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Abstract 

Desert locust (Schistocerca gregaria) has severely influenced crop production 
in northern Africa and Middle East since antiquity. To prevent or mitigate its 
effects on local communities, it is necessary to precisely locate those areas 
where they breed. Previous works have relied on precipitation and vegetation 
indices obtained by satellite remote sensing, however many authors (Browning 
et al., 1990; Gay et al., 2018) agree on the necessity to improve desert locust 
prevention systems. 

 In this PhD thesis, we have explored 3 different novel approaches to locate 
desert locust breeding areas in Mauritania. (1) Firstly, the SWAT hydrological 
model was used to locate wadis that may host desert locust given their 
favourable ecological conditions. (2) Secondly, the influence of soil moisture 
(SM) using the European Space Agency Climate Change Initiative Soil Moisture 
(ESA CCI SM) product was assessed over desert locust breeding sites using 
Artificial Intelligence (AI) and more specifically machine learning techniques. 
(3) Finally, we have generated a multivariate ensemble model using a 
combination of the frequently used Species Distribution Models (SDMs) in 
ecology. 

 The results in (2) showed a good correlation between general monthly soil 
moisture patterns and hopper presences. It was found that an area becomes 
suitable for breeding when the minimum SM values are over 0.07 m3/m3 during 
6 days or more. On the other hand, the identified wadis by means of SWAT 
hydrological model (1) did not find significant influence on locust presences for 
the studied period. Many uncertainties in precipitation records, as well as poor 
river gauge data were encountered, what impeded adequate calibration and 
validation procedures. Longer and more accurate data records (precipitation 
and river gauge) may permit to further develop this approach in the near 
future. Furthermore, the third approach showed highly satisfactory model 

https://www.linguee.es/ingles-espanol/traduccion/the+antiquity.html
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results (KAPPA & TSS = 0.901 and ROC = 0.986) to detect hopper desert locust 
in solitary phase, implying that our model can identify suitable environmental 
conditions for breeding. This study also confirms the potential of the SMAP 
satellite from NASA to retrieve critical temperatures due to its time pass, in 
addition to reinforcing the NDVI product from MODIS as a reliable 
environmental predictor (3). 

 These results demonstrate the validity of the methodologies exposed in this 
PhD thesis to identify favourable breeding areas in Mauritania. Earth 
observation techniques can retrieve periodically important environmental 
variables such as soil moisture, surface temperature or vegetation status to be 
managed by machine learning algorithms over remote and large areas. Thus, 
our work may be of interest to authorities of affected countries or international 
organizations to complement or improve current ongoing monitoring techniques 
and warning systems. 

Keywords: Artificial Intelligence; Breeding areas; Desert locust; Favourable 
ecological conditions; Mauritania; Prevention systems; Remote sensing; Soil 
moisture 

 

 

 

 

 

 

 

 

 

 

 

 



 

Resumen 

 

La langosta del desierto (Schistocerca gregaria) ha provocado graves daños a la 
producción agrícola del norte de Africa y Oriente Medio desde tiempos 
antiguos. Con el objetivo de prevenir o mitigar sus efectos sobre las 
poblaciones locales, es necesaria una precisa localización de aquellas áreas 
donde crían y se reproducen. Tradicionalmente, los trabajos que han abordado 
esta problemática han utilizado variables como la precipitación o índices de 
vegetación obtenidos mediante teledetección con satélites; sin embargo, son 
varios los expertos que señalan la necesidad de mejorar los actuales sistemas 
de prevención de langosta del desierto (Browning et al., 1990; Gay et al., 
2018). 

 En esta tesis doctoral, presentamos 3 novedosos procedimientos para detectar 
posibles zonas de reproducción o cría para la langosta en Mauritania. (1) El 
primer método se basa en el uso del modelo hidrológico SWAT, el cual se ha 
utilizado para localizar wadis. Según la bibliografía consultada, estos lugares 
presentan unas condiciones ecológicas favorables para la presencia de 
langosta. (2) El segundo método estudia la influencia del producto de humedad 
del suelo generado por la Agencia Europea del Espacio bajo su iniciativa de 
Cambio Climático (ESA CCI SM) en la zonas de cria de la langosta del desierto 
mediante técnicas de Inteligencia Artificial (IA). (3) Finalmente, se ha 
generado un modelo multi-variable a partir de la combinación de varios 
modelos de distribución de especies (SDMs). 

