be equipped with a rolling shutter device, although
global shutter is also supported.

• The system exploits parallelism up to CPU level, taking advantage of
state-of-the-art CPU architectures with multiple core and SIMD instruc-
tions available both in Advanced RISC Machine (ARM) and x86 archi-
tectures.

• The sequences are sufficiently large to have a significant impact on the
drift along the trajectory.

The goal of KN-SLAM is to accurately track the camera pose while a sparse
3D map is being reconstructed in the background. The 3D map is represented
by a sparse point cloud, normally not suitable for applications that require
textured 3D meshes. However, these meshes can be generated by the 3D re-
construction component from the output of KN-SLAM, which comprised the
poses of the keyframes and a sparse point cloud. The task is usually executed
off-line to take advantage of the optimization procedures in the estimated tra-
jectory. In this way, the accuracy of the camera poses and the map points is
maximized, as in e. g., [89]. Resulting models are composed of a mesh and a
texture, which feed 3D-SIMOS. State-of-the-art approaches for implementing
this component are reviewed in Section 2.6.

Once the 3D information has been properly captured and modeled, it can
be used in very different contexts. The third component, called 3D-SIMOS, has
been designed with this goal in mind. Instead of dealing with a broad range
of situations, it exploits our expert knowledge in a particular field where our
research group has made numerous contributions over the last years: AEC.
We have provided constructors with solutions based on a mix of Computer
Vision, Computer Graphics and Knowledge Management Systems (KMS) in-
spired by the BIM methodology. Our contributions regarding this BIM-based
tool are introduced in Chapter 4.

In this context, 3D-SIMOS links 3D models to the planning of the construc-
tion so it can be interpreted as a 4D model. Three-dimensional building mod-
els are organized in several layers, with multiple meshes per layer. These
meshes are linked to stages of the planning, following a BIM-like methodol-
ogy. This association allows the user to trace the advances in the planning
of the building project along its construction. Furthermore, the meshes of
the model can be compared to the meshes provided by the second compo-
nent. This comparison between the 3D capture and the expected 4D mesh
can be visualized in an Augmented Reality (AR) environment. The observer
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is located and the mesh is reconstructed using KN-SLAM, to let 3D-SIMOS
integrate this information with the scheduled state of the construction.

The visualization can be implemented in an application that allows the
user to inspect the building interactively. Moreover, the associations between
meshes and stages can be exploited for simulating the evolution of the con-
struction process. The designed and captured models are useful to estimate
deviations in the execution of the project. What is more, this information is
available for accurate reporting about the performance of the construction
process after it finishes. This also enables the monitoring of the construction
processes.

Stakeholders involved in the AEC industry have outlined a collection of
demands in the BIM methodology. We have verified such demands in our
interviews with involved enterprises that are interested in 3D-SIMOS. The
following requirements have been addressed by 3D-SIMOS:

• The geometric information of the building is associated with semantic
information concerning the planning.

• The information must be modeled following a BIM methodology.

• The planning is provided by a .mlp file. A specific thesaurus limits the
different stages and activities available for the planning. The models
are imported using the COLLADA format where the system recognizes
layers, geometric groups, and objects.

• Associations between geometries and stages of the planning are per-
formed interactively.

• The building can be visualized and inspected in a three-dimensional
viewport.

• The stages of the construction can be selected and enabled. Changes in
their state are synchronized bidirectionally with the geometry.

• The navigation controls allow the user to translate, rotate and scale the
model.

• The evolution of the construction process can be simulated with a pro-
gressive display of the geometries associated with the construction stages.

• The tool must be accessible as a web application from any device, any-
time, any place.

Despite the relation established between SLAM and BIM in our framework,
we shall clarify that the requirements of KN-SLAM have not been posed tak-
ing in mind a specific application or operating environment. Actually, they
have been stated with the main goal of researching new techniques for afford-
able real-time solutions to the 3D reconstruction problem. We are aware that
there exist better alternatives depending on the requirements of the applica-
tion domain. However, we do not aim to compete just in quality and accuracy
with the state of the art. Other strategies can also run with monocular cameras
(e. g., a combination of MVS and SfM) or even in real-time (e. g., a RGB-D cam-
era provides high-resolution real-time depth images at 30 FPS) but they do not
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operate in real-time. Although some approaches can even work with differ-
ent types of lenses in the camera (monocular, stereo and RGB-D), we have
decided to stay focused only on low-cost alternatives using only monocular
cameras with poor lens specifications. It has been the specific combination of
requirements what has led to the choice of monocular visual SLAM.

There are more suitable approaches if we focus only on achieving a high-
quality reconstruction especially-suited for BIM. However, we decide to put
our efforts on a small niche within the huge field of research on three-dimensional
reconstruction. This field is still growing fast due to the increasing indus-
trial demand of these solutions, and nowadays many enterprises offer a wide
range of devices and methods to generate accurate and low-cost 3D models.
Then, we think that our results can be of use in different application domains
like BIM, where spatial information captured with other strategies can be also
integrated to enhance the resulting system.

1.2 objectives

With respect to the reconstruction of the scene, we develop in this work
a monocular SLAM implementation that supports the requirements stated
above. In particular, we aim at reaching good levels of accuracy and robust-
ness that can improve today’s systems. Our closest neighbor concerning sparse
indirect SLAM approaches, as we will see in the literature review in Sec-
tion 2.3, is the one designed by Mur-Artal, Montiel, and Tardos [88]. Therefore,
we will establish our goals by taking this system as a reference and describe
our challenges with respect to its performance. Our goals are multiple, rang-
ing from the bootstrapping of the system to the map reconstruction. More
concretely, the following goals are pursued:

• Reduce the booting times of the system.

• Increase the number of tracked frames of the trajectory.

• Bootstrap the system as soon as possible.

• Develop a smarter adaptive strategy for visual loop detection in the set
of candidate keyframes.

• Reduce the trajectory error in sequences recorded in natural conditions,
i. e., those sequences recorded naturally by a hand-held camera.

• Deal with more diversity of scenes including, but not only, structured
scenes where the material of the object uses a high-frequency texture.

• Achieve a colored sparse three-dimensional map when possible, i. e.,
when the input images are not represented in grey scale.

• Lower the computing requirements and the memory footprint of the
system.

In 3D-SIMOS, we aim at implementing these requirements with the max-
imum simplicity and good performance. Current alternatives are integrated
into non-affordable systems that are usually difficult to setup and manage.
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From our collaboration with the stakeholders in the AEC industry, they have
recognized an excessive level of sophistication in BIM to accomplish even the
most simple tasks. This is one of the main barriers for the adoption of BIM.
From now on, our main goal is to provide a simple solution that demonstrates
the benefits of BIM. More specifically, the solution should focus on planning
and monitoring the advances in the construction of the building. In addition,
3D-SIMOS must be able to:

• Enrich a CAD model with semantic information.

• Simplify the creation of the BIM model from conventional information
sources, i. e., from file formats used by the AEC industry in the last
decade.

• Develop a light-weight application, able to operate on different web
browsers and platforms (both mobile and desktop computation envi-
ronment).

• The simulation process must run smoothly in desktop platforms and
run at least in mobile environments.

• Render appealing three-dimensional models, visually enhanced by tex-
tures linked to the materials of the meshes.

• Support different types of building models, such as heritage, residential,
offices, and industrial facilities.

1.3 outline

This document has been organized into five chapters. Current chapter has
been devoted to introducing the motivation and scope of our research. We
have described the overall framework in which our contributions can be ar-
ranged. It involves the three principal concepts to understand the rest of the
document: Simultaneous Localization and Mapping, 3D reconstruction and
Building Information Modelling.

We have included the background and state of the art in Chapter 2. This
chapter describes the mathematical concepts and models behind the areas
introduced in Chapter 1. There exist several approaches to SLAM and 3D

reconstruction; they are reviewed in this chapter by including specific alter-
natives in the literature too. A special section is devoted to explaining the
SLAM pipeline implemented by ORB-SLAM, our inspiration and reference
implementation for this work. The last section describes advanced visualiza-
tion and BIM in the context of the AEC industry.

Next chapter is Chapter 3, which contains our research concerning sparse
monocular SLAM. The main contributions inserted in the SLAM pipeline are
described in Section 3.1. Next, Section 3.2 explains our methodology to eval-
uate the estimated trajectory mainly in terms of accuracy and robustness. It
also explains the characterization that we have explicitly developed for this
evaluated sequences from four different datasets. Our experimental results
are analyzed in Section 3.3 taking into account the challenging characteristics
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of each sequence. The conclusions are summarized in the Section 3.4, followed
by a review of the compliance with our initial goals.

In Chapter 4, we detail the contributions proposed to foster the adoption of
the BIM methodology in the AEC industry, including a thorough description
of 3D-SIMOS in Section 4.1. Our proposal for a common framework toward
dynamic BIM is included here too. The experimental methodology is based on
the experimental evaluation of several aspects by means of interviews to ex-
perts and direct observation. They are defined in Section 4.2. Results achieved
for the evaluated aspects are analyzed in Section 3.3, and finally, conclusions
are highlighted in Section 4.4.

The last chapter is intended to summarize our main achievements and dis-
cuss the lessons learned. At the end of the chapter, we sketch the guidelines
for future research concerning SLAM and BIM.



2 B A C K G R O U N D

Our research has been developed in a field that combines concepts from
Robotics, Computer Vision, and Computer Graphics. Most of the mathemati-
cal background originates from Algebraic Geometry, as a natural extension of
the Projective Geometry, and the Lie Group theory, which provides the struc-
tural link between static aspects (relative to the scene) and kinematic aspects
(relative to the motion). The bible to understand the geometrical principles is
Multiple View Geometry [53]. The other important reference to understand
the second part of our research in regard to applications to structures urban
environments is [32]. This book introduces a practical approach to BIM from
the perspective of different stakeholders.

Most of the concepts are included in this chapter to allow the reader to un-
derstand the rest of the contents of this thesis. However, we make reference to
the original publication due to space limitations. We will refer to the concepts
and notation introduced in this section when appropriate.

2.1 notation

This section defines the notation that will be used throughout the rest of the
document. Variables highlighted in bold represent multidimensional arrays
whereas non-bold variables are scalars in the field of the real numbers R. Fig-
ure 2.1 illustrates the concepts represented by each variable over an example
trajectory of just three keyframes.

The image of the frame received at time k is denoted with Ik : Ω ⊂ R2 7→ R,
where Ω is the image domain and I(u) is the light intensity perceived by
the camera sensor at pixel coordinates uk = (u, v)T ∈ Ω. Each 3D point
pk = [x,y, z]T ∈ S of the visible scene surface S ⊂ R3 maps to the image
coordinates uk through the camera projection model (e. g., the pinhole model)
π : R3 7→ R2:

uk := π(pk) , (2.1)

where k denotes the frame in which the coordinates of p are represented.
The projection function π is determined by the intrinsic camera parameters
obtained from calibration. In the common pinhole camera projection model
these parameters are the focal length f = [fu, fv]T and the principal point
c = [cu, cv]T , so that the function π can be expressed as a linear system

[
u

v

]
:=

[
fxxk/zk + cu

fyyk/zk + cv

]
(2.2)

10
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The 3D point p ∈ R3 corresponding to an image coordinate u can be re-
covered, given the inverse projection function π−1 : R2 7→ R3 and the depth
du ∈ R:

p = π−1(u,du) , (2.3)

where R ⊂ Ω is the domain for which the depth is known.
The camera pose (position and orientation) at the frame k is represented

by the rigid-body transformation Tk,w ∈ SE(3), where SE(3) is the Special
Euclidean Lie group. This group is the semidirect product SO(3)n R3 of the
Special Orthogonal group SO(3) and Translations group R3. It maps a 3D
point pw in world coordinates into the coordinates of frame k:

pk = Tk,w · pw , (2.4)

where the application of Tk,w can be viewed as a composition of a rotation
and a translation as

pk = Rk,wpw + tk,w . (2.5)

The relative transformation between two consecutive frames at times k− 1
and k is computed as

Tk,k−1 = Tk,w · T−1
k−1,w (2.6)

where T−1
k−1,w = Tw,k−1. A minimal parametrization for T consist of a

vector ξ = (ω,υ)T ∈ R6, ω,υ ∈ R3, which is isomorphic with the Lie
algebra se(3) representing the tangent space to SE(3) at the identity. Each
element of the algebra ξ can be mapped to the corresponding element of the
group SE(3) by the exponential map [83]:

T := exp(ξ) (2.7)

In a similar way, the inverse operation is locally represented by ξ = log(T ),
which allows to move from the group to the algebra.

Each map point p ∈ S is observed from a subset of keyframes Ki ∈ K

where πk , k ∈ Ki projects p inside the image boundaries. For the sake of
simplicity we will denote the transformation matrix Tk,w as Tk and the map
points pi,w as pi, which are always represented in world coordinates w. r. t.
the first keyframe of the scene.

2.2 optimization framework

The core of the optimization problem is to compute an estimator X∗ based
on a probabilistic model. This estimator is computed from a plethora of noisy
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Ik−1

p1

p2

p3

u1,k

u1,k−1

u2,k−1

u3,k−1

Tk,k−1

Ik+1

Tk+1,k

u3,k+1

u2,k+1

u1,k+1u3,ku2,k

Ik

Ck−1

Ck

Ck+1

Figure 2.1: Notation represented over a classical keyframe-based trajectory. For clar-
ity the trajectory only include three keyframes and three map points but
it is easy to generalize the example for N keyframes and M map points.

measurements Y to unveil the hidden model parameters X (i. e., the map
points and the camera poses). From an abstract point of view, the Maximum
Likelihood Estimation (MLE) maximizes the probability of obtaining the ac-
tual measurements Y , i. e.,

X∗ = arg max
X

P(Y |X) .

The optimization procedure to compute the estimator depends on the prob-
ability distribution of the measurements. This section aims at providing the
fundamentals of algorithms for optimizing jointly the points and the poses of
the system. A non-linear optimization framework is used over the elements
of the Lie algebra of the group of rigid body transformations (SE(3)). This
framework can also be extended to other groups like Sim(3) to optimize the
pose graph. Next, the procedure for estimating the Jacobian of the camera
motion using the classic interaction matrix in Robotics is explained.

2.2.1 Least squares and Gauss-Newton optimization

In estimation problems the goal is to gauge a vector of parameters given a
vector of measurements given a likelihood probability distribution f. The most
probable solution is the one that maximizes f, which is equivalent to minimize
the negative log-likelihood − log f (commonly known as energy functional).
Assuming that f is jointly Gaussian, the measurements and parameters are
independent, and the uncertainty in each parameter of every measurement
has the same value, the problem can be viewed as a simple sum of squares
minimized through a non-linear least squares optimization.



2.2 optimization framework 13

The Gauss-Newton method, an approximation of the Newton method, is
commonly used for non-linear least squares minimization. It iteratively up-
dates an initial estimate of the parameter vector p by the rule

p(i+1) = p(i) + δ . (2.8)

The update vector δ is solved at each step by the normal equation

(JTpΛfJp)δ = −JTpΛfr (2.9)

where Jp = ∂r
p is the Jacobian of the residual error r = f − f̂(p) of the

estimated parameters p of the model, and Λf =
∑−1

f is the information ma-
trix or the inverse of the measurement covariance matrix

∑
f for the likelihood

distribution.
Gauss-Newton optimization approaches to the minimum at a quadratic rate

of convergence, but gradient descent behaves much better far from the min-
imum with a higher convergence speed. This behavior is taken into account
by the Levenberg-Marquardt (LM) algorithm, in which the normal equation
is altered as

(JTpΛfJp + λI)δ = −JTpΛfr (2.10)

where λ is a non-negative damping parameter updated at each iteration i
that rotates the update vector Λ towards the direction of the steepest descent.
Hence, LM behaves as Gauss-Newton if λ → 0, whereas it behaves as a gra-
dient descent when λ → inf. LM only updates p(i+1) if the residual error is
significantly reduced. In such case λ is decreased as the estimation p is close
to the solution; otherwise λ is increased to perform a gradient descent step
since the estimation is still far from the minimum.

In Gaussian optimization frameworks, it is convenient to model feature
coordinates with the inverse depth (u, v, ρ)T . This feature maps to the Eu-
clidean point x = 1

ρ(u, v, 1)T . Inverse depth allows the system to deal with
uncertainty over a broad range of depths even for far-away points with little
parallax during camera motion. It also enables efficient and accurate represen-
tation of depth during bootstrapping, where the equations have a high degree
of linearity (see [18]).

2.2.2 Optimizing Rigid Body Transformations

Many problems in Robotics and Computer Vision involve manipulation and
estimation of the 3D geometry of objects and scenes. Without a coherent and
robust mathematical framework for representing and working with 3D trans-
formations, these tasks are onerous and treacherous. Rigid body transforma-
tions must be composed, inverted, differentiated and interpolated. Lie groups
and their associated machinery address all of these operations, and do so in
a principled way, so that once intuition is developed, it can be followed with
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confidence. In addition, it is feasible to swap between the representation of
an element in the algebra and the group. We choose the most convenient rep-
resentation according to the requirements of the problem we are addressing.

Lie Representation

The optimization of transformation matrices can be simplified if they are
parametrized such that singularities are avoided. The group of rotations itself
poses issues in angle interpolation since it is only locally Euclidean. How-
ever, transformations modelled using a Lie group/algebra avoid this problem
and preserve the quadratic convergence rate of the Newton optimization. A
transformation matrix T ∈ Rn is expressed as an (n+ 1)× (n+ 1) matrix:

T =

[
R t

 1

]
, R ∈ SO(n), t ∈ Rn , (2.11)

being SO(n) the Special Orthogonal Lie group, which is interpreted as the
group of rotation matrices if n = 2 or n = 3. Rigid body transformations
given by “rotations” and translations form a smooth manifold too, and there-
fore a Lie group — the Special Euclidean group SE(n). Its corresponding Lie
algebra se(n) - the tangent space of SE(n) at the identity - provides a minimal
representation of a rigid body transformation.

The algebra elements in R3 are (ω,υ) ∈ R6, where ω ∈ R3 is the axis-angle
representation of rotations, and υ ∈ R3 is the rotated translation vector t. The
elements of the algebra se(3) are converted into elements of the group SE(3)
using the application of the exponential map

expSE(3)(ω,υ) =

[
expSO(3)(ω) Vυ

 1

]
=

[
R t

 1

]
(2.12)

where the expSO(3) can be computed using the Rodrigues formula [20] as

expSO(3)(ω) = I +
sin(θ)

θ
(ω)× +

1− cos(θ)

θ2
(ω)2× (2.13)

and the translation vector Vυ as

Vυ = I +
1− cos(θ)

θ2
(ω)× +

θ− sin(θ)

θ3
(ω)2× (2.14)

being θ = ||ω||2 and (v)× the application that maps a vector to its skew-
symmetric matrix, which is defined as

(v)× =

 0 −z y

z 0 −x

−y x 0

 (2.15)
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Finally, the optimization will be performed in the vector space isomorphic
to the tangent space g = TeG, where the incremental update ξ lives. Then, it
is converted back into a manifolds of SE(3) following Equation 2.8.

The Jacobian of a rigid transformation can be expressed using a row decom-
position of the rotation matrix R := [r1, r2, r3]T

∂T

∂ξ
=
expSE(3)(ξ)T

∂ξ

∣∣∣∣
ξ=0

=


−(r1)× 3×3

−(r2)× 3×3

−(r3)× 3×3

−(t)× I3×3

 (2.16)

Jacobian Estimation

The kinematic differential relation between the motion of a point in the scene
p = [x,y, z]T and its projection u = [u, v]T on the image plane, where u :=

π(p) according to the definition of π provided in Section 2.1, can be modelled
by the Jacobian of the perspective projection matrix as

[
u̇

v̇

]
=

[
fu
z 0 −uz
0 fv

z −vz

]ẋẏ
ż

 = J1(u, v)

ẋẏ
ż

 (2.17)

Indeed, the velocity of the fixed scene point p is a composition of the ro-
tational and translational movements of the camera, which are defined by its
angular velocity ω ∈ R3 and its linear velocity υ ∈ R3

ẋẏ
ż

 = −υ −ω×

xy
z

 (2.18)

which can be compactly expressed in matrix form using the skew-symmetric
form of the [x,y, z]T vector as

ẋẏ
ż

 =

 0 −z y −1 0 0

z 0 −x 0 −1 0

−y x 0 0 0 −1


[
ω

υ

]
= J2(x,y, z)

[
ω

υ

]
(2.19)

Both matrices can be combined in a single compact Jacobian matrix

[
u̇

v̇

]
= J1J2

[
ω

υ

]
= Jp(u, v, z)

[
ω

υ

]
(2.20)
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They can be finally decomposed into the analytical expression for each com-
ponent of the Jacobian matrix

[
u̇

v̇

]
=

[
uv
fv

−(fu + u2

fu
) vfufv −fuz 0 u

z

(fv +
v2

fv
) −uvfu −u fvfu 0 −fvz

v
z

][
ω

υ

]
(2.21)

where Jp(u, v, z) is the interaction matrix in robotics (see [35]). It is a good
estimate of the Jacobian that only depends on the point image coordinates u, v
and its depth z. Some authors tend to simplify the expression by considering
both focal lengths equal λ = fu = fv. However, this assumption rarely per-
forms well since well-calibrated lenses have a slightly different focal length in
horizontal direction w. r. t. the vertical direction. This split is crucial in order
to achieve accurate results.

2.2.3 Bundle Adjustment

The accuracy of sparse SLAM relies on the quality of the feature detection and
the outcome of the Bundle Adjustment (BA) algorithm that jointly refines the
point cloud and the camera poses. Optimizations performed by BA come from
SfM where the total error is measured as the sum of the distances between
map point observations (keypoints) and their corresponding projections over
the keyframes of the trajectory. Three elements intervene in this optimization:
the camera poses Tk, the map points pi and the observations uk,i. There exist
alternatives to the classic BA that consist in fixing the position of some of these
objects (i. e., they are optimized in the successive iterations). For example,
motion-only BA only optimizes the camera pose since the positions of map
points are considered fixed.

Moreover, BA is an example of Non Linear Least Squares (NLLS) optimiza-
tion that can be solved by a Gauss-Newton algorithm. Due to the strong per-
formance requirements, it is convenient to use a variant formulation of Gauss-
Newton such as LM (see Section 2.2.1). This speeds up the convergence to the
minimum by interpolating between the Gauss-Newton and the gradient de-
scent algorithms.

Let us define the reprojection error of the observation of a map point pi in
the keyframe k expressed in world coordinates w as

ei,k = ui,k − π(Tk,wpi,w) , (2.22)

where π is the projection function as described in Section 2.1.
Finally, in the optimization problem the cost function to minimize is formu-

lated as

C =
∑
i,k

ρh(e
T
i,kΩ

−1
i,kei,k) (2.23)
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where Ωi,j is the covariance matrix related to the scale of the level of the
pyramid in which the keypoint was previously detected

Ωi,k = σ2i,kI2x2 (2.24)

and ρh is a robust kernel to reduce the impact of possible outliers. In our
case it is defined as the piecewise function corresponding to the Huber norm

ρh(x) =

1
2x
2, for |x| 6 h,

h(|x|− 1
2h), otherwise.

2.2.4 Probabilistic modelling of depth hypothesis

The map of the scene is generated through triangulation of the position of pix-
els in several keyframes. However, several approaches have been proposed to
address the problem of merging several triangulations arising from the differ-
ent pairs of keyframes. For example, ORB-SLAM [88] optimizes the position
of the map point in the multiple BA optimizations performed by the system.
However, this approach is not feasible in dense or semi-dense SLAM since the
complexity of the BA optimization increases exponentially. Instead, a proba-
bilistic framework is being used for the last five years, based on the original
work developed by Vogiatzis and Hernández [129].

The idea is to represent the depth of a pixel with a probabilistic distribution
that explicitly models the depth uncertainty. Every subsequent observation of
the same map point is used to update the distribution in a Bayesian frame-
work. This framework allows the system to merge several redundant observa-
tions of the same 3D point to get a single accurate representation when the
variance of the distribution becomes small enough.

A depth-filter is a Bayesian distribution that models the depth of a point p
projected in the frame Ii through the camera pose Ci. Initially, high uncer-
tainty is assigned, with the mean as the average scene depth of the reference
keyframe. For every new frame Ij, the system searches for the patch with the
highest correlation with the patch in Ii along the epipolar line. This line is
computed with the estimated relative transformation Ti,j between Ci and Cj
(see [53]). Then, a new depth hypothesis di,j can be obtained by conventional
triangulation.

The Bayesian distribution for modeling the depth hypothesis can change
according to the requirements of the procedure. It is usually a Gaussian dis-
tribution or a mixture of a Gaussian and a Uniform distribution (see e. g., [34,
39, 89]). This distribution takes into account the image noise, the parallax and
the ambiguity in the matching. A valid measurement is normally distributed
around the true depth di, while the variance represents the outliers. Usually,
depth is represented by the inverse depth 1/ρ to handle large scenes. This
probabilistic framework is illustrated in Figure 2.2, where the inverse depth
1/ρ of the map point p is modeled as a Gaussian distribution.
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1/ρmin
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Figure 2.2: A probabilistic framework based on Gaussian distributions to integrate
and fuse several noisy measurements into a single depth ρ. Red segment
represents the limited range of search for epipolar matches of point p
through the camera Cj. The mean of the Gaussian distribution provides
an estimator for the inverse depth 1/ρ of p within a range (1/ρmax,
1/ρmin).

A set of N hypothesis are fused to yield the inverse depth distribution
N(ρp,σ2ρp) for the pixel p with

σ2ρp =
(∑
N

1

σ2ρj

)−1
, ρp = σ2ρp

∑
N

1

σ2ρj
ρj , (2.25)

which corresponds to the merging step for a Gaussian distribution.
When the baseline is large, outlier measurements, generated by similar pix-

els or occlusions, must be removed before fusing their corresponding hypoth-
esis. In [89], the authors compare the modulo and orientation of the image
gradient, besides the usual intensity of the pixel, in the epipolar search. In
addition, a hypothesis must pass a compatibility test with the previous hy-
potheses before fusing them. Besides, at least N are required to consider the
estimated depth as reliable.

This method has been shown to be very efficient when the search in the
epipolar line is limited to a small range around the current depth estimate
(around twice the standard deviation of the depth estimate, see the red seg-
ment of Figure 2.2 and [39]). The method is fast since the uncertainty of
the distribution is reduced with little camera displacements. In addition, the
number of outliers is reduced w. r. t. a conventional triangulation from two
views since every filter models multiple erroneous measurements. This also
allows the depth to converge even in environments with low contrast or high-
frequency textures.
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2.3 simultaneous localization and mapping

Simultaneous Localization and Mapping (SLAM) makes reference to the set
of techniques, methods and algorithms needed to recover a 6 Degrees of Free-
dom (DoF) camera pose at the same time that the map of the scene is being
reconstructed. Nowadays, there exists important emerging technologies and
industries demanding robust SLAM algorithms, including autonomous driv-
ing, Unmanned Aerial Vehicle (UAV) guidance in Global Positioning System
(GPS)-denied environments, augmented reality applications, among others.
Some of these products cannot afford expensive camera devices especially
manufactured or they are already equipped with a commodity camera that
can not be replaced.

One of the main singularities of SLAM is that algorithms must work in
real-time. This is the main difference with respect to similar concept such as
SfM or MVS that use almost the same mathematical background without per-
formance constraints. Uncertainty is another big difference with those tasks
since images have bigger resolutions, less noise and they can be discarded or
repeated during 3D reconstruction. Therefore, algorithms in SLAM must be
able to deal with lots of redundant and noisy data from images captured in
real-time in order to extract valuable information to track the camera position
in every possible frame.

2.3.1 Visual Odometry

Visual Odometry (VO) is the process of estimating the pose of an agent using
only the passive input information captured by a single or multiple cameras.
The estimation of the pose is commonly known as egomotion. The term VO
was coined by Nistér, Naroditsky, and Bergen [93] based on the similarities
with wheel odometry. Nowadays it is possible to track the camera pose in
real-time with a modern multi-core CPU. In the usual approach, the system
incrementally updates the pose through the observation of the changes that
motion induces on the images. Furthermore, consecutive frames with suffi-
cient overlap must be considered.

Monocular VO refers to a particular variant of the problem using a camera
with a single lens. One of the key concerns of this variant that limits its broad
appliance is the inherent scale drift. The Euclidean coordinates of the camera
and the map points are always scaled by an unknown scale factor. The dis-
tance between the first two camera poses is usually set to one and used as
a reference for the rest of the system operation. The relative scale and pose
of a new frame w. r. t. the first two frames are determined with the knowl-
edge of the 3D map and the relation with a previously selected frame called
keyframe.

The current estimated pose accumulates the errors introduced in previous
frames. This produces a drift in the estimated trajectory, which should be kept
as small as possible. This goal can be accomplished through local optimization
over the last camera poses (sliding window bundle adjustment or windowed
bundle adjustment). Obviously, the drift can also be reduced when VO is
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combined with other sensors, such as GPS, laser or Inertial Measurement
Unit (IMU).

For more information, please refer to the tutorial created by Scaramuzza
and Fraundorfer [111] and the references therein.

Differences with Simultaneous Localization and Mapping

Both SLAM and VO share a common theoretical background since they es-
timate the current camera pose taking into account the motion observed in
pixels of consecutive frames. Although they are frequently exchanged in the
literature, there exist some differences between them that are ignored [111].
Next paragraphs highlight these differences, which we stick to for the rest of
the document.

On one hand, VO refers to the problem of estimating the pose of a camera
using only information from the image. It could range from one to multiple
cameras, or even fuse inertial information from an IMU [77]. It is only con-
cerned with the local consistency of the trajectory, without keeping track of
all the previous history of the camera poses.

On the other hand, SLAM extends VO functions by taking into account in-
formation about the trajectory of the camera. Its goal is to obtain a global, con-
sistent estimate of the trajectory. This implies the detection of loop closures,
the optimization of the positions of the map points and the camera poses or
the relocalization of the camera when the tracking is lost. These other tasks
allow the system to reduce the drift in the map and the trajectory. Therefore,
the map build by SLAM is more accurate and realistic than the local map
maintained in VO. This makes SLAM a better choice when robust long-life
operation is required.

The sliding window optimization in VO can be considered equivalent to
the local BA in SLAM. However, they pursue different goals. The local map
is another tool to maintain the global consistency, whereas VO only uses it to
obtain a more accurate estimate of the local trajectory. In the same way, VO
can be viewed as a starting building block of SLAM. The addition of loop
detection and global optimization procedures is what characterized a system
as SLAM.

In summary, SLAM extends the scope of VO by including not only the
tracking between consecutive frames in a local environment but also the man-
agement of the relations between the set of keyframes. They are related to
the map points by a graph-like structure called the connectivity graph (see
Section 2.3.3). This graph connects keyframes (nodes) sharing a portion of
the scene with an edge. Thanks to this data structure the poses and the map
points can be jointly optimized when a loop closure is detected, something
that VO does not allow.

A visual SLAM system is potentially more accurate since it adds more con-
straints on the path. However, the system is also more complex, computation-
ally demanding, and it could be even less robust since outliers in the loop
can affect to the map’s consistency during the optimization. The final choice
between VO and SLAM is taken based on the required tradeoff between per-
formance, simplicity, accuracy, and applications. The global consistency of the
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trajectory is always desirable but VO trades off this consistency for real-time
performance.

2.3.2 Rolling-shutter cameras

The proliferation of electronic devices equipped with high-quality affordable
cameras (e. g., smartphones or webcams) has increased the number of poten-
tial SLAM applications. The vast majority of these cameras use CMOS sensors,
which are more affordable and easier to manufacture. However, they also
install an electronic rolling shutter that, in contrast to global shutter, gener-
ates geometric and photometric distortions on images. Most of the common
photometric distortions include automatic exposure changes, non-linear re-
sponse functions (gamma correction and white-balancing), lens attenuation
(vignetting) or de-bayering artifacts. Such effects are more remarkable in the
presence of fast motion or strong rotation of the camera.

Furthermore, rolling shutter cameras manifest a higher Signal-to-Noise Ra-
tio (SNR) in pixel’s intensities. This impedes direct matching between con-
secutive frames, even though the baseline is short. In these cameras, pixels
are written sequentially in different scanlines, according to the readout time
(see Figure 2.3). This creates a slight intra-camera movement that should be
modeled, besides the conventional inter-camera displacement.

Although continuous-time trajectory models have been proposed to quan-
tify and compensate geometric distortions [97], they are not suitable for real-
time operation. These models have been recently extended to the epipolar
geometry framework to estimate the relative pose between two frames [24].
In the uniform rolling shutter camera model (i. e., uniform rotation and trans-
lation with constant velocity), the classical 8-point linear algorithm is aug-
mented to a 44-point algorithm. Other SLAM algorithms must be adapted to
deal with the distortions introduced by rolling shutter. This involves model-
ing each row of the frame as a different camera pose, which makes Bundle
Adjustment (BA) intractable. In [56], the authors propose an alternative BA
to optimize only a small subset of the poses and recover the remaining ones
using interpolation.

Overall, rolling shutter is not worse than global shutter, but it poses dif-
ferent problems to track the camera using just pixel information. As always
it depends on the requirements of the application. Rolling shutter is recom-
mended when low cost, high resolution, and high frame rate are required,
whereas global shutter is more appropriate for capturing fast moving objects
and Computer Vision applications.

2.3.3 The connectivity graph

In order to achieve large-scale and long-life operation, SLAM systems relate
their keyframes in a graph, usually known as the covisibility graph. This graph
is an abstract representation of the relations between the keyframes of the
trajectory. Each keyframe is linked to other keyframe according to the portion
of the scene shared by both keyframes, i. e., the portion of the map visible
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(a) Rolling shutter effect as spatial distortion of fan
blades

(b) Rolling shutter readout times in-
fluence sensor scanlines

(c) Creative WebCam HD, a low-cost camera with
an electronic rolling shutter

(d) MT9V034 camera for Arduino
equipped with global shutter

Figure 2.3: Rolling shutter introduces artifacts in images that should be
taken into account to achieve a robust and coherent SLAM im-
plementation. Images have been extracted from https://www.
embedded-vision.com/platinum-members/embedded-vision-alliance/
embedded-vision-training/documents/pages/vr.

https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/vr
https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/vr
https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/vr
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from both keyframes. This portion can be determined by projecting the map
points onto the frustum of each keyframe.

One of the main benefits of this representation is that it allows to manage
spatial relations between keyframes used in other algorithms. For example,
tracking and mapping tasks are performed in a constrained local environment
around the current keyframe, which is independent of the total map size. A
mechanism of local sliding window is implemented, clustering the keyframes
not only by time but also by space. In this way only a few bundle adjustment
iterations are required to accurately estimate the map point position.

Connected keyframes in the connectivity graph share a significant amount
of map points. The central question is how many links are required for each
keyframe to achieve a simple graph without losing spatial relations. This con-
nectivity is employed by several tasks, such as relocalization, local Bundle
Adjustment, loop detection, and keyframe culling. Hence, the topology of the
graph influences the accuracy of the trajectory, the robustness of the tracking
and the performance of the system. It is our goal to determine a satisfactory
connection policy that simplifies the graph while the accuracy of the trajectory
is still preserved.

The optimization of a pose graph is a classical non-convex optimization
problem, which can be solved with the algorithms described in Section 2.2.
If the orientation of cameras were known, the optimization would be a lin-
ear least-squares problem, whose solution can be computed efficiently and
reliably. Thus, rotations are the main cause of the complexity of the optimiza-
tion. Techniques for 3D rotation estimation were surveyed in [16]. In this
paper, the authors review the contributions to optimization algorithms from
three different scientific communities: robotics, computer vision, and control
theory. Their evaluation shows that the use of Chordal Relaxation [85] or
Riemannian Gradient Descent [125] to bootstrap iterative pose graph solvers
entails significant boost in convergence speed and robustness. The procedure
works as follows: firstly, the rotations are estimated using one of the reviewed
techniques, and then this estimate is used as initial guess for a conventional
Gauss-Newton method. Results show that the initial estimations achieved by
Chordal Relaxation reduce the computational cost of convergence by half.

Loop detection

Loop detection and closing are still two unsolved problems of the SLAM
pipeline. The most common approach consists in: 1) accumulate keyframes; 2)
detect loop closures; 3) optimize the pose of the keyframes; and 4) reconstruct
the 3D mesh of the scene off-line in a post-processing step (see e. g., [89]). An
online 3D reconstruction framework was proposed recently in [65]. In this
publication the authors propose to split the scene into several submaps. The
poses in each submap are updated only when required in a local framework.
Relative pose constraints are progressively accumulated between submaps.
Finally, the global optimization is managed in a lightweight and scalable way.
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Figure 2.4: The connectivity graph links spatially related keyframes. It is mainly em-
ployed to optimize camera poses after detecting a loop closure.

2.3.4 Types of SLAM

Since the beginning of this century, SLAM methods can be classified into
two different categories: sparse / feature-based methods or dense / direct
methods. The former ones (also known as indirect methods) abstract the im-
age intensities into a set of sparse geometric features; the latter ones oper-
ate directly over the intensity of image pixels. Recently, Engel, Koltun, and
Cremers [33] introduced a slightly different classification, distinguishing be-
tween direct/indirect and sparse/dense methods. However, in practice, most
approaches can be labelled as a combination of indirect and sparse, or direct
and dense. Dense indirect approaches are less common since, by definition,
features only abstract a subset of pixels of the image. Next sections discuss
the most outstanding approaches of each type of SLAM.

Dense SLAM

Dense methods, also known as featureless or direct SLAM, still require addi-
tional computing power (i. e., a GPU device) to perform camera tracking by
directly aligning two images. Dense SLAM minimizes the photometric error
using a Gauss-Newton algorithm in which the Jacobian of the residuals must
be computed at each iteration. The photometric error is the distance between
two pixels measured in their intensity space, which is affected by the way
the sensor perceives the real color of the objects. Actually, this is the main
bottleneck of this approach.

The main advantage of this approach is that the system tracks both im-
age regions with a high-intensity gradient (e. g., with edges and corners) and
smooth intensity variations (e. g., white walls). Additionally, a dense or semi-
dense point cloud is generated by the system without a posterior reconstruc-
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tion step in the pipeline. However, these methods assume a surface reflectance
function of the camera that is usually violated by commodity cameras, gen-
erating some artifacts in real-world sequences (see the datasets of [33]). They
are extremely sensitive to rolling-shutter, auto-gain, and auto-exposure, which
are present nowadays in most of the commodity digital cameras. In addition,
points are inserted into the map without correcting the drift. In the best case,
a map optimization is performed only in the pose graph, discarding all sensor
measurements and map points. All these issues constraint the algorithms to
especially suited cameras with global shutter, a wide FOV and a high SNR
per pixel (more than 30 dB).

Normalized Information Distance (NID)-SLAM [100] is a direct monocu-
lar SLAM system based on the NID metric. This metric replaces the con-
ventional photometric error used for direct pixel comparisons during image
alignment. The system is robust to appearance variation caused by lighting,
weather and structural changes in the scene. The authors evaluates the system
in a synthetic indoor scene generated from real-world data collected from a
vehicle-mounted camera. The system runs on a GPU using Open Graphics
Library (OpenGL). The accuracy depends on the illuminating conditions of
the sequence and it is comparable to Large Scale Detection (LSD)-SLAM and
ORB-SLAM. However, the robustness to appearance changes is increased. Ro-
bustness is measured as the percentage of frames of the sequence where the
camera pose is estimated.

Dense SLAM methods do not pay much attention to the pose graph as a
tool for keyframe management; it is only used to detect loop closures. For in-
stance, Whelan et al. [133] perform pose optimization in a limited local region
using a combination of dense frame-to-model camera tracking and windowed
surfel-based fusion. In addition, frequent loop closure optimizations through
non-rigid surface deformations maintain the pose close to the mode of the
map distribution. Finally, a global loop closure distributes accumulated drift
along the trajectory. In this case RGB-D camera enables accurate camera track-
ing in consecutive frames taking advantage of the dense nature of the scene
map. However, without considering the whole structure of the map in the
loop optimizations, the accumulated drift along the trajectory is most times
unacceptable (see the results in [133]).

Similar CPU-based alternatives have been developed by imposing some
constraint to the environment. For instance, the authors of [60] have devel-
oped a KDP-SLAM, a system that reconstructs large indoor environments in
real-time using a hand-held RGB-D sensor (see Figure 2.5). They use a fast
dense method to estimate odometry. Their method also extracts planes from
fused depth maps created from small baseline images. Finally they optimize
the poses and planes in a global factor graph using Incremental Smoothing
and Mapping (iSAM). They are able to estimate the six DoF pose even without
sufficient planes to fully constrain the transformation. Drift is compensated
by explicitly modeling plane landmarks in the fully probabilistic global opti-
mization framework. Their system runs at 30 FPS in the CPU but only works
with structured scenes.

Direct methods heavily rely on the good lighting conditions of the image
since they determine camera poses by means of direct image alignment. Most
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Figure 2.5: Example of dense planar reconstruction in large indoor environments
with loops (extracted from [60]).

systems incorporate the brightness constancy assumption in the formulation
of their alignment cost function [34]. Therefore, they cannot cope with signif-
icant illumination changes that are likely to occur for loop closures. In [99],
the authors have explored a real-time alternative to this formulation. After a
thorough evaluation of the accuracy and robustness in odometry and loop
closure, the authors conclude that, for real-world images, a Census-based
method [134] is the best. This method is used for depth estimation in stereo
images due to its invariance against all intensity transformations that preserve
the intensity ordering. However, it may provide less precise information than
other metrics about the alignment between two images.

A common methodological framework to evaluate different SLAM systems
has been introduced in [91]. This publication presents SLAMBench, a software
framework to enable a simplified, quantitative, comparable and reproducible
experimental research in SLAM. They illustrate the utility of their framework
to investigate the trade-offs in performance, accuracy and energy consump-
tion of a dense RGB-D SLAM system. The constituent algorithmic elements of
the SLAM pipeline can be assessed individually in a wide range of computing
architectures thanks to the proposed kernels.

Sparse SLAM

Sparse (or feature-based) SLAM references the set of approaches that do not
consider direct pixel intensities in their operation. Instead, they preprocess
these pixels to generate an indirect representation that abstracts the whole
image. This step involves some class of feature detection and description. A
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feature is a geometric primitive such as points, edges or pieces of curves.
A second step involves the establishment of correspondences between the
feature set of each frame. Sparse methods do not recover a dense point cloud
but a sparse set of 3D map points linked to the 2D keypoints in which they
project. Thus, homogeneous textured regions are not tractable (e. g., on-board
cameras on a highway) with this approach. On the other hand, they are robust
to images with noise, blur, and low-contrast.

There are also other sparse SLAM approaches that do not abstract the im-
age (see [33]). Instead, they work directly over the pixel’s intensities. These
methods are labeled as direct sparse SLAM, in contrast to the conventional
indirect sparse approach of [88]. The latter is the most common approach so
we will refer to them when we use the term sparse. We have included these
direct sparse approaches in the semi-dense section.