 Los resultados obtenidos en (2) muestran una buena correlación entre los 
valores mensuales de humedad del suelo y las presencias de langosta en 
estado juvenil “saltamontes”, más conocidos por el término inglés “hopper”. Se 
ha observado que aquellas zonas donde los valores mínimos de humedad 
sobrepasan los 0.07 m3/m3 durante 6 o más días, son áreas con mayor 
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predisposición a ser zona de cría para la langosta. Por otro lado, se han 
identificado geográficamente wadis mediante el modelo SWAT y estudiado la 
posible relación con la presencia de langosta en las inmediaciones (1). Los 
resultados no confirman una directa relación que condicione la presencia de 
langostas, al menos para el periodo de tiempo estudiado. Se ha observado 
bastante incertidumbre en los datos de precipitación y caudal de agua, lo que 
ha provocado que la calibración y validación del modelo no sea la más óptima 
posible. Unas series temporales más largas y precisas de precipitación y 
caudales, permitiría una mejora de los resultados obtenido en este capítulo 
para estudios futuros. Además, el método desarrollado en el tercer capítulo ha 
mostrado unos buenos resultados en términos de capacidad predictiva del 
modelo (KAPPA & TSS = 0.901 and ROC = 0.986). De esa manera, el modelo 
permite localizar zonas de cría para la langosta del desierto en estado solitario. 
Los resultados de este tercer capítulo demuestran el potencial del satélite 
recientemente lanzado SMAP para registrar críticas temperaturas del suelo, 
además de confirmar el producto NDVI del Terra-MODIS como un fiable 
indicador ambiental (3). 

 Los resultados obtenidos en esta tesis doctoral demuestran la validez de las 
metodologías de machine learning propuestas para identificar zonas de cría 
para langosta en Mauritania. Los métodos de observación de la Tierra mediante 
satélite son capaces de recopilar información ambiental relevante sobre la 
humedad del suelo, estado de la vegetación o temperatura del suelo; y esa 
información es gestionada mediante algoritmos de inteligencia artificial. Por 
tanto, se concluye que esta tesis doctoral puede ser del interés de las 
autoridades de países afectados u organismos internacionales para 
complementar o mejorar las actuales técnicas de monitoreo y sistemas de 
alerta. 

Palabras Clave: Condiciones ecológicas favorables; Humedad del suelo; 
Inteligencia Artificial; Langosta del desierto; Mauritania; Sistemas de 
prevención; Teledetección; Zonas de cría. 
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Chapter 1.- INTRODUCTION 

1.1. Research hypotheses 

This study aims to improve the current early warning systems to detect desert 
locust breeding areas, and it is based on the latest remote sensing technology 
from Earth observation, hydrologic models and artificial intelligence 
algorithms. This work has been motivated to mitigate the social impact of 
locust pests in the affected countries, aiming to provide technological support 
to local authorities and decision makers. 

1.2. Antecedents and research interest 

1.2.1. Historical background of desert locust 

Desert locust outbreaks have been a problem since antiquity, and periodically 
have caused devastation over local communities in northern Africa and Middle 
East countries. It is well documented by ancient literature: in the Har-ra list 
(Assyria - the Ashurbanipal Royal Library, 669-626 B.C.), in decorations found in 
Egyptian tombs (6th Dynasty, 2420-2270 B.C.), and in Biblical, Rabbinical, 
Greek and Roman literature, while control measures are also reported during 
Biblical, Grecian, Roman, Mishnaic, Talmudic, Byzantine as well as in modern 
times (Nevo, 1996). They affect local economies and living conditions, 
decreasing yield production in areas already affected by water scarcity and 
extreme weather conditions. 