The first real-time VO was introduced in [87], followed by the seminal
work of Parallel Tracking and Mapping (PTAM) developed by Klein and
Murray [68]. In this work, the authors introduce the first implementation of
a real-time monocular SLAM system capable of running on a smartphone.
The system employs Scale-Invariant Feature Transform (SIFT) features to de-
tect and describe the keypoints of the frames. Optimization is performed
through a parallel windowed bundle adjustment as the pose graph expands.
Although the approach is limited to small-scale operations, it includes some
of the key elements involved in current SLAM approaches: keyframe selec-
tion, feature matching, point triangulation, camera pose prediction with a
constant-velocity model, and relocalization after tracking failure. However,
the approach misses important features for using the system in real-world
scenarios: loop closures, handling of occlusions, and automatic bootstrapping
(human intervention was required).

A few years later, Mur-Artal, Montiel, and Tardos [88] introduce the nowa-
days reference implementation of sparse SLAM called ORB-SLAM. The pipeline
of the system is entirely driven by ORB features [108], which are inexpensive
to compute and match. Some other remarkable features include frame relo-
calization, loop detection, and closure, and pose graph optimization in real-
time with multiple threads (more details about the complete pipeline have
been presented in Section 2.4). Due to its outstanding contributions and open-
sourced license, we have selected ORB-SLAM as the reference for developing
our contributions.

A homography-based strategy has recently been introduced in [80]. In this
work, the authors address the especially challenging situation of fast camera
motions with a strong rotation. They introduce RKSLAM, a monocular in-
direct sparse SLAM system that proposes a multi-homography schema for
feature tracking between consecutive frames. This schema allows the system
to support different search ranges to correct the perspective distortion of the
frame. The system estimates a global homography of the whole image and
several 3D plane homographies in the map. If the tracking quality is poor, the
system computes multiple local homographies of small image regions around
the tracked features. Furthermore, observed 3D points are triangulated im-
mediately. Motion prior constraints between consecutive frames are imposed
in camera pose optimization using simulated data. Despite the increased ro-
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bustness of this approach, the system only works in man-made structured
environments that can be described by homographies.

Semi-dense SLAM

Some of the limitations of direct methods against feature-based methods were
pointed out by Torr and Zisserman [124]. The authors highlight the supe-
rior accuracy of feature-based methods, but they also admit their inability to
achieve a dense map of the scene [62]. In addition, dense methods require a
huge amount of computational resources, which makes its implementation in
a CPU unfeasible.

In order to overcome such limitations more recent efforts are focused on hy-
brid approaches that combine the best of both worlds in different stages of the
pipeline. In the last five years, semi-dense (or semi-direct) approaches have
gained a lot of attention [33, 34, 39, 89]. They tackled the problem in real-time
using just a representative subset of the pixels of the image. The most com-
mon choice is the space of high-intensity gradient pixels, as in LSD-SLAM [34].
This system was one of the first semi-dense proposals that optimizes the pho-
tometric error and a geometric prior on pixels with a high-gradient value.
In [33], the geometric error has been replaced by a photometric model of the
camera. In addition, the system samples pixels evenly throughout the images
to reduce the number of constraints and speed up the Gauss-Newton opti-
mizations.

Other interesting semi-dense implementation is Semi-direct Visual Odome-
try (SVO) [40]. Their authors propose a faster monocular VO algorithm that
eliminates the feature extraction and matching steps of the pipeline. The al-
gorithm extends the Bayesian mapping method proposed by Vogiatzis and
Hernández [129] to explicitly model map outliers in triangulations. In this
method, the depth estimate of a feature is modeled with a Gaussian distribu-
tion in a Bayesian framework. A small variance of the distribution indicates
that the depth estimate can be transformed to a map point. A map with very
few outliers and more reliable points can be achieved in just a few iterations
with this model. This framework is further explained in Section 2.2.4.

In SVO, the system detects a collection of Features from Accelerated Seg-
ment Test (FAST) features in keyframes, and then it runs a completely direct
approach. The algorithm is able to deal with scenes of little, repetitive, and
high-frequency texture, thanks to the combination of a high framerate motion
estimation and the probabilistic mapping. Due to its simplicity it can run at
300 FPS on a laptop or at 55 FPS in an embedded platform. The speedup is due
to the nonexistence of feature extraction and matching steps, which are the
most expensive steps of any indirect sparse SLAM. The system has been eval-
uated with sequences captured by a Micro Aerial Vehicle (MAV). However,
results downgrade when the camera is not pointing downwards.

The authors of ORB-SLAM extended the mapping capabilities of their ap-
proach in [89] by including a semi-dense mapping stage that operates directly
over the set of keyframes. The bundle adjustment optimization of ORB-SLAM
allows the system to obtain accurate triangulations even in the presence of
wide baselines and noisy outliers. The result is a clean map with very few
outliers based on the accurate trajectory of ORB-SLAM.
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Other approaches combine a classical Extended Kalman Filter (EKF) with
a semi-direct approach, i. e., they work with a subset of pixels. A monocular
visual-inertial odometry algorithm of such kind was proposed by Tanskanen
et al. [122]. Their method operates only with sparse, small patches within the
input images. The key of this approach is the embedding of the optimization
algorithm that minimizes the photometric error directly into the EKF algo-
rithm. Thus, inertial data and visual data are considered at the same time for
computing the camera pose estimation. Their implementation also reduces
the impact of a large number of measurements when minimizing the photo-
metric residual error. The algorithm is able to deal with several pixel patches
on the same line. The system bootstraps without manual intervention from
a good starting pair of keyframes. This system runs in real-time on the CPU.
The results are more stable than LSD-SLAM and SVO, with more robustness
to fast camera rotations.

Semi-dense methods have been also applied to RGB-D cameras. For ex-
ample, BundleFusion [23] combines SIFT features with dense geometric and
photometric information to find correspondences. A coarse global alignment
is achieved by features; such alignment is refined by including dense photo-
metric and geometric consistency. Both constraints are imposed in an energy
minimization framework to obtain the pose of the camera, which is paral-
lelized in the GPU. In addition, a two-level hierarchy is created to estimate
the global camera pose in real-time. In the lowest level, consecutive frames are
grouped into a local chunk where the camera pose is estimated. Then, chunks
are correlated and globally optimized. In this way, the system can consider
the complete history of frames and scale to large scenes. Furthermore, the
system supports recovery from tracking failures and real-time updates of the
3D model through dynamic integration of frames in a volumetric representa-
tion of the scene. The reconstruction quality of the results is comparable to
previous offline approaches.

Publications always compare the results of the proposed algorithm with
those obtained by other dense and semi-dense approaches [14]. However,
there is not a holistic and complete evaluation methodology to make these
results reproducible. This problem has been tackled in [137], where the au-
thors notice the nonexistence of individual kernels and parameter spaces for
testing individual parts of a SLAM pipeline. In order to solve it, they extend
the existing SLAMBench framework to include metrics of accuracy, energy
consumption, and processing framerate. The new benchmark is evaluated
by comparing the pipelines of KinectFusion [64] and LSD-SLAM [34]. Their
methodology is interesting from the viewpoint of system-level design and
integration.

Deep Learning and SLAM

Deep Learning methods in general, and more specifically Convolutional Neu-
ral Network (CNN) are currently considered the swiss knife to solve most
computer-vision related problems. This popularity surged in 2012 when these
methods were applied to address the ImageNet classification challenge. The
work of Krizhevsky, Sutskever, and Hinton [73] was the pioneer in training
a deep network (60 million parameters and 500.000 neurons in five convo-
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lutional layers) in a GPU to solve a complex classification problem with an
outstanding accuracy. Inspired by this work, a plethora of neural network ar-
chitectures have arisen in the last three years (see e. g., [45, 55, 104, 105]). On
outstanding contribution was recently presented in [54]. This paper presents
residual networks by reformulating the layers as learning residual functions,
instead of unreferenced functions. These networks are easier to optimize and
more accurate, due to the increment in depth.

CNN are part of a bigger research line named deep learning, which also
comprises other types of networks such as deep belief networks and recurrent
neural networks. These networks have been applied to multiple domains such
as speech recognition, natural language processing, automatic machine trans-
lation, bioinformatics and recommendation systems. As expected, CNNs have
also been recently applied to SLAM. In fact, the presence of big datasets that
annotate the pixels of RGB images with their corresponding depth (e. g., the
TUM RGB-D dataset) leverage the power of a CNN to predict the depth of an
unknown image similar to those used for training.

The main advantage of these methods is that they can estimate the depth
per every pixel, i. e., they retrieve a depth image of the current frame like a
ToF camera does. However, the main inconvenience is the required computa-
tional power to perform the inference step when new frames arrives. Similarly
as happens with dense SLAM, they require a powerful GPU, which is not af-
fordable or technically feasible in more conventional devices.

There exist a previous attempt to recover the depth from a single image us-
ing a Total Variation (TV) formulation [102]. In this paper, the authors propose
a natural extension of the variational approach to estimate the depth map in
larger indoor environments with extensive texture-less surfaces. They show
that previous approaches degrade in the presence of large affine texture-less
areas like walls, floors, ceilings, etc. These regions produce noise and erro-
neous initial seeds for the optimization procedure. Their proposal introduces
a new non-local higher-order regularization term to enforce piecewise affine
constraints between far pixels. They assume that the depth at the edges of
regions is often well estimated. However, the inner pixels of these regions are
deeply problematic. Unfortunately, their system requires 500ms per frame in
a GPU architecture to obtain a median depth error below 2 cm.

The first attempt to apply CNN for depth inference from a monocular im-
age was introduced in [79]. This work does not rely on any cue, e. g., stereo
correspondences, motion, etc. Depth estimations are reformulated as a con-
tinuous Camera Response Function (CRF) learning problem due to the con-
tinuity of the depth values. More concretely, the authors propose to learn
the unary and pairwise potentials of continuous CRF within a deep learning
framework. The method works without geometric priors nor any extra infor-
mation. Depth predictions are performed efficiently by solving the Maximum
A Posteriori probability (MAP) inference since a closed-form solutions exists.
Results show lower errors with comparable or even better performance

Sometimes the depth images used for training purposes are replaced by
stereo pairs from which the depth can be inferred. For example, in [46] the
authors train the network using binocular stereo data from the KITTI bench-
mark (in the track of the year 2015). This data is supposed to be easier to
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achieve for a wide range of environments than the ground truth depth. The
authors exploit epipolar geometry to generate disparity maps. Their loss func-
tion enforces consistency between the disparities produced relative to both the
left and right. The resulting network can estimate the depth of a single frame
at 28 FPS in a Titan X GPU.

There are other approaches also based on the monocular content of the
KITTI dataset. In [136] the authors propose a completely unsupervised method
that requires only monocular video sequences for training. Their loss function
is based on warping nearby views to the target using the computed depth and
pose. They use two networks (single-view depth network and multi-view pose
network) coupled with the loss function during training. However, they can
be applied independently at inference time. The training data consists of unla-
beled image sequences capturing scene appearance from different viewpoints,
where the poses of the images are not provided. However, the achieved ATE
greater than ORB-SLAM.

Other authors have tried to reformulated the SfM problem as a learning
problem. For example, the authors of DeMoN [127] propose a SLAM sys-
tem that uses a CNN to compute both the depth and the camera pose from
successive, unconstrained image pairs. The system is composed of multiple
networks. The core part is an iterative network able to improve its own pre-
dictions. Besides depth and motion, the network also infers surface normals,
optical flow and confidence of the matching. The loss function is scale invari-
ant and it penalizes relative depth errors between neighboring pixels based
on spatial relative differences. The main benefit of this network is that it uti-
lizes the motion parallax, which generalizes better to non-training scenes and
enhanced the accuracy of the estimated poses. However, the CNN does not
adapt well to other non-training cameras with different intrinsic parameters.
Furthermore, it does not work with more than two images.

The previously mentioned approaches are focused on VO, leaving aside
the 3D reconstruction of the scene (i. e., the generation of a 3D textured
mesh). The reconstruction step has recently been considered in [123], e. g.,.
Their approach combines the multiple depth maps predicted by a CNN to
produce an accurate and dense monocular reconstruction. The authors pro-
pose to refine the predicted depth maps with small-baseline stereo matching
obtained from direct monocular SLAM. They privilege depth prediction in re-
gions where monocular SLAM tends to fail, e. g., along low-textured regions.
In addition, they use the predicted depth for estimating the absolute scale of
the scene, which is one of their main contributions. Finally, they also propose
a framework to fuse pixel-wise semantic labels with dense SLAM to yield
semantically coherent scene reconstruction from a single view. The resulting
system deals with challenging situations such as textureless regions and pure
rotational motions while still retaining the robustness and accuracy of direct
SLAM. Despite these benefits, the system do not close the loops in the tra-
jectory, which causes problems in lifelong operations in large environments.
Other limitation of this approach is that depth estimations are not geometri-
cally refined.
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2.4 orb-slam

As it has been mentioned in Figure 2.3.4, there are various indirect sparse ap-
proaches to monocular SLAM (see [25, 68, 80, 88]). The I3A Robotics, Percep-
tion and Real Time Group of the University of Zaragoza has published several
contributions since 2010. Recently, they have implemented ORB-SLAM [88], a
monocular SLAM system that is among the most widely cited works in the
literature. In addition, the release of the source code of ORB-SLAM under
an Open Source license guarantees a quick and widespread adoption by the
community. To the best of our knowledge, this is the best reference to con-
sider for any monocular SLAM system. We have used this implementation
as the starting point for our contributions in the SLAM component of the
framework described in Figure 1.1 at Section 1.1. Despite its sparse nature,
many relevant publications (see [33, 40, 123]) have compared its results with
ORB-SLAM, especially in terms of accuracy.

The accuracy obtained by ORB-SLAM relies on the accuracy of Bundle
Adjustment (BA) as the underlying optimization method (see Section 2.2.3).
Although the goodness of this method was previously well-known, this ap-
proach was not considered suitable for real-time applications. However, nowa-
days it is known [88] that accurate results can be achieved at non prohibitive
cost if the following conditions are met:

• A map point is represented by a set of corresponding observations of
scene features in a set of keyframes.

• The redundancy of keyframes are maintained low with a tradeoff with
the length of the sequence.

• Keyframes should introduce significant parallax between them to create
a well-spread set of points with a wide range of depths.

• The keyframes should be arranged in a network where the number of
loop closures is maximized. These loops are closed in real-time with a
fast global optimization procedure.

• The system should provide a good guess estimate of the initial keyframe
pose to the nonlinear optimization procedure.

• The optimization should be performed with the local map of the set of
keyframes around the current camera pose to make the process scalable
in long sequences.

Based on a set of previous SLAM-related works in which the same authors
were involved, ORB-SLAM proposes a set of significant contributions:

• The entire pipeline is modeled around the same type of feature (ORB)
to simplify the system.

• The bootstrapping procedure handles both planar and non-planar scenes
based on a model selection from a homography or a fundamental ma-
trix.



2.4 orb-slam 33

• The smart use of the information collected in the covisibility graph al-
lows ORB-SLAM to constrain the optimizations independently of the
global map size. Thus, the system can still operate in real-time in large
environments.

• Loops are closed in real-time thanks to a particular pose graph called
the Essential Graph, which is built from the covisibility graph with a
spanning tree, loop closure links, and strong edges (i. e., edges between
keyframes sharing more than 100 observations).

• The camera can be relocalized in real-time to recover from tracking fail-
ures.

• The keyframes and map points spawn generously to improve track-
ing robustness under hazard conditions (e. g., rotations, fast movements,
etc.). Later, they are culled restrictively to ensure lifelong operation.

The justification of choice of the ORB features is multiple: 1) all the steps
of the pipeline use them; 2) they are extracted and matched in real-time, i. e.,
less than 33ms per image is required; 3) they are rotational and viewpoint
invariant, and 4) they support wide baseline tracking. The ORB descriptor
has a size of 32B or 256 bit.

The system includes three threads running in parallel in the background:
tracking, local mapping and loop closing. The main thread is in charge of
loading the frames of the sequences. There is an additional optional thread
for the GUI visualization. The main data structures managed by the system
are the map points and the keyframes. Each map point includes

• the 3D position in the world coordinate system,

• the viewing direction (i. e., the mean unit vector of all its viewing direc-
tions),

• the ORB descriptor (i. e., the median of the descriptors of its observa-
tions),

• the maximum and minimum distance to the camera at which the point
can be observed.

A keyframe is just a special type of frame that stores

• the camera pose represented in the world coordinate system,

• the keypoints and their descriptors extracted from the selected frame,

• the map points associated to the keypoints,

• the covisible keyframes and the number of shared observations.

One of the keys to run a real-time BA is to constrain the number of points
and keyframes involved in the optimization. These subsets are created using
covibility information between keyframes. This information is useful for other
tasks, such as relocalization, loop detection or map spawning. Covisibility
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is represented by the covisibility graph [120], an undirected weighted graph
where the keyframes act as nodes. Two keyframes are connected b an edge,
which is weighted by the number of shared map points. Only keyframes with
a sufficient number of observations (at least 15) are connected.

The rest of this section is intended to describe the fundamentals behind the
main stages of the pipeline of ORB-SLAM. We will put the accent in the most
significant aspects for our research.

2.4.1 Bootstrapping

The bootstrapping procedure is one of the main contributions of ORB-SLAM.
The goal of this procedure is to select a good pair of frames from which we
can estimate the relative pose and extract the initial map. A good pair of
frames must have significant parallax. Ideally, the algorithm must support
both planar and general scenes and must be entirely automatic, i. e., it should
not require human intervention. This pair was manually selected in previous
approaches like [68]. This is a good strategy when the goal is to test the next
stages in the pipeline. However, this pair cannot be determined manually if
we want to achieve real-time operation. On other side, a poor choice of the pair
can lead the system to build a corrupted map. Consequently, we shall look for
a good tradeoff between a quick bootstrap and a good pair of keyframes.

The well-known disjunctive between homographies and fundamental ma-
trices requires to evaluate the suitability of both models for the first pair of
keyframes. Both models are evaluated in parallel by ORB-SLAM and, then, a
heuristic is used to choose the best model. The relative pose is estimated with
different methods according to the selected model. In this way, low-parallax
pairs and the well-known twofold planar ambiguity [82] are avoided by the
system.

The complete procedure includes the following steps:

1. The ORB features xc are extracted from the current frame Fx. If there is
no reference frame Fr, the current frame is labeled as such.

2. The correspondences between the current frame and the reference frame
are matched to get xc ↔ xr. If there are not enough matches, reset the
reference frame. The procedure will start again at the Step 1 when the
next frame arrives. Figure 2.6 illustrates an attempt of detecting these
matches between a pair of frames.

3. An homography Hcr and a fundamental matrix Fcr are computed in
parallel as

xc =Hcrxr

xTcFcrxr = 0
(2.26)

using the normalized Direct Linear Transform (DLT) and the eight-point
algorithm in a RANSAC scheme (see [53] and the references therein).
The system uses the same number of iterations for both models. Further-
more, the homography is estimated with four points per iteration while
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Figure 2.6: Example of the automatic bootstrapping of a sequence in the TUM RGB-
D dataset. The system tries to detect a pair of keyframes with enough
correspondences and good baseline. Green lines represent matched fea-
tures between both keyframes. Each line starts at the pixel of a feature
detected in a previous frame (not represented here) and ends at the pixel
of the same feature in the current frame.

linear algorithms for the fundamental matrix requires eight points. A
score SM is computed for each model M (H for the homography and F
for the fundamental matrix) taking into account the matches xic ↔ xir
and the symmetric transfer errors [53] d2cr and d2rc.

SM =
∑
i

(ρM(d2cr(x
i
c,xir,M)) + ρM(d2rc(x

i
c,xir,M)))

ρM(d2) =

TH − d2 d2 < TM

0 d2 > TM

(2.27)

where TM is the outlier rejection threshold based on the χ2 test at 95%.
The system keeps the respective models with the highest scores. If no
model is found, the procedure restarts from Step 1.

4. In case of planar or low-parallax scenes the homography should be se-
lected, even though a fundamental matrix can also be found. However,
the problem in such cases is not well constrained [53], yielding incorrect
results. On the contrary, a fundamental matrix is a model that explains
nonplanar scenes with enough parallax. However, it is possible to get a
homography explaining a subset of the matches that lie on a plane or
that are far away. The authors of ORB-SLAM found that the ratio

RH =
SH

SH + SF
(2.28)
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can be used to select the homography when RH > 0.45 or the fundamen-
tal matrix otherwise.

5. The relative pose is extracted from the estimated model. Eight motion
hypothesis are retrieved for the homography by the method of Faugeras
and Lustman [38]. Usual chirality tests fail to detect low-parallax cases
since the points easily move to front or back of the cameras. Instead,
the points are triangulated for each hypothesis. The best model must
have most points in front of cameras, with a low reprojection error and
with enough parallax. In addition, the authors of [88] have imposed the
following thresholds to accept the model or the procedure will restart
from Step 1:

• The best model must have 33% more inliers (i. e., map points) than
the next model.

• The parallax of the best model must be higher than 1 degree. The
parallax of a model is defined by the parallax of its inliers sorted
by the cosine of the angle. The system selects the highest parallax
of inliers or the parallax of the 50-th inlier if there are more than 50
inliers.

• The number of inliers must be greater than min(0.9N, 50), where
N is the original number of inliers.

6. Four motion hypothesis are computed from the essential matrix E with
the Singular Value Decomposition (SVD) method described in [53]. In
turn, the essential matrix is extracted from the fundamental matrix F
using the calibration matrix K as Erc = KTFrcK. The best model is
selected as for the homography.

7. A full BA refines both the positions of the map points and the poses of
the first pair of keyframes.

2.4.2 Tracking

Tracking is the main stage of every pipeline in SLAM and VO. The goal of
this thread is to estimate the rigid body transformation of the current frame
and decide whether a new keyframe should be created. The algorithms used
by ORB-SLAM are extracted mostly from the work of PTAM. All the opti-
mizations performed to improve the camera pose are motion-only BA, i. e.,
the map points are fixed while the 6DoF transformation is iteratively refined.

When a new frame arrives, the system extracts the FAST features at eight-
scale levels (scale factor of 1.2). One feature can be extracted in real-time per
each 250 - 350 pixels. Usually, most features lie in well-textured regions of the
image. Each level is divided in a grid to guarantee a homogeneous distribu-
tion of the features. The system tries to detect at least 5 features per cell. The
detector threshold is lowered if not enough features are found. Similarly, the
number of features per cell changes if some cells are empty (high-frequency
textures or low-contrast images). Finally, the ORB descriptors are computed.

Most poses can be estimated based on a simple motion model that assumes
constant linear and angular velocity. This approach allows ORB-SLAM to fig-
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ure the next camera pose for almost 90% of the frames where the previous
tracking was successful. However, there are particular sequences where this
hypothesis is invalid such as in the presence of fast movements or strong
rotations. In such cases, ORB-SLAM falls back to the reference keyframe to
calculate the camera pose. If this second approach also fails the tracking is
considered lost.

The initial rough estimation of the pose enables to deliver the power of
guided matching between keypoints and map points (or more briefly named
as 2D-3Dmatching). The system aims at finding correspondences between the
keypoints of the features and the projection of the map points with the esti-
mated pose. The size of the search window is adjusted according to the num-
ber of inliers achieved in previous searches. For instance, if the first search
returns only 20 inliers of less, the size is increased from 15 to 30. If the second
search also returns less than 20 inliers, the search is performed in the refer-
ence keyframe. These associations are used to refine the prior estimation with
a Sim(3)-guided optimization.

The number of map points involved in the 2D-3D matching is constrained
in large maps. This local map only contains the map points viewed from the
last frame augmented with the points observed from some neighbors. The
initial set of keyframes includes the keyframes where the map points in the
last frame were previously observed. Then, the 10-best covisible keyframes,
the children and the parent of each included keyframe expand the original
set. In guided matching, each map point in the local map is searched in the
current frame by performing the following steps:

1. The map point is projected with the estimated pose.

2. The map point is discarded if

• it lays out of the camera bounds;

• the angle between the ray from the point to the camera center and
the mean viewing direction of the point is lower than 60°;

• the distance d between the map point to the camera center is out
of the scale invariance region [dmin,dmax]

3. The radius of the search window is proportional to the scale factor of
the level of the pyramid in which the feature was detected.

4. The descriptor of the map point is compared against the descriptors
of the unmatched features within the search window. Descriptors are
compared at the same level of the pyramid. The map point is linked to
the closest keypoint.

The result of these steps is a set of 2D-3D correspondences, as shown in Fig-
ure 2.7. These matches are the key for the rest of procedures in ORB-SLAM
since they allow the system to extend the set of points and to optimize again.
This strategy is repeated multiple times in some steps like in relocalization.

The tracking thread is also responsible for deciding whether the current
frame should be selected as keyframe or not. However, keyframe culling is
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Figure 2.7: An example of the resulting matches between map points and ORB fea-
tures for tracking the current frame. These matches are generated by the
guided search in a sequence of the TUM RGB-D dataset. Blue circles rep-
resents detected ORB features. Squares represent 2D-3D matches. Red
squares correspond to new map points (i. e., with fewer than three obser-
vations) whereas blue squares correspond to well-established map points
(i. e., with more than two observations). Note that red squares always
match detected features as result of the guided search.

performed by the mapping thread. More keyframes make the tracking ro-
bust to challenging movements, so the system tries to insert as many as pos-
sible. Posterior keyframe culling will remove redundant keyframes. A new
keyframe is inserted only if the following conditions are met:

1. The last relocalization was completed at least one second ago.

2. The last keyframe was inserted at least one second ago, or the local
mapping is idle.

3. The number of map points in the current frame is between 50 and 90%
of the points tracked by the reference keyframe.

Condition 1 ensures a good relocalization whereas Condition 2 warrants
a brisk pace in keyframe insertion. If the first part of Condition 2 is fulfilled,
then BA will stop. Condition 3 imposes a minimum visual change and a good
tracking between consecutive keyframes.

2.4.3 Mapping

In this thread, the system performs some tasks required when a new keyframe
arrives. These tasks are executed in a separate thread. Even though new key-
frames are created in the tracking thread, the insertion in the covisibility
graph and the map are handled by this thread. One of the most important
responsibilities is the culling of redundant keyframes when the camera revis-
its a part of the scene. Moreover, this thread generates new map points from
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the epipolar correspondences found between the new keyframe and their co-
visible keyframes.

The thread is waiting for new keyframes in a queue. When a new keyframe
is detected, a new node is appended to the covisibility graph. The connectiv-
ity of such node is computed based on the observations shared with other
keyframes. If two keyframes share at least 15 observations, an edge is created
between them. The keyframe with most points in common becomes the par-
ent of the new keyframe. Furthermore, the bag of words representation of the
keyframe is computed to add it to the database.

The minimum number of observations discards distant keyframes that share
only few observations while maintains a dense graph to manage spatial rela-
tions between keyframes. However, the value should depend on the number
of points of the map and the aspect ratio of the frames since different se-
quences have special requirements.

Once a new keyframe is selected, map points created in the latest three
keyframes are checked to maintain a low number of outliers. Each point must
fulfill the following two conditions:

1. An observation of the point must be found in more than 25% of the
frames in which it can be projected.

2. The point must be observed in more than two keyframes if two or more
keyframes have passed since it was created.

The last condition is also checked when a keyframe is culled from the graph
or a local BA is executed. The point is removed from the map if it does not
pass these tests.

Once the connectivity graph is updated, the creation of new map points
is performed by triangulating unmatched keypoints in connected keyframes.
The matching is guided by the bag of words representation of each keyframe
filtered by the epipolar constraint. This increases the robustness of the track-
ing since more points allow the system to find more matches. Furthermore,
previous outliers are replaced with more refined triangulations (see e. g., Fig-
ure 2.8 to see how the map density is increased). A new map point is only
accepted if

• The ratio between baseline and the median depth of the keyframe is
higher than 0.01.

• The parallax between the rays connecting the point and the camera cen-
ters is between 65° and 90°.

• The point is in front of both cameras.

• The reprojection error passes the χ2 test at 95%.

• The distance to camera centers is not zero and the ratio between dis-
tances is inside an interval of 1.5 times the ratio between the scale factors
of each feature.

New points can be projected and matched in the covisible keyframes if
there are not new keyframes waiting in the queue. Duplicated matchings are



2.4 orb-slam 40

Figure 2.8: Map points for the scene of a sequence in the TUM RGB-D dataset. New
points created in the last keyframe are drawn in read. Black points rep-
resent those points that were previously created and have been excluded
from the last optimization.

conveniently detected and fused. The descriptor, mean viewing direction and
dmin,dmax of each map point are recomputed at the end. Finally, the con-
nections of the current keyframe in the connectivity graph are updated again
taking into account the augmented set of map points.

If the mapping thread were also idle (i. e., no stop has been requested), a
local BA would be performed to optimize the new keyframe, all its covisible
keyframes and their map points. Other keyframes sharing some map point
are included in the optimization as a fixed pose. As a consequence, some
observations marked as outliers in the process will be discarded. It can be
seen in Figure 2.8 that most of the points are included in the optimization in
convergent scenes.

The culling of the local redundant keyframes is the last step. It is a manda-
tory step to guarantee lifelong operation and maintain a compact reconstruc-
tion. The number of keyframes only grows as the visual contents of the scene
increase. Furthermore, it bounds the complexity of the BA, which grows with
the number of keyframes. The policy is to discard the keyframes where 90%
of the points are seen at least by other three keyframes. Points must be viewed
in the same or finer scale to preserve those keyframes where points are accu-
rately measured.

2.4.4 Loop closure

A key component of the loop closing thread is a place recognition module
based on the bag of words metaphor. A visual word is a discretization of
a feature descriptor subspace. The complete collection of words constitutes
the vocabulary. This vocabulary is created off-line from a large set of general
images so it can be reused among different environments.
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This place recognition module summarizes the contents of a new keyframe
with its most representative words. Therefore, previously seen keyframes can
be quickly matched to the current keyframe. Moreover, an inverted index is
maintained to speed up the search of the most similar keyframes. For each
word, the index stores the keyframe in which it appears. Besides the loop
detection, this module also helps to relocalize the camera when the tracking
is lost. The module also intervened to speed up the match between two sets of
features. The traditional brute force search can be constrained to the features
in the same node at a level of the vocabulary tree (e. g., the second out of six).

When a new keyframe is detected, the system looks up the most similar
keyframes in the database. Firstly, the system computes the lowest similarity
dmin score among the current keyframe and its neighbors in the covisibility
graph. Then, the keyframes in the database with a score higher than smin are
selected.

This set of keyframes is composed by the covisible keyframes of the closest
keyframe (i. e., the keyframe with the highest similarity score in the database)
and the keyframes with a score higher than the 75% of the best score. Directly
connected keyframes are removed from the resulting set. A loop is recognized
as a candidate only if the system detects three consecutive loop candidates
whose covisibility groups are consistent. We say that a group is consistent
with a previous group if they share at least a keyframe. There may be several
loop candidates if several places have a similar visual appearance.

Next step validates the loop candidate by matching its features with the
current keyframe. In this step, the features detected by the place recognition
module are used to constrain the brute force matching, as stated above. The
result is the set of points corresponding to the matching features. If fewer
than 20 matches are found, the candidate is discarded.

A loop closure requires to compute the Sim(3) transformation between the
current keyframe and the loop candidate. This transformation represents the
accumulated error in the loop, which will be distributed along the trajectory.
A solver is created to calculate the Sim(3) transformation of each candidate
using the method of Horn [58]. Then, the system alternatively performs 5
RANSAC iterations for each candidate. If the solver provides a transforma-
tion with enough inliers, the matches are increased by a Sim(3)-guided search.
An additional optimization is performed with 7DoF and, if enough inliers are
found, the transformation is finally accepted. However, one more test is exe-
cuted before accepting the loop. A new guided search is performed using the
Sim(3) projection of the map points augmented with the points of the neigh-
bors of the loop candidate. The loop is accepted if at least 40 correspondences
are found by the new search.

Once the loop has been detected, the system proceeds to correct the loop.
Firstly, the connections of the current keyframe are updated by fusing dupli-
cated map points. Then, the current pose is corrected with the Sim(3) trans-
formation. The same correction is propagated to the covisible keyframes and
the map points they observe so that they align with the other side of the loop.
The map points seen by the loop keyframe are projected into the current
keyframe and its neighbors using the corrected poses. Matches are searched
in a narrow window around the projection following the algorithm explained
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Figure 2.9: A comparison between the trajectory of the same sequence before and
after performing the loop closure with KN-SLAM. Note that the scale
drift accumulated along the optical axis is corrected, which reduces the
error in one order of magnitude.

in Section 2.4.2. As it happens with the points to estimate the transformation,
the existing 2D-3D matches are fused, i. e., they are replaced with the new
associations. The connections of all keyframes involved in the fusion are up-
dated. Finally, the system inserts new edges to attach both sides of the loop
and starts the optimization of the Essential Graph.

Loop closures are an important tool to reduce the accumulated error of the
trajectory. They allow the system to distribute the error along the poses of the
graph, as it is shown by Figure 2.9. However, the use of the connectivity graph
is discouraged to perform the optimization in real-time. Thus, the Essential
Graph is a subgraph with the same nodes but fewer edges. The goal is that the
graph still preserves a strong network of poses and points to obtain accurate
results while it still reduces the complexity of the optimizations. Actually,
in our results, we have confirmed that fewer connections can increase the
accuracy in some sequences.

In a first step, the thread builds a spanning tree starting from the first
keyframe. This spanning tree provides the connected subgraph with the min-
imal number of edges. The keyframe with the highest number of shared ob-
servations is the parent of a new keyframe. The Essential Graph is built from
the spanning tree, to whom the system adds the edges with high covibility (at
least θmin = 100) and the loop closure edges (i. e., edges connecting the start
and the end of a loop). The authors of ORB-SLAM show that the choice of
θmin has no significant effect on the accuracy of the final trajectory. However,
it directly impacts the time required to optimize the graph since it is propor-
tional to the number of edges. For instance, the same error is achieved with
θmin = 15 than with θmin = 200, whereas the number of edges for the latter
is the 15% of the former.

The optimization of the Essential Graph is performed over the space of
Sim(3) transformations to fix the scale drift [119]. The system approximates
a full BA with the classical LM scheme applied over all the points and key-
frames, with the loop keyframe marked as fixed. The edges of the graph are
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used to constrain the optimization using the following error function for each
edge

eij = logSim(3)(Si,jSj,wS
−1
i,w) , (2.29)

where Sij is the relative Sim(3) transformation between the i-th and j-th
keyframes.

The transformation is estimated from the SE(3) original poses before the
loop closure with a scale of 1. The method of [58] is instead used for loop
closing edges. The logSim(3) [118] is the inverse of the exponential map in
the Lie Algebra sim(3). It transforms the matrix into an element of the algebra
in the tangent space. This space has 7DoF so each element in the tangent
space is represented by R7, where the Jacobian of the cost function can be
estimated at each iteration. The optimization of the poses is finally performed
through minimizing the following cost function

C =
∑
i,j

eTijΛijeij (2.30)

where Λij is the information matrix of the edge (see Section 2.2.1), which
is set to the identity. Once the minimization is completed, all SE(3) poses are
updated from the Sim(3) transformation as

Sim(3) =

[
sR t

0 1

]
⇒ SE(3) =

[
R t/s

0 1

]
(2.31)

Each map point is adjusted with the same correction applied to one of
its keyframes. Firstly, the point is transformed into the coordinate system of
the keyframe with the pose previous to the optimization. Then, the point is
transformed back to the world coordinate system with the optimized pose. In
the end, the entire set of map points is fixed.

2.4.5 Relocalization

In case that the tracking is lost, the only way to estimate a valid camera pose is
to use a relocalization procedure. In ORB-SLAM, the authors reuse their own
previous work based on the bag of words metaphor described in Section 2.4.4.
In this procedure, the current frame is converted into a bag of words and
searched in the keyframe database. The features of each candidate keyframe
are compared with those of the current frame. The search is guided by the
nodes of the vocabulary tree as explained in Section 2.4.4. If the candidate has
enough matches, a Sim(3) transformation between both frames is estimated.
The estimation procedure alternatively performs 5 RANSAC iterations for
each candidate until a valid solution is found (i. e., at least 10 inliers are found
by the Perspective-n-Point (PnP) algorithm [76]). Each pose is then optimized
using a motion-only BA on SE(3). Again, if more than 10 inliers but fewer
than 50 are found, the system searches more matches. In this case, it executes
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Figure 2.10: An example of a forced relocalization in a sequence of the TUM RGB-
D dataset. The camera is occluded in the middle of the sequence and
the tracking of the camera is lost. The current frame is compared with
the previous keyframes until the camera revisits the beginning of the
sequence and a robust match is found. Then, the frame is aligned with
the first keyframe and the tracking continues. The connectivity graph
is shown in the lower right side of the figure. Note that the trajectory
is composed of two branches with a slight displacement and the same
rotation. The second branch is generated after the relocalization.

a guided search in a wider window including the map points viewed by the
candidate keyframe. Finally, the camera pose is optimized again with the
same cost function and, if it has at least 50 inliers, the tracking procedure
continues.

If the number of inliers were high enough (30) but still below the minimum
threshold (50), the system would perform a new guided search in a narrower
window with the new points. If there were more than 50 inliers, a final opti-
mization is executed to minimize the error. This workaround avoids situations
where the first optimization of the camera pose could include many outliers.
This multi-step optimization scheme helps to achieve more accurate results.

An example of execution of the relocalization procedure is shown in Fig-
ure 2.10. Here the tracking is lost in the middle of the sequence and the
system do not relocalize the camera until it comes back to the beginning of
the sequence. Then, the tracking is recovered when the current frame matches
the first keyframe.

2.5 k-nearest neighbors

The K-Nearest Neighbors (KNN) algorithm is applied to find the k closest in-
stances given a reference within a feature space [72]. It is among the simplest
methods in machine learning, where it represents a type of instance-based
learning methods. It infers the features of the new instances based on previ-
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ously well-known cases, so no training procedures are required. In this case,
instances define an underlying model which can be queried at inference time.
Usually, graph-like data structures or indexes are maintained to speed up
queries. This is also called lazy learning.

The algorithm always relies on a metric of distance between the instances
in the feature space. For example, in the three-dimensional Euclidean space
where hand-held cameras live, the Euclidean distance is enough to determine
the similarity between the points that represent the closest neighbors. In ad-
dition, a weigh can be linked to each neighbor, so that the closer neighbors
contribute more to the result of the inference (see [30]).

Another important aspect of this algorithm is the value of k that deter-
mines the number of instances linked to a new one. High values imply that
the inferred solution will be more general, inheriting more traits of the entire
dataset, whereas low values of k give a solution focused on the characteris-
tics of specific instances. Therefore, the final choice depends on the level of
generalization required in the results and may change with the problem.

In our research, we are especially interested in the three-dimensional case.
Paredes and Chávez [98] propose a KNN graph for retrieving the objects
closer to a query in a database, a problem commonly known as proximity
searching. Their solution is based on creating the database index using the
KNN graph, which is a directed graph connecting each element to its k closest
neighbors. They introduce two versions of the search algorithm based on both
distance and topology to solve nearest neighbor queries. In their results, these
algorithms perform 30% more distance evaluations in the document metric
space than the reference implementation, using only a 0.25% of the memory.
This idea can be applied directly on the connectivity graph concept from
SLAM, where this graph is used to find the closest neighbors when the camera
revisits a space in the scene. We aim at reducing the number of connections
to simplify the graph and improve the results in optimization procedures
(see Section 3.1).

In the field of graph-based searches, Ismo et al. [63] introduce a method
for detecting outliers using the Indegree Number (ODIN) algorithm based
also on a KNN graph. They propose two new algorithms to improve exist-
ing distance-based methods: MeanDIST or KDIST. Their evaluations on both
real and synthetic datasets show that better results are achieved on synthetic
datasets, whereas they are worse on real datasets due to the lower number of
observations. They concluded that in such case, density-based methods can-
not obtain reliable estimates. The concept of ODIN can be also applied to
measure distances in the connectivity graph of SLAM.

The KNN algorithm has also been applied to perform queries in spatial
networks (e. g., road networks). In this applications, distances between objects
depend on the topology of the network and they are expensive to compute.
In [70], the authors propose to use a first order Voronoi diagram to evalu-
ate KNN queries in spatial databases. They split large networks into small
Voronoi regions with clusters. Then, intra- and inter-distances are precom-
puted to save both storage and computation time. In addition, computations
are only performed on the border of the neighboring regions. They show that
this solution outperforms the performance of traditional approaches by up to
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Figure 2.11: A volumetric grid is used for integrating and fusing multiple noisy 3D
measurements using a TSDF. On the left, a new TSDF is inserted corre-
sponding to a range measurement of the sensor. On the right, a second
noisy measurement represented by another TSDF is fused with the origi-
nal by summing both functions. The figure has been extracted from [22].

one order of magnitude. Voronoi diagrams can also be used for determining
the fair value of k that preserves the connectivity between neighbors, while it
still avoids redundancy in the graph.

2.6 surface reconstruction

The last step of a SLAM pipeline is responsible for creating the map of the
scene. This map is usually a sparse or semi-dense point cloud that is not tri-
angulated in a mesh. This makes the result not suitable for most applications.
Some SLAM approaches include in their pipeline a post-processing step to
convert the sparse point cloud into a convex volumetric surface.

The reconstruction process can be performed either online or offline, with
computing requirements varying from one approach to another. On one hand,
online reconstruction is useful in robotics applications and AR/VR gaming.
The point cloud is iteratively refined and increased. On the other hand, off-
line reconstruction achieves more accurate results. In the end, the resulting
point cloud is noisy and incomplete (e. g., holes). These problems pose signif-
icant challenges to conventional static 3D reconstruction algorithms.

It is possible to create Piecewise Linear (PL)-surfaces by triangulating the
hull of the map. This reconstruction of surfaces is usually implemented on a
data structure that integrates and fuses all the noisy partial meshes. A volu-
metric grid of voxels coupled with a TSDF [22] is the most popular alternative
(see Figure 2.11). A powerful GPU is required to update the map in real-time
when it is coupled with a dense approach as in KinectFusion [64].

More recently, Steinbrücker, Sturm, and Cremers [116] introduce an ap-
proach able to run in real-time in a CPU. They proposed a volumetric multi-
resolution mapping system for RGB-D images. The textured 3D mesh is gen-
erated using an octree (instead of the conventional regular volumetric grid)
that represents the scene at multiple scales. Furthermore, the reconstruction
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volume grows dynamically on demand. Only those voxels in a narrow band
around the observed surface are allocated to save memory and computation
time. The system maintains a consistent triangle mesh even though neighbor-
ing cells in an octree are more difficult to relate. They solve this challenge by
keeping track of the dependencies between cells. As a result of this, the sys-
tem can run in real-time on large RGB-D sequences on systems with limited
computational resources.

The TSDF of each voxel can be stored and processed using sparse voxel
hashes [92]. This approach scales well in large environments due to the spar-
sity of the grid achieved by removing empty spaces. This approach was ex-
tended in [23] to add integration and de-integration of frames (i. e., adding
and removing frames from the reconstruction). Furthermore, these operations
are symmetric, i. e., one inverts the other, to allow the system to update the
model when the camera pose changes. In such case, the frame is de-integrated
with its original pose and integrated with the updated pose.

The original work developed in KinectFusion serves as inspiration for other
publications more focused on the 3D reconstruction than in the VO. For ex-
ample, MonoFusion was introduced two years later in [103]. Instead of using
a RGB-D camera, they use a single-lens, off-the-shelf camera as input sensor
to build a 3Dmodel in real-time. Therefore, this solution can manage robustly
natural outdoor lighting, something that RGB-D cameras cannot handle. The
system combines a sparse VO method with a volumetric fusion scheme. Cam-
era poses are used for efficient dense stereo matching between the input frame
and the best keyframe. The resulting depth maps are then fused in the vol-
umetric grid using a computationally inexpensive method. In addition, the
system can recover from tracking failures and filter out the noise from the 3D
reconstruction. The system requires a GPU to compute the stereo map and
merge them in real-time. The resulting 3D models are visually comparable to
those obtained with KinectFusion.

Later, an approach similar to MonoFusion was introduced in [67]. The sys-
tem utilizes a sparse tracker for camera pose estimation combined with a
dense patch-based tracker for dense reconstruction. Feature matching in the
sparse tracker is guided by a costly dense optical flow algorithm. The sys-
tem determines if the model is completely covered before refining the recon-
structed patches into denser and more accurate patches. The implementation
is heavily based on the parallel architecture of the GPU.

MobileFusion [67] targets devices with limited resources like a smartphone
by introducing the first pipeline for real-time surface reconstruction and cam-
era tracking running on standard commodity mobile phones. They take ad-
vantage of a hybrid GPU/CPU pipeline that tracks the camera at 25Hz. At
the same time, the RGB input is registered in a volumetric grid to incremen-
tally build a fully-connected 3D model by minimizing a noise-aware photo-
consistency error metric. The reconstructed models show an average error of
1.50 cm w. r. t. the baseline models captured with KinectFusion. It should be
noted that the scale of the reconstructed objects is small (e. g., human faces,
shoes or pineapples).

It is common that these techniques are imported from other areas closer
to Computer Graphics. One of these approaches is VolumeDeform [61]. This
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Figure 2.12: Usual 3D reconstructions suffer from noise and holes (left). The noise
can be reduced by applying a plane prior (middle). The detected planes
can be extended into unobserved regions to fill holes (right). The images
have been extracted from [31].

work introduces an innovative approach to reconstruct at real-time the sur-
face of an arbitrary non-rigidly deforming scene using an RGB-D sensor. The
3D model is built from scratch without a pre-defined shape template to start
with. A common volumetric representation is used to encode a distance field
of the surface geometry and the non-rigid space deformation. The tracking
uses an indirect sparse VO approach combined with a dense depth constraint
to reduce drift in model-to-depth alignment. The system finds the optimal de-
formation of space as a non-linear TV optimization that enforces local smooth-
ness and proximity to the input. A data-parallel flip-flop optimization strat-
egy allows to tackle the problem at 30Hz in the GPU. The resulting system
is robust to challenges such as fast motion and high-frequency textures in
dynamically evolving scenes. The 3D reconstructed surface of the objects is
iteratively refined in a conventional volumetric grid to include the latest de-
formations.

Some authors have proposed new improvements and optimizations over
the core algorithms. For instance, in [31], the authors propose a novel stage
in the 3D reconstruction pipeline to work with planar surfaces, such as walls,
floors, and ceilings. Their contributions reduce the noise in individual mesh
vertices and fill in the occluded and unobserved regions. The plane detection
algorithm fits local planes and merges global planes. Local plane candidates
are estimated with least-squares fitting on the volumetric grid. Global cluster-
ing is implemented with a simple one-point RANSAC over all planes. On each
RANSAC iteration a plane candidate is chosen. Then, the other candidates are
compared in terms of the angle of the plane normal and the Euclidean dis-
tance between the chosen plane and the volume of the candidate. Vertex jitter
in flat surfaces is solved by omitting re-meshing whereas holes are filled in
by extending planar regions into unobserved and occluded parts of the scene.
The original reconstructions are augmented adding an average 40% of mesh
area. Their system runs in real-time (around 60 FPS) on CPU to generate more
clean and visually appealing reconstructions (see an example of these results
in Figure 2.12). Also, the algorithm supports a large number of natural envi-
ronments, despite the presence of significant amount of occlusion, clutter, and
noise.
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2.7 Building Information Modelling

The Architecture Engineering and Construction (AEC) ecosystem is com-
posed of technicians (e. g., architects, civil engineers, topographers), public
administration (e. g., city halls, regional planners) and enterprises. This in-
dustry has been transitioning for the last ten years from the conventional
manufacturing approach to an industrialized approach. This movement has
been wrapped in the initiative called Industry 4.0 (see [113]), which comes
after Industry 3.0 where computer and automation were the keys. In the new
Industry 4.0, connected cyber-physical systems are part of a new set of tech-
nologies that intend to improve the industrial processes. The relevance of this
new trend has motivated the creation of multiple European projects concern-
ing the Industry 4.0 They have emerged from the Public Private Partnerships
of Factories of The Future1.

There exist two different ways of representing building models: entity-
based modeling and object-based modeling. Despite the social, cultural and
process factors affecting the wider adoption of object-based modeling (see
e. g., [126]), the global trend is to support the latter. Nowadays, the object-
oriented modeling approach is commonly known as BIM, which is one of
the key components of the industry 4.0. The methodology proposed by BIM
aims at collaborating around a single shared design of the building. This al-
lows the team to analyze and visualize design decisions long before a project
even breaks ground. At its core, BIM offers a digital documentation of the
building, including function systems (e. g., electrical, air conditioning) and
aesthetics (e. g., walls, roof, windows).

Semantics refers to the conceptual meaning behind an object. It can be de-
scribed by an ontology (i. e., a representation of a knowledge domain [36]).
Semantics and geometry in BIM are included in a common object-based data
model: the IFC [78]. It is a platform-neutral, vendor-neutral open file format
specification developed by buildingSMART2, an international organization
to foster interoperability between software applications in the construction
industry. The IFC data model represent static building information, which
includes structures, attributes, utilities, processes, actors, etc. However, envi-
ronmental conditions or constructive processes are not just static and occur
at different time scales. For example, small deformations happen frequently,
whereas catastrophes occur suddenly. A more advanced framework would be
necessary to represent these dynamic aspects too (see Section 2.7.3).

In BIM the same information can feed multiple applications based on AR,
VR and Computer-Aided Manufacturing (CAM). Indeed, the same model can
be used for the infographic design that advertises the building project (see
e. g., Figure 2.13). Collaboration around the same model involves both AEC
stakeholders (e. g., constructors, project managers, facility providers, etc.), but
also any virtual agent or machine that require information from the model to
accomplish their goals.

The combination of AR and the Internet of Things supposes the biggest
transformation. This means that any manufacturing machine can directly ac-

1 http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.
html

2 https://www.buildingsmart.org/

http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
https://www.buildingsmart.org/
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Figure 2.13: A rendered image of the Fallingwater house following an axonometric
projection that highlights the internal structures of the building (stairs,
windows, walls and doors). Image have been generated by rendering the
Fallingwater house model with Blender. The model has been designed
for the evaluation of 3D-SIMOS (see Section 4.2.1)

cess the shared BIM model so it can automatically start to craft the object
without human interaction. Machines can directly talk to each other to col-
laborate in the manufacturing process, which usually involves 3D printing
too.

The adoption of BIM lends itself to a more cost and time-efficient process, as
well as a significant reduction in errors. The design-to-construction workflow
has been re-engineered by the AEC industry in a similar way as the transition
from 2D CAD to 3D solid models in the nineties. CAD was created to design
and document objects and buildings via computer technology. Designers use
CAD in their complex projects with multiple components that fit with preci-
sion within a larger assembly. The user can efficiently generate 2D drawings
and 3Dmodels to be manufactured with the corresponding materials. The 3D
approach had a widespread adoption by many manufacturers that adapted
their processes to meet the strict guidelines imposed by aerospace and au-
tomotive industries. This approach allowed the industrial market to create
unique, high-quality products with a lower time-to-market.

The AEC industry is being progressively abandoned the CAD methodol-
ogy and transitioning to the BIM methodology. This movement has been led
by the users seeking real-time model analysis and 3D visualization of their
designs. They also want to exchange the same model between different appli-
cations and stakeholders. The information in the design must be represented
following the same specification. This is the key of BIM to ease several tasks,
such as file-sharing, interference checking, and energy optimization.

Despite the apparent benefits of BIM, many companies still hesitate to in-
vest mainly due to the complexity and the initial investment effort required by
this new methodology. However, this investment has been shown profitable
in the long term for enterprises. For instance, Oesterreich and Teuteberg [95]



2.7 Building Information Modelling 51

have assessed the economic impact of BIM at a corporate level using a cost-
benefit analysis over a quantification model based on system dynamics. The
assessment includes the subsystems of the organization affected by the adop-
tion of BIM (e. g., personnel, customer, and finances), reflecting both indirect
and direct cost. Results of the simulation show that the company’s perfor-
mance is improved in the long-term with 8% return on revenue and a profit
up to 15 times higher. The same conclusion can be extracted from other anal-
ysis [5, 32].

2.7.1 Semantic Geographic Information System

The main goal of GIS is to provide georeferenced support for conventional In-
formation Systems. A GIS system represents 3D/2D information (e. g., build-
ings, infrastructures, underground installations or multiutility networks) an-
chored to a geographic location expressed in a Coordinate Reference System
(CRS) where the terrestrial coordinates are projected. Georeferences support
merging different information sources, such as aerial images, digital pho-
togrammetry, and terrestrial 3D-laser scanning.

Conventional GIS representations only include the geometric primitives
and the topological relations between them. Later, semantic information is
overlayed and stored separately. However, current approaches advocate for a
unified approach in which semantics, geometry, and topology are fused to-
gether. The main standard to represent and exchange semantic 3D-city mod-
els is City Geography Markup Language (CityGML) [71].

Conventional model representations only consider the structural aspects
of the building, characterized by the objects and their relations. Dynamics
can be incorporated over the static information provided by GIS models.
Semi-destructive techniques (e. g., building refurbishment) or destructive tech-
niques (e. g., underground excavation) require to simulate the effects of hu-
man interventions that may also affect their neighbors. This simulation was
conventionally performed on separated layers but now it can be laid out over
the semantic model, as in [94]. Furthermore, the temporal evolution of the
static information allows the users to compare the results in scheduled tasks
with their real execution.

There is a set of standard operations in GIS that have been traditionally
performed over planar multilayer representations. In CityGML, volumetric
objects are included to extend the scope of these operations. In general, any
type of GIS must allow users to execute at least the following tasks:

• Boolean operations, such as intersection and union. They require masks
and extended grids to manage the spatial data.

• Identification of geometric primitives, such as points, edges, and faces with
their corresponding relations (e. g., incidence, adjacency, order).

• Measurement of distances, areas, and volumes.

• Generation of thematic maps related to the building and its environment,
including available infrastructures, installations, and materials.
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• Topological tests of spatial and temporal proximity. Spatial proximity de-
pends on adjacency relations, whereas temporal proximity depends on
the relations between components over time.

• Queries based on data, location, user-defined attributes, similarity, etc.

• Recognition of shapes by their role according to structural aspects, mate-
rials, and installations.

GeoBIM

The relation between BIM and GIS is studied in its own field of research,
called GeoBIM3 (see [4]). Both methodologies aim at different goals, different
scales and, usually, different industries. Despite this apparent disconnection,
an integration between both approaches is useful for task such as urban plan-
ning, disaster prevention or flooding simulation. The integration is technically
feasible since any building can be georeferenced by selecting three anchor
points. These points allow the system to compute the rigid transformation
that can be applied to every coordinate of any building space. Additional
anchor points enable to optimize the transformation to gain accuracy.

The semantic information from AEC environments is commonly integrated
into GIS using their corresponding formats, i. e., IFC and CityGML. The Ap-
plication Domain Extension (ADE) of CityGML allows any application to
overlay domain-specific knowledge over CityGML (see the Unified Modeling
Language (UML) examples in [128]). For instance, Hijazi et al. [57] proposed
the UtilityNetworkADE to extend the semantics of CityGML to the utility
networks within a building defined in IFC. Another example is the GeoBIM
ADE developd by Laat and Berlo [74]. This extension appends to CityGML
the information of the building that has no correspondence between IFC and
CityGML. The ADE is part of BIMServer4, a popular Open Source platform
that allows the AEC stakeholders to collaborate in a building represented by
the IFC. BIMServer also provides an open architecture based on plugins to
foster further developments by the community.

Both CityGML and IFC can be interpreted as ontologies since they provide
a knowledge representation for a specific domain. The reconciliation between
different ontologies is studied in another research field called Ontology Align-
ment (see [21, 36]). Thus, techniques in this field are helpful to transfer infor-
mation between IFC and CityGML. We surveyed and analyzed the utility of
such techniques for automatic alignment of geospatial ontologies in [28]. Re-
sults show that an automatic alignment between geospatial ontologies is not
recommended when high accuracy is required (above 90%). In order to solve
the problems with automatic ontology matching techniques, we have decided
to align manually the schemas of the planning and the CAD model with the
IFC that include concept from both schemas (see Section 4.1.3).

One of the main advantages of using ontologies is that they provide a nat-
ural language for spatial queries. For example, in [10] the authors developed
a language for querying 3D-city models when they were labeled with a well-
defined ontology. Unfortunately, most of the currently available datasets are

3 https://geo-bim.org
4 http://bimserver.org

https://geo-bim.org
http://bimserver.org
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still not labeled. Furthermore, there are not accurate techniques to implement
automatic labeling of the structural elements of the building.

2.7.2 Advanced Web3D visualization

Web3D5 was a term created at the end of the nineties linked to the navigation
and visualization of 3D contents included in websites and rendered by a web
browser. This basic idea has originated several proposals concerning the file
format for representing the contents. The original Virtual Reality Modeling
Language (VRML) language [15] to embed 3D contents in the browser imple-
mentation was extended later to X3D [11]. However, these specifications were
never considered by the developers of web browsers, and their implementa-
tion were usually based on specific plugins.

On the other side, the browsers were not able to access the underlying
power of GPU, which leads to the underperformance of any Web3D applica-
tion w. r. t. its desktop counterpart. The WebGL specification [2] aims to fix
this problem by providing a JavaScript API that allows applications to access
the GPU for rendering advanced graphics. Furthermore, additional plugins
like Flash are not required anymore since the WebGL API is implemented
natively by the web browser.

The WebGL specification brings a new file format for exchanging graphics
called GL Transmission Format (glTF) [107], which is a revamped version of
COLLADA [3]. This new format was born with the same goal as COLLADA,
i. e., to allow the applications in the 3D graphics industry to collaborate. How-
ever, glTF introduces some improvements like more efficient representations,
embedded binary objects, and more complex materials. Despite COLLADA
still exists and it is supported by many applications, it is being progressively
replaced by glTF. Indeed, it never was popular among the targeted applica-
tions. The new glTF 2.0 specification includes Physically Based Rendering
(PBR) materials following the trend in the Computer Graphics industry.

A widely used concept in 3D visualization is the scene graph, a general data
structure that represents the logical and spatial relations between the objects
of a graphical scene. A node of the graph may represent any transformation
that affects its children, the geometry of the object, a material, a light source or
simply a group of children. This transformation can be a geometrical transfor-
mation matrix that will be concatenated to determine the world coordinates
of a leaf. The main advantage of this representation is the ability to group re-
lated objects and materials to ease its management as a single object. The idea
of representing geometric transformations (i. e., rigid body transformations)
is similar to the connectivity graph explained in Section 2.7.3.

The National Science Foundation defines the Advanced Visualization as a
method of computing (see [50]). Visualization is focused on better under-
standing of reality. It transforms the symbolic into the geometric, enabling
researchers to observe their simulations and computations. New scientific dis-
coveries can be made to foster profound and unexpected insights. This knowl-
edge discovery is supported by the representation of physical objects, which
can be annotated with their corresponding semantics (i. e., the meaning in a

5 http://www.web3d.org

http://www.web3d.org
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particular context). Semantics combined with smart interfaces, help to lighten
the complexity of the visualization tool.

An Advanced Visualization system for BIM must be designed taking into
account the following principles:

• Needs and preferences of the users refer to the integration, standardiza-
tion, reliability, and performance of Advanced Visualization tools used
to share, update, and manage the visualized information. Services pro-
vided to each agent must be defined with a flowchart. Furthermore, the
roles of each agent must be identified according to their competences.

• The generation of relationships has two levels that concern components
and collaborations between agents. In our approach (see Section 4.1.1),
the first level follows a cellular structure where cells are defined by
cuboids representing objects. Relations are determined by the allowed
operations between cuboids. The second level corresponds to different
tasks of constructive processes.

• The generation of knowledge is achieved through the visualization. Smart
interfaces ease the generation of reports representing distances, thematic
maps, or undiscovered associations between data.

These principles can be applied to Web3D technologies for providing in-
sightful visualizations to the AEC stakeholders. This visualization should in-
clude useful functionalities like automatic animations of the elements of the
scene. These animations can be performed by interpolating the position of the
element along a trajectory path.

Spherical Linear intERPolation

Spherical Linear intERPolation (SLERP) [114] is a quaternion interpolation
method to animate rotations with constant-velocity motion along a circular
path. This path is the spherical equivalent of a conventional path along a line
segment in the plane, i. e., a spherical geodesic. The main advantage is that the
formulation of SLERP is independent of quaternions or the dimension of the
space of the arc that describes the trajectory. It can be expressed as a weighted
sum based on the fact that any point on the path is a linear combination of
the beginning and the end. Let p0 and p1 be the unit vectors of the first and
last point of the arc, and t the interpolation parameter with 0 6 t 6 1, then
any point at the trajectory is defined as

pt(p0,p1; t) =
sin((1− t)Ω)

sinΩ
p0 +

sin(tΩ)

sinΩ
p1 (2.32)

where Ω is the angle of the arc so that cosΩ = p0p1.
The interpolation can also be defined on the space of unit quaternions. In

this space the interpolation executes a rotation with uniform angular velocity
around the rotation axis defined by a quaternion. If the starting point is the
identity quaternion, SLERP determine a segment of a subgroup of both SO(3)
and its universal covering group of unit quaternions (S3). The result maps to
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a rotation through an angle of 2Ω. However, the rotation path may be short
(Ω < 180) or long (Ω > 180) since q = −q. This problem can be solved by
negating the quaternion when the dot product is negative so −90 6 Ω 6 90.

Quaternion exponentiation is the key to express SLERP in a compact way.
Powers of quaternions are defined in terms of the quaternion exponential
function

eq = 1+ q +
q2

2
+
q3

6
+ · · ·+ q

n

n!
+ · · · (2.33)

Let write the unit quaternion q in its versor form, i. e., q = cosΩ+ v sinΩ
where v is a unit three-dimensional vector with v2 = −1. Then, q = evΩ and
qt = cos(tΩ) + v sin(tΩ) lead to q = q1q

−1
0 . Thus, the real part of q is cosΩ,

which matches the geometric dot product of Equation 2.32. Hence, the SLERP
expression in the quaternion algebra is:

qt(q0, q1; t) = q0(q−10 q1)
t (2.34)

2.7.3 Dynamic information modelling

Conventional BIM-based models represent the static view of the construction.
They do not consider a representation of the dynamics of the processes af-
fecting the building that are required by simulation or analysis (see [115]).
This task is usually accomplished by third-party tools. However, the problem
should be tackled from the lowest level by proposing a common symbolic rep-
resentation in which embed the dynamic data concerning the building. It can
be addressed by a spatial decomposition of the the building in a collection of
linked cells, following a classical PL approach. These cells, which can be ge-
ometrically deformed, are the nodes of a directed acyclic graph (see [9]) that
represents the building (see S1,S2 . . . S7 in Figure 2.14). Such representation
is adaptive since basic units (cells) are grouped in cubic complexes by simple
operators (e. g., join and intersection). Beyond the formalism, this representa-
tion provides a unified approach to update, insert and evaluate changes in
processes.

The life of a building includes several phases, such as design, planning,
execution, maintenance and/or demolition. These stages, or any overall pro-
cess, can be modeled as a workflow with a large number of inputs that evolve
over time. These inputs can be managed by scalar, vector, and tensor fields
(see e. g., [52]). Thus, the representation of static information (objects) and dy-
namic information (functionals) can be separated for a better management of
the information.

Dynamical representations are motivated by changing environmental con-
ditions. The graph-based representation can be adapted to different environ-
ments in topological terms by adjusting the relations between modules. Evolu-
tion of the environment is described by different types of fields acting over the
building: scalar fields (e. g., functions), vector fields (e. g., evolving surfaces)
or tensor fields (e. g., processes). Stakeholders intervening in the processes
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S1 S2

S3

S4

S6

S7S5

Figure 2.14: An example of a directed acyclic graph containing 7 nodes correspond-
ing to 7 different building spaces

can alter these fields. Due to the broad diversity of objects and functionals to
be evaluated, it is convenient to adopt a symbolic representation to treat the
information as a flowchart.

Objects and functionals

The topology on a space X is defined as a collection of (open or closed) sets
that cover X and verify closure properties w. r. t. simple set-theoretic opera-
tions (union and intersection). Alternately, the topology can be defined as a
collection of functions on intersections of open sets Ui covering X. Both de-
scriptions are useful since the first one refers to the managed objects, whereas
the second one refers to the functionals evaluated along processes. They sup-
port the classical topological relations, such as order (for defining hierarchies),
discontinuity (for degrouping), adjacency (for detecting the closest neighbors)
or incidence (for aligning). Furthermore, they are compatible with metric con-
straints that can be helpful in some AEC tasks:

objects To assemble basic primitives during planning, to validate measure-
ments or to evaluate characteristics that involve structural aspects (e. g.,
walls, slabs, pylons) and materials aspects (e. g., elasticity, tolerance un-
der extreme conditions, porosity).

functionals To improve the execution of the tasks by applying the con-
straints to optimization procedures or to team evaluation.

The former constraints are represented as relations between objects in BIM,
whereas the latter constraints are indirectly represented, for instance, as color
scales. By combining both of them, we can establish feedback between the
morphological and the functional aspects of the building using scalar, vector,
or tensor fields.

In the symbolic representation, objects and functionals can be defined as
follows

• Each object is represented by a finite collection of nodes (i. e., a geometric
primitive). Nodes are connected by edges (i. e., adjacency relations). Ex-
pansion and contraction operations introduce a hierarchy for practical
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Figure 2.15: The airflow is visualized by a vector field where the vector at the center
of each cell in the grid corresponds to the direction and magnitude of
the flow.

visualization. In this way, any process P that involves objects and tasks
is represented by a composition of directed adjacency graphs Ga(P).

• Each functional to be evaluated during a process is represented as a func-
tional on the graph Ga(P). Its output returns a collection of weights for
the nodes, so a weighted graph is achieved. This graph represents the
processes to be accomplished for each task.

2.7.3.1 Fields and flows

Unexpected events (e. g., incidences, defective specifications, misrepresenta-
tions) may appear during constructive processes. These changes must be in-
corporated into the flowchart with the objects and functionals. In Physics and
Mathematics changes are represented by fields. Any flow can be described
and visualized by a field (see [52]). For example, any 2D/3D flow can be vi-
sualized with the vectors that represent the direction and magnitude of the
flow at each point of the field. These points are usually the centers of the set
of evenly-sized 2D/3D cells (i. e., squares or voxels) that subdivide the space
in a grid. An example of conventional airflow is visualized in Figure 2.15.

As it has been mentioned in previous paragraphs, there are three types of
fields:

scalar fields They represent scalar quantities such as geometric features
(e. g., scale, height or depth), temporal features (e. g., time), costs of tasks
(e. g., work intensity or wages).

vector fields They represent vector quantities, such as the oriented length
of utility networks, attributes for areas of constructive elements, or evolv-
ing volume of the spaces of the building. Such quantities can be tracked
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with n-dimensional (nD) distributions of vector fields. These distribu-
tions can be integrated during a task to obtain trajectories for their con-
trol points. The work accomplished for each distribution D is evaluated
with functionals f : D → R called differential forms. Such forms can be
linear or non-linear depending on the coefficients that are linked to the
characteristics of the process. Anyway, their evaluation provides scalar
fields.

tensor fields They represent the simultaneous evaluation of a finite col-
lection of vector fields (representing workflows) or their dual differen-
tial forms (representing the performed work). For example, energy con-
sumption can vary its representation during the lifecycle of the build-
ing. Different curvature tensors are formulated following the rigidity
constraints (e. g., substitution of factors).

These fields fluctuate with time t, and they can be queried at different
scales s. Hence, they can be evaluated at several scale/temporal slices with
a parametrization (s, t). In practice, all fields are described in a discrete way,
and all functions are defined locally, including their possible discontinuities.

The visualization of fields is implemented using PL-paths generated by
sampling the field at critical values (e. g., unexpected events), control points
(e. g., integral curves of vector fields) or hybrid milestones. Hence, the de-
coupled representation can be easily extended to a dynamical representation
using distributions of fields defined on the source (ideally R2) and target
(ideally R3) spaces.

Multidimensional modelling

Spatial 3D models can be extended to higher dimension for concurrent man-
agement of multiple building aspects (nDmodels). This model has been tradi-
tionally applied to GIS with n > 4 by means of a multilayer representation of
different attributes/properties over the geometric primitives. However, this
approach has not been applied to object-based modeling until the appear-
ance of CityGML. Time is the most commonly included dimension, but other
supplementary dimensions can be added, such as costs, environmental con-
ditions, energy efficiency, etc. These additional dimensions can be interpreted
as solutions of a field. Changes in the associated functionals can be visualized
with color maps.

Each space of a building can be represented as a volume changing over time
t that also depends on the scale s. This representation outlines a 5D model
where each point has coordinates (s, t, x,y, z), as in [96].

Dependencies between objects are represented by adjacency relations. Spaces
of the building can be assembled in a spatio-temporal surface by including
additional scale-time coordinates that represent the coupling between spaces.
The resulting 5D-model can be reformulated as the graph G : R2 → R3. This
decoupled representation enables to align static 3D models by performing
transformations in the target space T of the map GP : S → T of process P.
Similarly, temporal alignment along different scheduled tasks is performed
in the source space S. This graph can be queried within a specific time and
scale.
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Dependencies between functionals require the evaluation of functionals on
the graph Ga(P). In the absence of critical points for these functionals, the
topology between hypersurface levels of each functional is essentially the
same. However, in the presence of a critical point c ∈ R, qualitative changes
appear in the topology of hypersurface levels. Let denote by WΓG the space
of weighted graphs of decoupled volumetric representations G, then any par-
ticular graph Ga(Pi) ∈ WΓG with different topology represents a qualitative
change in constructive processes.

Both tasks and events can be interpreted as snapshots in a process. In a
functional approach, tasks correspond to natural values, whereas events cor-
respond to critical values. Additional constraints can be imposed with a com-
bination of external forces (e. g., temporal availability or budget limitations)
and internal forces (e. g., ground behavior or structural specifications). Such
constraints are inspired by the Elasticity Theory, which distinguishes between
tangential forces (i. e., do not modify the model) and internal/external forces
(i. e., deform the model). The only difference is that this approach allows “frac-
tures”, i. e., qualitative changes in the topology of level hypersurfaces.

The sections of this chapter have been focused on the state of the art of
the components included in our framework (see Section 1.1). We have con-
ducted a broad review of the main concepts involved in this framework to
provide a basic understanding of the background of our research. At the
same time, it serves as a starting point for our contributions. The pipeline
of the mentioned framework is susceptible to be improved at different levels
and components. However, we have focused on the specific aspects of SLAM
and BIM that allow us to accomplish the goals stated in Section 1.2. The next
two chapters introduce the contributions to which we have largely dedicated
our research. Chapter 3 covers the contributions implemented by KN-SLAM,
whereas Chapter 4 comprises the contributions attributed to 3D-SIMOS. The
final chapter (Chapter 5) summarizes the conclusions extracted from both
contributions in particular, and from the thesis overall.



3 A C C U R AT E A N D R O B U S T S L A M

We have developed a SLAM system called KN-SLAM able to robustly track a
monocular camera in different scenes. Our implementation is heavily inspired
by ORB-SLAM, developed by Mur-Artal, Montiel, and Tardos [88]. It is a
SLAM system based on indirect visual odometry, which is entirely driven by
ORB features.

The accomplishment of our original SLAM goals requires to develop and
integrate a set of existing libraries and components. We choose to reuse open-
source components to the extent possible due to the scarcity of previous devel-
opments by our side. Our initial achievements at the beginning of the Ph. D.
were exceeded by ORB-SLAM, whose main objectives were closer to our own
goals. Later, the authors released their software under the GPLv3 licence1.
Thus, we decided to not reinvent the wheel but to make a contribution over
the excellent work performed by Mur-Artal, Montiel, and Tardos [88].

We put the focus in the evaluation of the influence of the topology of the
connectivity graph in the accuracy of the trajectory. More concretely, we have
analyzed the sparsity of the graph, since our main concern about ORB-SLAM
is the choice of the threshold θmin. This threshold represents the minimum
number of observations required to connect two keyframes in the graph. We
hypothesize that this threshold, combined with a KNN approach, may im-
prove the topology of the graph. This hypothesis and the other ones are con-
trasted using an exhaustive experimental evaluation conducted along a set
of more than 45 sequences belonging to 4 different challenging datasets. The
idea of selecting only the K-best visual neighbors led us to choose KN-SLAM
as the name for our implementation. Following the same initiative as ORB-
SLAM, we release KN-SLAM as open source software for the benefit of the
community2.

Finally, our experimental results show that, even though KN-SLAM outper-
forms ORB-SLAM on average, it does not happen for all sequences. Thus, we
consider an additional contribution in the form of a systematic procedure to
decide between KN-SLAM or ORB-SLAM. Such procedure helps to discern
which system would achieve a better accuracy regarding the characteristics of
the input sequence. This is included as part of the analysis of the results of
our experiments.

The rest of the chapter is structured as follows: Section 3.1 details our con-
tributions to specific tasks in the SLAM pipeline exposed by ORB-SLAM; Sec-
tion 3.2 describes the experimental setup, the datasets, the characteristic of
the sequences and the evaluation metrics used to compare both approaches
in terms of accuracy and robustness; Section 3.3 collects a quantitative evalu-
ation and discussion of these results; Section 3.4 summarizes the conclusions
extracted from our research and gives some guidelines and hints for further
development.

1 https://github.com/raulmur/ORB_SLAM2
2 https://gitlab.com/fradelg/kn-slam
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3.1 contributions

The advances in the state of the art performed by ORB-SLAM are inarguable.
The system is able to automatically bootstrap and track the camera in chal-
lenging situations, outperforming other previous approaches. Besides this
accurate results, the last version of the system also manages more complex
setups, such as stereo and RGB-D cameras [90]. However, the performance
and robustness of some stages of the pipeline can still be improved.

The accuracy achieved by ORB-SLAM thanks to the combination of local
BA and global loop optimizations is remarkable. Its main limitation is inher-
ited from its indirect approach to the problem: it only works in scenes with
objects whose materials have low-frequency textures. However, the addition
of a direct approach fallback would affect the real-time execution of the track-
ing. Moreover, the integration between both approaches in the SLAM pipeline
is not straightforward. Other limitations addressed in our research include

• the excessive time required to load the vocabulary tree in the place
recognition module;

• the non-exhaustive and greedy algorithm to match 3D points projected
over new frames with the corresponding keypoints; and

• the low precision of the loop detector that discards some true positives
and does not adapt to the state of the tracker.

In addition, we noticed the existence of a lot of hard-coded parameters in
the code that do not adapt to the characteristics of the input sequence. Most
of these parameters are thresholds in RANSAC procedures for assessing the
quality of system operation. Besides, little explanation was given in the paper
regarding the selected values, even if it might be obvious [88]. We have also
modified the Graphical User Interface (GUI) to visualize the current frame,
the keypoints of the features per frame and the three-dimensional point cloud
with color information.

Next subsections are devoted to describing more precisely our contribu-
tions and improvements. They have been organizer taking into account their
position on the processing pipeline from the system is bootstrapped until
the trajectory is saved. More specifically: Section 3.1.1 describes our imple-
mentation of a faster vocabulary loading procedure; Section 3.1.3 pictures
changes in 2D-3D matching algorithms used at performing a guided search;
Section 3.1.4 dives into the algorithm to limit the number of keyframes linked
in the connectivity graph; Section 3.1.5 delves into a smarter procedure for a
more precise visual loop detection.

3.1.1 Vocabulary loading

Booting and loading times are aspects usually ignored in SLAM systems. In
our experimental settings, we hold the input frames until the system is ready.
However, there may exist configurations where a cold start is needed. In such
cases, if the camera starts to move before the system has booted, the frames
at the beginning of the sequence will be lost. In ORB-SLAM, system load
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settings and a vocabulary file at booting. The former takes a significant time
whereas the later is almost unnoticeable.

The vocabulary plays an important role in the place recognition module em-
bedded in ORB-SLAM. This module is based on the bag-of-words metaphor
that abstracts an image with a set of features. Such features are equivalent to
the most outstanding words of a document. This module intervenes in some
important stages of the SLAM pipeline, such as the loop detection and the
relocalization of the camera when the tracking is lost (see Section 2.4).

In the bag-of-word metaphor, the vocabulary is built as a discretized version
of the features detected in the training scenes. This vocabulary is provided by
ORB-SLAM and it has been built to be general enough to work in differ-
ent types of scenes. However, its allocation in memory requires a significant
amount of time. More precisely, the vocabulary downloaded by ORB-SLAM
has 145MB after decompressing and it requires around 9 s to parse and load
in memory.

In order to solve this issue, we have developed a faster vocabulary loader
based on Google’s Protocol Buffers technology3. Protocol buffers are a flexi-
ble, efficient, automated mechanism for serializing structured data. In a first
step, message types must be defined in separated .proto files. Each message
represents a small logical record of information composed by (name, value)
pairs. Then, the protocol buffer compiler generates data access classes for the
selected programming language. This generated code provides accessors and
serialize/parse methods for the whole structure to/from raw bytes.

Protocol buffers introduce huge advantages over ASCII or XML representa-
tions. They are simpler and less ambiguous, and about 3 to 10 times smaller
and up to 100 times faster. This is achieved thanks to the protocol buffer bi-
nary format, which encodes messages using base 128 varints, a method for
serializing integers using one or more bytes. In this encoding scheme each
byte, except the last one, has the most significant bit set to 1, which indicates
that there are further bytes to come. The lower 7 bits of each byte are used
to store the two’s complement representation of the number, least significant
group first. There are other wire types that encode different data types4

We have developed our vocabulary loader for KN-SLAM by including the
code generated by the Protocol Buffer Compiler in our sources. We model
each basic data structure of the vocabulary as a different .proto class. This
means that visual words must be represented using messages of the protocol
buffer. We have identified three related types of messages according to the
meaning in the original publication [43]:

vocabulary . This is the main message since it represents the root element
that contains the whole bag of words. It contains the branching fac-
tor, the depth levels, the weighting method based on conventional met-
rics from Information Retrieval (Term Frequency - Inverse Document
Frequency (TFIDF), Term Frequency (TF), Inverse Document Frequency
(IDF), or binary) and the scoring method employed to compare two vec-
tors of words (L1, L2, Chi-Square, etc.). Moreover, it links with the list of
first-level nodes of the tree and the list of words of the entire vocabulary.

3 https://developers.google.com/protocol-buffers
4 https://developers.google.com/protocol-buffers/docs/encoding

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/encoding
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node A node in the tree abstract a set of related words. Each node contains
its own identifier and the identifier of its parent. Also, it includes the
weight and the feature descriptor linked to the node.

word . Each word is a metaphor to abstract a set of feature descriptors. A
word in the vocabulary is represented as a leaf of the tree. A word also
requires an identifier and the identifier of the linked node.

Once these classes are compiled, we include the resulting code in our imple-
mentation to develop new methods and tools. These tools include a converter
that parses the original vocabulary in .txt format to export it in the .proto

format. This task is only executed a first time. Once the vocabulary is con-
verted the next executions will directly load it in the Protocol Buffer format,
taking advantage of the performance benefits achieved with this data repre-
sentation.

As a result of these changes, the ORB vocabulary is loaded almost 10 times
faster than ORB-SLAM. More concretely, loading times have been reduced
from around 9.04 s to around 0.78 s. Furthermore, the size of the vocabulary
has been trimmed to 64MB from the original size of 145MB for the ASCII
file (42.50MB in the compressed version).

3.1.2 Robust bootstrapping

Bootstrapping is an important matter for any SLAM system. It is the first
stage of the pipeline so that the accuracy of the camera poses greatly relies
on a good initialization. The policy of ORB-SLAM is to bootstrap the system
only when the initial pair of keyframes has enough quality. Such quality is
measured in terms of the number of features of the keyframes, the number
of features matched between both keyframes and the number of points in the
initial map. The rules of this policy are fixed in the code and do not vary ac-
cording to the characteristics of the sequence. This leads ORB-SLAM to detect
false negatives if there are not enough matches to support the homography
model described in Section 2.4.1. This happens even though most of the se-
quences usually have a good pair of keyframes from which the system can
bootstrap.

Our proposal relaxes the thresholds imposed by ORB-SLAM as the previ-
ous thresholds are exceeded. We use a simple exponential decay function with
the number of failures. Obviously, the function is clamped to a minimum or
maximum to avoid degeneracies. Our goal is to robustify the bootstrapping
procedure, i. e., to initialize sooner in more sequences. After analyzing the
evolution of the number of matches in the sequences in which ORB-SLAM
refuses to bootstrap, we have modified the bootstrapping procedure.

The minimum number of allowed matches between keyframes has been re-
duced from 100 to 50. However, this reduction is not fixed. It is proportional
to the number of failures t in the bootstrapping procedure for the input se-
quence. We have modeled this reduction with an exponential decay function
using a decay constant of −0.1 and the initial value of 100. The following
function has been used to determine the threshold after the t-th failure:
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θmin(t) = max(50, 100e−0.1t) ,

where θmin represents the adaptive threshold for the minimum number of
matches θ.

The size of the search window µ has been accordingly modeled in an in-
versely proportional way since wider windows allow to find more matches
(although they also create more outliers). We start with a window size of 50
and this value is increased up to 100. We use again an exponential decay
function with an initial value of 50 and a decay constant of 0.1:

µ(t) = min(100, 50e0.1t) .

The decay constant λ = 0.14 has been selected according to the maxi-
mum number of allowed failures before reaching the clamping threshold. We
have experimentally determined that in the worst sequences 5 failures have
reached. Therefore, we need to solve the equation

100eλ5 = 50 (3.1)

to determine that λ = 0.14.
Our implementation allows KN-SLAM to test more and better pairs of key-

frames due to the lower parallax imposed by the small size of the search win-
dow. Our hypothesis is that it is better to test more pairs of keyframes with
a short baseline than fewer pairs with a long baseline. In this last case, it is
more likely that the tracking was lost and the bootstrapping procedure resets
the system. Moreover, the probability of finding bad matches increases with
the baseline since some objects of the scene may appear between both frames.
In addition, the longer the baseline, the wider the search window. This affects
directly to the performance of the procedure since more keypoints must be
compared.

The minimum number of points in the initial map is determined by the
minimum number of matches. This effectively decreases the fixed threshold
of 100 defined by ORB-SLAM and it is coherent with the reduction in the
number of matches. After all, these points are created by triangulating the
matched keypoints. Indeed, this threshold should be lower than the minimum
number of matches since some map points are discarded if they do not fulfill
some of the following conditions:

• Some coordinate x, y or z is at infinity.

• The depth of the point is negative, i. e., the point is behind both cameras.

• The reprojection error over both keyframes is above some threshold.

• The parallax between rays connecting the camera centers with the map
point is under 20°.

We have not reduced this threshold because in the practice all matches are
triangulated. A significant difference between the number of matches and
points means that the homography or the fundamental matrix do not explain
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well the relative transformation between keyframes. Thus, we prefer to mark
the intent as a failure and try to achieve a better model with a new pair.

These contributions to the bootstrapping procedure help KN-SLAM to boot-
strap in challenging situations where ORB-SLAM discards both the homogra-
phy and the fundamental matrix, like in the sequence tum/fr1_floor.

3.1.3 Guided matching

The advantages of sparse indirect methods reside in the abstraction of the
images in terms of geometric features. These methods heavily rely on the
tracking of this points (not pixels) along the frames of a sequence. Thus, the
most important algorithm consists in searching the keypoints of the current
frame that match the keypoints of the previous frame. The search algorithm
may vary slightly depending on whether the system recovers from a bad pose
estimation or the system is tracking consecutive frames.

The steps of any guided search are the same ones. In the first step, the
queue of map points is initialized with the points of the scene observed in
the previous frame. Outliers are filtered out from the original set of points.
Then, the following sequence of actions is performed for each map point in
the head of the queue:

1. The 3D map point is projected in the new frame using the camera pose
that is estimated assuming a constant velocity model.

2. A local search is performed in a region of the new frame centered at
the projection of the map point. The radius of the search window is 15
times the scale factor of the pyramid level in which the ORB feature
was detected in the last frame. The radius of the search is increased to
30 times the scale factor if in the first search fewer than 20 features are
found.

3. The keypoints of the current frame that lies inside the search window
are selected.

4. Each keypoint is compared with the 3D map point using the descriptor
distance as a metric. This distance is computed as the hamming dis-
tance between both descriptors of 32B. The descriptor of a map point
is defined as the median of the descriptors of its observations. In each
comparison, we save the keypoint with the minimum distance to the
map point.

5. If the closest point has a distance below a threshold, the map point is
linked to the keypoint. We use the threshold of 100 used by ORB-SLAM.
Here we are assuming that the keypoint is the projection of the linked
map point, even though this fact has not been geometrically checked yet
(it will be checked later).

6. In order to link each map point with its closest keypoint, we allow re-
placing a previous association. The replaced map point is appended to
the end of the queue of map points. This point will be processed in a
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posterior iteration. Then, it will be linked to the closest available key-
point, i. e., those keypoints that still remain without a link.

The addition of the last step implies a slight overhead in the computation
cost of the algorithm. However, it is able to increase the number of valid
matches, i. e., those matches that are not rejected in a posterior geometric
validation of the model. We have achieved up to 20% more matches than ORB-
SLAM in our experiments. Our searching algorithm increases this number of
valid matches between keypoints and map points (i. e., 2D to 3D) to achieve a
more robust tracking. The system should be less prone to lose the tracking of
the camera in challenging conditions, such as in sequences with fast camera
movements or strong rotations.

3.1.4 Connectivity graph

The pose graph (or connectivity graph) is an abstract representation of the
relations between the keyframes of a trajectory. Each keyframe is linked to
other keyframe taking into account their shared portion of the scene. This
portion can be quantified with the number of shared observations (map points
projected on the image plane of the keyframe). The connectivity graph is used
for searching spatial neighbors of some keyframe. Most of the procedures to
optimize the camera pose of such keyframe depends on the connections in
the connectivity graph. So the accuracy of a trajectory is heavily influenced
by the structure and density of this graph.

The pose graph is incrementally updated when a new keyframe is detected
by the mapping thread. We have maintained the same keyframe spawning pol-
icy than ORB-SLAM to handle strong rotations with more keyframes. These
keyframes will be culled later if the camera revisits the same frames. The
last frame will be converted to a keyframe and inserted in the connectivity
graph if it shares less than 90% observations with the previous keyframe. In
addition, one of the following conditions must be true:

• More than one second has passed since the creation of the last keyframe.

• The local mapping is idle, i. e., there is no triangulation or optimization
underway.