 Desert locust is the earliest diverging species among the genus Schistocerca 
and the unique one settled in Africa, what indicates its high adaptability to the 
local conditions. Unlike other species of the same genus, it has kept some of its 
original traits such as the ability to change their behavior (Song et al., 2017). 
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Some of these areas have many political, economic and environmental 
constraints for food production, where still farming and herding are their main 
means of livelihood (FAO, 1994). Food scarcity and economic damages are 
direct consequences of locust pests, in addition to environmental impacts 
associated with the use of pesticides in control operations. According to 
(Brader et al., 2006), the desert locust invasion of 2004 reduced up to 80 % the 
expected cereal production in Burkina Faso, 90 % in Mali and between 90 to 
100% in Mauritania. The food consumption over those areas needed to be 
minimized due to the food crisis, and external aid was supplied to mitigate the 
effects. In spite of the efforts to control the plague (2003 to 2005), whose 
campaign rose up to US$400 million, the socio-economic impacts lasted until 
2006. 

In order to avoid crop and pasture losses, as well as reducing control spending, 
Food and Agriculture Organization of the United Nations (FAO) highlights the 
necessity to implement preventive strategies over the countries with seasonal 
breeding areas (Cressman, 1999). And those efforts have been mainly located in 
the western region of Africa aiming to control desert locust outbreaks before 
they spread over larger areas. Preventive controls are recommended to handle 
migrant plagues in terms of cost-benefit analysis, reducing the current impact 
but also diminishing the likelihood of incidence in the following years. There 
are some analyses such as (Joffe, 1998) where real and modeled data were 
used to evaluate the economic effects of dessert locust. His simulation was 
based on crop losses with and without control measurements against desert 
locust plagues, and then comparing those benefits against the real cost of the 
control measurements. It turned out that the control measurements were 
effective to fight against locust but not economically efficient (massive use of 
pesticides over areas not needed) due to bad management, excessive spending 
and lack of information. Nevertheless, sudden and located desert locust 
outbreaks are real threats to local farmers, and they urge actions to save their 
crops.  

Despite the long pest occurrence of desert locust, control efforts have been in 
vain at least until late 20th century. Large monitoring areas or lack of data are 
some of the reasons that account for this time lag (FAO, 2004). 

1.2.2. Remote sensing 

Remote sensing is the field that studies and models the phenomena occurring 
on the Earth surface and the iterations with the atmosphere (Lillesand et al., 
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2014) by means of reflected or emitted electromagnetic energy that is 
collected by a sensor at certain distance (Campbell & Wynne, 2011). 

There is a current necessity to monitor and control natural as well as 
anthropogenic dynamics such as environmental hazards, urban growth, 
meteorological and climatological prediction, natural resources to implement 
efficient management policies. It turns out that remote sensing is a good asset 
to solve those necessities (Camps-Valls, 2009). The physical principle of remote 
sensing techniques is that the target object reflects, absorbs, and emits 
electromagnetic radiation in a different way depending of their molecular 
composition and shape. Depending on the type of energy used by the sensor to 
acquire the data, we would differentiate two types: active and passive. Passive 
sensors measure energy that is naturally available. They can retrieve reflected 
energy when the sun illuminates the Earth, although they can detect energy 
which has been naturally emitted by the objects when is large enough such as 
in the thermal infrared spectrum (Fig. 1). 

 

Figure 1. Principles of imaging spectroscopy. Source: (Camps-Valls., 2009) 
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On the other hand, active sensors such as radar emit their own energy to 
illuminate towards the target object. The active antenna measures the 
travelling time and the backscatter of the transmitted energy that has been 
reflected on the Earth’s surface (NRCAN, 2015). These systems are independent 
of the weather conditions, and they can measure during day or night time. As a 
result, some characteristics of the image are determined by the object 
features: geometry (size, shape, roughness, orientation), dielectrics (water 
content, aggregate state, salt content, mineralogy), and motion (in azimuth 
direction and range direction). In addition, radar images are influenced by the 
characteristics of the radar sensor or the acquisition parameters (repeat 
frequency, pulse repetition frequency, bandwidth, polarization, incidence 
angle, imaging mode and orbit direction). 

Satellite remote sensing is nowadays a great asset to study inaccessible or 
complicated regions, as well as a cost effective method to monitor a wide 
range of environmental parameters, with a good temporal and spatial 
resolution (Melesse et al., 2007). 