Thus, the ability of the tracking thread to insert new keyframes depends on
the time required by the mapping thread to perform optimizations. Indeed,
the performance of the whole system degrades if the frequency of arrival
of new frames exceeds the time required to process such frames. This could
happen if the image resolution of the frame were too big or the framerate was
too high. In such cases, the mapping thread would be unable to triangulate
and adjust the points of the scene.

The recently created keyframe is inserted in the pose graph. At the time
of the insertion, the connectivity of the new keyframe is determined by ac-
counting the number of map point shared with other keyframes. One of the
main questions is when these shared observations are representative enough
to create a new edge between the new keyframe and the other keyframe. The
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connectivity of the keyframe is exploited in several SLAM tasks, such as re-
localization, loop detection, keyframe culling and bundle adjustments. Thus,
the number of edges does not only impact the accuracy of the estimated tra-
jectory but also the memory and performance of these procedures.

The more links between keyframes, the more constraints are imposed on
the optimization procedures, which increase the computational cost. Besides,
more dense graphs do not always achieve better accuracy. Actually, our ex-
perimental results show quite the opposite. Smaller pose graphs, i. e., a graph
with a constraint set of edges or connections for each node, improve the accu-
racy of the estimated trajectory depending on the scene.

As mentioned above, the algorithm to create connections between two key-
frames is based on the number of keypoints (pixels with a maximum in
their intensity gradient) shared between both keyframes. Every time a new
keyframe is created by the mapping thread, a new node is inserted in the
graph. The 3D map points observed in the current keyframe are the key to de-
termine the connections of the corresponding node in the connectivity graph.

Let denote the set of keyframes by K such that Ki,Kj ∈ K are the i-th and
j-th keyframes in the connectivity graph. The number of shared observation
between Ki and Kj is denoted by θij. A map point viewed from the keyframe
Ki is represented by p. An observation o is the projection of a map point p
over a keyframe K with o = π(p) (more details in Section 2.1). The number
of keyframes in the graph is represented by M = |K| and the number of
observations by N =

∑N
i,j θij. The Cumulative Distribution Function (CDF) of

the observations shared between Ki and the rest of Kj ∈ K is given by φi.
The procedure described in Algorithm 1 updates the connectivity of the

current keyframe Ki w. r. t. the rest of keyframes K in the connectivity graph.
Thus, the output degree deg+(Ki) of the keyframe Ki is determined with this
algorithm too. The following steps are performed:

1. For each map point p observed from the camera pose of Ki:

a) Counters of shared observations {θij | j ∈ [0..M− 1} are initialized
to zero.

b) For each observation of p in the keyframe Kj the value of the
counter θij is increased by one.

2. Counters θi are sorted in descending order and filtered by selecting
those θij with a significant number of observations, i. e., θij > θmin.

3. For each counter θij ∈ θi:
a) An update notification is sent to every Kj. The keyframe Kj updates

its connections starting from the step 2 of this procedure.

b) The number of shared observations θij is accumulated in the CDF
of the current keyframe with φi = φi + θij.

4. A new connection between Ki and Kj will be created if one of the fol-
lowing conditions is true:

a) The output degree of the keyframe deg+(Ki) is lower than 5.
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b) The output degree of the keyframe deg+(Ki) is lower than the Max-
imum Vertex Degree (MVD) and the number of shared observa-
tions represented by the linked keyframes is still below 95% of φ.

In addition to these steps, the keyframe Kj with the highest θij is parented
to the current keyframe Ki. This connection will be used later to propagate
the accumulated error along the minimum spanning tree during a possible
graph optimization. Such optimization only takes place when a visual loop
is detected. Thus, the detection of loops impacts the accuracy of the final
trajectory, as it is shown in Section 3.1.5.

Algorithm 1 Update the connections of keyframe Ki in the connectivity graph
1: procedure UpdateConnections(Ki)
2: θi ← 0

3: φi ← 0

4: for each p in Ki do
5: for each o in p do
6: j← KeyFrame(o)
7: θij ← θij + 1

8: φi ← φi + θij
9: θ∗i ← {highest(θij) | θij > θmin}

10: θacc ← 0

11: for each θij in θ∗i do
12: UpdateConnections(Kj)
13: if deg+(Ki) < 5 or (5 < deg+(Ki) < MVD & θacc < 0.95φi) then
14: Connect(Ki,Kj)
15: θacc ← θacc + θij

Maximum Vertex Degree

The connectivity graph is used for searching visually similar keyframes in a
local 3D region. Our main hypothesis is that the connectivity of the graph can
be limited to the best keyframes. Then, we reduce the complexity of the graph
while it preserves a valid topology, as explained in Section 3.1.4. A keyframe
must be connected enough to maintain the topology of the connectivity graph.
This requires a lower and upper bound for the output degree of a keyframe in
Algorithm 1. On one hand, we have picked 5 as lower bound since a minimum
number of connected keyframes is required for the system to operate. On the
other hand, the upper bound of the output degree is restricted to 20. This
upper bound has been determined by studying the experimental degree on
the connectivity graph generated by ORB-SLAM and the theoretical bound
for the natural neighbors of any 3D vertex.

Firstly, the topology of the graphs created by ORB-SLAM shows an average
output degree of 40, ranging from 20 in the least connected sequences to 60
in those with a lot of redundant information. We hypothesized that we could
dramatically reduce the number of connections while maintaining the most
significant ones by keeping track of the most promising connections sorting
the candidate connections according to the number of shared observations.
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Figure 3.1: Distribution of the number of neighbors (i. e., connections) in the 3D De-
launay triangulation of one million random vertices which are uniformly
distributed.

We have studied 5 the connectivity graph generated at the end of the sequence
tracked by ORB-SLAM and guessed that many connections could be avoided
without losing accuracy.

Secondly, each keyframe can be interpreted as a vertex in a 3D-space that
originates a Voronoi cellular decomposition. Each keyframe is then a natu-
ral neighbor of all keyframes whose Voronoi cells share some side with it. In
this natural context, we can evaluate how “well surrounded" a vertex is de-
pending on the number of neighbors its cell has. If the original 3D-points are
uniformly distributed at random, it has been proven that the average number
of neighbors of a vertex is 15.5 (see [130]). This value is a good estimator of the
minimum number of neighbors that a keyframe would require. We have also
implemented 6 a simple program that calculates the 3D-Delaunay triangula-
tion of a random set (dual to its Voronoi diagram) in order to better analyze
the natural degree of a vertex.

The distribution of the vertex degrees is illustrated by the plots in Figure 3.1.
Our experimental results agree on an average of 15.5 neighbors per vertex.
They also show that the median is 15, that 50% of the nodes have a degree
between 13 and 18, and that 90% of the nodes have less than 20 incident edges
(i. e., 20 is the 90-percentile of the distribution).

5 The graph stats have been obtained with the Python module networkx https://networkx.
github.io/

6 The Delaunay triangulation has been implemented using the package spatial https://docs.
scipy.org/doc/scipy/reference/spatial.html of the scipy distribution, which provides spa-
tial algorithms and data structures.

https://networkx.github.io/
https://networkx.github.io/
https://docs.scipy.org/doc/scipy/reference/spatial.html
https://docs.scipy.org/doc/scipy/reference/spatial.html
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Vertex degree can also be studied from the point of view of Algebraic Topol-
ogy. In this case, irregular tessellations can be viewed as PL-deformations of
the spatial regular tessellations. Following Euclid, regular tessellations are
given by tetrahedra, hexahedra (or their dual octahedra), and dodecahedra
(or their dual icosahedra). In the presence of increasingly complex configura-
tions, it is convenient to take into account the largest number of symmetries
to obtain more stable and adaptive configurations. Among the regular config-
urations, the dodecahedron (20 vertices and 12 faces) or the icosahedron (12
vertices and 20 faces) tessellations show the largest number of symmetries.

Vertices of regular polyhedra provide a discretization of the 2-dimensional
sphere S2 given as the boundary ∂B3 of the 3D ball. Any vertex P0 in the
space can be taken as the center of a sphere connected to a finite set of sur-
rounding vertices. Thus, in the most complex regular case, we constrain to
local discrete neighborhoods with a maximum number of vertices N between
12 and 20 that surround the pivot point P0. The affixes of the connecting
vectors provide a discrete representation of the Euler or radial vector field
ξE = x∂x + y∂y + z∂z whose integral curves are lines through the origin; this
set is called a “star” in Geometry.

There is not a theoretical general principle for selecting the optimal N. In
case of irregular behaviors along radial propagation, 20 vertices are recom-
mended. In case of irregular behaviors along planar regions corresponding to
wavefronts, 20 faces are preferred (corresponding to the icosahedron with 12
vertices).

The duality between propagation directions and wavefronts arises in any
sort of propagation phenomena. Using a discrete representation from a geo-
metric viewpoint, this duality is provided by the duality between vector fields
and differential forms. For a 2D sphere, radial (Euler) vector field is the dual
of the closed differential 2-form, which is locally described by

σ :=
1

4π
(xdy∧ dz − ydx∧ dz + zdx∧ dy)

on the 2-dimensional unit sphere S2 := {(x,y, z) ∈ R3 | x2 + y2 + z2 = 1}.
The normalization factor 1/4π is irrelevant; it guarantees that the area of the
unit sphere is equal to 1

This 2-form can be interpreted as the contraction along the radial vector
field ξE to the sphere of the trivial spatial orientation class dx∧ dy∧ dz. Its
discretization supports inscribed triangles, which are the basic pieces of the
icosahedron on the unit sphere; a discrete version for faces can be obtained
by duality, where these faces correspond to the regular pentagons of the do-
decahedron.

Neighboring cells share a face. In regular tessellations, it corresponds to the
face of a regular polyhedron (i. e., regular triangles, squares or pentagons). In
practice, these cells are deformed through a PL-map preserving incidence and
adjacency relations. However, normal vectors to faces do not pass through
the center of the original sphere wrapping the polyhedron. Furthermore, the
vanishing of symmetries can cause the overlapping of vertices, which could
collapse edges and/or faces (giving vanishing cycles in the Algebraic Topol-
ogy framework). A local radial deformation with variable radius generates a
totally ordered configuration of triangles with non-radial orientation. Despite
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the change in orientation and the relative arrangement between triangles, the
topology remains the same.

As a consequence to the facts stated above, all patterns for generic configu-
rations of points in a local neighborhood can be modeled by PL-deformations
of the vertices of regular polyhedra with the maximum number of vertices or
faces. This maximum number is 20 in both cases. Since this theoretical value
also matches our experimental results, we will consider MVD = 20 as a fair
upper bound for the number of connected keyframes.

3.1.5 Loop detection

One of the main uses of the connectivity graph in SLAM systems is to find
loops in the trajectory. The presence of loops allows the system to optimize the
trajectory beyond the local bundle adjustments performed in small regions.
One of the main benefits of the connectivity graph is that it manages the spa-
tial information about the sequence. This information enables spatial queries,
such as the covisible keyframes of a given keyframe. In this way, the existence
of a loop can be validated with the neighbors of the current keyframe.

A loop closure can be determined based on pure visual information, i. e.,
the image of the current keyframe is visually similar to the image of a previ-
ously seen keyframe. Other approaches use the estimated trajectory to detect
the loops. However, the presence of camera drift in monocular SLAM makes
this approach unreliable. In general, the detection of false positives should be
avoided since it leads to increase the error of the trajectory. In KN-SLAM we
have improved the hierarchical strategy implemented by ORB-SLAM. In this
strategy, we use adaptive varying thresholds that depend on the results of the
previous step.

The loop detection thread checks every new keyframe inserted in the queue
of the mapping thread. When a new keyframe is inserted by the mapping
thread, the loop detection thread performs the following steps to decide
whether a loop has been created or not:

1. The bag-of-words similarity score between the current keyframe and
a covisible keyframe is used to detect the closest keyframe, i. e., the
keyframe with the minimum score.

2. The minimum score serves as the lower bound to query the keyframe
database. A set of keyframes is returned as the loop candidates since
they are visually similar to the current keyframe.

3. Each candidate is augmented with its covisible keyframes to create the
candidate group. Then, the system search for a previously existent con-
sistent group that shares at least one keyframe with the candidate group.
If there exists such keyframe we say that both groups are consistent. In
such case, the consistency of the group is increased by one to account for
the number of consecutive keyframes in which the consistent loop has
been found. If this consistency surpasses a threshold (currently 3), then
the current keyframe is added to the set of enough consistent candidates.
These candidates will be evaluated in the next steps. If the keyframe is
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not consistent with any previous group, then it is added to the set of con-
sistency groups with a consistency of 0. This group will be considered
for the next keyframe.

4. The current keyframe is added to the database and the procedure con-
tinues only if there is at least one consistent candidate.

5. A set of matches is searched between each surviving candidate and
the current keyframe. If the number of matches surpasses a threshold
(around 20), then we find a Sim(3) transformation with a RANSAC
scheme to handle the noise. The RANSAC solver will use 300 iterations
with a minimum required number of 10 inliers. The iterations are per-
formed in batches of 5 alternatively for each Sim(3) until one of them is
successful or everyone fails.

6. Once the initial Sim(3) model is found, the set of initial matches is aug-
mented with a guided matching between the candidate and the current
keyframe. Then, the estimated Sim(3) is refined with the whole set of
matches. A Levenberg scheme is used with the camera pose free and the
map points fixed. The number of inliers supporting the estimated pose
must be above a threshold again (around 20).

7. If the candidate passes every previous check, the estimated Sim(3) trans-
formation is applied over the Sim(3) transformation of the candidate
keyframe. A scale of 1.0 is used to convert from SE(3) to Sim(3). The
resulting transformation will be used to distribute the error through the
loop to the rest of keyframes.

8. Finally, map points seen from the loop keyframe and its covisibles are
collected. Then, these points are used to increase the number of matches
between map points and keypoints of the current keyframe. The search
is guided by the Sim(3) transformation that projects the map points
over the keyframe. If the number of matches is greater than a threshold
(around 50) the loop is finally accepted. Otherwise, the candidates and
the current keyframe are erased.

Over this pipeline, we have inserted our contributions to implement an
adaptive threshold scheme. This decision has been taken after performing
a detailed analysis of the output received at each one of the steps described
above. Indeed, the range of values for the new thresholds has been chosen tak-
ing into consideration the evolution of these data in the loop detection thread
across a wide range of sequences. More specifically, the following changes
have been performed:

1. The minimum number of keypoints shared by the current keyframe and
the loop candidate has been lowered from 20 to 15. We detected that
many candidates were erroneously rejected in this step, so we decided
to lower this threshold slightly. Most of the false negatives that pass this
test are rejected in the next steps.

2. The minimum number of inliers to validate a Sim(3) transformation in
a RANSAC scheme has been modified from 20 to max(10, λ/3), where λ
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represents the number of 2D-3Dmatches. The use of θ/3 as an estimator
for the threshold avoids many false positives in candidates with a big
number of shared observations. We clamp the value to 10 since it is
the minimum value to distinguish something meaningful from noisy
measurements.

3. The minimum number of inliers in the LM optimization that adjusts
the Sim(3) transformation has been approximated using max(10,β/2),
where β represents the number of matches found in the search guided
by the initial Sim(3) transformation. Our guess is that the matches re-
jected by the optimization represent between 20%-30% of the original
matches. Thus, a threshold around 50% is reasonable. As in the previous
threshold, we clamp the value to 10, the minimum number of matches
to consider the model as meaningful.

4. The minimum number of map points to validate the final Sim(3) align-
ment, i. e., the product of the estimated Sim(3) transformation and the
previous pose of the current keyframe, has been increased from 40 to 50.
This set of points also includes the points of the neighboring keyframes
of the current keyframe so the size has been significantly increased. In-
deed, we have checked in our experiments that this counter is beyond
100 in 90% of the sequences. However, to support the most challenging
sequences we have lowered the threshold to the half.

A loop is considered as detected when the current keyframe passes all the
tests. Then, the Sim(3) alignment hypothesis is considered as valid. Once
the loop is detected, the loop detection thread corrects the trajectory drift
by propagating the error along the poses of the keyframes. This involves the
correction of the position of the map points, the fusion of many map point
duplicates, the update of the connectivity graph, the optimization of the es-
sential graph and, finally, the refinement of the poses and map points at the
same time by means of a global bundle adjustment. We use a fixed number of
20 iterations for this final adjustment. Even though the increase in computing
time does not worth the gain in accuracy, we have detected that this increment
in time does not affect the overall performance of the SLAM system.

Our improvements to the loop detection procedure allow the system to
detect more loops with fewer matches, without increasing the number of false
positives. It must be taken into account that these contributions benefit from
the improvements in the connectivity graph detailed in Section 3.1.4. A less
connected graph simplifies the structure of the consistent groups and it makes
easy to find candidates. In this way, KN-SLAM is more robust to situations
in which the number of consistent candidates is limited, like in the ninth
sequence of the KITTI benchmark kitti/09. This is an especially challenging
sequence with a loop between at the end of the sequences, just when the
system stops the tracking. In our experiments KN-SLAM detects the final
loop in 100% of the executions, whereas ORB-SLAM only detects that loop in
20% of the executions.
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3.2 methodology

Our research has been conducted following a fully experimental methodology,
in which we have compared the obtained results w. r. t. ORB-SLAM in terms
of the robustness and the accuracy. Besides these metrics, we have evaluated
the impact of our approach in terms of the number of keyframes and edges
in the connectivity graph.

The experiments have been carried out in four different datasets with more
than 45 sequences and different challenging situations for monocular SLAM.
To the best of our knowledge this is the first VO or SLAM approach that com-
pares the most widely used datasets. We have developed a unifying frame-
work for testing the sequences of input images coming from each benchmark.
This task has required to normalize file formats and ground truth between
the different datasets for adopting the same format. As a result, the same set
of tools and a single executable can be used to evaluate any sequence.

The rest of the section is organized as follows: Section 3.2.1 describes the
traits and origin of the datasets included in our evaluation; Section 3.2.2 enu-
merates the challenging characteristics to be considered for each sequence;
Section 3.2.3 provides the normalization procedure to unify the format of the
files and data for all sequences of every dataset; and Section 3.2.4 defines the
evaluation metrics to measure the performance and to compare the evaluated
SLAM systems.

3.2.1 Datasets and benchmarks

Our goal is to evaluate the robustness and accuracy of SLAM for a wide range
of paths, scenes and cameras. To accomplish this goal, we have gathered the
sequences provided by publicly available datasets and benchmarks. We have
to restrict the evaluation to those sequences with an associated ground truth
of the trajectory. This ground truth is considered reliable since it has been
captured using a high-precision device that determines the pose of the camera
at a high frame rate usually around 100 FPS).

Each sequence in a dataset is intended to introduce a different level of com-
plexity to test SLAM algorithms. Such complexity can be described in terms
of a collection of challenges that make it difficult to achieve an accurate and
robust tracking. Each challenging characteristic of a sequence can be repre-
sented by a label. These characteristics are gathered in Table A.1 and Table A.2.
By considering these characteristics of the sequences in our evaluation we are
able to understand the differences between the evaluated SLAM approaches.
In this way, a classification can be created taking into account where a system
outperforms another system in a new sequence.

Moreover, each dataset has been recorded using different types of cameras
equipped with different lenses. The main traits of all datasets are summarized
in Table 3.1. The diversity of settings and challenges posed by these sequences
enriches our evaluation.
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dataset features shutter resolution fps

KITTI

Outdoor
Car-mounted
High-resolution
Low framerate

Global 1241× 376 10

EuRoC

Indoor
MAV-mounted
Fast movements
Low lighting

Global 752× 480 20

TUM RGB-D

Indoor
Hand-held
Shaking camera
Dynamic scenes

Rolling 640× 480 30

ICL-NUIM
Indoor
Raytraced with noise
High-frequency textures

Global 640× 480 30

Table 3.1: Traits of the datasets included in our evaluation

KITTI

The KITTI Vision Benchmark Suite [44] is composed of multiple sequences to
evaluate algorithms in different computer vision tasks applied to autonomous
navigation, such as stereo matching, SLAM, semantic object recognition, etc.
The benchmark was created in 2012 in the scope of a project developed by
a partnership between the Karlsruhe Institute of Technology and the Toyota
Technological Institute at Chicago. The goal of the benchmark is to reduce
the bias between conventional datasets and real-world scenarios by providing
novel difficulties to the community. It is the most widely used dataset for
evaluating algorithms in autonomous navigation tasks.

The whole suite is composed of several annotated benchmarks to evalu-
ate algorithms in several Computer Vision tasks. Its authors also provide
the metrics, the scripts and the website to evaluate and compare the results
achieved by these algorithms. The odometry benchmark 7 is intended to eval-
uate monocular or stereo VO, laser-based SLAM or even more advanced al-
gorithms that combine visual and Light Detection and Ranging (LIDAR) in-
formation. It is composed of 22 stereo sequences saved in Portable Network
Graphics (PNG) format. However, the ground truth is only available for the
first 11 sequences, which were originally intended for training purposes. Only
these sequences are included in our evaluation. In the rest of the document
and for the sake of simplicity, we will refer to the odometry benchmark as the
KITTI dataset.

The sequences were recorded with standard station wagon equipped with
two high-resolution color and grayscale video cameras. The datasets were

7 http://www.cvlibs.net/datasets/kitti/eval_odometry.php

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Figure 3.2: A sample frame of the sequence kitti/09 in the KITTI benchmark.

captured by driving around the mid-size city of Karlsruhe, in rural areas and
highways. Each video camera captured frames with a 1241× 376 resolution
equipped with a global shutter (see Figure 3.2). The ground truth of the tra-
jectory was recorded with a GPS device and a Velodyne laser scanner.

The sequences of this dataset are characterized by long trajectories in scenes
of high dimensions. In the sequences, there is a predominance of translations
towards the vanishing point of the scene against rotation. Moreover, some
dynamic objects, such as pedestrians and cars, move towards the camera oc-
casionally. The length of the trajectory makes these sequences especially chal-
lenging for monocular SLAM due to the accumulated drift along the trajectory.
Besides, relocalization procedures are examined to deal with moving objects
in front of the camera. On the other side, the aspect ratio of the images (width
is twice greater than height) eases the tracking of the camera pose (see an
example in Figure 3.2).

TUM-RGB

The TUM RGB-D dataset [121] includes a set of hand-held indoor sequences
recorded at full frame rate (30 FPS) with a Microsoft Kinect8. Sensor resolution
of RGB images is 640× 480 pixels. The color and depth images are provided
along the highly accurate and time-synchronized ground truth camera poses.
This ground truth was captured from a motion-capture system with eight
high-speed tracking Raptor-E cameras running at 100Hz.

The low-cost nature of the cameras used for collecting data introduces the
typical rolling shutter artifacts in the frames of the sequence, such as motion
blur and spatio-temporal aliasing (see for example Figure 3.3). This is the only
dataset included in our evaluation that uses a camera with this kind of shutter,
which is especially challenging for direct VO approaches.

The dataset was recorded in 2011 by the Computer Vision Group of the
Technical University of Munich. It was published under a Creative Commons
4.0 Attribution License (CC BY 4.0) license with a total number of 39 se-
quences, which were recorded in two different indoor environments:

• a typical office environment with a 6× 6 area, as depicted in Figure 3.3,
whose sequences are labelled starting with fr1;

• a large industrial hall with a 10× 12 area, whose sequences are labelled
starting with fr2.

8 https://vision.in.tum.de/data/datasets/rgbd-dataset

https://vision.in.tum.de/data/datasets/rgbd-dataset
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Figure 3.3: A frame for the sequence tum/fr1_desk in the TUM RGB-D dataset. Note
the motion blur generated by the combination of a fast camera movement
and the rolling shutter of the camera.

The dataset covers a large variety of scenes and camera motions, includ-
ing sequences for debugging with slow motions as well as longer trajectories
with and without loop closures. The authors also provide source code for au-
tomatic evaluation of drift of VO systems and the global pose error of SLAM
systems. Indeed, this is the code and file format to which we have adhered
for developing our custom scripts mentioned in Section 3.2.

Later, the dataset was expanded with a third group of sequences identified
by a title starting with fr3. These sequences were recorded with an Asus Xtion
camera in two different environments: a piecewise planar scene textured with
posters and a dynamic scene moving the camera around a desktop in an
industrial facility. The specifications of the Asus Xtion show no differences
w. r. t. Kinect, at least regarding the characteristics of the lenses. This new
group is intended to evaluate more specific challenges for SLAM algorithms.
Three new categories were created to include these sequences: structured vs.
textured scenes, dynamic objects, and 3D reconstruction.

This dataset has been thoroughly evaluated by the community in several
VO and SLAM algorithms (e. g.,, see [88, 90]). The sequences are grouped
according to the challenging feature that they expect to evaluate: calibration,
debugging, handheld SLAM and robot SLAM. These features are properly
represented in the sequence characterization of Table A.2 and Table A.1. Our
evaluation includes only the 15 sequences that we considered more suitable
for monocular SLAM. We have also added some other interesting sequences
not evaluated in [88].
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European Robotics Challenges Micro Aerial Vehicle

The European Robotics Challenges MAV dataset [13] is a recently published
dataset (2015) composed of 11 stereo-inertial sequences with a total length of
19minutes of video organized in two batches9. The dataset was collected with
a set of devices placed on-board of a MAV. Each sequence includes pairs of
synchronized stereo images, the IMU measurements and the corresponding
ground truth with a 6 DoF pose for each frame. Each batch was recorded
in a different scene with a different purpose. Different devices were used to
determine the ground truth of the sequences, providing even a 3D scan of the
environment. All the information is spatio-temporally aligned. The calibration
sequences are available too. They are used for computing the extrinsic and
intrinsic parameters of the sensors, which are also provided for convenience.

The first batch of sequences, whose labels start with MH, is intended to evalu-
ate visual-inertial odometry algorithms on real flight data. It was recorded in
a machine hall, where the ground truth was captured by a laser tracking sys-
tem Leica MS50 with millimeter accurate position. The second batch, whose
sequences are labeled starting with V, is aimed at 3D reconstruction tasks. It
was recorded in a room equipped with a Vicon motion capture system to de-
termine the ground truth of the trajectory. The same motion capture system
was also used to record the ground truth of the TUM RGB-D. This batch has
two groups of sequences according to the two different room setups in which
they were recorded. The sequences are labeled starting with V1 or V2.

Inside each batch, the type of sequences ranges from slow flights under
good visual conditions to dynamic flights with motion blur and poor illumi-
nation. This enables a thorough evaluation of the SLAM approaches.

We have included the whole video sequence is our experiments. This in-
cludes the shaky movements of the camera at the beginning of the sequence
to initialize the IMU of the MAV. Since we are evaluating only monocular
SLAM approaches, only the frames from the first camera of the stereo pair
have been used.

Imperial College London and National University of Ireland Maynooth

The Imperial College London and National University of Ireland Maynooth
dataset [51] is composed of a collection of eight sequences recorded with a
handheld RGB-D camera. These sequences have been generated by rendering
the scene viewed from a virtual camera along different camera trajectories.
Images are ray-traced using POVRay10 based on the ground truth acquired by
Kintinous in real scenes [132]. Even though the dataset was originally aimed
at evaluating the accuracy of surface reconstruction algorithms, it can also be
used to evaluate the trajectory estimated by SLAM algorithms, which is our
main purpose.

The eight ray-traced sequences have a total video length of 4.50min11. The
simulated camera has an image resolution of 640× 480 pixels, a FOV of 90°
and a focal length of 480 pixels. One of the main traits of this dataset is that
the camera is inverted w. r. t. to the Y-axis. Instead of changing every camera

9 https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
10 http://www.povray.org
11 https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://www.povray.org
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
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Figure 3.4: A frame of the sequence euroc/V103 in the EuRoC dataset. It has been
acquired by a MAV travelling around a room at 20 FPS.

pose in the ground truth, we have modeled such difference with a negative
focal length in the intrinsic parameters of the camera.

As usual, the dataset provides the ground truth with the camera poses
recorded by Kintinous. Each sequence also has a ground truth surface model
to evaluate quantitatively the accuracy in the reconstructed surface of the
scene. Images are rendered in a realistic way since they also simulate real-
world artifacts like sensor noise. This noise is modeled using a linear CRF
obtained by taking real images with different exposure times [48]. This CRF
maps the irradiance perceived by the camera to the digital n-bit brightness
values stored in the digital image. It provides an analytical model of the noise
levels for pixels to determine some noise parameters. These parameters are
used to simulate synthetic noise in the rendered image.

There are two different indoor environments: a living room and an office
room, with four sequences for each environment. These sequences are la-
belled as lr_kt* for the living room, and as of_kt* for the office room, where
* ranges from 0 to 3. In order to ensure that images look as photo-realistic as
possible, the rendering process includes real-world lighting phenomena, e. g.,
specular reflections, shadows and color bleeding. These artifacts greatly affect
direct SLAM approaches but they should be handled by indirect methods like
KN-SLAM and ORB-SLAM.

The sequences of the living room aim at evaluating three-dimensional re-
construction accuracy, whereas the sequences of the office room are intended
to evaluate VO. This is due to the fact that the office scene is rendered pro-
cedurally without an explicit 3D model. However, both groups of sequences
are included in our evaluation to evaluate the robustness of our system when
dealing with challenging characteristics, such as fast camera motion, a strong
rotation, and high-frequency textures. A single of the first sequence in the
living room group (icl/lr_kt0) can be seen in Figure 3.5.
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Figure 3.5: A single frame extracted from the sequence icl/lr_kt0 in the ICL-NUIM
dataset. These frames have been synthetically generated by POVRay at a
simulated frequency of 30Hz.

3.2.2 Sequence characterization

A fair comparison between different SLAM approaches must take into ac-
count the features, characteristics or traits that define each sequence. Some of
these characteristics (e. g., dimensions, length, average speed, etc.) are defined
in quantitative terms, but the characteristics describing challenges are purely
qualitative. Thus, they must be qualitatively assessed from the point of view
of an expert with experience and knowledge in SLAM.

Our aim is to determine what sequences are more suitable for KN-SLAM,
i. e., in which sequences KN-SLAM outperforms ORB-SLAM. The characteris-
tics of a sequence provide the criteria to analyze our results. Indeed, the het-
erogeneity of the achieved accuracy in different sequences can be explained
principally by these characteristics, although we are conscious that they are
not the unique factor to consider. In our evaluation we describe a sequence
by the set of characteristics that make that sequence challenging:

• fast movements,

• shaking movements,

• close range,

• rotational movements,

• translational movements,

• dynamic events,
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• visual loops,

• high-frequency textures, and

• lighting.

Each characteristic poses a different challenge for VO and SLAM algo-
rithms, making an accurate and robust tracking more difficult to achieve [14].
Usually, a sequence introduces a subset of these challenges. We will say that
a sequence has been recorded in natural conditions if none of these challenges
has been purposefully added to the sequence. Even though SLAM algorithms
should be able to deal with these special situations, they are actually uncom-
mon in real-world scenarios.

Next paragraphs dive into a more detailed description of these challenges,
providing the criteria to quantitatively assess their relevance in a video se-
quence.

fast movements Passive sensing is greatly affected by image artifacts
like blur and noise (see e. g., [34]). These artifacts are especially common in
cameras equipped with a rolling shutter when the camera is moving faster
than the readout time of the sensor. Thus, fast movements are challenging
for tracking pixels between consecutive frames, especially for direct methods.
Indirect methods are able to deal with blur as long as the borders in the image
are clear.

Usually, the best approach to deal with these issues is losing the tracking
and waiting until a non-blurred frame arrives. Then, this new frame is com-
pared w. r. t. the last keyframe and if enough matches are found, the pose is es-
timated w. r. t. the existent keyframe. Actually, fast movements have a twofold
influence in tracking. On one hand, blur and distortions remove many key-
points of the image. On the other hand, wide baselines between consecutive
frames difficult the match between keypoints and map points.

In the assessment of this characteristic, we give a valuation according to
the frequency of fast camera movements in the sequence. For example, if a
fast camera movement occurs every 100 frames or less, the characteristic will
have the highest possible value. Otherwise, if there are no fast movements,
the characteristic will take the lowest value.

shaking movements This is a challenge similar to fast camera motion.
Unlike fast movements, the camera pose after a shaking movement does not
change, i. e., the final and the starting pose are the same. In some sequences,
shaking can be useful for bootstrapping the system, but it is dangerous since
the map optimization can degenerate in local optima. There are good exam-
ples of this challenge in the sequences of the EuRoC dataset, where the shak-
ing is used to initialize the IMU of the MAV [13]).

Camera poses of the shaking frames are prone to errors since a lot of cor-
respondences between keypoints and map points are lost. Moreover, the map
degrades since bundle adjustment performs the optimizations within a local
area with the points in the center of the frame. The situation is especially
more difficult to handle in combination with close range.
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Following the same criteria than with the characteristic for fast movements,
we have assessed the shaking movements according to their frequency in the
sequence. If camera shakes around once every 25 frames, the highest value
is assigned. For instance, this happens with the sequences of the TUM RGB-
D dataset. Then, the value diminishes proportionally to the number of oc-
currences. Obviously, the lowest valuation is reserved for sequences without
shaking like in the ICL-NUIM dataset.

close range This characteristic refers to the distance between the objects
of the scene and the camera. In general, the wider the FOV of a lens, the
greater the accuracy achieved with VO. This is caused by the fact that a higher
degree of overlap between consecutive frames increases the number of corre-
spondences in indirect methods. Moreover, a longer range usually increases
the variance in the depth of the map, which increases the robustness of the
tracking. In general, an overlap between consecutive frames below 90% of the
area of the image is prone to tracking loss.

A robust SLAM system must be able to run with lenses with a conven-
tional FOV around 60°, which is the usual value for a commodity camera. Di-
rect SLAM methods require higher angles such as those delivered by fish-eye
lenses (see e. g., [34])). Sequences closer to the object plane are more challeng-
ing to track since the shared image area between consecutive frames is vastly
reduced. On the contrary, sequences with a higher range are easier to track
since many frames provide redundant information to iteratively minimize the
error of the geometry.

In our assessment, we have reserved the highest values for sequences where
the camera is placed near the object and there are no points in the horizon.
Lowest values are attached to sequences where the background fills a sig-
nificant portion of the image or where there are vanishing points, such as
the sequence of the KITTI dataset. A combination of close-range long-range
images is represented with a middle value.

translational or rotational movements The type of camera move-
ment must be taken into account to evaluate the complexity of a sequence.
We have defined two characteristics to represent the relevance of these move-
ments in a sequence: translation and rotation. The value for each characteristic
has been assigned taking into consideration relative transformations between
consecutive poses. The predominance of the rotational or the translational
component in these transformations determines the valuation of the corre-
sponding characteristics. For instance, a sequence where the camera is moved
with pure rotations along the optic axis has the highest value for rotation and
the lowest value for translation. On the contrary, a sequence with a pure trans-
lational movement has the lowest value for rotation but the highest value for
translation. If camera movements along the trajectory combine rotation and
translation, both characteristics are valued in the middle of the range.

In real life operation, any sequence presents a combination of both. Pure
translational movements are easy to track, especially in piece-wise planar
scenes, as it was already stated by Faugeras and Lustman [38]. On the con-
trary, pure rotational movements are difficult to track since short baselines
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between two consecutive frames make the triangulation unfeasible. This is
partially mitigated thanks to a combination of a generous keyframe spawn-
ing policy and a pose optimization with a motion-only BA on SE(3). A com-
bination of rotational and translational movements makes the sequence a fair
trade-off for most of the SLAM systems.

dynamic events There are a big number of unexpected and uncontrolled
situations when a camera travels freely in a scene. These situations include
abrupt movements, camera occlusions, failure in the delivery of the frame,
moving objects, etc. Not all SLAM systems are able to deal with sequences
with dynamic events, i. e., events that force the system to determine the cam-
era pose without a prior guess. When the object is placed between the scene
and camera, the overlap between consecutive frames is reduced. This usually
leads to losing the camera tracking, depending on the size of the occluded
area.

Whatever the cause, the loss of the camera pose takes the system to a new
state. Usual strategies consist in launching a relocalization procedure that
seeks a visually similar keyframe in the trajectory. Until this frame is found,
the input frames are discarded so the estimated trajectory will have fewer key-
frames. Although theoretically the accuracy of the estimated trajectory should
not be affected, it is affected in practice. The main reason is that the PnP align-
ment algorithm, which estimates the camera pose after a relocalization, is not
as accurate as the estimator based on a constant linear velocity model. In
summary, the presence of dynamic events in a sequences leads to a relocaliza-
tion, which makes the sequence more challenging in terms of accuracy and
robustness.

This characteristic is difficult to assess since it comprises multiples challeng-
ing situations that lead to the same outcome: a relocalization. Our criterium
is to assign the highest value to the sequences where dynamic actors play
an important role, i. e., they are present in many frames and they occupy a
significant region of the frame. Moreover, we consider also the speed of the
actor such that the characteristic is valued lower if actors are moving slowly.
In addition, we use high values for special situations where some frames are
lost due to complete camera occlusion or communication failures. The lowest
value is reserved for static sequences.

visual loops A loop in a trajectory is given by a closed simple path which
is topologically equivalent to a circle; it appears when a keyframe matches
another keyframe. In the case of visual loops, the comparison between key-
frames is made using their corresponding images. Even though their detection
represents a challenge for the system, their existence in a sequence must be
viewed as something positive since they improve the overall accuracy of the
trajectory.

Due to the purely projective nature of a single camera, monocular SLAM
approaches are only able to estimate the geometry of the scene up to scale.
In fact, the scale of the trajectory is estimated using the baseline between the
pair of keyframes from which the system bootstraps. The main issue is that
this scale is liable to drift over time. Conventional solutions to this issue are
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based on prior assumptions about the inter-frame distance or the well-known
dimensions of some object in the scene (see e. g., [47]). Without this prior
knowledge, the best strategy to correct the scale drift consists in closing the
detected loops in the trajectory [119].

The loop detection thread of the system seeks the first and last keyframes
of a loop. Then, the accumulated error is distributed along the trajectory. The
efficacy of this module is critical to reducing the error in long trajectories,
such as in the sequences of the KITTI dataset. Obviously, the system is un-
able to estimate this drift in open trajectories so these trajectories will exhibit
a worse accuracy. It should be noted that although the drift of the pose is
corrected thanks to the loop closure, monocular SLAM is still unable to deter-
mine the scale of the trajectory. This is considered when poses are compared
with the ground truth since they are aligned with a Sim(3) transformation
(see Section 3.2.4).

Some sequences have several local loops (see e. g., EuRoC) whereas other
sequences have few loops but very significant (see e. g., kitii/09). Such se-
quences have the highest values for this characteristic since what we are as-
sessing is the relevance of the loop in the accuracy of the trajectory. Sequences
whose loops have a low number of keyframes are valued lower since these
loops are irrelevant for the final accuracy. Finally, sequences with open trajec-
tories have the lowest possible value.

high-frequency textures Sequences composed of objects with high-
frequency textures, such as asphalt, grass, marble, etc, are especially chal-
lenging for indirect SLAM methods. The abstraction of pixels into geometric
points fails when the keypoints cannot be detected with enough confidence.
The system should fall back to a direct approach when a high-frequency tex-
ture is being tracked. This is the base principle of hybrid SLAM. However,
the most probable outcome would be the loss of tracking due to a degener-
ate map, followed by the execution of the relocalization procedure. This trait
makes the sequence more difficult to bootstrap and tracks for the system, as
it can be seen in the sequences of the ICL-NUIM dataset.

We have assessed this characteristic according to the percentage of frames
with a high-frequency texture. Thus, a high value is assigned to sequences
where the presence of these textures is remarkable, i. e., they occupy a signifi-
cant region of the image in most of the frames. On the contrary, if every frame
views objects with a rich texture, the characteristic will have a low value.

lighting Passive sensing devices only rely on the light intensity received
by the sensor of the camera. This is a significant limitation of passive sensing
w. r. t. active sensing. Keypoints are more difficult to detect and track in the
absence of the appropriate lighting. This issue affects both indirect and direct
approaches. However, indirect approaches like ORB-SLAM and KN-SLAM
handle these situations thanks to the abstraction of the image. Direct meth-
ods are more sensitive to illumination changes while keypoints only requires
contrast between regions of the image to work.

Even though indirect approaches are more robust to illumination changes,
if the lightning of the environment is reduced too much then the accuracy of
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the trajectory will be reduced. This is due to the absence of keypoints, which
makes impossible to estimate the relative transformation between keyframes.
Therefore, the effect is equivalent to the presence of high-frequency textures.
Only the most difficult sequences of the EuRoC dataset introduce this issue
when some parts of the sequences are recorded with the lights off.

The values of this characteristic have been assigned taking into account
the length of the affected portion of the sequence. If more than half of the
sequence is affected, the highest value is assigned. Otherwise, if the whole
sequence is well illuminated, then it takes the lowest value.

Assessment of the characteristics

The characteristics described in Section 3.2.2 must be assessed thoroughly for
each sequence. To the best of our knowledge, there not exists a characteriza-
tion of this kind in the state of the art. Thus, in the absence of a previous
work we have decided to tackle this problem in an agnostic way, i. e., without
linking our assessment to any specific SLAM system or approach.

The assessment has been conducted through a detailed manual revision of
each sequence involved in our experiments to determine the most appropri-
ate value for its characteristics. The valuation has been decided by visually
inspecting the frames of the sequence. The concrete values have been chosen
using our own personal knowledge and experience following the same crite-
ria along with all datasets. This characterization is provided as an additional
contribution of our research in the hope that it can boost future developments
in more robust SLAM approaches.

The relevance of a characteristic in a sequence is assessed using a Likert
scale with five levels ranging from 1 to 5. In general, the level 1 represents the
absence of the challenge in the sequence, i. e., the accuracy of the trajectory
will not be affected. On the contrary, the level 5 means a strong influence of
the challenge in the accuracy of the trajectory, i. e., if the challenge were not
correctly handled, the final accuracy would be greatly diminished. We choose
a scheme with five ordered response levels since it is proven that they may
produce slightly higher mean scores relative to the highest possible attain-
able score [26]. Initially, we use a binary scale (0/1) but we realized that this
scale was not discriminative enough to represent subtle aspects required to
discriminate characteristics like rotational and translational movements. Sec-
tion 3.2.2 provides more details about the meaning of a high/low score in
each characteristic.

The valuation of each sequence allows us to analyze which characteristics
make a sequence more suitable for KN-SLAM or ORB-SLAM. With this val-
uation, we are able to determine in which kind of sequence our approach is
more accurate. The characteristics of the sequences in which KN-SLAM out-
performs ORB-SLAM are assessed in Table A.1. On the contrary, the assess-
ment of the sequences where ORB-SLAM is more accurate than KN-SLAM is
provided in Table A.2. The sequences have been ordered by the value obtained
from the SVM classifier (see Section 3.3 for further details).
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3.2.3 Dataset normalization

The datasets included in our evaluation use different data structures and file
formats for representing their sequences. This data must be homogenized
by using the same representation conventions that simplifies posterior evalua-
tions. For instance, the rotation of the camera pose is usually represented with
quaternions using the conventional notation (w, x,y, z). Nevertheless, some
authors and datasets prefer the notation (x,y, z,w). In addition, some refer-
ence frame transformations must be applied when the camera pose is living
in a different coordinate system than the ground truth is expressed. For ex-
ample, EuRoC measures the ground truth w. r. t. to a marker at the top of the
MAV but the camera is slightly displaced and the Y-axis is inverted.