Some authors have proposed the use of remote sensing platforms to monitor 
large and inaccessible locust breeding areas (Tucker et al., 1985; Tappan et al., 
1991; Ceccato et al., 2007, Pekel et al., 2011, Waldner et al., 2015; Renier et 
al., 2015, Piou et al., 2017), which usually occur away from crops (Symmons, 
1991). Remote sensed vegetation and precipitation are being used to derive 
potential grasshopper and locust habitats (Tappan et al., 1991) by means of 
satellite platforms as LANDSAT, NOAA, Meteosat, SPOT, TERRA or AQUA 
(Latchininsky et al., 2017). International organizations such as the Desert 
Locust Information Service (DLIS) from FAO have been using Earth observation 
methods since the 80’s to assess favourable environmental conditions to desert 
locust (Latchininsky et al. 2017). Nevertheless, ongoing monitoring techniques 
present some limitations in arid environments. The vegetation is usually sparse 
and geomorphological features are not always well identified (Piou et al., 2013; 
Lazar et al., 2015). Moreover, one of the major problems is precipitation 
detection by satellite remote sensing. Detection probabilities may range from 
70% to 20 % in arid and semiarid regions, with a high overestimation of rainfall 
occurrences (Dinku et al., 2010). Some studies have used precipitation datasets 
to determine breeding sites (Tucker et al., 1985; Cressman, 2013; Lazar et al., 
2015), nevertheless remote sensing precipitation datasets do not seem to be 
precise enough over arid and semiarid environments, where precipitation is 
scarce, random, brief and intense. Surface soil moisture is a very important 
variable to understand hydrological processes in arid environments, playing a 
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fundamental role in water and energy exchange between land and atmosphere 
(Wang & Qu, 2009). Furthermore, understanding its spatial and temporal 
evolution could be crucial for many environmental and ecological applications, 
such as to determine breeding areas for desert locust. A moist soil would keep 
the eggs hydrated, and such condition with high soil temperatures would 
enhance their quick hatching (Symmons & Cressman, 2001). 

 Recently, new satellite platforms such as Soil Moisture Ocean Salinity (SMOS) 
or Sentinel 1 are used to retrieve soil moisture information. There is a new 
ongoing project named Soil Moisture for dEsert Locust earLy Survey (SMELLS) 
funded by the European Space Agency (ESA) that aims to provide a 10 day soil 
moisture map of the north of Africa to identify suitable areas for egg laying. 
More information can be found at the site http://smells.isardsat.com. 

Prior studies have used satellite information to identify green vegetation by 
means of vegetation indexes (Popov et al., 1991; Despland et al., 2004). 
Vegetated soils are good breeding habitats to maintain and breed hoppers and 
adults (Tucker et al., 1985); however it might not be a suitable area to lay eggs 
and identify the beginning of a locust generation, what is our aim. 
Furthermore, vegetation identification with remote sensing techniques in arid 
or semiarid regions can be sometimes complicated due to the high red soil 
reflectance and imagery resolution. In addition to that, some temperature 
patterns may have effects on locust development (Chappell, 1983; Zhang et al., 
2009). 

Nowadays, the main efforts are focused on establishing preventive 
measurements to retrieve meteorological variables and vegetation so as to 
locate breeding areas of desert locust (FAO, 2016). This rising concern to 
control the population number before they become a plague, led FAO to 
develop the desert Locust Information Service (DLIS). This project aims to 
assess and warn about potential outbreaks, and provide the necessary 
information to operate an early warning system based on Earth observation 
systems and field work, in addition to other projects as the already cited 
SMELLS from ESA. 

Current technology such as satellite or drone remote sensing may improve data 
collection, overcoming temporal and spatial difficulties with cost effective 
methods, what makes these tools essential to tackle locust outbreaks (Ceccato 
et al., 2007). 
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1.2.3. Artificial Intelligence applied on Remote sensing data 

Artificial intelligence (AI) dates back to the 1950s, and since then it has being 
developed keeping up with advances in computer science. AI could be 
described as the theory and development of computer systems able to perform 
tasks normally requiring human intelligence (Hansen et al., 2017). 

 These techniques are nowadays applied on many fields ranging from economics 
or medicine up to journalism. Whenever data management is needed, AI arises 
as an appropriate tool to solve complicated tasks. Computers allow us to do 
complex operations in short periods of time. This fact has led us to a research 
area that had not being explored yet: “teaching machines to predict a likely 
outcome by looking at patterns on datasets”. This technique is called Machine 
Learning, and it is a particular approach to AI (Michalski et al., 2013). We can 
distinguish between three types of learning (Brownlee, 2014): supervised 
learning, unsupervised learning and semi-supervised learning. 

1.1.1.1. Supervised Machine Learning 

Most of the practical machines learning techniques use supervised learning. In 
this method, you have independent input variables (x) and one output and 
dependent variable (Y). The algorithm will aim to explain the output (Y) based 
on the inputs (x) by means of a function f(x). 

Thus, this function can predict the output variable (Y) when independent 
variables or predictors (x) are used as input data. It is referred as “Supervised 
Learning” because the algorithm will “learn” based on the training dataset 
since it has the correct output, and when predictions go wrong, they can be 
corrected to improve its accuracy. The learning process usually stops when the 
algorithm has reached an acceptable performance. 

Furthermore, there are two types of supervised learning methods: 
Classification and Regression. We can say that there is a classification problem 
when the output variable has two or more classes (Kotsiantis, 2007). On the 
other hand, regression problems are characterized by having real numbers as 
variable outputs (Criminisi et al., 2014). 

1.1.1.2. Unsupervised Machine Learning 

Unsupervised learning methods take into account only independent variables 
(x) and it does not contain any output or observed dependent variables (Y). The 
aim of this method is to model the underlying structure of the data so as to 
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obtain some patterns and learn from them (Hastie et al., 2009). Unlike 
supervised learning, the algorithms are not assisted by any output variable (Y) 
to find structures in the data. This type of problems is divided into clustering 
and association. The clustering problem aims to discover how the data groups 
due to its inherent characteristics. The association method aims to seek rules 
to describe large portions of the data. The most popular unsupervised learning 
algorithm for clustering problem is k-means, and for association problems “A-
priori” (Brownlee, 2014). 

1.1.1.3. Semi-Supervised Machine Learning 

There is a third type of learning method named Semi-Supervised Machine 
Learning. It addresses problems where only part of the data is labelled with the 
output variable (Y), and it stands in the mid-way between supervised and 
unsupervised learning methods. 

In this approach, supervised learning techniques can build a model to predict 
unlabelled data and feed that data back into the supervised learning algorithm 
as training data. Finally, that model can predict new unseen data (Brownlee, 
2014). 

1.1.1.4. General considerations in Machine Learning 

In summary, there are so many machine learning algorithms to be applied on a 
wide variety of problems, and new algorithms are being generated on a daily 
basis. Depending on the nature of the problem and the type of the available 
data, we need to apply a certain bunch of machine learning algorithms. 
Decision Trees, K-Means, K-Nearest Neighbors, Neural Networks, Random 
Forests or Support Vector Machines are just a few examples of the available 
wide range of existing machine learning algorithms. 

One of the first machine learning applications on remote sensing was done by 
(Huang & Jensen, 1997). They used a machine learning approach to automated 
building of knowledge bases for image analysis systems incorporating GIS data. 
It was a wetland classification which was compared against two conventional 
methods. The study concluded that the machine learning method based on 
decision trees was of good quality for image analysis. Since then, the remote 
sensing community have been using machine learning techniques as usual 
working tools (Melgani & Bruzzone, 2004; Ahmad et al., 2010; Rhee & Im, 
2017). 

Most of the machines learning projects share a similar workflow (Fig. 2). 
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Figure 2. Usual workflow in machine learning projects. Source: https://machinelearning-
blog.com/2017/11/19 

Firstly, we need to gather the data. In remote sensing, data mostly comes from 
satellites or drones. Then, preprocess (clean, prepare and manipulate) the data 
in order to expect the best results from the machine learning algorithms. Some 
of these algorithms can perform better if the data is prepared in a specific way 
(standardized, scaled, centered or normalized). Afterwards, the dataset needs 
to be split into training and testing subsets, and an appropriate algorithm 
should be chosen to build our model. As previously seen, each algorithm may 
suit to certain circumstances so it is very important to identify which are the 
most suitable to our specific purposes. Later on, the model should be trained 
and in some instances tuned to aim for the best performance. Finally, the 
model ought to be validated and improved to achieve the highest accuracy to 
our samples. The predictor model would thus be constructed. This is a 
summarized version about what implies to construct a machine learning 
predictive model. 