The homogenization of the sequences simplifies their evaluation across
datasets and SLAM systems. In such case, the same benchmark could be ap-
plied, reducing the number of errors and misconceptions when the results are
compared. This would also help to compare some state-of-the-art results that
are difficult to reproduce because of the differences in the underlying com-
puter architecture. Due to its simplicity and wide adoption by the community,
we have chosen the file formats12 and data structures proposed by the TUM
RGB-D benchmark [121]. In this benchmark, each sequence is represented by
the following set of mandatory files and folders:

rgb/ The directory with the colored or grayscaled images in a lossless com-
pressed format like PNG. In the case of RGB images, they use 3 chan-
nels and 8 bits per channel. If the images are represented in grayscale,
only 1 channel is required. Usually, the filename of the frame matches
its corresponding timestamp in the ground truth, although this is not
mandatory.

depth/ This folder contains the depth images of the sequence. Only RGB-D
or ToF cameras provide these images. If they are provided, each image
is stored in PNG format with a single channel of 16 bits. Each pixel of
the image represents the distance-to-camera. It is stored in meters scaled
by a factor of 5000.

rgb .txt The text file that includes the list of (timestamp, filename) asso-
ciations. Each correspondence is represented in a separated line where
the timestamp of the frame in the ground truth is linked to the image of
the frame in the rgb folder.

depth .txt The text file that associates the depth image of a frame in the
depth folder with its corresponding time-aligned timestamp in the ground
truth. It follows the same conventions than rgb.txt.

groundtruth .txt The text file that contains the list of poses of the ground
truth trajectory. Each pose is associated to a timestamp placed at the be-
ginning of the line. Such pose is described in terms of a 3D translation
vector x,y, z and a unit 4D quaternion x,y, z,w. Each line uses the for-
mat (timestamp tx ty tz qx qy qz qw). The image corresponding to
the pose is saved in the file rgb.txt using the same timestamp.

12 https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
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The homogenization task would require a huge amount of work if it were
tackled from scratch for each dataset. Fortunately, every dataset usually pro-
vides a toolbox to manipulate its data. When these toolboxes are not released
by the publisher of the dataset, they are provided by third-party developers,
like the pykitti package13 that handles the sequences of the KITTI bench-
mark. Taking these tools as starting point, we have developed more advanced
scripts to implement a custom pipeline that automatically downloads, parses
and converts the sequences from the original format of each dataset to the
TUM RGB-D format. We have released these scripts as open source code for
the benefit of the community14.

Several adjustments have been applied to the original datasets in order to
homogenize them for our monocular SLAM evaluation. These modifications
are disseminated across different scripts of our toolbox. Among the major
changes accomplished, we highlight the following:

• The ground truth provided by KITTI represents rotations in camera pose
with a 3× 3 matrix in SO(3). As we have mentioned above, the TUM
RGB-D format requires quaternions so a conversion between quater-
nions and 3 × 3 matrices is required15. We can switch between ma-
trix and quaternion representations of the same rotation. However, two
quaternions are possible for the same rotation matrix since rotations do
not uniquely specify quaternions but quaternions uniquely specify rota-
tions. So we choose the best quaternion in terms of smoothness.

• The rgb.txt file for KITTI sequences has been built from the contents
of the times.txt files provided by the dataset.

• In the sequences of EuRoC the association between timestamps and im-
ages of a sequence is in the file mav0/cam0/data.csv. However, EuRoC
timestamps are represented in nanoseconds and image filenames are
not relative to the folder containing the sequence. The former is solved
by dividing by 1× 109 and the latter by adding the folder name at the
beginning of the path of the image.

• The ground truth in the EuRoC sequences is stored in the file mav0/state_-
groundtruth_estimate0/data.csv. It includes raw sensor information
in the Autonomous Systems Lab (ASL) format that must be converted
to the TUM RGB-D format. This requires 1) parse and extract the trans-
lation and rotation of each timestamp, 2) change the timestamp to sec-
onds, 3) apply to each pose the transformation defined by the extrinsic
calibration of the camera sensor cam0 in file mav0/cam0/sensor.yaml, 4)
write the resulting poses in the groundtruth.txt file.

• The ICL-NUIM dataset uses a camera formulation whose Y axis is in-
verted. Instead or rotating every ground truth pose, we have defined a
negative focal length fv on the Y axis in the intrinsic calibration of the
camera, as the authors explicitly recommend 16.

13 https://github.com/utiasSTARS/pykitti
14 https://gitlab.com/fradelg/tum-toolbox
15 Quaternions are managed with the numpy-quaternion module at https://github.com/moble/

quaternion.git
16 https://www.doc.ic.ac.uk/~ahanda/VaFRIC/codes.html

https://github.com/utiasSTARS/pykitti
https://gitlab.com/fradelg/tum-toolbox
https://github.com/moble/quaternion.git
https://github.com/moble/quaternion.git
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/codes.html
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• The ICL-NUIM benchmark requires a set of timestamps that simulates
a frame rate of 30Hz, i. e., a temporal separation of 33ms between con-
secutive frames. This change affects both the (timestamp, frame) asso-
ciations in rgb.txt and the ground truth in groundtruth.txt. Although
the original association includes a number for each frame, this is just an
integer representing the order of the image. However, it does not corre-
spond to the time at which the frame was captured. These timestamps
are required to perform a real-time simulation of the sequence.

These modifications have been applied to the datasets provided by their
original publishers. We have also released17 our converted datasets to support
the research in more robust monocular SLAM approaches. This will allow fu-
ture evaluations to focus on their contributions and not on these cumbersome
normalization tasks. Original licenses are preserved in any case.

3.2.4 Metrics

Previous sections have described the datasets, its characteristics and the pro-
cedure to make uniform their data. But we still need to define how results
can be quantitatively compared. Our evaluation is intended to consider both
the accuracy and the robustness of the system. A sequence is labeled as an
outlier if any SLAM system does not track enough frames in such sequences
or does not bootstrap. Such sequences are discarded from the evaluation of
the accuracy since they distort the comparison. We extend the definition of
a sequence outlier in Section 3.2.4.1. We aim at analyzing the results from a
multi-dimensional viewpoint since we are interested in sequences where a
good trade-off between accuracy and robustness is achieved. This includes an
accurate trajectory and a high number of tracked frames, which bootstraps
the sequence as soon as possible in the most challenging environments.

We propose to evaluate the accuracy using the ATE (see Section 3.2.4) and
the robustness using the PTT (see Section 3.2.4.1). Besides these two funda-
mental metrics, we have also considered other comparisons that provide more
insight into the differences between KN-SLAM and ORB-SLAM.

Trajectory accuracy

The accuracy of the trajectory is evaluated using the Absolute Trajectory Er-
ror (ATE), which measures the global consistency of the tracking as the Root
Mean Squared Error (RMSE) between the positions of the frames of the esti-
mated trajectory and the ground truth (see the definition in [121]). Let define
a trajectory as the set of camera positions P = {pi ∈ R3} for each keyframe
ki ∈ K, the ATE between the trajectory P and the ground truth G is

ATE(P, G) :=

√√√√ 1

N

N−1∑
i=0

||pi − gi||2 , (3.2)

17 https://fradelg.mobivap.es/datasets

https://fradelg.mobivap.es/datasets
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where N is the length of both trajectories measured as the number of key-
frames.

From our viewpoint, the main limitation of this metric is that it ignores the
length of the tracked trajectory. This length can be measured as the total num-
ber of keyframes in which the camera pose has been estimated. Intuitively,
it can be seen that this penalizes trajectories with more keyframes. The ad-
ditional keyframes are usually acquired at the cost of a worse initialization.
Another factor to be considered is the accumulated drift along the keyframes.
Thus, the RMSE always tends to be higher in longer trajectories, as we have
confirmed in our experiments.

The ATE only considers the positional error of the keyframes matched by
their corresponding timestamp in both trajectories. The ground truth includes
more frames, which are discarded since their timestamps do not match with
timestamps of keyframes in the estimated trajectory. The time alignment be-
tween trajectories is performed before computing the RMSE.

A time alignment between trajectories is not enough to use the ATE in
monocular SLAM approaches. Camera positions cannot be compared directly
since the scale of the trajectory is unknown. In addition, the coordinates of
every pose are relative to the first keyframe. Thus, both trajectories must be
spatially aligned to make them comparable. They have been aligned using
a similarity transformation Sim(3) with seven DoF (three DoF for the trans-
lation, three DoF for the rotation and one DoF for scale). The alignment be-
tween a trajectory and the ground truth is performed using the closed form
computed with the method of Horn [58]. This method finds the best transfor-
mation T that maps the estimated trajectory P onto the ground truth trajectory
G. Then, Equation 3.2 is reformulated as

ATE(P, G) :=

√√√√ 1

N

N−1∑
i=0

||gi − Tpi||2 . (3.3)

Rotational accuracy

The rotational error of a pose is the difference between the estimated rotation
and the rotation established by the ground truth. Although this metric is in-
sightful for sequences with strong camera rotation, it is usually ignored in
SLAM evaluations. Furthermore, In the cases where it is included, the rota-
tional error is evaluated per frame instead of at the trajectory level. This is due
to the difficulty of aligning the rotations of two trajectories. Per-frame evalu-
ations only consider the drift at each frame of the trajectory (see e. g., [39]).
Thus, they do not include in the metric the benefits of the pose graph op-
timization over the final trajectory. We have evaluated the rotation error at a
trajectory level by considering the first frame of both trajectories as a common
reference. Therefore, we measure the accumulated rotational error along the
rest of the keyframes.

At a trajectory level, the rotational error can be formulated following the
same idea than ATE. We define the ATRE between two sequences as the RMSE
between the rotations of the poses of both sequences. The main difference
w. r. t. the ATE dwells in the way that the rotational error between two key-
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frames is computed. We use the quaternion error measured in the space of
quaternions instead in the space of rotations. In other words, we measure the
error between two quaternions instead of the rotations they represent.

The differences between quaternion and rotational errors are caused by
the fact that quaternions are spinorial. For example, a rotation of 0° over
a quaternion does not deliver the same quaternion than a rotation of 360°.
Indeed, the latter is the inverse of the former although they represent the same
rotation. In general, any rotation can be expressed by two quaternions that
differ just by a negative sign. Indeed, they might be multiplied by any nonzero
number to obtain the same rotation again if the quaternion is normalized.

The choice of one quaternion depends on the function where quaternions
are used. For example, smoothness is preferred in a differentiable function
because discontinuities or jumps between signs would cause indetermination
issues in the derivatives of the function. Another example is a spherical inter-
polation, where the discontinuities in the quaternion barely affect the effective
rotation, but they greatly affect the stability of the algorithm.

The distance e between two quaternions q1, q2 measured in the rotation
manifold SE(3) is defined by

e(q1, q2) = 2||log(
q1
q2

)||2 ,

where the log of a single quaternion q is another quaternion

log(q) =
[ log(q2w + b2)

2
, fqx, fqy, fqz

]
,

where

b =
√

q2x + q2y + q2z ,

and

f =
atan(b, qw)

b
,

where atan(x,y) is the function that computes arctan(yx ) as the angle in
[0, 2π] formed by b and qw and the positive semiaxis x+.

Finally the quotient between two quaternions q1, q2 is computed according
to the following expression:

q1
q2

=
1

||q2||22


q1wq2w + q1xq2x + q1yq2y + q1zq2z
−q1wq2x + q1xq2w − q1yq2z + q1zq2y
−q1wq2y + q1xq2z + q1yq2w − q1zq2x
−q1wq2z − q1xq2y + q1yq2x + q1zq2w

 (3.4)

In our formulation of e(q1, q2) the second quaternion q2 is replaced by
its opposite −q2 when the chordal distance ec(q1, q2) is greater than

√
2.

This makes the implementation more robust to huge numerical differences
between both quaternions that, in fact, represent small rotations. Here, the
chordal distance ec is defined by
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ec(q1, q2) = ||q1 − q2||2 .

As in the computation of the ATE, rotation of both trajectories must be
aligned before applying the RMSE formula. The reason is that the camera
pose of the current keyframe is estimated by SLAM algorithms relative to the
first keyframe of the trajectory. In the absence of a global reference system
the first keyframe is assigned to the identity matrix, whose translation is 0m
and rotation is 0°. However, the rotation of the corresponding frame in the
ground truth is expressed w. r. t. the coordinate system of the tracking system.
It is impossible to determine the error in the first keyframe so we assume this
keyframe has no error w. r. t. the ground truth. According to this assumption,
the rotations of the other keyframes must be aligned before computing the
rotational error per keyframe. This task is accomplished by determining the
relative rotation qα between the first matching keyframe of the ground truth
qGT0 and the estimated trajectory qT0 . This relative rotation is defined by the
quaternion

qα = qGT0 qT0 , (3.5)

where q is the conjugate of a quaternion q = qw + qxi + qyj + qzk, which
is defined by

q = qw − qxi − qyj − qzk .

The conjugate term in Equation 3.5 would not be necessary if the first
keyframe of the estimated trajectory had always a match in the ground truth.
However, the ground truth of some sequences (especially in the sequences of
the EuRoC dataset) does not always contain the poses of the first frames. So
there are images for some frames whose timestamp is not in the ground truth.
So, unfortunately, this assumption is not necessarily true.

Finally, qalpha is applied over the rotation of the pose of each matched
keyframe in the estimated trajectory. This aligns both trajectories from a ro-
tational viewpoint. In this way, the first keyframes of both trajectories have
the same rotation. Rotations in the quaternion space are performed by non-
commutative multiplications. We choose the rotation of the ground truth as
the reference rotation in the comparison. Then the rotation of the i-th pose in
the estimated trajectory is aligned with

qTi = qαqTi . (3.6)

It is easy to prove that this alignment makes the first keyframes of both
trajectories equivalent. Replacing qα with the equation Equation 3.6, we have

qT0 = qGT0 qT0qT0 = qGT0 . (3.7)
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3.2.4.1 Robustness

There is a lack of agreement in the literature regarding the best metric to
evaluate the robustness of SLAM [14]. We have decided to measure robustness
using twofold criteria in our evaluation.

Firstly, we take into account the number of executions in which the sys-
tem refuses to initialize, i. e., no keyframe is selected. As mentioned in Sec-
tion 3.1.2, such result can be caused by a low-parallax configuration, a bad
homography or an erroneous initial estimation of the fundamental matrix.
Also, the system does not bootstrap in sequences with a low number of fea-
tured points like in the ICL-NUIM. This is a logical consequence of the indi-
rect nature of our SLAM approach.

Secondly, we have employed the Percentage of Tracked Trajectory (PTT)
as a metric for robustness. This metric is defined as the total accumulated
time that the system tracks the camera pose w. r. t. the total duration of the se-
quence. The PTT is computed by looking at the timestamps of the first and last
keyframes in the trajectories. However, the metric should also consider even-
tual losses of track in the middle of a sequence. These special situations arise
only in some sequences that combine dynamic events with loops (e. g., the
sequence fr3_camera_kidnap in the TUM RGB-D dataset). We define a non-
tracked period as the time interval between consecutive keyframes whose dif-
ference between timestamps is above a given threshold. In order to make this
metric more robust to the temporal distribution of keyframes in a sequence,
this threshold is determined using the inter-quartile range:

tδ = Q3 + 1.5(Q3 −Q1) , (3.8)

where Qi is the i-th quartile of the time intervals between consecutive key-
frames of the trajectory. The time intervals above tδ are discarded because the
tracking is considered lost. So the PTT is defined by

PTT =

∑
i∈N ti − ti−1

tn−1 − t0
, (3.9)

where N is the set of indices of time intervals above the threshold tδ

N = {i ∈ 0..N | ti − ti−1 > tδ} . (3.10)

3.3 experimental results

This section is aimed to discuss the experimental results gathered in the 47 se-
quences of the evaluated datasets. Each experiment has been executed eleven
times alternatively for each sequence and SLAM approach in the same ma-
chine. In order to provide a fair comparison of all approaches use the same
parametrization for the ORB detector and the same calibration for the intrinsic
parameters of the camera. The median has been used as the estimator of the
ATE for each sequence. This reduces the variance introduced by the outliers
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created in those executions where the system does not initialize or a bad pose
estimation drifts the trajectory away from the optimum. This randomness is
caused by the RANSAC iterations that remove the outliers. This problem is
even more notorious at the bootstrapping stage since in some sequences the
system only bootstrap inside a specific range of frames. If the system passes
over these frames then it will not bootstrap later.

The experiments and the evaluation have been performed with our custom
benchmarking scripts, included in the same toolbox to convert datasets in the
TUM RGB-D format18. This tool launches the executable, saves the map and
the trajectory, and compares this trajectory w. r. t. the ground truth. Since the
scale is unknown in monocular SLAM, we have to align the trajectory w. r. t.
the ground truth by computing a Sim(3) transformation before comparing
both trajectories as in [88].

3.3.1 Experimental settings

The experiments have been performed in a computer equipped with a proces-
sor Intel i5 2550K manufactured in 2012 with 4 cores running up to 3.80GHz.
The memory hierarchy includes both 8GB of Random Access Memory (RAM)
and 6MB of cache inside the processor. Despite providing more computing
power than mobile devices, this processor is far behind the latest releases.
Benchmarks confer a global score three times lower than an Intel 8700K man-
ufactured in 2017. The computer is governed by an Ubuntu distribution based
on Linux Operating System (OS) without additional dependencies like Robot
Operating System (ROS), in contrast to most of the proposals in the state of the
art. In this way, the stack of dependencies of the system is reduced. Besides,
third-party projects are linked as submodules in the same SLAM project.

The software has been compiled using GNU Compiler Collection (GCC)
7.3.0 with the compiler flags adjusted to achieve the highest level of optimiza-
tion. This includes

• -O3 to activate loop unrolling and inline procedures,

• -march=native to use the set of optimizations defined for the specific
processor architecture,

• -msse4.2 to enable the fourth version of the Streaming SIMD Extensions
(SSE), a processor extension to execute floating point computations in
parallel over arrays of data.

The SLAM systems included in our evaluation have been compiled using
the same set of compiler flags. All tests have been achieved using these flags in
release mode. Unless stated otherwise, any result reported in this documents
has been obtained in this mode. The algorithms are unable to run in real-
time without the optimization procedures applied by the compiler targeting
the architecture of the machine. Obviously, this time depends on the total
number of pixels of the image, as Table 3.2 shows. Algorithms should achieve
a framerate of 25Hz or higher to be considered as running in real-time. This is

18 https://gitlab.com/fradelg/tum-toolbox

https://gitlab.com/fradelg/tum-toolbox
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dataset resolution time per frame

KITTI 1241× 376 40ms

TUM RGB-D 640× 480 30ms

EuRoC 752× 480 28ms

ICL-NUIM 640× 480 29ms

Table 3.2: Average time per tracked frame in the sequences of the different datasets.

equivalent to a time per tracked frame of 40ms. All sequences are below this
threshold in the evaluated datasets, even in KITTI where frames are received
at 10Hz.

3.3.2 Robustness analysis

The PTT by KN-SLAM and ORB-SLAM are compared in different tables, one
for each dataset: Table A.4, Table A.3, Table A.5, and Table A.6. The first two
columns of each table contain the mean of PTT achieved in the 11 executions
for each system. Cells with a blank gap indicate that this sequence has been
labeled as an outlier, i. e., it is not comparable since a system is not able to
bootstrap. A pair (sequence, SLAM) is marked as an outlier if it fulfills that

• the system has not been able to bootstrap the sequence at least in 3

executions, or

• the mean PTT in all executions is below 30%.

An outlier in the set of sequences is a special sequence not suitable for
comparing two monocular SLAM systems. Outliers are excluded from the
rest of the evaluations since we consider that comparison as unfair. For exam-
ple, a trajectory with 50% more keyframes is prone to be less accurate due
to the accumulated error. Some sequences, such as kitti/01, have not even
been included in our evaluation since it is evident that they are not intended
for monocular SLAM, as it was explicitly stated in [88]. Other challenging se-
quences, such as tum/fr1_desk or tum/fr3_nstr_tex_far, have been included
to evaluate the improvement in robustness of KN-SLAM w. r. t. ORB-SLAM.

In the TUM RGB-D benchmark, KN-SLAM shows better robustness than
ORB-SLAM since it tracks an average of 12% more frames than ORB-SLAM
(see Table A.4). This difference is illustrated by the sequence tum/fr1_desk,
whose trajectory is represented by Figure 3.6. It shows a comparison of the
trajectories estimated by KN-SLAM and ORB-SLAM w. r. t. the ground truth
of the sequence. It can be seen that KN-SLAM (top) bootstrap sooner and
also tracks more frames than ORB-SLAM (bottom). These plots are created by
linking consecutive positions of the keyframes projected over the plane XY,
except trajectories of the KITTI dataset that are projected over the plane XZ.

Sequence tum/fr1_floor is also a special case where ORB-SLAM refused
to initialize in all executions whereas KN-SLAM achieves a robust 78% in
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PTT. Since ORB-SLAM fails to track the sequence, it is considered an outlier.
Both systems refuse to initialize in sequence tum/fr3_nstr_tex_far. This is a
special sequence where the movement of the camera shows the well-known
twofold ambiguity described by [82]. Despite this problem that affects the
selection of the homography or the fundamental matrix, our bootstrapping
method is able to track some frame at least in 5 executions, but it only achieves
an average 47% in PTT. Thus, the sequence is labeled as an outlier too.

The results in the EuRoC dataset are mixed, with the sequence euroc/V202

displaying the highest difference. In the second half of this sequence, ORB-
SLAM loses the track of the camera due to the fast movements of the MAV.
Our adaptive bootstrapping procedure handles the challenges introduced by
the sequence euroc/MH05. In this sequence, the camera is moved fast by the
MAV in a local environment to initialize the IMU. The system will usually
bootstrap a map of this local environment without including any point be-
yond. When the camera leaves this environment, the tracking is lost after a
few frames. Unfortunately, the system cannot recover from this situation. This
is a special case since the situation is difficult to replicate in a real-world sce-
nario. However, KN-SLAM is able to wait for a few frames until enough points
with high depth are available. The scale of the trajectory changes depending
on the selected pair of keyframes. However, this scale will be adjusted when
the ATE is computed, as explained in Section 3.2.4.

Results in the KITTI benchmark for both SLAM systems show almost no
differences regarding the PTT, except for the sequences kitti/02, kitti/08,
and kitti/09. In kitti/08, ORB-SLAM needs more time to bootstrap due
to the fast camera motion in the first frames of the sequence. The sequence
kitti/09 is the sequence most difficult to track for ORB-SLAM. It has been
completely tracked in 5 of 11 executions. In the other executions, the track-
ing has been lost at some point at the last quarter of the sequence. These
executions offset the PTT of ORB-SLAM to a value significantly lower than
KN-SLAM (16% lower). Finally, ORB-SLAM lost the tracking in the middle
of the sequence kitti/02 in 2 executions. This implies a lower mean for the
PTT, which explains the difference of almost 9% between both systems.

Among all the evaluated datasets, ICL-NUIM clearly highlights as the most
challenging for an indirect SLAM approach. The sequences of this bench-
mark belong to scenes characterized by high-frequency textured objects. The
challenges are clearly reflected in the PTT of Table A.6. It can be seen that
ORB-SLAM does not even initialize in 4 of the 8 sequences, whereas KN-
SLAM bootstrap in all sequences. However, 5 of these sequences (icl/lr_kt0,
icl/lr_kt1, icl/lr_kt3, icl/of_kt0, and icl/of_kt3) are labelled as outliers
for ORB-SLAM. The PTT achieved by KN-SLAM is greater than 90% in 4 out
of 8 sequences, which is above the average PTT achieved for all the evalu-
ated sequences. On average, and accounting the 8 sequences of the dataset,
KN-SLAM tracks 77% of the trajectory compared with 55% tracked by ORB-
SLAM (considering only the sequences where it initialized at least once).

A false positive loop is detected by KN-SLAM in sequence icl/of_kt1.
This has been the only noticeable false positive detected by our method. The
combination of a degenerate map and two visually similar frames drives the
method to choose a poor candidate for loop closing. These two frames are
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Figure 3.6: Comparison between the ground truth and the estimated trajectory for
KN-SLAM (top) and ORB-SLAM (bottom). The trajectory corresponds to
the median ATE for each SLAM system in sequence fr1_desk. The thin,
discontinued line represents the tracked trajectory whereas the thicker
line represents the trajectory of the ground truth.
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Figure 3.7: These two visually-similar frames (175 and 370) of the sequence icl/of_-
kt1 induce KN-SLAM to detect a bad loop.

shown in Figure 3.7. Even though this candidate is supported by few inliers
(around 15), it is not rejected by the PnP test nor the Sim(3) test. Besides, the
final loop is supported by more than 200 points of the map.

3.3.3 Trajectory accuracy

The accuracy of the trajectory is evaluated with the ATE introduced in Sec-
tion 3.2.4. First of all, we shall highlight that the ATE has been reduced for
ORB-SLAM in all sequences by an average of 25% w. r. t. the original results
published in [88]. We attribute this improvement to the underlying perfor-
mance of our CPU and the enhancements introduced in our testing environ-
ment composed mainly of the compiler and the OpenCV library.

We have split the set of sequences according to the difference between the
ATE achieved by ORB-SLAM and KN-SLAM. Results reveal that ORB-SLAM
outperforms the accuracy achieved by ORB-SLAM in 25 out of the 47 evalu-
ated sequences. However, in other 14 sequences ORB-SLAM estimates more
accurate trajectories. We cannot compare 8 sequences since they are labeled
as outliers (see the definition in Section 3.3.2).

Results are represented by two figures: Figure 3.8 and Figure 3.9. The for-
mer corresponds to the sequences in TUM RGB-D, KITTI and ICL-NUIM
datasets, whereas the latter corresponds to the sequences in the KITTI dataset.
The plot has been split due to the differences in the dimensions of the trajec-
tories, which lead to differences in the scale of the ATE: While the ATE in the
KITTI dataset is above 1m, the ATE in the other datasets is below 1m.

The numerical values of the ATE are also split in different tables, one for
each dataset: Table A.7, Table A.8 Table A.9 and Table A.10. This separation
enables a fair comparison since sequences in the same dataset present com-
mon characteristics. Each table shows the identifier of the sequence in the
first column. The ATE achieved by KN-SLAM and ORB-SLAM are placed in
the second and third columns respectively. The fourth column corresponds to
the percentage of improvement w. r. t. the higher ATE. The ATE represented
for a sequence is the median of the ATE achieved in each one of the eleven
executions. The number of successful executions (i. e., the executions where
the system has bootstrapped) is represented between parentheses next to the
ATE.
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Figure 3.9: ATE of KN-SLAM and ORB-SLAM for the sequences in the KITTI dataset.
This figure follows the same structure as Figure 3.8, but with the se-
quences in KITTI since they are in a different scale. The average ATE
of all the KITTI sequences is 12.15m whereas the average ATE for the
rest of the sequences is 0.07m, a difference of three orders of magnitude.

In the KITTI dataset, KN-SLAM reaches a superior accuracy in six of ten
sequences (see Figure 3.9 and Table A.7), with an estimated ATE an average
11% lower. This difference is almost unnoticeable in the first four sequences.
However, the ATE of the trajectory estimated by KN-SLAM in the sequence
05 is 27% lower. This is due to the existence of various loops that allows KN-
SLAM to correct the drift with a less-connected graph. These loops also exist
in sequences 06, 07 and 09, so KN-SLAM estimates more accurate trajectories.
The sequence 10 does not have any loop (i. e., it is an open trajectory) and,
then the accuracy delivered by ORB-SLAM is 21% better than KN-SLAM. The
sequence 08 does not introduce any loop either, but the ATE of KN-SLAM
is just 6% higher than ORB-SLAM. Such differences can be caused by the
long section of the trajectory where the camera drifts due to a straight-line
movement.

The main outlier in the KITTI dataset is the sequence kitti/09, where ORB-
SLAM experiences several difficulties to detect the last loop. This difficulty
was already declared in [88], although the authors claim that ORB-SLAM de-
tects the loop in some executions. However, in our experiments, ORB-SLAM
has never detected such loop. Indeed, we have tested this sequence thor-
oughly more than fifty times. In these tests, ORB-SLAM has detected the loop
only once. Furthermore, as we also mentioned in Section 3.3.2, the tracking
has been lost before the last frame of the sequence in six of eleven executions.
We discard that this problem is related to the testing environment since both
ORB-SLAM and KN-SLAM have been compiled in the same machine, with
the same compiler flags, and the same dependencies. This can be acknowl-
edged as one of our main achievements. We are proud of the robustness of
our method in this sequence since the last loop has been detected in eight of
the executions. In the other three executions, KN-SLAM has tracked around
87% of the sequence.

The TUM RGB-D dataset includes a collection of diverse sequences (see Fig-
ure 3.8 and Table A.8). There are sequences affected by different types of chal-
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lenges among them. However, they can be arranged in small groups to explain
the differences in the ATE. In summary, KN-SLAM delivers better results in
seven of seventeen sequences, whereas three sequences are not comparable.

Sequences fr1_xyz and fr2_xyz are used for debugging purposes since
the camera is displaced sideways only. Differences in the ATE between ORB-
SLAM and KN-SLAM are very subtle.

A second group is composed by desktop sequences: fr1_desk, fr2_desk
and fr2_long_office. In the first one, the ATE delivered by KN-SLAM is
11% higher than ORB-SLAM due to the fast camera movements without a
final loop closure. Both of them are present in the other two sequences, where
the ATE is up to 19% lower than ORB-SLAM.

The third group of sequences is formed by fr3_nstr_tex_near, fr3_str_-
tex_far, and fr3_str_tex_near. In this group, KN-SLAM achieves better
ATE than ORB-SLAM, where fr3_str_tex_far has the biggest difference. The
sequence has been recorded with slow camera movements and a good balance
between rotations and translations, which benefits KN-SLAM. The last group
of sequences includes six sequences with dynamic scenes and pure rotations
and translations. The sequences fr3_sit_* and fr3_walk_* are pieces of a
long sequence where two persons move in front of the camera. It is clear
that KN-SLAM does not achieve good trajectories since the ATE is an aver-
age 22% lower. Pure translations and rotations are not satisfactorily handled
by KN-SLAM. Furthermore, moving objects in front of the camera affect the
bootstrapping in some executions where it creates a corrupted map.

The camera in the sequence fr2_360_kidnap is occluded in the middle, forc-
ing the system to relocalize the camera in the next frames. Experiments show
that KN-SLAM trajectory is less accurate after relocalization since the ATE is
13% higher than ORB-SLAM. It seems that a less-connected pose graph in-
cludes fewer keyframes in the PnP optimization, affecting the accuracy of the
estimated pose.

The sequences fr1_floor and fr3_walk_xyz are not compared since ORB-
SLAM does not initialize on them. In fr3_nstr_tex_far both methods refuses
to initialize due to the twofold ambiguity configuration.

The results shown in the EuRoC dataset are very promising (see Figure 3.8
and Table A.9). Here, KN-SLAM outperforms the ATE achieved by ORB-
SLAM in ten out of eleven sequences. The best results are in sequences V103

and V201, which introduce multiple loops in the trajectory with several rota-
tions and translations among them. In both sequences, the ATE of the trajec-
tory is more than 30 lower than ORB-SLAM. The exception is the sequence
V203 where the error of KN-SLAM is 25% higher than ORB-SLAM. This se-
quence introduces shorter distances between the camera and the scenes, be-
sides some dynamic object, which influences negatively to KN-SLAM. In the
rest of the sequences, KN-SLAM performs on average 7% better than ORB-
SLAM, which increases slightly for MH01 and MH03.

Finally, it is worth to comment the results in the ICL-NUIM dataset (see Fig-
ure 3.8 and Table A.10). This dataset is not intended for monocular indirect
SLAM due to the intensive presence of high-frequency textures. For this rea-
son, ORB-SLAM only tracks three of the eight sequences. In the three com-
parable sequences, KN-SLAM achieves lower ATE in two of them: lr_kt2
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and of_kt3. However, the ATE of the trajectory for of_kt1 is 7% higher than
ORB-SLAM, due to the false loop detected by KN-SLAM (more details in Sec-
tion 3.3.2). The result for this sequence must be carefully interpreted since
only half of the frames have been tracked by both systems. In the other two
sequences, more than 90% of the frames have been tracked.

As a general remark, it should be reflected that the ATE of a sequence tends
to be higher in long trajectories due to the accumulated error in the pose of
new keyframes. Thus, the longer the sequence, the higher the error. This effect
is partially alleviated in the presence of loops at the end of the trajectory.

We have executed an additional analysis of the dispersion of the results
achieved by the eleven executions for each sequence. Results of this analysis
confirm that the ATE is spread around the median, so it is a good estimator
for the average ATE of the system. More concretely, in our analysis 50% of se-
quences have their five best executions in an interval of 5% around the mean.
Another way of measuring this dispersion is by computing the standard de-
viation of the results within the inter-quartile range for each sequence. The
mean of this standard deviation in all sequences is 7.31% for KN-SLAM and
6.85% for ORB-SLAM. This analysis also includes the most challenging se-
quences where systems can fail at bootstrapping, such as fr3_nstr_tex_near.

3.3.4 Other metrics

Besides the PTT and the ATE, we have estimated other interesting metrics
concerning both the performance and the effectiveness of both SLAM systems.
These metrics are not usually included in other evaluations since they are less
meaningful than ATE or PTT. However, they provide important highlights
about KN-SLAM. The rest of this section briefly described the values achieved
for these metrics.

Number of keyframes

Connected keyframes in the connectivity graph help to cull those deemed re-
dundant. Our approach in KN-SLAM limit the creation of links between key-
frames in the connectivity graph, which avoid the culling procedure to reach
them. This has a side effect: the mapping thread inserts more keyframes than
ORB-SLAM when the camera travels around the same region of the scene. In
such cases, a more dense graph (i. e., with more edges) helps to find a previ-
ous keyframe with a significant overlap with the current frame. However, if
the past keyframes are not connected, the mapping thread would likely cre-
ate a new keyframe. This consequence is more evident in the sequences where
the camera sweeps the scene multiple times (e. g., tum/fr3_walk_rpy). This in-
crement also affects the memory footprint of the process since keyframes are
the central data structure preserved in memory besides the map.

The number of keyframes has been analyzed using the mean for each
dataset (see Table 3.3). Overall, the number of keyframes is an average 15%
higher in KN-SLAM than ORB-SLAM. It is seen that the increment is most
noticeable in the sequences of TUM RGB-D or ICL-NUIM. The former is ex-
pected due to the number of loops in some sequences. The latter is caused by
the of_kt1 sequence and the false loop detection. In the sequences of KITTI
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Dataset KN-SLAM ORB-SLAM Difference

KITTI 901 822 12%
TUM RGB-D 57 55 17%
EuRoC 191 169 13%
ICL-NUIM 79 62 19%

Table 3.3: The mean number of keyframes for each sequence in the evaluated
datasets. The third column represents the mean of the percentage incre-
ment per sequence between KN-SLAM and ORB-SLAM.

Dataset KN-SLAM ORB-SLAM Difference

KITTI 15 948 29 763 −47%
TUM RGB-D 1087 3379 −41%
EuRoC 3732 11 656 −67%
ICL-NUIM 1411 1930 −34%

Table 3.4: The mean number of edges in the connectivity graph generated by KN-
SLAM and ORB-SLAM for the sequences of the evaluated datasets. The
third column represents the mean of the percentage decline per sequence
between KN-SLAM and ORB-SLAM.

and EuRoC, KN-SLAM inserts an average 13% more keyframes than KN-
SLAM. These sequences combine translation with rotations, and the camera
rarely passes across the same region.

Number of edges

One of our central goals is to reduce the number of connections between the
keyframes of the graph. This is accomplished by limiting the number of edges
in the connectivity graph. Hence, the total number of edges in the graph must
be significantly lower. Whereas ORB-SLAM only imposes a minimum number
of shared observations to create a link, KN-SLAM constrains the number of
links per keyframe to 20. We have analyzed the total number of edges at a
dataset level, as it is shown by Table 3.4.

Overall, the number of edges created by ORB-SLAM is an average 49%
higher than the same number for KN-SLAM. This decrease is more extreme
in the EuRoC dataset, where 67% fewer edges are created by KN-SLAM.
The lowest reduction is observed in the ICL-NUIM dataset due to the few
sequences that are comparable. In the other two datasets, the reduction is
slightly below 50%.

The number of edges does not impact the memory consumption as the num-
ber of keyframes since they are stored with pointers in a hash table. However,
they impact the NLLS optimization procedures that are performed to opti-
mize the map, the camera pose, and the loops.
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Dataset KN-SLAM ORB-SLAM Difference

KITTI 1.12 1.19 −7.71%
TUM RGB-D 2.40 1.12 4.29%
EuRoC 1.19 1.07 5.00%
ICL-NUIM 1.38 1.54 1.67%

Table 3.5: The mean ATRE introduced by KN-SLAM and ORB-SLAM grouped by
dataset. The third column represents the mean of the percentage difference
per sequence between KN-SLAM and ORB-SLAM.

Rotational error

The rotational error has been defined in Equation 3.2.4. This error is not usu-
ally analyzed in the evaluation of SLAM systems since it is relevant only in
sequences with pure rotational movements. However, these sequences are not
suitable for monocular SLAM, due to the concerns mentioned in Section 3.2.2.

At a dataset level, results show that the ATRE is reduced by KN-SLAM in
the KITTI dataset. The ATRE has imperceptible differences in the ICL-NUIM
dataset, whereas KN-SLAM exhibits an error around 5% higher than ORB-
SLAM in the other two datasets. There are 21 sequences where KN-SLAM
achieves lower error and 19 sequences where the ATRE of ORB-SLAM is lower.
Overall, the ATRE is always below 3°, except for the sequences fr3_walk_rpy

and fr3_nstr_tex_far of the TUM RGB-D dataset. In these two sequences,
KN-SLAM generates a higher error. The former is a sequence where KN-
SLAM has difficulties to track the camera due to its pure rotational movement.
The latter is not comparable (see Section 3.3.2), due to the twofold ambiguity
detected at bootstrapping. However, in the sequences where KN-SLAM boot-
straps the ATRE is slightly higher than ORB-SLAM, with an average of 1.67°
compared to 1.15°, respectively.

Our evaluation has included eight sequences with pure rotational move-
ments that can be analyzed separately. Among them, the most meaningful
ones are the subsets of sequences identified by tum/fr3_*_rpy and tum/fr3_-

*_halfsph. In the former, the ATRE created by ORB-SLAM is 65% lower,
whereas in the latter it is 25% higher. In the rpy sequences the camera ro-
tates around the optical axis so that a complete pose graph is created by
ORB-SLAM. The constraint of the number of links in the graph increases the
ATRE in KN-SLAM.

In the rest of the sequences, the difference between KN-SLAM and ORB-
SLAM in the ATRE ranges from −35% to 65%. In absolute terms this dif-
ference is always below one degree except for the previously mentioned se-
quences and the sequence V203 of the ICL-NUIM dataset. This sequence con-
tains several fast rotations that complicate the tracking so that the ATRE in
the trajectory obtained by KN-SLAM is 1.13° higher than ORB-SLAM.
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3.3.5 Comprehensive approach for Absolute Trajectory Error

We devote this section to dive into what challenging characteristics make our
system more suitable for a sequence. Our first idea was to seek correlations be-
tween the characterization of the sequences and the accuracy of the trajectory.
We delve into this core idea to outline a more systematic approach based on
Machine Learning. This idea consists in classifying the sequences of the eval-
uated datasets according to the accuracy w. r. t. ORB-SLAM. Each sequence is
represented in terms of the characteristics described in Section 3.2.2.

There is no doubt that the most commonly used metric to evaluate SLAM
is the ATE [33, 88, 121]. As it was explained in Section 3.2.4, it measures the
positional error in camera poses and accounts for the drift accumulated in the
estimated trajectory. Although it provides a summarized view of the accuracy
of the system in a sequence, we honestly think that it does not reflect other
relevant aspects that should be taken into account in a fair comparison of
SLAM systems. Other authors also share this viewpoint (see [81, 91]) since
they also include metrics like the starting ratio or the tracking success after
the initialization in their evaluations. We have adopted a more systematic and
reproducible approach based on classification algorithms using the sequence
labeling introduced in Section 3.2.2.

At the beginning of our research, we assume that our contributions would
KN-SLAM perform better in sequences with specific challenges such as shak-
ing and fast movements. However, our experimental results reveal that a sin-
gle feature is not enough to explain the differences w. r. t. ORB-SLAM. Indeed,
the SLAM pipeline includes tasks whose operation is affected by different
challenges. Thus, a combination of several challenges is what truly makes a
scene hard to track. This combination can be easily interpreted if it is mod-
eled as a weighted sum of the characteristics. Fortunately, some classifiers are
already base on this linear model.

The first step consists in merging the results described in Section 3.3.3 with
the characteristics assessed in Section 3.2.2. Our goal is to determine what
characteristics are more favorable to one system or another. We reformulate
the task as a standard classification problem with a binary category assigned
to each sequence. This category is labeled as KN-SLAM if the ATE achieved
by KN-SLAM is lower than the ATE achieved by ORB-SLAM. Otherwise, the
category is labeled as ORB-SLAM. Therefore, this label is chosen according to
the sign of the difference between the ATE of KN-SLAM and the ATE of ORB-
SLAM19. In the machine-learning argot, the characteristics of the sequences
are represented as features and the sequences as instances. These instances are
classified by the algorithm according to the assigned category.

Once the dataset is ready for training, a machine learning algorithm must
be chosen. There exist several alternative machine learning algorithms (see [106]
and the references therein). We seek for an algorithm based on a linear model
since its relation with the characteristics of the sequences is easier to under-
stand. In this kind of models, the coefficients or weights linked to the charac-
teristics are representative of the influence or relevance of such characteristics.
Thus, they indicate what challenges in a sequence might make it more suit-

19 The error is computed using six decimal positions for floating point.
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able to run KN-SLAM or ORB-SLAM. For instance, a weight close to 0 means
that the linked characteristic is irrelevant to decide whether to choose one
system or the other. On the contrary, a higher absolute value for a weight
emphasizes that the challenge should be taken into account at the time of
choosing a SLAM system.

There are several machine learning algorithms such as SVM [12], logistic
regression [59] or neural networks [110] that fit our linear model requirement.
Among them, we have chosen SVM with a linear kernel because it combines
simplicity, speed, and flexibility with a model easy to interpret: the absolute
value of the coefficients of this model is directly proportional to the discrim-
inatory power of the corresponding characteristic. Besides, the algorithm is
extensively referred in the literature for similar purposes, where its good prop-
erties have been highlighted. Next section reviews the fundamental concepts
and the mathematical background of this algorithm. Furthermore, we will
dive into the reason why the classifier has been chosen.

Support Vector Machine

Classification methods play an important role in data analysis in a wide
range of scientific applications. There are multiple classification algorithms in
the supervised machine learning landscape (see the comparison introduced
in [41] and the references therein). Obviously, the approached classification
problem influences the choice of the proper algorithm. According to Caruana
and Niculescu-Mizil [17], the most important aspects to consider include the
desired accuracy, the training time, the number of features, the size of the
training space or the linearity of the model. The simpler the algorithm, the
easier the interpretation of the classifier in the space of features.

One of the most widely known classification algorithms is SVM [12]. This
algorithm determines the hyperplane that split a collection of instances by
their corresponding category. In other words, given a training dataset com-
posed of the sequences labeled with their characteristics, the algorithm finds
the optimal hyperplane that separates the instances in the space of the charac-
teristics. This hyperplane is based on a combination of several support vectors
that maximize the distance between classes. To illustrate the meaning of the
hyperplane, think about the simplest case: a two-dimensional space of fea-
tures. In this case, the hyperplane can be visualized as a line dividing the
plane into two parts, so each class lay on one side. Higher dimensions require
to perform transformations in the space of features or the addition of more
synthetic features (i. e., as a function of the already existing features). Indeed,
SVM is widely used for high-dimension data classification.

The algorithm has several parameters to fit the resulting hyperplane to our
needs and the classification problem. These parameters influence especially
over the linearity of the underlying model, the accuracy of the classifier and
the training time. The most meaningful parameters in this broad set can be
reduced to the following:

• Margin. The separation between the hyperplane and the closest class
points. Good margins correspond to large separation between the esti-
mated hyperplane and the classified instances. Indeed, the main goal of
SVM is to achieve the best margin.
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• Penalty. Sometimes called regularization and referred by C, it quanti-
fies how much the algorithm should penalize misclassified instances in
the training dataset. A large value indicates that a small-margin hyper-
plane is preferred if the classification accuracy is improved. Conversely,
a small value means that a large-margin hyperplane is desired, even if
that hyperplane misclassifies more instances.

• Gamma. The distance between the hyperplane and the instances consid-
ered for its computation at training time. In other words, a high gamma
means that only those instances closest to the hyperplane are consid-
ered for the computation of the hyperplane, while a low gamma tells
the algorithm to include also instances far away from the hyperplane.

• kernel. The hyperplane is learned by transforming the space of features
for instances. This transformation requires to establish an algebra, which
is done by the kernel. Given a training dataset {(x1,y1), ..., (xn,yn)}
with xi ∈ Rd and yi ∈ {−1, 1}, each instance is defined by its features
x = (x1, ..., xd) and its class label y. The kernel predicts the class y of
a new input x using the support vectors (a subset of the inputs xi).
There are three main different types of kernels: linear, polynomial and
exponential.

The linear kernel separates classes by a linear boundary:

K(x) =
d∑
j=1

wjxj + b ,

where w = (w1, ...,wd) are the coefficients of the hyperplane and b

denotes the intercept. Linear SVM is commonly used for referring to
SVM with a linear kernel.

Other non-linear kernels split the space of instances with a separation
line in a higher dimension. Two examples are the polynomial kernel

K(x) = 1+ (
∑

xxi)d

and the exponential kernel

K(x) = exp(−γ
∑

x − x2i )

The class or category for a new instance x ′ = (x ′1, ..., x ′d) is determined by
the sign of the distance computed by the kernel. The optimal hyperplane with
maximal margin is found by a convex optimization procedure. The maximiza-
tion of the margin can be achieved by solving

arg max
b,w

∑
[1− yiK(x)]+ +Cλ(w) , (3.11)

where the penalty term Cα(w) = λ||w||
2
2 uses the L2 norm (“ridged penalty”),

which shrinks the coefficients without making them zero.
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Interpreting the hyperplane

The algorithm for linear SVM matches perfectly with our two main require-
ments: a short number of features for each instance and linearity of the model.
In this model, the coefficients w of the hyperplane represent the coordinates
of the vector orthogonal to that hyperplane. The direction of the vector repre-
sents the predicted class y for instance x. The absolute value of these coeffi-
cients determines the importance of a feature for the data separation task. In
this way, covariates playing an important role in discrimination can be iden-
tified according to their contribution to the classifier. Therefore, the classifier
trained with our dataset will have a set of coefficients that represent the rele-
vance of each characteristic in the classification result.

A wide number of feature selection methods have been proposed in the lit-
erature to take advantage of this property [131]. They have been applied in
other fields like bioinformatics. These methods can be subdivided into two
classes: filter and wrapper methods (see the classification proposed in [8]).

Filter methods discard irrelevant features before the learning algorithm con-
structs the prediction rule. An example of a filter method for feature selection
is Recursive Feature Elimination (RFE) [49]. It is employed to determine the
most expressive genes in a DNA sequence segmented with microarrays. This
method is based on the dual formulation of the hyperplane for linear SVM.
It uses the square of the coefficients as a ranking metric for deciding the rele-
vance of a particular feature.

Feature selection is performed within the optimization procedure by wrap-
per methods, which avoids overfitting and increases the predictive power of
a model [84]. One example of these methods is Least Absolute Shrinkage and
Selection Operator (LASSO)c̃itepbradley1998feature. It adopts a L1 penalty
function for SVM, which has the form

Cα(w) = λ||w||1 = λ

d∑
i=1

|wi|

In contrast to the conventional L2 penalty, this can shrink the small coef-
ficients of the hyperplane to zero. Other SVM-based example is Smoothly
Clipped Absolute Deviation (SCAD) [135]. This method uses a non-convex
penalty based on a quadratic spline function. This function behaves as L1
for small coefficients. However, it applies a constant penalty for large coeffi-
cients, whereas it increases it linearly in L1. In this case, the maximum penalty
reduces the probabilities of estimating large coefficients. The SCAD penalty
has better theoretical properties than the L1 function in large spaces of fea-
tures [37].

We have performed our analysis using the implementation of SVM pro-
vided by [101]. Every parameter uses the default value of the implementation,
except for the linear kernel and the variable penalty (or regularization) C. This
assesses the influence of the penalty over the tradeoff between the accuracy
and the margin of the hyperplane. The trained dataset includes only com-
parable sequences (39 of 47) according to the definition of outlier provided
in Section 3.3.2. The coefficients achieved for different penalties are shown
in Figure 3.10. It can be shown that the weights assigned to each characteris-
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Figure 3.10: Evolution of the coefficients of the hyperplane for different values of the
penalty C in linear SVM. The accuracy and the margin of the hyperplane
are shown in the background.

tic diverge when the penalty value is increased. However, their order is the
same starting from a penalty value of 0.25.
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Figure 3.11

We prioritize the accuracy of the classifier over a
large-margin hyperplane. We seek a classifier that
explains the maximum number of sequences, al-
though that implies a lower margin. This tradeoff be-
tween accuracy and margin can be visualized in Fig-
ure 3.11. We finally choose the coefficients for the
classifier trained with a penalty of C = 0.7. This clas-
sifier has a final accuracy above 95% with a margin
of around 0.50.

The coefficients of the hyperplane estimated by
SVM are represented in the second column of Table 3.6. The sign of the coef-
ficient indicates whether the characteristic benefits KN-SLAM (negative sign)
or ORB-SLAM (positive sign). Their absolute value is linked to the relevance
of the characteristic in the comparison. This relevance must be interpreted as
how much the characteristic contributes to bias the result to KN-SLAM w. r. t.
ORB-SLAM in terms of accuracy. However, a lower coefficient by itself does
not necessarily mean that one system manages that characteristic worse than
the other; it simply means that the characteristic does not explain the differ-
ences between both systems. The hyperplane created by SVM indicates that
a weighted combination of several challenges is what makes KN-SLAM more
suitable than ORB-SLAM for a sequence, or vice versa. Certain characteristics
influence more in that decision than others, according to the coefficients in the
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characteristic svm logreg mlp

Fast movements 0.69 1.08 1.01

Shaking movements -0.08 0 -0.01

Close range 0.37 0.56 0.49

Rotational movement -0.6 -0.77 -0.56

Translational movement -0.43 -0.71 -0.4

Dynamic scenes 1.2 1.81 1.41

Visual loops -0.48 -0.64 -0.48

High-frequency textures 0.67 1 0.91

Low-lighting -1.12 -1.75 -1.66

Table 3.6: Coefficients obtained by the SVM classifier trained with comparable se-
quences. Each row holds the coefficients associated to each characteristic
of the sequences. In the training dataset, the class of a sequence is assigned
according to the difference between the ATE of ORB-SLAM and the ATE
of KN-SLAM. The table is ordered in ascending order.

weighted combination. Therefore, we can conclude that KN-SLAM achieves
more accurate trajectories in sequences with

• a good balance between translational and rotational movements, with a
strong presence of both of them;

• visual loops at some points of the trajectory (especially at the end);

• consecutive frames with low-lighting images and low contrast between
pixels;

• highly textured regions, i. e., the materials of the objects have non-repetitive
textures;

• a steady camera, exceptionally allowing shaking movements;

• slow motion between consecutive frames;

• no moving objects between the camera and the scene;

• a relatively large distance between the camera and the scene.

We have trained other classifiers based on linear models to evaluate the co-
herence and consistency of our analysis. The Multilayer Perceptron (MLP) [109]
and Logistic Regression [59] have been examined with this goal. The coeffi-
cients achieved by these classifiers are shown in the third and fourth column
of Table 3.6. The MLP classifier has been trained with α = 0.01 to obtain an
accuracy of 97% when it is evaluated with all the sequences. The Logistic
Regression classifier uses a L1 penalty function and an inverse regularization
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strength C = 2.0. This last parameter has the same meaning than the regu-
larization or penalty parameter C of SVM but on a different scale. Although
the order of the coefficients differs slightly between the three models, they
agree in the relative significance. This significance is created by grouping the
characteristics according to the absolute value of their respective coefficients
in three different categories:

almost irrelevant shaking movements of the camera;

quite relevant fast movements, high-frequency textures, close-range scenes,
translational and rotational movements, the presence of visual loops;
and

very relevant dynamic scenes, low-lighting environments.

The sign of these coefficients must be interpreted as follows: in those se-
quences where the challenges corresponding to the negative coefficients have
a higher weight than the challenges corresponding to the positive coefficients,
KN-SLAM achieves more accurate trajectories than ORB-SLAM. According to
the coefficients shown in Table 3.6, the amount of shaking movements of the
camera is nearly irrelevant to discriminate between KN-SLAM or ORB-SLAM.
In other words, the differences in the accuracy between both approaches are
not determined by this characteristic.

The low relevance of shaking movements means that quick and short cam-
era movements affect similarly to both systems. This is logical because the
map points supporting the tracking between consecutive frames are well-
established by both systems, i. e., they are seen at least by more than two
keyframes. Our more exhaustive strategy for guided matching does not in-
troduce any improvement in the accuracy of sequences where the camera
shakes.

There are three challenging situations where KN-SLAM achieves more accu-
rate results than ORB-SLAM: the presence of strong rotations and translations
in the camera motion and the presence and detection of visual loops.

The presence of strong rotational/translational movements benefits KN-
SLAM. Besides, the fact that both movements have a similar weight means
that the best results are achieved in sequences where both kinds of move-
ments are performed by the camera. The main cause is the edge-pruning
mechanism introduced in the connectivity graph by KN-SLAM. Strong rota-
tions are, in general, difficult to track by monocular SLAM, especially when
the camera rotates around the optical axis. To deal with this challenge, ORB-
SLAM uses a spawning policy that introduces keyframes as fast as possible.
Thanks to our limitation in the number of keyframes linked to the reference
keyframe, the local BA achieves better results. The keyframes involved in this
optimization share most of the observations viewed in the reference keyframe,
but the keyframes with fewer observations are not included. The optimization
is less constraint to previous keyframes that could be possibly bad estimates.
Moreover, the side effect of the accumulated drift can be corrected later in a
possible loop closure.

Precisely, the presence of visual loops also benefits KN-SLAM. As explained
in the previous paragraph, this is caused by the inclusion of a more limited lo-
cal map in the local BA optimization. However, our contributions to the loop
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detection procedure are key to this improvement. The use of smarter thresh-
olds for searching more candidates without including false positives allows
KN-SLAM to detect more loops than ORB-SLAM. The kitti/09 sequence of
the TUM RGB-D dataset is a good example. This sequence appears as an
outlier in Figure 3.8 because ORB-SLAM is not able to detect the final loop
closure (in some cases it even does not completely track the whole sequence),
whereas KN-SLAM detects the final loop in all executions where the tracking
is not lost. What is more important, in sequences where a loop is detected by
both systems so their ATE can be considered comparable, KN-SLAM outper-
forms the accuracy of ORB-SLAM. This can be explained again by the removal
of some connections in the connectivity graph. It simplifies the optimization
procedure in long trajectories where the number of shared features is high
enough20. Visual loops are prone to appear in sequences recorded in natural
conditions, or they can be imposed to the trajectory.

On the contrary, there are other three challenging situations where KN-
SLAM behaves worse than ORB-SLAM: the camera travels fast around the
scene, the objects of the scene have homogeneous textures and the distance
between the camera, and the scene is too short.

Each feature should not be interpreted in an isolated way. Instead, we must
consider the combination of these three features to analyze why KN-SLAM
achieves worse results. Despite our improvements in the guide matching pro-
cedure, the combination of fast motion with close ranges in low-texture envi-
ronments is managed better by ORB-SLAM.

When the camera performs fast movements between keyframes the tracker
has fewer observations to accurately determine the map point position. Thus,
the remaining map points must have the higher possible accuracy. Indeed, the
accuracy of the estimated pose is directly related to the number of tracked fea-
tures. Thus, if the number of map points included in the local BA is too low,
it is likely that the estimated pose had a higher error. If this number degrades
below a threshold, the tracking can be lost. Even though the minimum thresh-
old is not reached, the accumulated drift affects the accuracy. The effect is
reinforced in the absence of loop closures. We can validate this assumption
by looking at the average number of edges in sequences with these character-
istics, which is always above the limit of 20 imposed by our algorithm.

The argument stated in the previous paragraph is also valid for closed-
range sequences and high-frequency textures. In the first case, the overlap
between consecutive keyframes decreases and fewer inliers are available to
estimate the camera pose, so they should have high quality. In the second
case, it is difficult that any indirect SLAM system detects a set of tractable
keypoints. The absence of enough keypoints to track leads to lose the track-
ing between consecutive keyframes. Recall that direct approaches bypass this
issue by treating direct pixel intensities with the inconvenience that they are
more sensitive to image noise and blur. Therefore, again fewer map points
are detected and, if the remaining points are not well-optimized, the pose es-
timate is less accurate. In general, we can affirm that a lower number of points
in the local map (i. e., the map corresponding to the reference keyframe) dete-
riorate the results achieved by KN-SLAM.

20 Note that the essential graph used in loop optimization takes the edges with βobs > 100
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We have to take into account that sequences with a shorter distance between
the object and the camera (close range) are also affected by our more restric-
tive policy in the connectivity graph. The lower overlap between consecutive
keyframes increases the pace of insertion of new keyframes. However, the low
number of shared observations usually discards the edge between keyframes.
Although this also affects to ORB-SLAM, it can be counterbalanced by linking
more than 20 keyframes. These keyframes are usually spatially close enough
to the current keyframe, but they are far away in terms of the time of inser-
tion. The rejection of these edges between spatially-similar keyframes adds
an accumulated drift in the keyframes created later when the camera moves
away from the close-range subsequence. This is an additional cause of under-
performance of KN-SLAM in this sort of sequences.

Finally, the most meaningful characteristics to discriminate the results for a
sequence are dynamic scenes and low-lighting environments. For the first one,
ORB-SLAM outperforms KN-SLAM whereas for the second one KN-SLAM
outperforms ORB-SLAM.

The presence of dynamic objects affects negatively to KN-SLAM. Any dy-
namic object causes that a region of the frame cannot be tracked w. r. t. the
previous keyframe. This implies a lower number of points in the local map
and the argument stated in the paragraph above can be applied. This partially
explains the differences between both systems in sequences with dynamic ob-
jects, but the accuracy is also affected by the performance of the relocalization
procedure. This procedure is launched after the loss of the tracking. It ac-
tively searches an existing keyframe visually similar to the current frame for
establishing the camera pose. The neighboring keyframes in the covisibility
graph are included in this search, and they also participate in the PnP opti-
mization to align both keyframes. Since we are connecting fewer keyframes
than ORB-SLAM, it is more difficult to find the correct alignment. Thus, the
higher the connectivity of the graph, the more accurate the estimated pose.
Furthermore, there are two possible causes for relocalization: the loss of one
or more frames, or the loss of most of the keypoints due to the intersection
of an object between the camera center and the map point. Our experimental
results have shown that KN-SLAM is more affected by the former one.

The presence of low lighting environments increases the probability to
achieve a better tracking with KN-SLAM than with ORB-SLAM. Even though
ORB detector is really discriminative and works in low contrast environments,
features detected in these environments are more difficult to discriminate.
Our contributions to the guided matching algorithm ensure a higher qual-
ity of the matchings between keypoints and map points. These high-quality
matches allow the system to preserve an acceptable accuracy, even though
the number of map points is reduced. At least the accuracy is preserved bet-
ter by KN-SLAM than ORB-SLAM, which discards low-quality matchings in
RANSAC iterations. They are labeled as outliers by the optimization proce-
dure when the matching is not well-determined. Although this is the most dis-
criminative characteristic, it must be interpreted beside the other ones. There
are only 15 sequences introducing this challenge, all of them in the EuRoC
and KITTI datasets. The results show that KN-SLAM performs better then
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ORB-SLAM in 11 out of 15, which gives an idea of how this characteristic is
significant but it does not determine by itself the best SLAM system.

3.4 conclusions

We have implemented KN-SLAM, an indirect monocular SLAM system able
to track the trajectory of a single camera while a sparse map of the scene
is being reconstructed. Our system is based on the work developed in ORB-
SLAM. However, KN-SLAM introduces some novelties:

• It uses a connectivity graph where the connectivity is limited by the
number of represented observation already included. This limit is also
clamped between a minimum and maximum vertex degree. The number
of edges is reduced up to a 75% depending on the sequence.

• It loads a reduced version of the ORB vocabulary, which is also loaded
faster to reduce the bootstrapping times of the system. Loading times
have been reduced from 8 s to 0.80 s.

• It tracks more frames thanks to adaptive thresholds in the bootstrapping
procedure that decay with the number of failures.

• It detects more visual loops without increasing the number of false pos-
itives, using a set of lower thresholds for inliers that vary depending on
the results in the previous step.

We have included in our evaluation sequences from four datasets devel-
oped for different purposes. Sequences have been normalized following the
file structure and directory layout of the TUM RGB-D dataset to be able to
reuse them for testing several SLAM systems. Ground truths have been also
transformed when the camera coordinate system does not match the coordi-
nate system of the tracker. These sequences are left publicly available for the
benefit of the community.

Our system has been evaluated in the 47 sequences of the four datasets that
are suitable for monocular SLAM. Our evaluation compares several metrics
with the implementation provided by ORB-SLAM, focusing mainly on the ro-
bustness of the tracking and the accuracy of the trajectory. Sequences with an
insufficient number of keyframes or multiple tracking failures in consecutive
executions of one SLAM system are considered incomparable. The number of
sequences tracked without failure by KN-SLAM is 46, whereas ORB-SLAM
tracks 39. Thus, a total of 39 sequences are considered comparable in our
evaluation.

It can be argued that the number of sequences is not high enough to obtain
reliable results. However, most of the state of the art evaluations have been
conducted using a specific dataset or indeed the subset of sequences that bet-
ter adapt to the purpose of the evaluated algorithm. We have included some
sequences not appropriate for monocular SLAM to evaluate the robustness
of KN-SLAM. Every included sequence introduces particular aspects beyond
its challenges. Such aspects are displayed in our characterization since we see
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interesting to evaluate the extents of their effect on the accuracy of the trajec-
tory. Moreover, the number of sequences is not a problem to apply the SVM
classifier since the underlying mathematical model suits perfectly to a low
number of instances.

Our results show that KN-SLAM outperforms the robustness of ORB-SLAM
in 29 of the 47 sequences with an average 86% of tracked trajectory. If the 47
are considered, KN-SLAM tracks 86% of the frames while ORB-SLAM tracks
the 75%. In terms of accuracy, KN-SLAM achieves a lower ATE in 25 of the
39 comparable sequences, with an average 14% of improvement in the ATE.
In this subset of sequences KN-SLAM also tracks an average 6% more frames
than ORB-SLAM.

Each sequence presents multiple challenging characteristics for monocular
SLAM that enrich its evaluation. We have labeled the sequences on a five-level
scale for each characteristic, in order to discriminate the result achieved in our
evaluation. These results show that the accuracy of the trajectory is improved
depending on the characteristics of the sequence. We have used the character-
ization of the sequences in a SVM classifier to decide what type of sequence
is better handled by KN-SLAM w. r. t. ORB-SLAM in terms of accuracy. We
have concluded that KN-SLAM achieves better accuracy in sequences

• with a good balance between camera translations and rotations, several
visual loops and recorded in low-lighting environments; and

• without moving objects, high-frequency textures, fast movements of the
camera or short distance between the camera and the scene.

3.4.1 Compliance with objectives

The objectives of our research were initially stated in Section 1.2. This section
is devoted to evaluate and review the degree of fulfillment of these initial
objectives according to the final results shown in Section 3.3.

Increase the Percentage of Tracked Trajectory

Our experiments show an average 11% increase in PTT for all the sequences
(86% for KN-SLAM, 75% for ORB-SLAM). Furthermore, the difference in the
PTT is also positive in those sequences where the ATE is also improved by
KN-SLAM (84% for KN-SLAM, 77% for ORB-SLAM).

There are some specially challenging sequences, such as tum/fr1_floor or
icl/kt3), where ORB-SLAM refuses to initialize in all executions. However,
KN-SLAM is able to bootstrap in these sequences too, including in the chal-
lenging case of tum/fr3_nstr_tex_far. Sequences where the bootstrapping
procedure of ORB-SLAM usually fails are characterized by fast motions, high-
frequency textures and low variance in the depth of the points for the initial
map, which leads to corrupted maps. Actually, 5 out of 8 of these sequences
belongs to the ICL-NUIM dataset.

As a general remark, we have observed that KN-SLAM bootstrap sooner
in 5 out of 10 sequences of the KITTI dataset. If we dive into the differences
between the first frame tracked by each system, we see that it is only one



3.4 conclusions 115

frame. The only exception is the kitti/03 sequences, where the KN-SLAM
does not bootstrap until the ninth frame. This is due to an outlier in one of
the 11 experiments. Nevertheless, we can say that KN-SLAM start sooner or
at the same time as ORB-SLAM.

Bootstrap as soon as possible

The frame at which a system starts to track a sequence can be evaluated by
looking at the frame - timestamp associations of the sequence. We search
for the index of the first association corresponding to the first keyframe of
the resulting trajectory. We rely on these associations since the ground truth
usually includes a different set of frames.

The first frame of a sequence is defined as the mean of the starting keyframe
for all the executions in that sequence. The first frame is not comparable when
one of the evaluated systems does not bootstrap the sequence. In our exper-
iments, we have checked that KN-SLAM starts sooner than ORB-SLAM in
22 sequences. On the contrary, ORB-SLAM initializes sooner in 8 sequences.
There are 9 sequences where both systems start at the same frame and 8 in-
comparable sequences.

Adaptive strategy for visual loop detection

This objective is considered fulfilled thanks to the broad variety of sequences
in which KN-SLAM has been evaluated. In these sequences, KN-SLAM de-
tects more loops than ORB-SLAM without inserting false positives. It also
adapts to the environment of the scene, as it is shown by the sequence kitti/09.
This is the most representative example of our improvements due to the rele-
vance of the longitude of the trajectory and the amount of accumulated drift.

Reduce the trajectory error in natural conditions

A sequence recorded in natural conditions is characterized by slow motion
without shaking, the presence of translational and rotational movements (with
an eventual loop) and the absence of artifacts like high-frequency textures or
low-lighting environments. As it has been explained in Section 3.3, these se-
quences are better tracked by KN-SLAM in terms of ATE and PTT. Good
examples of these sequences are tum/fr2_desk, euroc/MH01 or icl/kt2.

In general, a sequence recorded in natural conditions is a sequence free of
challenging characteristics, i. e., special situations introduced for testing the
robustness of a SLAM system. Although every dataset includes a set of “easy-
to-track” sequences for debugging purposes, the existence of a dataset with
sequences recorded in natural conditions would be helpful. In this sense, the
closest dataset is KITTI, since its sequences have been recorded in real-world
conditions.

Deal with more sequences

We aim at building a system that is robust against exceptionally challenging
situations in order to handle any sort of sequence. These sequences include
a challenging bootstrapping due to high-frequency texture or low-parallax
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Figure 3.12: The colored map (sparse point cloud) generated for the sequence
tum/fr2_desk with 2964 frames and 7868 points.

movements of the camera. Our experiments show that KN-SLAM tracks 46
of 47 sequences, while ORB-SLAM only tracks 39. Furthermore, KN-SLAM
tracks more than 50% of the frames in 43 out of 47 sequences, whereas ORB-
SLAM does the same in 37 of 47 sequences. Therefore, taking into account
the diversity of datasets and the sequences contained in them, we can affirm
that KN-SLAM deals with more diversity regarding scene environments and
sequences.

Colored map

The goal is to include RGB information of the map points tracked by the
system. This information allows a viewer to distinguish between the objects of
the scene by the color of their points. The color of the images is not stored by
ORB-SLAM in the tracked keyframes. Nevertheless, KN-SLAM implements
an optional OpenGL-based GUI that displays information about the current
frame, the keyframe, the trajectory and the points in the map. This map is
represented as a colored point cloud where each point is rendered with a size
of one pixel.

We save the image corresponding to each keyframe to recover the color
of a map point. This is accomplished by averaging the color of the observa-
tions of the map point. A median filter allows us to deal with noise and blur
in the original keyframes where the map point is observed. The Figure 3.12

shows a screenshot of the GUI with information about the last frame of the
sequence tum/fr2_desk and the point cloud. The information about the frame
is overlayed at the bottom of the window that renders the current frame. The
colored point cloud representing the map is rendered in the background of
the window with a point size of one pixel.

Reduce booting times

One of the main problems of ORB-SLAM is the time required to load the
ORB vocabulary, which is internally used for relocalization and loop detec-
tion. In our contributions, we have implemented a faster loader that uses a
serialized version of the visual vocabulary using protocol buffers (see Sec-
tion 3.1.1). Loading times in our experiments have been reduced from 8.96 s
to 0.79 s, which represent a reduction in one order of magnitude. These times
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KN-SLAM ORB-SLAM

At the map creation 717 503

At the end of tracking 869 541

Number of keyframes 65 60

Average / keyframe 2.30 0.65

Table 3.7: Mean memory footprint at different moments for the sequence tum/fr1_-
desk (in MB). The average per keyframe can be extrapolated to other se-
quences.

correspond to the mean of 11 consecutive executions of each system. They do
not depend on the sequence, so we considered this objective as fulfilled.

Reduce the memory footprint

Our principal goal is to promote the adoption of SLAM in devices with mod-
erate computing resources. Thus, we aim at working with the minimum
CPU consumption and a small memory footprint. A side effect of reduc-
ing the number of edges in the connectivity graph is the increase in the
number of keyframes. When the culling procedure search for redundant key-
frames it uses the connectivity graph to determine the neighbors of the cur-
rent keyframe. Therefore, a less-connected graph usually implies the insertion
of more keyframes, although it finally depends on the trajectory.

The increase in the number of keyframes in the connectivity graph impact
on the memory footprint. This impact depends on the memory required for
each keyframe. One contribution in KN-SLAM is the preservation of the color
of the map. As we have mentioned a few paragraphs above, the color of a map
point is determined by interpolating between its observations. This requires
to maintain the RGB image in memory for each keyframe, which increases
significantly the memory per keyframe.

According to our experimental results shown in Table 3.7, the average mem-
ory required per keyframe have increased from an average of 0.65MB per
keyframe in ORB-SLAM to an average of 2.30MB per keyframe in KN-SLAM.
These results have been obtained for the sequence tum/fr1_desk, but they
can be extrapolated to the rest of the sequences since the information stored
for each keyframe is independent of the sequence. Thus, it is also likely that
longer sequences would produce a higher memory footprint due to the in-
creased number of keyframes to describe it.

The additional 215MB of memory required when the system starts is due
to the additional libraries included for the visualization of the frame, the con-
nectivity graph and the map of the scene.

3.4.2 Future work

This section includes some of the ideas and contributions left aside due to our
limited resources to carry on the required research.
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Firstly, our evaluation could be improved by considering the impact of
removing connections in the connectivity graph at each step of the SLAM
pipeline, instead of the system as a whole. New metrics may be defined, and
the results can be interpreted at a stage level and at a global level. We have
specified some of the observed effects in Section 3.3, but a thorough study
would be required.

As our results have shown, an accurate position of the map point influences
the accuracy of the pose and the robustness of the tracker. Although local BA
is usually enough to create an accurate map in few iterations, a probabilistic
mapping framework might achieve faster convergence in the estimated depth
of several observations. This idea can be applied in the mapping thread of
KN-SLAM to increase the robustness of the tracking.

The problem of tracking low-textured environment is inherent to indirect
SLAM. However, direct methods could be combined with indirect methods
as a fallback when the tracking is lost. This increases the complexity of the
system but makes it more robust to every type of environment. Furthermore,
it does not necessarily increase the computational cost since the fallback pro-
cedure would be invoked only when the tracking is lost. The tracking would
be performed w. r. t. the reference keyframe, which must have a short baseline
with the current frame.

Our evaluation could be easily extended to decide which system would
achieve better accuracy in an unknown sequence. To achieve this, the charac-
teristics of the new sequence should be assessed. This is the intended applica-
tion of machine learning algorithms used for supervised classification. How-
ever, we have not evaluated the accuracy of the classifier outside the training
dataset. Besides, our training dataset is too small and contains few sequences
recorded in natural conditions to generalize our results in other sequences.
Nevertheless, it would be nice to have a model capable of deciding which is
the best SLAM system to use. The required data can be collected if the system
were used in real-world applications.

One of the main drawbacks of our approach is the increment of the memory
footprint. The culling procedure does not include the second level neighbors
when searching for redundant keyframes so in a less-connected graph some
keyframes are maintained. This could be fixed by modifying the culling pro-
cedure. However, this also reduces the accuracy reached with our approach.
The tradeoff between accuracy and performance is one of the keys to design-
ing a SLAM system. A deeper study of the relation between the number of
keyframes and the ATE is left as future work.

The trajectory and the map retrieved by SLAM are useful for many applica-
tions (e. g., VR/AR). Furthermore, the keyframes and the point cloud allows
us to augment the original model with an additional 3D reconstruction that
provides refined information about the scene. This information is required as
input for the basic tasks and applications of several industries such as archi-
tecture, video games, audiovisual production, etc. Next chapter is devoted to
exemplifying this application to the AEC industry.



4 B U I L D I N G I N F O R M AT I O N
M O D E L L I N G

The Architecture Engineering and Construction (AEC) industry assembles a
big number of stakeholders coming from different fields and professions. In
any building project, they have to collaborate across the different phases of the
lifecycle of the project, from design to retrofitting. The best way to collaborate
is working on a set of standards for representing the structural parts and the
constructive processes. Then, stakeholders can exchange information about
the building to enrich the corresponding tasks assigned to each stakeholder.

The BIM methodology surged in an attempt to facilitate the collaboration
between different stakeholders. This methodology encourages the stakehold-
ers to share the building information across its entire lifecycle. This informa-
tion includes the processes involved in the scheduled planning of the con-
struction. Scheduled tasks can be tracked in time (i. e., checking the current
date and the scheduled deadline) and space (i. e., matching the current 3D
reconstruction against the original 3D model). The planning can also be used
to simulate the state of the building at a specific time as a snapshot. Further-
more, the advance of the construction can also be simulated by transitioning
between consecutive stages and tasks.

Despite the benefits stated in the previous paragraph, the adoption of BIM
is being slow. Indeed, its main promoters are the public governments, in an
effort to reduce the maintenance costs of the building project along its life-
cycle. The main reasons for this lazy adoption are the initial investment and
the complexity of the tools to implement this new methodology. This barrier
can be reduced by developing applications within a limited scope of BIM. An
intuitive visualization and a simple creation of BIM projects would help to
accelerate the adoption. Ubiquity is another important trait, so the proposed
solution should be accessible from different devices too. The visualization
of the building model can be addressed with the new Web3D technologies
(see Section 2.7.2).

In this chapter, we dive into 3D-SIMOS, the third component of our ref-
erence framework (see Section 1.1). A subset of the results introduced here
have been previously published in [29]. This component is an advanced vi-
sualization software that integrates the geometry of the CAD model of the
building with its planning in a single project following the BIM methodology.
The resulting project can be visualized in any modern web browser without
additional plugins. The software has been designed to be easy to use in order
to foster the BIM adoption among the AEC stakeholders. The use of standard
technologies, open source software and standard file formats facilitates the
extension of the system to support future functionalities.
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The rest of the chapter is organized following the same scheme as Chap-
ter 3. Section 4.1 introduces our contributions concerning the representation,
alignment, and simulation of tasks on buildings. It also details the symbolic
representation that supports both processes and building spaces. In addition,
the design of 3D-SIMOS is described at the end of the section. Section 4.2 spec-
ifies the experimental methodology followed to evaluate our results. Next,
Section 4.3 announces, analyzes and discusses the results. Finally, Section 4.4
summarizes the conclusions of this part of our research and enumerates open
challenges to be researched in the future.

4.1 contributions

The representation and management of 3D information is a meaningful prob-
lem concerning computer graphics and 3D reconstruction. Highly repetitive
spaces can be modeled with cuboids as the most basic constructive blocks.
Irregularities in the spatial organization can be modeled with cuboidal maps
(i. e., the image of a cuboid). These cuboids can be patched and recombined
along cuboidal chains. These chains can be evaluated by functionals, which
are attached to each chain using combinatorics on the faces of the cuboids.
This contribution is outlined in Section 4.1.1.

The underlying model of BIM is represented by the Industry Foundation
Classes (IFC). It allows us to design new procedures that take advantage of
combining constructive elements and processes around the building. We have
formulated a new procedure to manage the geometry and the tasks of the
building using a graph-based symbolic representation. Structural (i. e., objects
and relations) and functional (i. e., generalized functions) aspects must be
combined to achieve this goal. Processes of the AEC industry can be validated
and tracked using this representation. Further details about this procedure
are provided in Section 4.1.2, which is based on the properties of the graph
introduced in Section 4.1.1.

The traditional workflow using CAD defines the planning and the geome-
try of the building in separated files. As we have mentioned in Section 2.7, the
AEC stakeholders are progressively transitioning from CAD to BIM. However,
the adoption of BIM is still limited, and there are no easy ways to migrate a
project from CAD to BIM. To alleviate this problem, we have developed an
alignment between the tasks of the planning and the geometry of the build-
ing to track the construction advances. The results of the alignment are repre-
sented using the IFC to make them compatible with the rest of BIM models.
We explain this process in Section 4.1.3.

We have implemented our contributions in 3D-SIMOS, a Web3D applica-
tion to track, showcase and simulate the geometry and the planning of the
building in any WebGL-capable web browser. Real-time information about
the current state of the building can be merged with the designed information
for accurate reporting. The application also provides the user with advanced
visualization functionalities to inspect the building. We dive into the details
concerning the design and implementation of this application in Section 4.1.4.
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4.1.1 Cuboid-based modeling

Object-based models can be managed using symbolic representations linked
to the morphology of the objects. The evolution of these objects (i. e., their
changes over time) can be represented by a flow, which is discretized with a
scalar, vector or tensor field. In this work we have focused on the attributes or
properties linked to the processes, which are represented by scalar fields.

Three-dimensional models of buildings can be segmented in a collection
of interconnected spaces. These spaces can be modeled in terms of basic ge-
ometric primitives like cuboids and their constituent components. Indeed, it
is possible to use any topologically-equivalent variation of these primitives,
which can be created using a continuous map instead of a conventional linear
map. The spaces of the building can be viewed as cells, which are composed
by a set of connected cuboids whose boundary forms a cuboidal complex
(see e. g., [117]). This representation is also compatible with curved surfaces
and with holes in the surface. Cuboids and their possible degenerations (i. e.,
prisms and tetrahedra) are assembled along their boundaries to represent
built spaces in AEC environments.

One of the main advantages of cuboidal representations is that cuboids
can be managed using contraction/expansion transformations defined by a
combinatorial kernel. This is a particular case of the discrete version of blow-
ups and blow-downs used in Algebraic Geometry. These transformations will
be detailed in the next section.

A PL-cuboid is the image of a cube by an affine map, whereas a Piecewise
Smooth (PS)-cuboid is the image of a cube by a continuous map. For the sake
of simplicity, we constrain ourselves to structures given by PL-cuboids and
their adjacency and incidence relations. Indeed, both types of structures can
be managed using the same combinatorics.

A symbolic representation

Graph-based representations are commonly used in GIS and BIM. As we have
stated above, any constructive space can be represented by an adjacency graph
of cuboidal decompositions of its indoor and outdoor spaces. This graph has
associated a dual adjacency graph G, where each node ni ∈ G corresponds
to the centroid of each cuboid or cubical cell. Edges eij =< ni,nj >⊂ G

correspond to adjacent cubical cells that bound the filled workspace. Finally,
faces fijk...m = {eij, ejk, . . . , emi} ⊂ G correspond to circular paths of adjacent
cubical cells in any spatial direction representing open spaces1. The main
advantage of using this representation is that classical topological tools can
be applied for information management.

Any cubical representation supports recursive grouping and subdivisions,
which can be efficiently managed with an octree [86]. There is a finite number
of levels of depth corresponding to successive subdivisions. The boundary op-
erator links each cubical cell with its faces (e. g., slabs, roof, walls), faces with
edges (columns), and edges with vertices (corners or joints). This operator can
be extended by linearity to cubical complexes representing other objects. Sub-
division procedures can be used to add elements such as doors or windows

1 Outdoor spaces in walls, floors, and roofs are included in CityGML, but not in IFC.
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for faces, or installation networks for enlarged edges. Any functional can be
defined over a cuboid to model specific attributes of the represented element.

Cubical representations have already been proposed by other authors. For
instance, utility networks have been designed with graphs in [57], where the
features of the network are modeled as junctions. In this case, a pipeline is
described by a graph with the form of a polygonal chain. In this work, certain
nodes include embedded components as subgraphs that can be expanded or
contracted. With this representation, the manager can manage the network
and the processes associated with physical elements.

Moreover, the topology of the representation is flexible enough to adapt
to evolving coarse models, as it has been shown by Zlatanova, Rahman, and
Shi [138]. The main advantage is that well-known topological tools are suit-
able for set-theoretical, functional and symbolic representations. Hence, they
can be adapted to objects, fields, and graphs. Furthermore, topology provides
invariants preserved in a large number of graph modifications.

The representation can be extended to annotated graphs to include labels
and pointers. Labels can represent construction metadata linked to the corre-
sponding ontology. Pointers refer to the localization of the physical elements
represented by nodes and edges. Each element is associated with its adjacent
elements by the following inclusion relation:

p
(0)
i ∈ s(1)ij ⊂ f

(2)
ijk... ⊂ V

(3)
ijk`... ,

where the superindex denotes the dimension of points, segments, faces,
and volumes of a cuboid. They verify the following incidence conditions:

• Two cuboids share a face: V(3)
ijk`... ∩ V

(3)
ijkm... = fijk

• Two faces share a segment: f(2)ijk ∩ f
(2)
ijh = s

(1)
ij

• Two segments share a common vertex: s(1)ij ∩ s
(1)
ik = p

(0)
i

These elements can be represented by a triple connected list with additional
attributes/labels related to embedded information.

4.1.2 Process management with graphs

Symbolic representations described in the previous section are useful for man-
aging the processes concerning the building. From the topological viewpoint,
the optimal design of the graph outlines two problems concerning the tasks
to represent:

• Planning tasks are solved by converting the graph in a tree. The Mini-
mum Spanning Tree (MST) algorithm can be used, for instance.

• Execution phases are solved by representing the pipeline of tasks with
a flowchart (see [66] and references therein). Tasks are interpreted as
evolving multi-paths Γ = (γ1, . . . ,γa(t)) submitted to different kinds of
constraints G = (g1, . . . ,gs).
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Figure 4.1: A cubical complex is defined by different cell types: 0-cells or vertex (red),
1-cells or edge (green), 2-cells or pixel (blue), 3-cells or voxel (orange).

The graph becomes non-static when it is used along the building lifespan.
An evolving model must be developed to manage incidences as changing
graph features. The expansion or contraction of subgraphs at different levels
of depth lift these subgraphs to a hypergraph for lowering redundancy in
symbolic representations. Adjacency graphs can be embedded at different
Level of Detail (LoD) to provide a spatio-temporal representation of cuboidal
maps. Thus, construction processes are represented as embedded graphs that
vary along time.

A scheduled task can be inserted at each level in graph nodes (involv-
ing structural elements, materials, installations) and edges (connecting tasks
linked to adjacent cells). Then, ordered subgraphs corresponding to layers can
be selected by different criteria (e. g., processes, tasks, activities), and changes
like identification/insertion of events can be managed. Again, they are repre-
sented as operations and transformations acting on the graph.

The cubical complex

Cubical complexes represent quasi-regular spatial decompositions (see Fig-
ure 4.1). A cubical complex is composed of a weighted chain of cuboids with
embedded components, coupled with the boundary operator (see [1]). Such
weights can be associated with the relevance of attributes, such as materi-
als properties, structural behavior, indicators of utility networks, energy effi-
ciency, etc. Processes can be classified by the topological invariants imposed
on cubical complexes. Indeed, the management of processes as symbolic in-
formation was already presented in [7].

A volumetric segmentation of a 3D mesh defines a PL-model. The basic cell
of this model is represented by a cuboid. The model is the adjoint of mul-
tiple basic cells edα along boundary components ∂edα). In this representation,
processes correspond to fields defined on objects where the simplest case is
given by functions (i. e., a scalar field). This formulation comes from Alge-
braic Topology, where a chain (weighted combination of cells) is replaced by
a co-chain (weighted combination of functions defined on cells).
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Figure 4.2: The 2D simplex can be converted to a unit square through expansions.

Taking into account the wide variety of decoupling strategies and their
resulting decompositions, we shall restrict ourselves to very simple objects
defined by cuboids. Each basic cell edα (where d is the dimension) is the im-
age by an application ϕα of the standard d-dimensional unit cube Cd, where
0 6 d 6 3; in particular C0 is a point, C1 is the segment [0, 1], C2 is the unit
square [0, 1]2 whose edges are C1, and C3 is the unit cube [0, 1]3 whose faces
are C2. In other terms, each d-dimensional unit cube Cd is the convex hull
of 2d vertices having binary coordinates in Rd. This binary scheme induces
an incremental ordering to efficiently determine relations. This ordering in-
duces a counterclockwise orientation on each cell when the appropriate sign
is selected. This is useful to evaluate operators on more complicated represen-
tations.

Hexagonal/triangular prisms can be achieved as simple subdivisions of
cubes by diagonal planes. This subdivision operation associates cubic cells
with simplicial cells. Hence, these prisms can be understood as degenerated
cuboids. Inversely, adjunction of simplicial cells returns cubical cells by pass-
ing through the prisms.

Less known is that a d-dimensional simplex σd can be converted to a unit
cube Cd through a set of controlled expansions for d > 1. Contraction and
expansion transformations modify cuboids using morphological operations
on graphs, which accumulate components along the boundary of the orig-
inal cuboid. An expansion operation replicates the opposite side according
to the dimension of the pivot element, which is considered the center of the
transformation. For instance, the expansion of a regular tetrahedron with the
pivot point at its barycenter gives a triangular prism. The expansion of this
prism pivoting along its largest line returns a cube (see the whole process
in Figure 4.3). Inverse transformations are defined by contraction operators.
These transformations allow us to manage scheduled tasks by supporting the
update, insertion, and evaluation of any cuboidal complex.