Two of the most recurrent problems in machine learning is called under-fitting 
and over-fitting. We say that one model is over-fitted when it has learned too 
well all the details in the training dataset, even the noise or random 
fluctuations within the data, so that it may affect the performance in the new 
data (Fig. 3). The model will not have the ability to generalize with new data in 
order to generate predictions (Brownlee, 2017). 
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Figure 3. Over-fit 25 degree polynomial model on training (left) and testing (right) datasets. 

Source: https://towardsdatascience.com 

Whereas a model is under-fitted when it does not describe the training data. It 
is easier to detect under-fitting in a model in comparison with overfitting, 
because it shows up during the calibration phase (Fig. 4). 

 

Figure 4. Under fit 1 degree polynomial model on training (left) and testing (right) datasets. 
Source: https://towardsdatascience.com 

 

1.2.4. Species Distribution Models 

Species Distribution Models (SDMs) are numerical tools that derive from 
Artificial Intelligence (AI) with ecological purposes. They analyze the link 
between species occurrences and environmental factors, providing an 
ecological insight to predict species distribution over space or time given 
certain environmental characteristics (Elith & Leathwick, 2009). Their machine 
learning methods increase traditional predictive performance and their 

https://towardsdatascience.com/
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capacity to incorporate complex interaction among variables (Anderson et al., 
2006), being eligible to work with large ecological datasets (Robinson et al., 
2014). 

Species Distribution Modelling (SDM) or environmental niche modelling is a 
computer algorithm technique to predict the geographical distribution of 
species, based on the known distribution or true presence values. The 
environment of the species is usually characterized by variables such as 
climate, soil type, water depth or land cover among others (Elith & Leathwick, 
2009). The accuracy of the predictive model will vary depending on the correct 
number of feature selecting, as well as sufficient data available for the 
modelling process. These models are applied on many fields such as 
conservation, ecology and evolution. SDM may facilitate land management 
(Hoffer, 1975; Kessell, 1976; Strahler, 1981), weed or pest species risk 
assessment (Sutherst & Maywald, 1985; Busby, 1991) and studies of climate 
impacts on the biota (Busby, 1986; Nix & Busby, 1986). 

SDM also relies on geographic information science (GIScience) and remote 
sensing since it requires geospatial data for spatial prediction. Environmental 
and terrain modelling has been identified as one of the three major subdomains 
in GIScience. They have demonstrated to be very useful tools in conservation 
biogeography purposes. And they are especially interesting when there are 
geographical missing data on the species distribution since SDM can use 
interpolation techniques to fill the gaps of information. This is very valuable 
when information about the environmental variables is available but the 
observations of the species distribution are sparse. Tasks such as biodiversity 
inventory, biodiversity prospecting (designing biodiversity surveys – predicting 
new occurrences), gap analysis, prioritizing areas for conservation (reserve 
design) and environmental impact analysis (determining how human activities 
including resource management might affect critical habitat for species of 
conservation concern) become more feasible by means of interpolation 
(Franklin, 2013). There are several publications that effectively used SDM to fill 
in the geographical gaps in species distributions (Table 1). 
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Paper Topic 

Dark, 2004 Application invasives: spatial autoregressive model 
contrasting invasive versus non-invasive non-native 
plant species 

Thuiller et al., 2006 Application climate change: temperate areas of 
Europe predicted to lose tree functional diversity 
while boreal areas gain 

Elith & Leathwick, 2007 Methods: examine effect of background sample and 
multivariate response on SDM performance 

Osborne et al., 2007 Methods: Local regression methods may perform 
better for interpolation but global methods for 
extrapolation 

Guisan et al., 2007a Methods: Effect of change in spatial grain on SDM 
performance 

Tsoar et al., 2007 Methods: compared six presence-only SDM methods 

Jiménez-Valverde et al., 2008 Concepts and methods: best models for realized 
versus potential distribution, performance as a 
function of prevalence, inaccuracy of SDMs 