Next paragraphs dive into the details of these transformations applied to
two basic cases: the triangle and the tetrahedron.

the 2D case The required steps to perform the transformation in the two-
dimensional case are illustrated in Figure 4.2. The standard triangle σ2 =

H(p0,p1,p2) with center p2 = (0, 1) can be expanded by replacing such vertex
by a new edge e23 =< (1, 0), (1, 1) > (opposed to e01 =< p0,p1 >) with
the opposite orientation to the source edge e01 =< (0, 0), (0, 1) >. Here eij
denotes the segment < pi,pj > and i, j are written in binary form. Note that
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Figure 4.3: The 3D simplex (a tetrahedron) can be converted to the unit cube C3 in
two steps.

the coordinates of the new edge are obtained by adding 1 to the coordinates
of the original edge. A globally coherent orientation requires the cancellation
of the shared edge e12. Thus, we take the oriented triangle T123 with the
opposite orientation, i. e., − < p1,p2,p3 >. Then, the adjunction of triangles
gives the globally well-oriented unit square.

The final square is decomposed into two triangles by the diagonal d12 con-
necting vertices p1 = (1, 0) and p2 = (0, 1). These triangles are positively (i. e.,
counterclockwise) oriented to cancel the shared edge corresponding to the di-
agonal. If the diagonal is removed, the coherent orientation is still preserved.
The expansion transformation inverts the original orientation.

the 3D case The three-dimensional case describes the conversion of the
3D standard simplex (i. e., a tetrahedron) into the unit cube. It is a natural gen-
eralization of the 2D case described in the paragraphs above. The conversion
is performed in the two steps illustrated in 4.3:

1. Conversion of the 3D standard simplex to a triangular prism: The expansion
of the standard 3D simplex σ3 = H(p0,p1,p2,p3) pivoting at p3 =

(0, 0, 1), replaces this vertex by a new 2D face

f345 =< (0, 0, 1), (1, 0, 1), (0, 1, 1) > ,

which is opposite to the source

f012 =< (0, 0, 0), (1, 0, 0), (0, 1, 0) > .

The coordinates of the face can be determined by adding 1 to the vertices
of the original face f012 where fijk denotes the segment < pi,pj,pk >
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and i, j,k are written in binary form. Compatibility between orientations
can be achieved by making an elementary transposition.

2. Conversion of the triangular prism to a unit cube: The triangular face f012
(respectively f345) is expanded at vertices p0 = (0, 0, 0) (respectively,
p3 = (0, 0, 1)). Reusing the argument provided for the 2D case, a vertex
p6 = (1, 1, 0) (respectively p7 = (1, 1, 1)) must be added to transform the
triangle T012 in the square C0126 (respectively the triangle T345 in the
square C3457).

The unfolding procedure is similar to the planar case but harder to describe.
The unfolding process reproduces in an inverse order the computation of the
volume of a tetrahedron from its diagonal planes. More concretely, this pro-
cess decomposes the original cube in two triangular prisms and each prism
in three tetrahedra, which gives the well-known formula of the volume of the
tetrahedron as 1/6 of the volume of a parallelepiped.

Representation of building spaces

In structured environments, a multilinear map Lα converts a standard cube in
a cuboid (e. g., by modifying the scale for each direction). The basic case corre-
sponds to a cuboid, which is the image of a cube (see Section 4.1.1); depending
on the geometric framework, we shall distinguish Euclidean, affine or projec-
tive cuboids. Composition rules and elementary operations adapt cuboids to
arbitrary shapes since incidence conditions between linear elements are pro-
jectively invariants.

Cuboids can have curvilinear elements in non-structured environments.
These curved cuboids are the image of a cube by a multi-algebraic map ϕα.
From the topological viewpoint, the combinatorics of PL-cuboids are the same
as the combinatorics of curved cuboids. Furthermore, both of them can be
managed with octrees for adaptive subdivision. The tangency conditions (and
consequently, traversal properties) are preserved by projective transforma-
tions, such as in PL-cuboids.

For example, the product of k low degree algebraic curves is a continu-
ous map: snakes for k = 1, B-splines for k = 2 or T -splines for k = 3 (T
as in threefolds). Another example corresponds to quadratic (respectively cu-
bic) arcs, which can be parameterized by the segment whose image is the
affine map t 7→ (1, t, t2) (respectively t 7→ (1, t, t2, t3)). This parametrization
only requires three (respectively four) control points and it can be sampled
in an arbitrary way depending on the construction needs. This example can
be extended to a quadratic (respectively cubic) surface, which is locally pa-
rameterized by the product of two affine maps (u, v) 7→ (1,u, v,u2,uv, v2) (re-
spectively (u, v) 7→ (1,u, v,u2,uv, v2,u3,u2v,uv2, v3)). This image provides
quadratic (respectively cubic) patches that can be stitched together to provide
complex volumetric representations.

Cuboids can be matched along boundaries of cells (2D faces) with opposite
orientation to achieve PS-structures like B-spline surfaces. The matching can
be performed using flows whose essential elements are topologically equiva-
lent to 2D disks D2. The result is a cellular cuboid complex, i. e., a collection
of cubic cells that are topologically equivalent to ekα.
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The boundary map ∂ : Ck(X) → Ck−1(X) links the faces (with the induced
orientation) of the k-dimensional cuboids of a chain X. The boundary map is
extended by linearity to the boundary operator ∂ : Ck(X; Z) → Ck−1(X; Z),
where Cd(X; Z) represents all combinations with integer coefficients of d-
dimensional basic cuboids on the building X. It can be verified that ∂2 = 0 by
choosing the appropriate orientations. This defines topological invariants for
X, which are especially useful for controlling the flows interchanged between
spaces, such as electricity, heat, water, ventilation, etc.

A chain of k-dimensional cuboids is a weighted combination of k-dimensional
cuboids

∑r
i=1wic

k
i , where wi ∈ R are the weights determined by a path in

the space or by natural operations like the boundary operator.
The matching of cells is performed over their boundaries. In the cubical

complex a face of a cube is shared by two spaces, an edge is shared by at least
two faces, a vertex is shared by at least three edges. Each one of these elements
admits different attributes related to processes. Common components of adja-
cent cells in boundaries ∂edα are identified by the opposite local orientations
to preserve the global coherence of the resulting object.

Representation of constructive processes

Cuboids can be labeled as full or empty along the constructive process since
the spaces of the building can be temporally empty, but they can be filled at
different stages of the construction. Consequently, the topology of the repre-
sentation changes dynamically.

Each geometric element of a cuboidal cell can represent different attributes:
(0) structural efforts (compression, traction, torsion) at control points; (1) dis-
tribution of charges supported by structural elements like columns or arcs; (2)
state of embedded installations of utility networks at 2D faces like walls, slabs,
etc; (3) comfort performance measured according to the energy efficiency for
non-empty indoor 3D cuboids. All these attributes can be managed with the
same representation using combinatorics of k-chains and functionals defined
on them (k-cochains for 0 6 k 6 3). Functionals can have different mean-
ings related to space: geometric (relative to design), material (materials of the
objects), analytic (quality control) or economic (inputs and outputs). Their
evolution is modeled with flows that evolve over time.

In construction processes, it is essential to evaluate operations from the
design phase to the execution phase. This evaluation involves operations that
are also modeled as functionals on the chain complexes. This is implemented
with a numerical evaluation on the chains, which requires to introduce two
basic concepts:

• A cochain is a functional f : Ck(X) → R defined on any d-dimensional
chain cd =

∑r
i=1wiC

k
i , wherewi are the weights for each k-dimensional

cuboid Cki and r is the length of the chain.

• The dual of the boundary map is the coboundary map δ : Ck−1(X) →
Ck(X) between cochains. Thus, the attributes defined as functionals on
(k− 1)-dimensional chains (e. g., faces of cuboids) can be topologically
extended to functionals defined on k-dimensional cells, independently
of the selected propagation model.
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The coboundary map δ in the discrete case plays the same role as the differ-
ential map in a smooth framework. Thus, the set of cochains supports differ-
ential and integral calculus for PL-structures too. More concretely, it provides
a discrete version of integral calculus to aggregate planar or volumetric flows.

Advantages of graph representations

Transformations between triangular meshes and quadrilateral meshes connect
two different representations arising from unordered vs ordered cases. Quad-
based representations are friendlier to use since their edges can be locally
parameterized as the product of rational curves. Hence, they can be regularly
sampled, supporting the simulation or the evaluation of processes. These
transformations are usually applied to improve the topology of 3D meshes
resulting from 3D reconstruction. In graph-based representations, these trans-
formations provide a structural link between the basic cells of the tetrahedral
and the cuboidal approaches.

The natural orientation induced by the original ordering of vertices defines
a route (i. e., an oriented path) for each chain of basic cells. Different attributes
can be linked to this route to be evaluated at the workplace with the function-
als defined by cochains. Routes can be inspected with the opposite orientation
to verify whether the insertion of an attribute is appropriate or not.

In addition, this symbolic representation supports natural operations on
graphs such as the insertion or deletion of vertices. The application of the
graph transformations is optional. For instance, if we insert a door on a face
of a cuboid, this additional element is not necessarily expanded. Furthermore,
cuboids support CAD operations (e. g., extrusion), preserve Euclidean proper-
ties (e. g., parallelism or perpendicularity), and are compatible with perspec-
tive projections.

Note that the graph transformations are a simplification of shuttering work
for tied structures employed in some sensitive construction processes. Thus,
any refinement of such transformations with additional control elements could
be also applied to the original structural workflow.

The graph-based representation described along this section is underneath
the IFC, which represent a building in BIM. Taking advantage of this underly-
ing representation we can overlay additional properties and operations as the
previously mentioned. Unfortunately, some meaningful information of the
building is still isolated in CAD formats. Next section concerns the reconcili-
ation of planning and geometry of the building in the IFC framework, which
allows us to exploit the graph transformations over the IFC data structure.

4.1.3 Alignment between planning and 3D model

Information systems do not represent conceptual schemas in the same way.
Instead, they use different taxonomies and hierarchies that must be recon-
ciled manually. This process is commonly known as ontology alignment (see
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Figure 4.4: Planning and 3D model schemas can be aligned with the IFC model enti-
ties. The concepts from the COLLADA model are represented at the left
side of the figure, whereas the right side shows the concepts from the
MPP model.

Section 2.7.1). Its goal is to be able to bridge data represented in one format to
the other. The term “alignment” in this section refers to the set of mappings
established between semantics or concepts of two different schemas.

In order to ease the migration from CAD to BIM, usual CAD data sources
must be aligned (e. g., the planning of the construction, and the CAD design
of the building). Fortunately, the IFC provides a unified framework to include
information from different data sources. Correspondences between entities
from sources and IFC should be manually established since automatic align-
ments are not recommended when accuracy is required. We have taken ad-
vantage of our previous experiences in Ontology Alignment (see [28]) to map
the geometry represented in the COLLADA schema and the planning rep-
resented in the MPP schema into the IFC. These models have been selected
according to the actual requirements of the AEC industry and their condition
of open standards (see more details in Section 4.1.4).

The proposed alignment is illustrated in Figure 4.4. Both data sources are
gathered to create a new building project. Then, this information is aligned
(or mapped) to the entities of the IFC v4 standard2. More concretely, we have
selected the small subset of 766 IFC entities that represents the information re-
quired by 3D-SIMOS. This way, the IFC allows us to extend this information
with future data sources. Furthermore, the representation is IFC compliant,
which means that the information can be exchanged with other tools follow-
ing the BIM methodology.

Any building project created in 3D-SIMOS is represented by the root con-
cept of IFC called IfcProject. Then, we map the COLLADA and MPP models

2 http://www.buildingsmart-tech.org/ifc/IFC4/final/html/index.htm

http://www.buildingsmart-tech.org/ifc/IFC4/final/html/index.htm
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to different concepts in the IFC model. Next, we describe the rationale behind
each mapping created from COLLADA and MPP to IFC.

The COLLADA schema comprises a wide set of concepts to represent the
geometry and the appearance of the model, such as vertex, normal and tex-
ture coordinates, animations, materials, etc. Such concepts can be directly
mapped into IFC 4, since this new version of the standard supports boundary
representation of geometries. In addition, we have linked the conceptual hier-
archy of the meshes with the corresponding classes defined by the IFC. More
specifically, we have defined the following mappings:

geometry Triangles of meshes (Source in COLLADA) can be converted to
IfcTriangulatedFaceSet that supports triangular tessellations. A set
of IfcTriangulatedFaceSet entities forms an IfcShapeRepresentation,
which corresponds to the geometry linked to any IFC semantic con-
cept. Eventual textures (Image) linked to a mesh can be mapped to
IfcImageTexture that represents a 2-dimensional image-based texture
map applied to the geometry of a surface.

semantics The Root of COLLADA is mapped to the IfcBuilding since
we assume that the 3D model represents a complete building entity.
The Node elements are mapped to IfcBuildingStorey that represents
a (nearly) horizontal aggregation of vertically-bound spaces. The last
level of the COLLADA tree (Mesh) is mapped to IfcSpace since the re-
quirements of the application demand a separated mesh for each space.
Meshes can be easily merged with any 3D design tool.

The MPP schema includes semantic concepts for planning a building con-
struction. The 3D-SIMOS application only considers tasks with their recur-
sive hierarchy. However, we also provide the mappings for the core concept
included in MPP. So the following mappings have been established:

• The root entity of the project file is mapped to IfcWorkPlan, which rep-
resents a set of scheduled works in construction or facility management
project. It also supports references to activities (IfcTask) and resources
used in the work plan.

• Task in MPP is mapped to IfcTask, i. e., a unit of work to be carried out
in a construction project. An IfcTask can nest another task, procedure
of event.

• Resource in MPP is mapped to a subtype of IfcConstructionResource.
For example, if the resource is a user, it is mapped to IfcActor, which
represents human agents involved in a project during its full lifecycle.
Then, the actor is linked to the task by the IfcLaborResource, which
inherits from IfcConstructionResource.

• ResourceAssigment is mapped to the IfcRelAssignsToProcess class. It
represents the assignments from one IfcTask to the objects where the
task operates on or the resources it needs. More specifically, this concept
allows us to relate IfcConstructionResource with IfcTask.
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• Finally, Calendar is mapped to IfcTaskTime, which models the time-
related information about a task. It also includes the different types
(actual or scheduled) of starting and ending times. This information is
useful to determine offsets in the execution of the construction activities.

4.1.4 3D-SIMOS

The BIM methodology in AEC environments aims at boosting real-time col-
laboration around a shared 3D model. Taking into account this goal, we have
designed 3D-SIMOS, an easy-to-use application based on the BIM methodol-
ogy that supports advanced visualization of the building elements. The appli-
cation allows users to import a non-semantic 3D model designed with CAD
and its scheduled planning, which can be merged as it has been explained
in Section 4.1.3. Then, the building can be visually inspected by involved
stakeholders, such as visitors, constructors or project manager. To make the vi-
sualization more appealing, a three-dimensional real-time renderer has been
developed. In addition, the application is ubiquitous since it can be accessed
through any web browser. In this way, the same model can be used for selling
the building and surveying/tracking the evolution of the construction.

We have developed 3D-SIMOS using an iterative and incremental devel-
opment methodology (see [75]). The whole development has been split into
three iterations that have been validated by AEC stakeholders. At the begin-
ning of a new iteration, we fix the bugs and inconsistencies detected at the
end of the previous one. New functionalities are developed at each new iter-
ation. The final version is used to evaluate our research, as it will be detailed
in Section 4.3.

Requirements

We have listened to the stakeholders in the AEC industry to determine the
requirements of 3D-SIMOS (functional and not functional). In a nutshell, they
require a simple tool that allows the project manager to visualize the con-
struction progress at the same time that any potential customer can inspect
the building to take an overview of the final result. Furthermore, the activities
of the construction can be tracked and monitor in real-time supported by a sin-
gle shared model. General requirements have been enumerated in Section 1.1.
In this section, we provide a more detailed description from the perspective
of the design. We have identified the following functional requirements:

• The manager can create a new project by importing the planning and
a 3D CAD model of the building. The system allows the user to link
geometries and tasks.

• The system provides a Graphical User Interface (GUI) for the interactive
association (drag and drop) of the different planning stages with the
layers of the 3D model.

• The 3D model can be navigated with the mouse and the keyboard to
simulate an orbit camera. Mouse movements are used to define rigid
transformations on the model (i. e., zoom, translation, and rotation).
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• The simulation of the construction is based on the spatio-temporal rep-
resentation (4D) provided by the planning-geometry associations. The
simulation tracks the time required for each task to render progressively
the geometry linked to such tasks. The trajectory of the camera can move
around the building, animated by spherical linear interpolation.

These requirements are complemented by the following non-functional re-
quirements and constraints:

• The planning of the building is specified in a Microsoft Project file3. This
format is generally accepted in conventional workflows (not BIM) based
on entity modeling.

• The design of the building is represented as a compressed COLLADA
file4. The system detects automatically the identifiers of the layers, the
geometric groups, and the objects.

• The system renders the building in three dimensions in a web browser
supporting the WebGL API. Thus, the system is independent of the op-
erating system and the operating devices, although it is dependant on
the browser.

• The evolution of the construction tasks can be simulated at 30Hz.

The functional requirements stated above allow us to identify the following
meaningful use cases:

project creation : The user uploads the planning and the 3D model of
the building designed following the classical CAD methodology. Then,
each planning task is linked to the corresponding layer of the 3D model.
The project will be saved by the system for future queries.

interaction with the building The user navigates and inspects the
building with the mouse and/or the keyboard.

visualization of the model The system displays a real-time render of
the 3D building model in the screen, according to the capabilities of the
(mobile or desktop) device. Texture information is also included when
it is provided with the CAD model.

simulation of the construction : The system lifts at each instant t
the geometry of the layers linked to the tasks that should be completed
at that instant according to the planning.

Since the binding between tasks and geometries is a vital step for the rest
of the application, the most significant use case is “Project creation”. The
BIM model generated at this use case allows the user to simulate, track, and
evaluate constructive processes. This use case can be subdivided into four
additional use cases:

3 We use the MPP file format, which is the Microsoft’s proprietary way of storing project data.
However, the library MPXJ supports other planning formats too (more details in Figure 4.1.4

4 https://www.khronos.org/collada

https://www.khronos.org/collada
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Figure 4.5: First dialog shown when a new project is created. It allows the user to im-
port the 3D model and the project planning by dropping the data sources
on each corresponding box.

import the 3D model : The COLLADA file is parsed to extract the geom-
etry and the hierarchical structure of the model. The geometry and the
appearance are converted to a scene graph, which is rendered by the
underlying graphics engine.

import the planning : The system parses the MPP file to obtain the plan-
ning tree composed of a set of nested tasks.

layer-task binding : The user interactively determines which layer corre-
spond to a specific task. The system provides a drag & drop interface
where the user drops the layer of the 3D model over the associated task.
Both the layer and the linked task will be highlighted with identical
color to facilitate the association of multiple layers.

save the project : The user chooses a name and provides a description to
save the project for future sessions. Hence, the previous three use cases
are not mandatory if the user needs to retrieve the same project again.

Event scenario

The most likely event scenario comprises a set of interactions between a user
and 3D-SIMOS. These interactions can be described in the following big steps:

1. In an external tool for 3D CAD modeling, the user designs the building
with its components grouped in different layers. Each layer must be cre-
ated to separate the building elements by the task where they are built.
Any existing model can be modified following this requirement and the
cost of this change is not prohibitive. Then, the model is exported to
a COLLADA file (there are several exporters for the most outstanding
3D modeling tools since it is an open standard). The planning of the
construction processes is created separately and exported to a MPP file
(this option is available in many tools used in architecture planning).

2. Once both the planning and the 3D model are ready, they can be im-
ported into 3D-SIMOS. The user authenticates into the system and se-
lects the “Create project” option. The MPP and COLLADA files must be
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Figure 4.6: The dialog for linking the 3D-model layers with the corresponding tasks
of the planning of the building.

dropped over the corresponding boxes of the starting dialog shown in
Figure 4.5. Next, the system parses the files to display the layers along
with the nested tasks in a new dialog (see e. g., Figure 4.6). Now, the user
determines which task is linked to each layer of the 3D model. The drag
& drop metaphor is also used to establish these associations. Finally, 3D-
SIMOS saves the project in its database using the model described in
Section 4.1.3 that includes tasks, geometries, and materials. The current
user is assigned as the owner of the project with the appropriate rights
granted.

3. The project created in the previous step can be retrieved later at any
time. For example, the user can request 3D-SIMOS to show the current
state of the construction. The user can also simulate the progress of
the construction tasks up to a particular timestamp or up to the last
scheduled task.

4. The user can inspect the building by picking a geometric layer or a spe-
cific task. They are presented in tree structures that contains the nested
tasks of the planning and the layers of the geometry. Each task can be
enabled/disabled to show/hide the associated 3D meshes or selected to
highlight the geometry of the building affected by such tasks. The 3D
model in the viewport and the trees are synchronized in both ways, i. e.,
picking a geometry in the model selects the task in the planning; on the
contrary, the selection of any task highlights the geometry of the linked
layer with the color specified by the user.

System architecture

The main non-functional requirement of 3D-SIMOS is the ubiquitous availabil-
ity of the application. Taking into account this requirement, we have designed
3D-SIMOS as a distributed system with a client-server architecture. In this archi-
tecture, the software components are distributed in two different computing
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Client (Web Browser)

HTML5 Web GUI

Controller

WebGL 3D Engine

Server (HTTP Server)

MPXJ PyCollada

REST Web
service

Figure 4.7: Deployment schema for the distributed components of 3D-SIMOS. The
client is executed in a WebGL-capable web browser, whereas the server
is deployed as a virtual machine running on a remote host. Connections
are proxied through a lightweight HTTP server.

devices: the server and the client. The server is responsible for performing
the complex processes and managing the persistence, whereas the client only
requires a WebGL-capable web browser. This architecture is depicted by the
UML diagram of Figure 4.7, which includes the distribution of the compo-
nents and their relations.

The client side of the architecture (or front-end) is executed in a web browser.
It includes the GUI and the 3D graphics engine to render the building model
in real time. It is developed following the classical Model-View-Controller
(MVC) in which the model role corresponds to the 3D model and its plan-
ning (e. g., rotations/translations, state of the tasks, name or author of the
project, etc); the view role is played by the GUI and the WebGL 3D engine;
the controller role is played by the “controller” component. These components
interact following the MVC pattern: changes in the model are detected by the
controller, which requests an update to the view that displays the latest mod-
ifications; any information entered in the view by the user (e. g., in a dialog)
passes to the controller that updates the underlying model consequently. The
controller is the proxy that manages the local transformation of the model
and launches the appropriate requests to the server.

The server side of the architecture (or back-end) is allocated in a remote
server that collects the information about projects, which is mainly composed
of a planning and a 3D model. The components of the server are not dis-
tributed. In order to access to the main functionalities of the service, a REp-
resentational State Transfer (REST) interface is provided. Requests received
through this interface are executed by the service, which depends on other
technologies to perform certain operations, such as an SQLite database (to
manage the persistence of structured data) or a Java Virtual Machine (to parse
the planning of a building project). Thus, the service is an entry point that or-
chestrates with other components to perform project management, data pars-
ing, and user authentication. Section 4.1.4 includes more details concerning
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the Open Source technologies adopted to implement the functionalities of the
services.

The communication workflow of each component has been described in the
previous paragraphs. However, the responsibilities (i. e., the request that each
component must attend) of each one have not been detailed. Such responsi-
bilities bound the scope of the components as follows:

html5 web GUI This is the front-end of 3D-SIMOS, which allows the users
to interact with the building model and its related information (tasks
and layers). It includes the widget to render the building model on the
screen through the WebGL 3D engine and the widgets to manage the
scheduled tasks.

webgl 3D engine This is the widget of the GUI to render the 3D models,
and implement the navigation controls with the mouse and the key-
board. The scene components are managed through the scene graph,
which includes not only the geometries and materials but also the lights
and rigid body transformations. It also listens to mouse events to allow
the user to inspect the building geometry. Picked geometries are imme-
diately synced with their corresponding element in the tree.

controller It handles user interactions to create links between the layers
of the building model and the tasks of the planning. Furthermore, it is
also responsible for authenticating the user, loading a preexisting model,
managing calls to the Web 3D Engine and performing the appropriate
requests to the Web Service through its REST interface. In summary, this
component commands the orchestration between other components of
both client and server.

web service This component is allocated in the server, and it is the entry
point of any requests coming from the client. It parses 3D models of
building in the COLLADA format to generate the scene graph visual-
ized by the WebGL 3D Engine. The MPP files with the planning are also
parsed by this component and returned to the client. Furthermore, this
component is also responsible for user authentication and project man-
agement. These functionalities are exposed through a REST interface
with Create, Read, Update and Delete (CRUD) operations.

mpxj and pycollada These components are wrappers to adapt the corre-
sponding libraries that parse the 3D models and the construction plan-
ning. They will be detailed in next section.

Implementation

Once requirements, functionalities, and the architecture of 3D-SIMOS have
been identified, it is necessary to implement each component described in Fig-
ure 4.7, even the wrappers of MPXJ and PyCollada. Several Open Source third-
party technologies have been adapted and integrated to accomplish this goal.
In this way, 3D-SIMOS is independent of proprietary technologies, avoiding
the risk of vendor lock-in. In addition, it can be easily adapted and expanded
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if further developments were required. More concretely, the following tech-
nologies are involved in the development of the components:

• The task and schedule of the planning are parsed from the MPP file
using the MPXJ5 library. The library parses the file to convert the data
in a list of tasks following a tree structure. This structure is returned to
the client as a JavaScript Object Notation (JSON) in response to a GET
request.

• The COLLADA file is parsed by the PyCollada6 library. The parsed 3D
model follows an object-oriented structure that can be easily traversed
to find the interesting scene nodes. Then, the scene graph of the building
is created and returned as a JSON file. This scene graph represents the
hierarchical relations between the elements in the scene. It is provided
to the Web3D engine to render the building model. Indeed, layers are
extracted by the browser from this scene graph.

• The Web Service has been developed using Bottle7, a Python Web Frame-
work to create portable, extensible, cross-platform and lightweight ser-
vices. In addition, Bottle provides a simple routing mechanism that sup-
ports CRUD operations as Python decorators.

• The communication with the Java Virtual Machine (JVM) that parses
the plannings is performed using the Py4J8 library. This communication
is implemented through a UNIX socket to reduce the overhead. Java
objects and methods can be dynamically accessed as if they reside in the
Python interpreter. Py4J also enables Java programs to call back Python
objects.

• The HTML 5 Web GUI has been developed using the widgets provided
by the jQuery UI9 library, which provides theme customization and
multi-purpose widgets. The layout is implemented with a combination
of the HTML5 and the CSS3 languages. The design of the interface is
pretty straightforward since it only includes the top menu, modal di-
alogs, and a tree widget to represent the nested tasks from the planning.
This last widget is included in an accordion along with the layers of the
building.

• The controller implements the logic of 3D-SIMOS operations at the client
side. It has been developed in the CoffeeScript10 language, which trans-
lates into the JavaScript application executed by the web browser. Ad-
vanced interactions with the Document Object Model (DOM) are imple-
mented with the jQuery11 library in combination with the latest features
of the JavaScript API. In this sense, we have used specific HTML5 fea-
tures, such as the File API, Drag and Drop events and WebGL API,
among others.

5 http://www.mpxj.org
6 http://pycollada.github.io
7 https://bottlepy.org
8 https://www.py4j.org
9 https://jqueryui.com

10 https://coffeescript.org
11 https://jquery.com

http://www.mpxj.org
http://pycollada.github.io
https://bottlepy.org
https://www.py4j.org
https://jqueryui.com
https://coffeescript.org
https://jquery.com
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• The WebGL 3D engine has been developed over the SceneJS API12 and,
in turn, is supported by the WebGL API. This library has been chosen
due to the simple management of the scene graph it offers. Furthermore,
it achieves high framerates at visualizing large and complex meshes.
The new version of the library called xeogl13 has been specially tailored
for the AEC industry .

We have implemented several functionalities in the WebGL 3D engine, such
as the navigation of the 3Dmodel using the rolling bar metaphor, the two-way
synchronization between selected tasks and picked meshes, or the simulation
of the construction following the tasks of the planning. The simulation can
be animated using SLERP (more information at the end of the Section 2.7.2)
for the trajectory of the camera. This type of interpolation allows us to cre-
ate a smooth animation for the three-dimensional rotation of the vector that
connects the origin of the camera with the center of the building model.

Each frame is rendered taking into account the camera position estimated in
the interpolation procedure at the same time that the material opacity (alpha)
is linearly interpolated from zero to one too. The evolving transparency of the
layer corresponding to the current task in the simulation gives the user the
impression that the execution of such task is moving forward.

The choice of the rolling ball metaphor to navigate the 3D model instead
of a simpler tracking ball metaphor is motivated by the fact that some CAD
models have been designed with the Y and Z axis swapped. Furthermore,
we also want to leave the user the choice of inspecting certain model layers
of the building using a different angle around the optical axis of the camera
(i. e., in the depth direction). This type of rotation is neglected in the tracking
ball metaphor, where the rotation with the mouse is simulated using just
two Euler angles, which are the solid angles over the spherical surface of the
trackball. With this decision, we are reducing the usability to improve the
options that the system offers to the user. In addition, the system will be able
to manage challenging models where rotations cannot be limited to the plane
XZ.

4.2 methodology

In this part of our research, we have followed a combined methodology that
connects a top-down and a bottom-up approach. The top-down approach in-
tends to split the overall problem into its parts, which leads to the components
of 3D-SIMOS described in Figure 4.1.4. On the contrary, the bottom-up ap-
proach starts with the underlying symbolic representation of processes and
spaces described in Section 4.1.2 to create the system. Both approaches are
joined to design 3D-SIMOS.

The bottom-up approach is fed with the models described by CityGML
and IFC, which can be embedded in the proposed symbolic representation.
These models describe both the geometry and the semantics of the building,
which constitute the static information. However, they lack the dynamic infor-
mation concerning the processes associated with the building along its entire

12 http://scenejs.org
13 http://xeogl.org

http://scenejs.org
http://xeogl.org
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Figure 4.8: An original picture of the Fallingwater house and the computer-
generated image of the 3D model designed for our use case.

lifecycle. This problem has been addressed with the proposed representation
of Section 4.1.2.

The top-down approach is based on understanding the requirements posed
by the stakeholders of the AEC industry in order to propose a solution that
complies with their demands. We have decomposed the constituent parts of
the system to create a reusable architecture based on open standards and
technologies. This solution is described in Section 4.1.4.

In the end, both approaches converge into a shared model based on the IFC
that sustains the operations performed by the system. The feedback between
both approaches allows us to iteratively polish the model while the offered
functionalities are being extended.

On the one hand, the symbolic representation is considered valid since it
is formally based on already-proven concepts and results. On the other hand,
the system can be experimentally evaluated by its stakeholders. We have eval-
uated the fulfillment of our starting goals following an experimental method-
ology that assesses both qualitative and quantitative aspects. Some aspects
have been evaluated with the execution of the functionalities of 3D-SIMOS in
two different use cases. Other aspects have required expert validation from
several stakeholders of the AEC industry.

4.2.1 Use cases

In order to evaluate 3D-SIMOS in different types of building projects, we have
conducted the evaluation over two use cases:

1. The Fallingwater house or Kaufmann Residence (see Figure 4.8) was de-
signed by Frank Lloyd Wright in 1935

14 and it is considered one of the
most beautiful jobs of this architect. The house is located in Pennsylva-
nia, and it is placed over a waterfall. The total cost of the building project
was 155, 000$, but it was donated as a museum by its owner in 1964. We
have designed the 3D CAD model of the house from scratch, taking
advantage of the documentation freely available. A computer-generated

14 http://www.fallingwater.org

http://www.fallingwater.org
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image of such model is shown in Figure 4.8, next to the original picture
of the house.

2. The church of “Santa Maria La Antigua” is located at the city of Val-
ladolid (Spain)15. It was likely built in the 11th century but its oldest
parts date to the late 12th century. It follows a Romanesque style, and it
is one of the principal symbols of the city. We have also designed a sim-
ple 3Dmodel of the main envelopes of the church to evaluate 3D-SIMOS
on a cultural heritage case.

4.2.2 Aspects

According to our initial objectives, we are interested in evaluating the follow-
ing aspects of 3D-SIMOS:

usability Whether the system is easy to use or not, compared with the
available alternatives to execute the same task. This aspect requires ex-
pert evaluation.

usefulness Whether the system is useful for showcasing and simulating
plannings over buildings. This aspect also requires expert evaluation.

visual appeal Whether the system results visually attractive to the user
or not. We have tested that the materials are appropriately rendered,
including the textures of the object (available only in the second use
case). This evaluation can be initially performed without experts, but
we ask them for confirmation.

performance Whether the system runs smoothly with low computer re-
sources. We have evaluated this aspect with the average framerate at
which the system runs the simulation of the construction on different
hardware setups (including both mobile and desktop platforms). This
aspect is evaluated without experts.

cross-platform operation : Whether the system runs on mobile de-
vices. This aspect does not require expert evaluation.

4.2.3 Procedure

Firstly, we have evaluated the aspects described in previous section that do not
require an expert validation. Secondly, we have evaluated the other aspects
from personal interviews with the experts. In this case, the evaluation has
been performed with the following steps.

1. The stakeholder or the potential user of 3D-SIMOS receives a small train-
ing session to learn how to execute the main functionalities of the sys-
tem, which includes: create a project, navigate the building, interact with
layers and tasks, and simulate the advance of the construction.

15 https://www.valladolid.com/la-antigua

https://www.valladolid.com/la-antigua
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2. We give ten minutes to the user to get comfortable with the 3D-SIMOS
GUI interface. This improves the engagement of the user with the sys-
tem and helps us to achieve more accurate impressions.

3. After that, we give the user a script with a set of tasks to execute in
a specific order. Tasks are performed using a dataset composed of the
planning and the 3Dmodel of the Fallingwater use case (see Section 4.3).
In this way, the user can detect possible pitfalls and drawbacks of our
approach. The provided script contains the following steps:

a) Create a new project by importing the CAD model and the plan-
ning into 3D-SIMOS.

b) Align the tasks and the layers of the model until every layer has a
corresponding task.

c) Orbit the camera around the model using the orbit camera controls
(i. e., the left button, the middle button and the wheel of the mouse)

d) Disable the first layer of the model and select the 7.2 task of the
planning.

e) Play the simulation of the construction. Observe the achieved fram-
erate.

f) Change the animation framerate to 10 FPS in the preferences dia-
log.

g) Play the simulation again. Check that the camera rotates more
slowly around the model.

h) Save the project, reload the application and load the same project.

4. Once the tasks have been finished, we evaluate with an interview whether
the user has accomplished the tasks or not, and what sort of problems
have been found. Then we extract our conclusions from this interview.

This evaluation has been performed with a set of five stakeholders involved
in the AEC, due to the difficulties of finding experts that can validate our sys-
tem. These users include two architects, two engineers and one topographer.
They have tested 3D-SIMOS in their own web browsers in mobile and desktop
environments, following the instructions specified above. Then, we gather the
results concerning the evaluated aspects and outline the conclusions.

4.3 experimental results

The system 3D-SIMOS has been evaluated according to the methodology pro-
posed in Section 4.2. We asses the results accomplished by 3D-SIMOS taking
into account the aspects described in the methodology. Then, we determine
the level of compliance with our starting goals. Each aspect has been evalu-
ated in a different section.

The experiments have been executed using Mozilla Firefox and Google
Chrome web browsers running on a Nvidia GTX 285 with an Intel Xeon CPU
(E5630 Quad-core 2.53GHz) and 8GB of RAM.
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Figure 4.9: The two main components of the 3D-SIMOS’s GUI: the viewport where
the 3Dmodel is visualized and the tree where the nested tasks of the plan-
ning are grouped. The information shown in both of them corresponds
to the use case of the Fallingwater house.

The access to 3D-SIMOS is open16 to allow interested readers to reproduce
the results described in this section (at least those results that do not require
expert validation). We have created a demo account with the following creden-
tials: mobivap@simos3d.com and mobivap. This authenticated user owns several
use cases that include the two cases used for this evaluation. The source code
of the project is publicly available in our git repository17. The project included
the client and the server components (“srv” folder), and also the resources
corresponding to the use cases.

A complete video18 has been recorded to illustrate how to retrieve a previ-
ously created project and simulate the evolution of the construction with an
animation. The current task is highlighted during the simulation. The video
also shows how tasks can be selected/enabled to highlight/hide the geometry
of the 3D model. This selection can be performed both in the 3D model and
the planning. The animation runs smoothly, despite the low framerate per-
ceived in the video since the recording application only captures the screen
at 10 FPS.

4.3.1 Usability

We start the section by illustrating the GUI of 3D-SIMOS when the user per-
forms the main operations. The visual feedback received by the user is illus-
trated by means of several figures corresponding to screenshots of the two
evaluated use cases.

When a model is retrieved, 3D-SIMOS shows two widgets to the user: the
viewport, where the 3Dmodel of the building is rendered, and the tree, where
the tasks of the planning can be selected/enabled (see the left and the right
side of Figure 4.9, respectively). Both widgets are used for inspecting and
navigating the building project once it has been created.

16 https://simos3d.mobivap.es
17 https://gitlab.com/fradelg/simos3d
18 https://bit.ly/2KnIQvp

https://simos3d.mobivap.es
https://gitlab.com/fradelg/simos3d
https://bit.ly/2KnIQvp
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Figure 4.10: The Fallingwater house model when the first task is disabled. Each task
contains nested tasks that can be individually disabled affecting the chil-
dren.

Operations over nested tasks are performed recursively. For example, a dis-
abled task disables its subtasks too. This allows the user to clean the visual-
ized model, as it is illustrated in Figure 4.10.

The user can select any task in the tree to highlight the material of the
geometry linked to the task. For example, Figure 4.11 shows how the selection
of the fifth task highlights the material of the roofs of the building. Tasks can
be selected by clicking over their name in the tree or picking the 3D mesh of
the model whose layer is linked to the task.

The usability aspect refers to the ease of use and learnability of 3D-SIMOS.
In our interviews with the five experts, all of them acknowledge that the sim-
plicity of the system considerably reduces the learning curve. It also eases
the execution of the operations on the script. After all, there are only four
functionalities to test that can be reached even with a trial and error method-
ology. They also remark that there would be desirable more control over the
operations. For example, they want to change the parameters of the simula-
tion to speed up/slow down the pace at which the layers appear. They would
also want to alter the color of the highlighted material. Some of these set-
tings, along with other rendering options, have been added to 3D-SIMOS in
a separated dialog (see Figure 4.12). They can be accessed on the top menu.

Overall, the usability of 3D-SIMOS is the most appreciated aspect by the
users. It is undeniable that the minimalist design of the application forces
the user to focus on the particular functionalities. This fact allows 3D-SIMOS
to concentrate on a specific niche of the AEC industry that demands afford-
able and simplistic solutions, in contrast to the all-in-one solutions offered by
GRAPHISOFT ArchiCAD or Autodesk Revit.
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Figure 4.11: The selection of the fifth task highlights in red the material of the geom-
etry linked to such task on the use case of “Antigua”.

Figure 4.12: The dialog to configure the settings of a session with 3D-SIMOS. The
user can change the opacity/framerate of the animation, the color of
highlighted materials, and rendering options like the backface culling
or the material transparency.
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4.3.2 Usefulness

The utility or usefulness of 3D-SIMOS is the most subjective aspect included
in our evaluation. It depends on the expectations of the user and the known
approaches. In our interviews with the experts, we have detected that the
system is simple for effective. Three of five think that the system accomplishes
its purpose, but it is limited to set of functionalities that they would want to
extend. The other two users opine that the system does its best and it is
enough according to the initial requirements.

The simplicity of 3D-SIMOS is a double-edged sword. On the one hand,
the system focus on a very limited subset of functionalities to cover specific
requirements of the AEC industry. This makes the system lightweight and
simple to maintain. On the other hand, these functionalities are commonly
linked to other advanced functionalities demanded by some stakeholders. The
main advantage of 3D-SIMOS is that the underlying model is based on the
IFC, which eases the manipulation of the project with other tools. The system
can be also extended to include the advanced functionalities with the same
argument.

4.3.3 Visual appeal

Images rendered in the viewport are generated by the WebGL 3D engine
using a conventional Phong shader, which supports textures for the materials
of the model if they were available. Qualitative results are illustrated for the
Fallingwater house (no textures) in Figure 4.9, and for the “La Antigua” (basic
textures) in Figure 4.11. It can be seen that materials provide more visual
grepping when the textures do not have enough resolution (as it is the case
of the 3D model of “La Antigua”. However, better textures can improve the
quality of the rendering, although they harm the performance of the system,
specially in non high-end smartphones.

In the view of the experts, the system quality is poor. Note that they have
evaluated only the use case of the Fallingwater house that does not include
textures. Four of five believe that the visualized image should have a quality
similar to the computer-generated images that they use to showcase the con-
struction project (see e. g., Figure 4.13). This way the client would have a better
impression of the building they are going to buy, which would be also easy to
recognize since both images would match. The remaining user is aware of the
difficulties to provide in real-time an image with the same quality as another
image that has been rendered off-line.

It is well-known that real-time visualization engines do not achieve the
same quality as an off-line rendering engine. These engines are based on
physically-accurate simulations of the light path, normally achieved by trac-
ing the ray of light. However, new Physically Based Rendering (PBR) models
allow the system to achieve more visually appealing results with a moderate
increase in the hardware requirements. We have left this implementation as
future work.
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Figure 4.13: A ray-traced image of the Fallingwater house generated with Blender
using the Cycles render engine. The underlying 3D model is based on
the one imported in 3D-SIMOS.

4.3.4 Performance

The simulation functionality is the most resource-intensive functionality of
3D-SIMOS. This process is performed at the maximum allowed framerate to
render smooth animations that provide a pleasant experience to the user. A
single frame of the animation generated with SLERP is in Figure 4.14. More-
over, it can be seen in the same figure that the opacity of the mesh correspond-
ing to the current task is also animated as several polygons are translucent in
the current frame. The blur of the figure has been caused by using the screen-
shot tool at the same time that the animation is running.

We have measured the performance of the rendering by measuring the
framerate of the simulation performed on the Fallingwater use case. The ge-
ometry of this use case is complex enough to extrapolate the differences be-
tween devices to other use cases. These results are shown in Table 4.1. The We-
bGL 3D engine is capable of rendering frames at 60 FPS on desktop machines
equipped with a decent GPU. On a modern smartphone like the Samsung
Galaxy S6, it runs stable at more than 55 FPS, with an slight improvement in
the UCL web browser. In an older device like the Nexus 4, the simulation runs
at an average framerate of 21 FPS due to the limitations of the old Adreno 320

GPU. Animations rendered below 30 FPS are not smooth since the eye catches
the skipped frames.

It should be noted that the maximum framerate depends on the number of
callbacks to the underlying rendering function. This number is limited by the
web browser to the display refresh rate, following the W3C recommendation.
This rate is usually 60 FPS, and hence the maximum framerate delivered by
all the evaluated devices.
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Figure 4.14: A single frame of the animation performed by 3D-SIMOS to simulate the
building construction process. Blur is caused by the tool that captures
the screenshot.

Device Web Browser Mean FPS

Nvidia GTX 1060 Google Chrome 60

Nvidia GTX 1060 WebKit 60

Nvidia GTX 265 Mozilla Firefox 60
Samsung Galaxy S6 Google Chrome 55

Samsung Galaxy S6 UCL browser 57

Nexus 4 Google Chrome 21

Table 4.1: Framerates (FPS) achieved by 3D-SIMOS during the simulation of the con-
structive processes.
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Figure 4.15: Comparison of 3D-SIMOS in a mobile (Samsung Galaxy S6) and a desk-
top environment. The image has been rendered in real-time by the
Google Chrome browser in its mobile and desktop versions.

4.3.5 Cross-platform operation

At its current state, 3D-SIMOS is compatible with any web browser that fulfills
with the WebGL 1.0 specification. Figure 4.15 illustrates a comparison between
the model rendered in the same web browser (Google Chrome) in its mobile
and desktop version. Furthermore, the browser must implement other APIs
of the HTML5 specification required by 3D-SIMOS, such as the File API. We
have successfully run 3D-SIMOS on the following browsers:

• Microsoft Edge 17

• Mozilla Firefox 56

• Apple Safari 11.1

• Google Chrome 49

• Chrome for Android 66

• UC Browser for Android 11.8

4.4 conclusions

The AEC industry is progressively evolving from the traditional CAD design
to the BIM methodology. This methodology proposes a new form of collab-
orating around the building in a unique shared model represented by the
IFC. This methodology proposes a different collaborating model built around
a unique shared model of the building described by the IFC. Stakeholders
share information between them about any process that affects the building.
However, the pace of adoption of BIM is being slow. The costs of consultancy,
software acquisition and training create a high entry barrier for many small
and medium enterprises. The cost of change (i. e., the cost of modifying an
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existing project after the design phase) is the most meaningful. Furthermore,
BIM is focused on representing the static information about the building, leav-
ing aside the dynamics of the processes that are not executed by a stakeholder.

Simple 3D visualization of the building at its different stages allows stake-
holders to evaluate constructibility of the different spaces. It also helps to
improve the coordination and the understanding between these parts when
collaborating in the same project. Visualization must be accessible from the
office (for general contractors and final clients) and from the workplace (for
construction managers). Ubiquitous visualization is part of the collaboration
effort in BIM to offer safer, more secure and more efficient processes.

In this chapter, we have proposed a symbolic representation that integrates
continuous information from external processes into the spatial representa-
tion of the building. This representation is based on graphs of cellular decom-
positions whose transformations (contraction/expansion) can be managed in
combinatorial terms thanks to the notion of the cubical complex. Cubical com-
plexes provide multilayered and multifunctional support for nD information
systems. Dynamic information is managed with graph transformations and
visualized as flows that correspond to variations in scalar, vector or tensor
fields. The temporal evolution of these fields is sampled using spatio-temporal
slices.

We have also developed an alignment (or mapping) between the two tra-
ditional sources of project data (the planning as a MPP file and the CAD 3D

model as a COLLADA file) and the IFC schema used in BIM. The alignment
takes into account both the geometry and the semantics of the building. This
provides a reverse-engineering approach to recycle project designed without
following the BIM methodology.

These ideas have been applied to design an uncomplicated system, called
3D-SIMOS, that allows the user to import the planning of a building project
and simulate its execution. We have implemented 3D-SIMOS as a web applica-
tion that reconciles the tasks and the geometry of a building project. Later, the
building can be visualized and inspected in a three-dimensional environment
using any WebGL-capable web browser. The application helps both project
managers and visitors to monitor and track the progress of the construction.

The system has been evaluated using an experimental methodology that
combines both qualitative and quantitative aspects. The qualitative aspects
have been partially evaluated with interviews with a group of five experts in
the AEC industry. Results confirm that the system is easy to use and efficient
in the simulation process, operating at 60 FPS on most devices. Furthermore,
it is useful for quickly creating and showcasing a building project without the
need for complex and unaffordable software licenses. However, the approach
is considered too naive for some operations, and the rendered 3D model is
not as eye-catching as they would desire, especially when it is compared to
an off-line rendered image.

The basis of the BIM methodology advocate for collaborating around a
building model shared between the involved stakeholders. Despite the appar-
ent benefits, the AEC industry has been reluctant to adopt this new methodol-
ogy. In our research, we have checked that the visualization and simulation of
constructive processes provide insightful information about the building. Fur-
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thermore, a simplification of the process of creating BIM projects is proved
beneficial for a better understanding of BIM.

4.4.1 Compliance with the objectives

This section analyzes the degree of fulfillment of our original goals accord-
ing to the results obtained from our evaluation. As it has been done in Sec-
tion 3.4.1, we consider the goals individually and discuss the advantages and
drawbacks introduced by 3D-SIMOS.

Demonstrate the benefits of the BIM methodology

Our central goal is to demonstrate the benefits of using the BIM methodology
in the AEC industry. Even though the scope of 3D-SIMOS is very restricted
due to its intended simplicity, our interviews with the stakeholders revealed
that they understood the collaboration workflow. They also value the idea
of working around the same shared model. These are the core propositions
of the BIM methodology. Furthermore, stakeholders have found useful the
functionalities of the application, although they have remarked an excessive
degree of simplification. This should not be an inconvenience to recognize the
benefits of BIM.

Planning and simulating the advances in construction

The system allows stakeholders to import buildings designed with CAD. Af-
ter creating the project, tasks can be inspected/selected/enabled on the tree
widget. The current state of the construction is represented by the task being
executed according to the schedule. We consider the goal as achieved since
it is implicit in the functionality provided by 3D-SIMOS and stakeholders
have validated the utility of the system. Moreover, certain parameters of the
simulation can be customized to suit the specific requirements of the user.

Enrich the CAD model with semantic information

The developed alignment between MPP and COLLADA with IFC is intended
to reach this goal. This model provides 3D-SIMOS a unified representation
of both tasks and layers of the 3D model. As it has been described in Sec-
tion 4.1.3, the concepts have been manually mapped to achieve maximum ac-
curacy. Hence, the resulting project contains the scheduled tasks linked to the
geometry of the model they affect. The objective is fulfilled since any geome-
try can be selected/enabled with its corresponding task (i. e., non-geometric
information) and vice-versa. The selection is synced between the tree of nested
tasks and the viewport.

Simplify the creation of the BIM model

This goal has been addressed with the creation of a GUI for binding layers
to tasks at the lowest level of the tree. This GUI hides this complexity of the
underlying model under a simple drag and drop movement, which is more
simple than a design of the BIM model from scratch. Interviews do not reflect
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any inconvenience with this method, except it might be too simplistic. The
color scale with which created bindings are labeled helps the user to identify
the correspondences. Stakeholders have evaluated the usability of 3D-SIMOS
very positively, and this includes binding as one of the main steps executed
during the evaluation. Therefore, we consider the goal accomplished.

Develop a light-weight cross-platform application

The use of the WebGL API for the visualization of the building is the key to
fulfill this objective. It simplifies the development of the application since the
GPU of the device can be accessed without considering specific details of the
platform. The main drawback is that the GUI is not responsive, i. e., it does
not adapt to the resolution of the screen. However, most operations are not
intended to be performed on a mobile device. Except for visualization, the
other functionalities are more suitable for a desktop environment. Stakehold-
ers value positively that the visualization and model inspection functionalities
are available in mobile devices too.

The simulation must run smoothly

A smooth animation must run at least at 25 FPS to provide a pleasant expe-
rience to the human eye. This was our main concern at the time of choos-
ing SceneJS as the visualization engine since we have to deal with complex
building models. We have evaluated this goal explicitly in the performance
aspect described in our methodology (Section 4.2). Experimental results show
that 3D-SIMOS achieves the maximum frame rate allowed in desktop dis-
plays (60 FPS) and in high-end smartphones. In middle-end smartphones like
Nexus 4, this framerate drops up to an average 21 FPS. We evaluate this goal
as accomplished since the simulation works on mobile devices although its
smoothness depends on the complexity of the model and the GPU.

Render appealing models, visually enhanced by textures

Textures are included in the visualization of the model (e. g., see the use case
of “La Antigua” church in Figure 4.11). We utilize these textures to represent
the diffuse component of the material. However, stakeholders do not assess
the quality of the visualization as appealing. At least, it is not as appealing
as the computer-generated images they employ to sell the building project.
This affects the showcasing capabilities of 3D-SIMOS since the potential cus-
tomers may perceive the building as not attractive. Thus, this objective has
been partially accomplished, and further improvements of the OpenGL Shad-
ing Language (GLSL) shader are left as future work.

4.4.1.1 Support different types of building models

The system has been evaluated in two distinct use cases, as it has been de-
tailed in Section 4.2.1. The first one is the Fallingwater house, a particular
house employed as a museum nowadays. The second one corresponds to “La
Antigua” church, a cultural heritage building. Experiments show that the sys-
tems operate equally for both models. This is reasonable since the design of
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3D-SIMOS is completely independent of the nature of the building. A build-
ing is represented as a collection of geometric primitives linked to a set of
nested tasks.

4.4.2 Future work

During the evaluation of our research, we have identified additional points
for improvement that have been left as future work. For instance, we would
like to use the output generated by KN-SLAM (see Chapter 3) in 3D-SIMOS
(see Chapter 4). The hardest challenge here involves the generation of a dense
reconstruction using at least a PL-planar approach. This problem has been
already addressed by several authors (see e. g., [6, 19, 42]). A further contri-
bution on this topic would include the automatic detection and recognition
of planes and volumes, that may be part of a more ambitious reverse BIM
approach.

The problem of representing free/occupied spaces that evolve over differ-
ent processes is also challenging. In this case, it seems convenient to use a
discretization of a more abstract tensor approach. Differential forms represent
the evaluation of functionals along lines (e. g., installations), surface elements
(e. g., walls, roofs, and ceilings) or volumetric elements (e. g., free/occupied
zones). Similarly, vector fields represent the spatio-temporal evolution of the
flow generated by such evaluations. Any tensor is the product of a finite
number of differential forms and vector fields, so Tensor Calculus provides a
natural framework to manage both of them simultaneously.

Additional useful functionalities for the BIM stakeholders are left as future
work too. These functionalities include the exportation of the BIM model us-
ing the IFC schema and the binding of the geometries associated with a task
by picking on the 3D mesh instead of the name of the layer. Finally, a PBR-
based shader to render the materials of the model would help to increase the
visual appeal of the advanced visualization.

This chapter of the thesis has dived into the benefit of the 3D information
produced by SLAM methods for the AEC industry. We have examined new
alternatives to promote the adoption of BIM among the AEC stakeholders by
showcasing the building with an advanced visualization tool. As in Chapter 4,
we have provided the conclusions extracted from this part of the research
in the last section of the chapter. However, we think it is useful to merge
the conclusions from both chapters to give the reader a broader view of the
whole research. The next chapter is devoted to summarizing our general con-
clusions concerning 3D reconstruction, SLAM, and BIM. Moreover, we will
briefly discuss lessons learned during the Ph. D. and personal thoughts about
the process.



5 C O N C L U S I O N S

In this thesis, we have addressed the problem of achieving affordable 3D re-
constructions from a low-cost mobile camera, and its application in a specific
sector like the AEC industry. In the first half, we have focused on developing
a new approach for implementing more accurate and robust visual SLAM.
We have proposed a simplification of the connectivity graph to reduce the
complexity of the optimizations at the same time that the accuracy is boosted.
We have also added adaptive bootstrapping to track more the frames of the
sequence.

Several sequences from heterogeneous datasets have been thoroughly ana-
lyzed taking into account their challenging characteristics. Our contributions
have been performed over the current implementation of ORB-SLAM, that
has been used as the reference to compare our results in the evaluation. Re-
sults have shown that, despite the difficulties found in some of the sequences,
KN-SLAM improves the accuracy and robustness in common sequences (i. e.,
sequences where camera moves with a good balance between rotation and
translation).

The results generated by ORB-SLAM are composed of a collection of key-
frames and 3D map points. In this way, it cannot be treated as a digital model
of the scene. However, an additional step based on the principles of Multiple
View Geometry can recover the surface of the objects to produce a complete
3D model. This 3D model can be of use for many applications and industries.
In the second half of our research, we have centered on the AEC industry and
its integration with the BIM methodology. In this context we have outlined
the following contributions:

• A symbolic representation that incorporates the dynamics of construc-
tive processes in the model using basic concepts from Algebraic Topol-
ogy. The structure is represented as a graph of cellular complexes that
can be exploded/shrunk using combinatorics. The processes alter the
functionals linked to the attributes of the cells that can be visualized as
flows moving through the spaces of the building. These flows can be
sampled using different types of fields (scalar, vector, and tensor fields).

• An alignment between planning, stored in MPP file format, and a 3D
model of the building, expressed in COLLADA file format. This align-
ment defines a mapping between concepts of both schemas and the IFC
to integrate information from both data sources into a single IFC model.

• A visualizer that highlights by its simplicity and its simulation function-
alities in any Web3D-capable browser. Building projects can be created
from a planning and a 3D CAD model. The application allows differ-
ent stakeholders in the AEC industry to collaborate around the same
building, to simulate the advances in the construction and to track the
evolution of the project.

153
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The results of this second part of our research have been evaluated experi-
mentally taking into consideration the informed opinion of a group of experts.
Several aspects have been assessed from a qualitative and a quantitative view-
point: usability, usefulness, performance, visual appeal and cross-platform op-
eration. We can conclude that the system is simple and fast enough to fulfill
its main goals (sharing, simulation, and tracking building information), but
it would be also desirable to extend functionalities and to improve the ren-
dering quality. The system is able to work across different devices, although
usability isthe set of functionalities is limited by the size of the screen.

5.1 discussion

The interplay between 3D reconstruction and motion estimation is a long-
standing problem in Computer Vision with multiple applications from the
early nineties. Nowadays, the ubiquitous presence of digital cameras in urban
or construction environments makes possible to achieve digital models with
minimal effort. Often, most SLAM/VO approaches demand complex camera
setups or powerful computing architectures to minimize the uncertainty or to
complete the available information. Our proposal relies only on a single-lens
single-camera setup, where specific keyframes are selected. These keyframes
are inserted in the connectivity graph, where keyframes sharing redundant
information are managed to perform spatial queries in certain stages of the
pipeline. Our work highlights that a simplification of the connectivity graph
is worthwhile since it can be beneficial in certain sequences both in terms of
accuracy and robustness. Our results confirm that an excess of connections
with non highly-redundant keyframes do not contribute to reducing uncer-
tainty since the achieved accuracy is usually lower.

We have determined that KN-SLAM is more suitable for sequences recorded
in natural conditions. These sequences are usually generated by robots work-
ing in controlled environments or by mobile devices if they are stated in the
application requirements. In the absence of these conditions KN-SLAM still
works, but they are better manages with a more dense graph like in ORB-
SLAM. The increment in memory consumption is due to the coloring of the
map points, but there are simple strategies to reduce it. Even though we have
not evaluated our approach in a mobile device, we are certain that the compu-
tational resources demanded can be provided by a current middle-end device.

We honestly think that the future of 3D Reconstruction is on the mobile de-
vices. The recent introduction of Google ARCore1 and Apple ARkit2 confirms
this thought. Indeed, these toolkits already include a subset of the algorithms
that are underneath any sparse SLAM system. The market trends also indi-
cate that Augmented Reality and Virtual Reality applications are currently
demanded although the underlying technology is not mature enough yet. We
hope that our contributions to this research field can promote the adoption of
this technology in the middle term.

The AEC industry struggles to spread the adoption of the BIM methodol-
ogy around its stakeholders. Most of the professional solutions are not afford-

1 https://developers.google.com/ar
2 https://developer.apple.com/arkit

https://developers.google.com/ar
https://developer.apple.com/arkit
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able for all of them. As we have attempted in the first half of our research,
we have designed a simple system to allow these peers to share the planning
tasks of a building. Such tasks have been aligned with the geometry of the
designed 3D model, which can be compared with any 3D reconstruction of
the built environment to track the progress. The alignment between different
knowledge representations is studied in ontology alignment and it has been
applied in different applications concerning KMS. Even though we have only
completed a partial alignment between the three involved schemas, it serves
to illustrate how the broad model described by IFC can be fed with data from
other sources. Simulation and tracking of constructive processes have been
illustrated with the Fallingwater house, a representative example of a very
complex and natural environment.

Overall, we think that our research should help to spread the use of BIM
in the AEC industry. Although the developed system is simple, it should be
enough to highlight the goodness of collaborating around the same model.
This will contribute to enhance the productivity and improve the quality of
the results. Nowadays, many stakeholders use three-dimensional digitaliza-
tion of the environment to track the advances in the construction. However,
they lack a common framework to embed these results or a methodology to
collaborate. This is a well-known problem with a specific line of research.

The principal purpose of BIM is to substitute the archaic CAD methodol-
ogy in which any generated artifact was disconnected from the rest. Current
efforts are in the integration of the existent information into BIM since most
of the contemporary building projects were designed with CAD but they still
can be managed with BIM. We expect that our research can shed light on this
problem and help the industry with its progressive transition.

Furthermore, BIM in its current state only stores static information about
the building. Simulations and analysis cannot be compared with real data
linked to the building model. Such experimental data generated by the build-
ing processes must be managed by each application according to their spe-
cific requirements. Our proposal for dynamic processes can be efficiently inte-
grated into BIM data taking advantage of the relations between the spaces of
the building. The principal required addition would be the representation of
functionals, which can be described analytically or discretely as fields. Com-
plex simulations and analysis that models coupled processes would be feasi-
ble if this framework were adopted.

Overall, we have focused our research on studying affordable ways to bring
powerful functionalities to devices with limited resources. We are aware that
the mobile revolution has been left behind and nowadays smartphones are
used as a swiss-knife tool where everything seems to fit. However, in prac-
tice, most of them fail to reach the target market. Indeed, some important
initiatives like the project Tango developed by Google have been discontin-
ued due to the problems found to engage developers. Nevertheless, we think
there is a rationale for the adoption of 3D reconstruction in mobile devices as
the information that surrounds us is mostly three-dimensional. Usually, the
problem lies in the proposed applications of the technology and the use of 3D
information. In our conversations with the stakeholders of the AEC industry,
we notice a real interest in the technology. However, in the end, the adoption
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does not only depends on the innovation or technology behind a product but
on the tradeoff between the cost and the usefulness for the final user.

The research on low-cost algorithms is also encouraged by the increasing
penetration of smartphones in third-world countries. Although half of the
population already have a smartphone, the number of devices is growing
steadily as well as their computing capabilities. More powerful devices will
foster the execution of SLAM algorithms like KN-SLAM, which will allow the
users to feed affordable BIM solutions like 3D-SIMOS. Both proposals may
represent an entry point to use the underlying technology for many users.
Since the beginning of the research, our main motivation has been to make
advanced technologies more accessible, ubiquitous and affordable to every-
one. We should not forget that the population of these third-world countries
growths faster than the population of occidental countries. Soon, these coun-
tries will be positioned among the largest economies in the world, and in
order to get there, they are going to require affordable technologies that pave
the way to be a developed country.

At a research level, I have discovered along these Ph. D. studies that all
problems cannot be addressed at the same time. Instead, it is better to con-
sider small and thoroughly evaluated contributions to be sure that the right
steps are taken and to isolate the sources of changes. I started the Ph. D. try-
ing to implement a complete 3D reconstruction pipeline from scratch, but in
the middle, I discovered very compelling approaches released as open source
software. Then, I pivoted around my original plan in order to understand
these approaches as a solid background to append further contributions. Like
this, many significant lessons have been learned in the path by means of mis-
takes. Profound knowledge of state of the art has been acquired through the
extensive revision of the literature and the interaction with other researchers.
We have understood the real importance of outlining a right methodology to
validate the primary objectives and support the final conclusions. And, in the
end, we think that these are the core foundations of a thesis.

The future of 3D reconstruction and mobile devices looks promising, and
new applications are being developed for different industries. We hope that
our contributions are meaningful for advancing in state of the art.

5.2 future work

In the foreseeable future we think that the following research areas are espe-
cially promising to advance in the current state of the art:

• A framework for a homogeneous treatment of degenerate and regular
cases that arises from the relation between two cameras in multiple view
geometry. This framework should be compatible with tensor fields cre-
ated for fundamental and essential matrices. Indeed, we have already
performed theoretical contributions in this sense. We have introduced a
completion of the ambient space (as a locally symmetric space) to man-
age matrices for epipolar geometry (homography, essential and funda-
mental matrix) as an extension of the Linear Algebra. This contribution
is currently under revision by the board of experts of an international
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peer-reviewed journal. A brief summary of the framework has been in-
cluded in Section A.1.

• A framework to determine the location of a mobile camera that coarsely
estimates the relative kinematics of other mobile agents. The problem
can be tackled from a local approach with an intrinsic formulation of
kinematics where the Phase Space provides the support for this frame-
work. This is a locally symmetric space for multiagent systems with the
evolving geometric and radiometric properties of the objects. Agents
are no longer considered as points in space, but as mobile configura-
tions with partial kinematic information about the scene. The geometry
of the Moment Map allows us to insert these concepts into a single
framework.

Contributions in these areas would provide a solid kinematic understand-
ing for complex scenes. To esteem the complexity of the problem, we intro-
duce two elements that play a fundamental role to connect both approaches
in the dynamic case:

• Graphs provide a symbolic representation compatible with different
LoD depending on the meaning of nodes. However, the large diversity
of dynamic events to handle requires more flexible models and trans-
formations rules than the ones described in this thesis. It is necessary a
larger development in computational kinematics and dynamics.

• Finite differences in sparse data can be transformed to discrete oper-
ators over fields. In this work, we have only introduced scalar fields
whose modifications are determined by differences beyond thresholds
(i. e., events). It is necessary to go farther and manage these events with
a hierarchical structure. Another choice is to represent these events as
singularities of mappings in fields. However, this theoretical approach
is not computational implementable, even for low-dimensional models
or low-corank operators.

It can be seen that there exist many contributions to be made for advancing
in the topics involved in our research. Indeed, we are developing some of
them for publication in the near term. We left the ideas of this section just as
a suggestion for anyone ready to advance in state of the art.
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This chapter gathers additional information about our results that has been
moved here due to limitations in space. Besides, this separation contributes to
increase the readability of the document. Tables are appropriately referenced
where it corresponds to provide a more coherence document.

a.1 homographies and fundamental matrices

As it has been mentioned in Section 2.4.1, there is a dichotomy between ho-
mographies and fundamental matrices. A SLAM system can bootstrap a se-
quence from both models. However, each model is more suitable depending
on the motion described by the camera between the first two keyframes. The
best model is selected by ORB-SLAM using a heuristic procedure that eval-
uates the quality of the map reconstructed from these keyframes. However,
the dichotomy can be justified from the underlying topological structure of
both models. This topological description understands fundamental matrices
as “degenerated” cases of homographies and analyzes possible degenerations
of fundamental matrices to be avoided. This section summarizes the contents
of a manuscript that we have submitted and it is currently under revision [27].

Let consider the rank stratification of the space E of 3× 3-matrices M repre-
senting endomorphisms up to scale of a 3D vector space V . The action of the
projectivized PGL(3; R) of the general linear group GL(3; R) on M delivers
three orbits Mc for 1 6 c 6 3, where c = 3− rk(M) is the corank of the matrix
M ∈ End(V):

• The regular orbit M0 represented by the group of homographies H cor-
responding to regular matrices with rank 3 (non-vanishing determinant)
up to scale.

• The singular orbit M1 represented by the manifold F of rank 2 matrices
(vanishing determinant), which are interpreted as fundamental matri-
ces.

• The “supersingular” orbit M2 represented by the variety of rank 1 ma-
trices (vanishing determinant of every 2× 2-minor of the matrix M ∈
End(V).

It should be noted that

M2 ⊂M1 ⊂M0 = M ,

where the overline denotes the topological adherence or “closure” of the
orbit. There exists a G-equivariant decomposition of M by the rank, i. e., a
description as a disjoint union of G-orbits with G = PGL(3; R):

M0 ∪M1 ∪M2 .

159
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In addition, Sing(M0) = M1 and Sing(M1) = M2.
Tangent spaces to these manifolds must be considered to achieve a geomet-

rical interpretation of homographies (elements of M0) or fundamental matri-
ces (elements of M1) in a common framework. The adjoint map ad provides
a natural representation of the dual map, and assigns to each matrix M its
adjoint matrix ad(M). The elements of the adjoint matrix Mij are the deter-
minants of the complementary minor of mij ∈ M. The array formed by the
entries of the adjoint matrix is the normal to the tangent hyperplane TMM to
the space M at the point M ∈M.

From a global viewpoint, the adjoint map defines an isomorphism with its
dual space Mν since M is a vector space. Hence, there exists an element of
End(Vν) up to scale, where Vν is the dual space of V for each element M
corresponding to an endomorphism of the vector space V up to scale.

The isomorphism V ' Vν induces a perfect pairing between V and Vν in
the following sense: V ' (Vν)ν. However, this claim is not true for End(V)
since the inverse is not defined for degenerate endomorphisms. To solve this
problem, the graph of the adjoint map ad : End(V)→ End(Vν) must be com-
pactified with the closure of pairs (M,ad(M) in the space End(V)×End(Vν)
to include the degenerate cases. This compactification extends the isomor-
phism V ' Vν to a duality between their endomorphisms. This duality is
compatible with the locally homogeneous structure of the orbits so it is a
locally symmetric space. This mathematical framework supports “degenera-
tions” or “regenerations” of fundamental matrices and homographies using
secant spaces.

In addition, the estimation of the homography or fundamental matrix can
be reinterpreted using the geometry of complete endomorphisms, i. e., pairs
(M,ad(M)) where M represents a matrix and ad(M) its adjoint.

When M is a regular endomorphism up to scale (i. e., a homography), only
four points are needed since they provide a projective reference for the pro-
jective plane P2 representing the view. This can be justified by the fact that
matrices M and ad2(M) = ad(ad(M)) represent the same point in the projec-
tive space PEnd(V). In other words, the dual transformation represented by
the ad(M) (up to scale) operates in the same way on 4-tuples of dual lines of
the above reference points. The dual endomorphism ad(M) exists for a degen-
erate matrix M (i. e., corank is one) since at least one 2× 2-minor has a non-
vanishing determinant. However, the biduality disappears, i. e., the original
M cannot be recovered from ad2(M) because rk(ad(M)) = 1. This problem is
solved by “adding” a tangent direction corresponding to the spatio-temporal
evolution of M. This tangent direction is the projection on the variety M1

of the chord connecting two close locations passing through the degenerate
matrix.

The prolongation of each chord MM ′ of M1 gives a projective line ` through
M whose generic element is a regular matrix, i. e., each point of the line repre-
sents a homography. Hence, data corresponding to a generic ` is determined
by two homographies, which can be viewed as the “recent history” of the
evolving tensor represented by eventually degenerated homographies.

If degenerate maps represented by M ∈ M1 persist (e. g., in unstructured
scenes without perspective elements), the chords passing through M can be
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used. They are part of the secant variety Sec(1,F) to the fundamental variety
F. The secant variety is a PL-approach to the tangent space since it is not well
defined for the most degenerate case.

These arguments provide a geometric interpretation of the classical alge-
braic argument [82] and the defense of the eight-point linear algorithm [53].
In this case, the estimation is computed using the local projection on the fun-
damental variety F of the chordal variety Sec(1,F). Furthermore, the under-
lying smooth structure of the generic elements lying on chords of Sec(1,M1

allows us to update the model estimation in order to avoid tracking losses.
The first-order “expected variation” is represented by tangent elements in the
space of completed endomorphisms (M,ad(M)) ∈ End(V)× End(V)ν up to
scale.

a.2 sequence characteristics

The characteristics of a sequence refers to the special traits that make that
sequence specially challenging for monocular SLAM. Each characteristics is
labeled with a value between 1 and 5 taking into account the presence of
the challenge in the sequence. More information about these characteristics,
including their meaning, is described in Section 3.2.2.

The table has been split in two parts according to the value assigned by
the linear model of the SVM classifier described at Section 3.3.5. On the one
hand, Table A.1 includes the sequences where the linear function returns a
negative value (i. e., the classifier predicts that the ATE of KN-SLAM is lower).
On the other hand, Table A.2 contains the sequences where the trained SVM
classifier predicts that ORB-SLAM achieves a lower ATE in the trajectory of
the sequence.
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euroc/V103 5 3 2 5 4 1 5 1 5 −6.32

euroc/MH05 3 1 1 3 3 1 4 1 5 −5.80

euroc/MH04 3 2 1 3 3 1 3 1 5 −5.39

euroc/MH03 4 3 1 5 3 1 5 1 3 −4.72

euroc/V201 1 3 1 5 3 1 5 1 1 −4.54

euroc/V101 1 1 1 5 3 1 5 1 1 −4.38

euroc/MH02 3 2 1 2 4 1 5 1 2 −2.84

euroc/MH01 4 2 1 3 4 1 5 1 2 −2.75

tum/fr2_desk 1 3 2 3 3 1 4 1 1 −2.49

euroc/V202 5 5 2 5 5 1 5 1 1 −2.44

tum/fr3_nstr_tex_near 1 3 5 5 3 1 4 2 1 −1.91

icl/lr_kt0 1 1 1 5 2 1 3 3 1 −1.66

tum/fr2_xyz 1 1 3 1 5 1 4 1 1 −1.62

tum/fr3_str_tex_far 1 4 3 3 5 1 1 1 1 −1.60

tum/fr3_long_office 2 2 3 3 3 1 4 1 1 −1.36

icl/of_kt0 1 3 4 5 2 1 4 3 1 −1.19

kitti/9 5 4 2 4 4 2 4 4 4 −1

icl/lr_kt2 1 1 2 3 3 1 4 3 1 −1

kitti/7 2 2 1 3 5 3 4 2 2 −1

kitti/0 4 1 1 2 5 3 5 3 4 −1

euroc/V102 5 3 2 5 2 1 5 1 1 −1

kitti/6 3 2 1 2 5 1 4 2 1 −1

kitti/5 3 1 1 2 5 3 4 2 3 −0.75

tum/fr3_str_tex_near 1 4 5 3 4 1 1 1 1 −0.43

tum/fr2_desk_person 1 3 2 3 3 3 4 1 1 −0.09

Table A.1: Characterization of the sequences with a value for the linear model of
SVM < 0. Sequences are sorted by that value in ascending order. Each
characteristic represents a challenging trait for SLAM, valued on a scale
with five levels to asses the results of a monocular SLAM system.
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kitti/8 4 3 1 2 5 2 1 2 3 0.03

icl/of_kt3 1 2 2 4 2 1 4 5 1 0.08

icl/of_kt1 1 1 3 4 3 1 4 5 1 0.11

tum/fr1_xyz 3 2 5 1 5 1 4 1 1 0.42

tum/fr2_360_kidnap 1 2 1 5 2 4 3 1 1 0.53

kitti/2 5 2 1 2 5 3 4 4 4 0.76

tum/fr3_nstr_tex_far 1 5 5 2 5 1 1 3 1 0.99

icl/of_kt2 1 2 4 3 3 1 4 5 1 0.99

kitti/10 4 3 2 3 5 3 1 2 3 1

tum/fr3_sit_xyz 1 4 1 1 5 4 4 1 1 1

tum/fr3_sit_halfsph 1 4 4 5 2 4 4 1 1 1

tum/fr3_sit_rpy 2 4 1 5 1 4 4 1 1 1

euroc/V203 5 5 4 5 4 3 5 1 1 1.13

kitti/3 3 2 1 2 5 3 1 3 3 1.29

tum/fr1_desk 5 3 2 4 3 1 2 2 1 1.29

icl/lr_kt1 1 1 3 5 2 1 1 5 1 1.39

icl/lr_kt3 1 1 5 3 3 1 4 5 1 1.45

tum/fr3_walk_halfsph 2 4 2 5 2 5 4 1 1 2.14

tum/fr3_walk_xyz 3 4 1 1 5 5 4 1 1 3.57

tum/fr3_walk_rpy 4 4 1 5 1 5 4 1 1 3.57

kitti/4 4 1 1 1 5 3 1 3 2 3.77

tum/fr1_floor 3 1 4 3 3 2 2 4 1 3.95

Table A.2: Characterization of the sequences with a value for the linear model of
SVM > 0. Sequences are sorted by that value in ascending order. Each
characteristic represents a challenging trait for SLAM, valued on a scale
with five levels to asses the results of a monocular SLAM system.
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sequence kn-slam orb-slam difference

00 99.10 % 99.22 % −0.12%

02 99.32 % 91.31 % 8.01%

03 98.46 % 99.55 % −1.09%

04 96.50 % 99.63 % −3.13%

05 99.97 % 99.46 % 0.51%

06 97.11 % 98.46 % −1.35%

07 93.27 % 93.50 % −0.23%

08 99.30 % 85.36 % 13.94%

09 95.99 % 89.70 % 6.29%

10 96.16 % 97.13 % −0.97%

Table A.3: Comparison of the Percentage of Tracked Trajectory (PTT) for each se-
quence in the KITTI dataset. The PTT is estimated as the mean value of
all executions where the system bootstrap. The best value for each se-
quence (greater is better) is highlighted in bold. The last column shows
the difference between KN-SLAM and ORB-SLAM.

a.3 Percentage of Tracked Trajectory

This section includes the complete results achieved in our evaluation of the
robustness using the PTT as metric. They are separated by the dataset where
the sequences belong to. The analysis and discussion of these results can be
found in Section 3.3.2.

The trajectories generated by KN-SLAM and ORB-SLAM in the KITTI dataset
(Table A.3) have similar length. Sequence 08 exhibits the highest difference
since ORB-SLAM lost the tracking in the middle of the sequence three of
eleven times. It can also be seen that the robustness of KN-SLAM w. r. t. ORB-
SLAM is higher in most sequences of the TUM RGB-D dataset (see Table A.4).
There are almost no differences between both systems in the sequences of
the EuRoC dataset (see Table A.5). The main difference is observed in the
sequence V202, where ORB-SLAM bootstraps erroneously in four of eleven
executions. Finally, the results achieved in the sequences of the ICL-NUIM
dataset are shown in Table A.6. Here, we can see that ORB-SLAM only boot-
strap in three sequences. The differences between the PTT achieved by both
systems are almost imperceptible.
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sequence kn-slam orb-slam difference

fr1_xyz 87.53 % 68.02 % 19.51%

fr2_xyz 94.31 % 92.75 % 1.56%

fr1_floor 50.53 %

fr1_desk 82.63 % 60.94 % 21.69%

fr2_360_kidnap 44.40 % 39.02 % 5.38%

fr2_desk 81.41 % 74.31 % 7.10%

fr2_desk_person 92.47 % 93.34 % −0.87%

fr3_long_office 98.47 % 94.59 % 3.88%

fr3_nstr_tex_far 47.67 %

fr3_nstr_tex_near 95.64 % 95.67 % −0.03%

fr3_str_tex_far 93.37 % 91.87 % 1.50%

fr3_str_tex_near 92.48 % 92.92 % −0.44%

fr3_sit_xyz 92.12 % 85.82 % 6.30%

fr3_sit_halfsph 94.31 % 86.62 % 7.69%

fr3_sit_rpy 75.79 % 65.04 % 10.75%

fr3_walk_xyz 70.43 %

fr3_walk_halfsph 85.82 % 86.50 % −0.68%

fr3_walk_rpy 84.13 % 89.17 % −5.04%

Table A.4: Comparison of the Percentage of Tracked Trajectory (PTT) for each se-
quence in the TUM RGB-D dataset. The PTT is estimated as the mean
value of all executions where the system bootstrap. The best value for
each sequence (greater is better) is highlighted in bold. The last column
shows the difference between KN-SLAM and ORB-SLAM.
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sequence kn-slam orb-slam difference

MH01 87.28 % 84.38 % 2.90%

MH02 90.38 % 93.97 % −3.59%

MH03 94.96 % 96.16 % −1.20%

MH04 91.93 % 81.33 % 10.60%

MH05 91.29 % 92.83 % −1.54%

V101 93.31 % 94.32 % −1.01%

V102 91.20 % 90.00 % 1.20%

V103 89.23 % 86.82 % 2.41%

V201 90.86 % 87.98 % 2.88%

V202 84.33 % 59.15 % 25.18%

V203 84.16 % 85.75 % −1.59%

Table A.5: Comparison of the Percentage of Tracked Trajectory (PTT) for each se-
quence in the EuRoC dataset. The PTT is estimated as the mean value
of all executions where the system bootstrap. The best value for each se-
quence (greater is better) is highlighted in bold. The last column shows
the difference between KN-SLAM and ORB-SLAM.

sequence kn-slam orb-slam difference

lr_kt0 91.15 %

lr_kt1 46.78 %

lr_kt2 90.29 % 93.19 % −2.90%

lr_kt3 93.47 %

of_kt0 91.07 %

of_kt1 47.45 % 42.60 % 4.85%

of_kt2 93.02 % 93.31 % −0.29%

of_kt3 69.55 %

Table A.6: Comparison of the Percentage of Tracked Trajectory (PTT) for each se-
quence in the ICL-NUIM dataset. The PTT is estimated as the mean value
of all executions where the system bootstrap. The best value for each se-
quence (greater is better) is highlighted in bold. The last column shows
the difference between KN-SLAM and ORB-SLAM.
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sequence kn-slam orb-slam difference

00 6.4525 (11) 6.8172 (11) 5.35%

02 25.8591 (11) 25.7361 (11) −0.48%

03 1.1012 (11) 1.2076 (11) 8.81%

04 1.0167 (11) 0.9151 (11) −9.99%

05 4.2906 (11) 5.8852 (11) 27.10%

06 12.6292 (11) 14.5704 (11) 13.32%

07 1.6884 (11) 2.0226 (11) 16.52%

08 54.4592 (11) 51.4204 (11) −5.58%

09 7.6201 (11) 37.0662 (11) 79.44%

10 8.8903 (11) 7.0203 (11) −21.03%

Table A.7: Absolute Trajectory Error (ATE) in the sequences of the KITTI dataset.
Each cell contains the median ATE after eleven alternative executions of
the system for each sequence. The number of executions where the system
bootstraps the sequence is expressed between parentheses. The lowest
value for each sequence is highlighted in bold. Empty cells corresponds
to non-comparable sequences, i. e., sequences where a system tracks fewer
than 30% of the frames or bootstraps less than three of eleven times.

a.4 Absolute Trajectory Error

The ATE, as defined in Section 3.3.3, is the RMSE of the positions of the cam-
era along the keyframes of the trajectory. The tables gathering the results for
each sequence have been collected in this section, although the corresponding
results for each sequence are analyzed in Section 3.2.4.

The results achieved in the KITTI dataset are mixed with a significant differ-
ence in the 09 sequence, as it can be seen in Table A.7. Results in the sequences
of the TUM RGB-D dataset are shown in Table A.8. Here, ORB-SLAM finds
problems to track the collection of sequences with moving objects. However,
desktop-based sequences are tracked more accurately than KN-SLAM. Next
table is Table A.9, which corresponds to the EuRoC dataset. In this dataset
KN-SLAM outperforms the accuracy of ORB-SLAM in all sequences, except
V203 due to the fast camera movements that cause relocalizations. Finally,
Table A.10 contains the results for the trajectories of the sequences in the ICL-
NUIM datasets. Only three sequences are comparable since they are difficult
to bootstrap with a sparse approach. In the of_kt1 sequence KN-SLAM finds
a false positive at loop detection that explains the higher error.
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sequence kn-slam orb-slam difference

fr1_xyz 0.0093 (11) 0.0087 (11) −6.04%

fr2_xyz 0.0025 (11) 0.0025 (11) 0.72%

fr1_floor 0.0088 (11)

fr1_desk 0.0152 (11) 0.0135 (11) −10.94%

fr2_360_kidnap 0.0365 (11) 0.0318 (9) −12.96%

fr2_desk 0.0079 (11) 0.0098 (11) 19.11%

fr2_desk_person 0.0082 (11) 0.0082 (11) 0.22%

fr3_long_office 0.0116 (11) 0.0122 (11) 5.30%

fr3_nstr_tex_far 0.0768 (5)

fr3_nstr_tex_near 0.0137 (11) 0.0138 (11) 0.75%

fr3_str_tex_far 0.0085 (11) 0.0107 (11) 20.01%

fr3_str_tex_near 0.0128 (11) 0.0129 (11) 1.31%

fr3_sit_xyz 0.0123 (11) 0.0087 (11) −29.45%

fr3_sit_halfsph 0.0153 (11) 0.0143 (11) −6.54%

fr3_sit_rpy 0.0301 (11) 0.0207 (11) −31.15%

fr3_walk_xyz 0.0124 (11)

fr3_walk_halfsph 0.0220 (11) 0.0178 (11) −18.94%

fr3_walk_rpy 0.0898 (11) 0.0704 (11) −21.66%

Table A.8: Absolute Trajectory Error (ATE) in the sequences of the TUM RGB-D
dataset. Each cell contains the median ATE after eleven alternative exe-
cutions of the system for each sequence. The number of executions where
the system bootstraps the sequence is expressed between parentheses. The
lowest value for each sequence is highlighted in bold. Empty cells cor-
responds to non-comparable sequences, i. e., sequences where a system
tracks fewer than 30% of the frames or bootstraps less than three of eleven
times.



A.4 Absolute Trajectory Error 169

sequence kn-slam orb-slam difference

MH01 0.0136 (11) 0.0161 (11) 15.59%

MH02 0.0149 (11) 0.0154 (11) 3.75%

MH03 0.0205 (11) 0.0239 (11) 14.24%

MH04 0.0606 (11) 0.0628 (11) 3.39%

MH05 0.0399 (11) 0.0436 (11) 8.35%

V101 0.0350 (11) 0.0357 (11) 1.86%

V102 0.0107 (11) 0.0109 (11) 1.58%

V103 0.0216 (11) 0.0313 (11) 30.93%

V201 0.0157 (11) 0.0230 (11) 31.78%

V202 0.0149 (11) 0.0166 (11) 10.32%

V203 0.1247 (11) 0.0941 (11) −24.56%

Table A.9: Absolute Trajectory Error (ATE) in the sequences of the EuRoC dataset.
Each cell contains the median ATE after eleven alternative executions of
the system for each sequence. The number of executions where the system
bootstraps the sequence is expressed between parentheses. The lowest
value for each sequence is highlighted in bold. Empty cells corresponds
to non-comparable sequences, i. e., sequences where a system tracks fewer
than 30% of the frames or bootstraps less than three of eleven times.

sequence kn-slam orb-slam difference

lr_kt0 0.0047 (11)

lr_kt1 0.0177 (11)

lr_kt2 0.0237 (11) 0.0324 (11) 26.76%

lr_kt3 0.0331 (11)

of_kt0 0.0528 (11)

of_kt1 0.8780 (11) 0.8162 (11) −7.05%

of_kt2 0.0219 (11) 0.0239 (11) 8.12%

of_kt3 0.1348 (11)

Table A.10: Absolute Trajectory Error (ATE) in the sequences of the ICL-NUIM
dataset. Each cell contains the median ATE after eleven alternative execu-
tions of the system for each sequence. The number of executions where
the system bootstraps the sequence is expressed between parentheses.
The lowest value for each sequence is highlighted in bold. Empty cells
corresponds to non-comparable sequences, i. e., sequences where a sys-
tem tracks fewer than 30% of the frames or bootstraps less than three of
eleven times.
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