Wisz et al., 2008  Methods: Sample size effect on presence-only SDM 
methods 

Marmion et al., 2009 Methods: compared five consensus methods for SDM 

Puschendorf et al., 2009 Application pathogens: predict potential pathogen 
distribution from climate data 

Beaumont et al., 2009 Application invasives: predict invasive plant species 
distributions from native versus entire distribution 

Williams et al., 2009 Application new occurrences: compared SDM 
methods for predicting undiscovered populations of 
rare plant species 

Franklin, 2010a Concepts and methods: SDMs have been linked to 
other models to forecast impacts of environmental 
change on biodiversity 

Platts et al., 2010 Application conservation planning: predict 
distribution of forest plant taxa in biodiversity 
hotspot for conservation prioritization 

http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0006
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0048
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0011
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0031
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0018
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0018
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0049
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0022
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0054
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0027
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0035
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0003
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0053
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0015
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0033
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Paper Topic 

Elith et al., 2011 Methods: describes MaxEnt in statistical terms; links 
species and data characteristics to implementation 
decisions 

Dubuis et al., 2011 Application conservation: compared statistical 
models of species richness to estimates from 
stacked SDMs 

Václavík & Meentemeyer, 
2012 

Application invasives: SDMs of invasive pathogen 
from different stages of invasion 

Hof et al., 2012 Application climate change: incorporate predator 
and prey distribution predictions into SDM forecast 
of climate change impacts 

Junker et al., 2012 Application conservation: changes in human impacts 
variables predict changes in suitable habitat for 
great apes 

Naujokaitis-Lewis et al., 2013 Application climate change: linked SDM-population 
models are sensitive to model uncertainty 

 
Table 1. Review of publications that have used SDM to fill in gaps in species distribution. They 

are sorted in chronological order. Source: Franklin, 2013 

 
(Platts et al., 2010) applied SDMs to carry out spatial predictions of plant 
species richness within a biodiversity hotspot and suggested that, due to 
models are more uncertain for endangered species; they should be generated 
iteratively with direct fieldwork. (Williams et al., 2009) compared different 
SDMs in accordance with their ability to predict the distributions of rare plant 
species. In addition, they established on-field surveys based on those 
predictions to verify their assumptions. As a result, they discovered new 
populations of those rare species. (Puschendorf et al., 2009) used SDM 
techniques to predict the potential distribution of the amphibian chytrid fungus 
disease in Costa Rica. They were able to identify climatic and topographic 
areas with less likelihood of appearance for this pathogen. 

Based on the success of previous literature, SDMs were used to analyse the role 
of remotely sensed environmental variables to identify desert locust breeding 
areas in solitary phase. 

http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0014
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0008
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0050
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0020
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0023
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0029
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0033
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0053
http://onlinelibrary.wiley.com/doi/10.1111/ddi.12125/full#ddi12125-bib-0035
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1.3. Description of the study area 

1.3.1. Location 

The Islamic Republic of Mauritania is a state located in the Maghreb region of 
western Africa. It is a vast country of 1,030,700 km² with large arid plains and 
only one continuous water flow, the Senegal River. It is the 11th largest country 
in Africa and it is bordered by Senegal (south), Mali (east), Algeria (north-east), 
Western Sahara (north) and the Atlantic Ocean (west). Nouakchott is the 
capital and its largest city, with approximately one third of the country’s 
population. Due to the large extension of Mauritania, it is subdivided in 13 
administrative regions or provinces (Table 2 & Fig. 5). This study area was 
selected to be one of the major breeding and recession regions for desert 
locust (Culmsee, 2002). 

Province Capital Area (km2) Population (2013) 

Adrar Atar 235,000 62,658 

Assaba Kiffa 36,600 325,897 

Brakna Aleg 33,000 312,277 

Dakhlet Nouadhibou Nouadhibou 23,090 123,779 

Gorgol Kaédi 13,600 335,917 

Guidimaka Sélibaby 10,300 267,029 

Hodh Ech Chargui Néma 182,700 430,668 

Hodh El Gharbi Ayoun el Atrous 53,400 294,109 

Inchiri Akjoujt 46,800 19,639 

Nouakchott-Nord Dar-Naim 306 366,912 

Nouakchott-Ouest Tevragh-Zeina 146 165,814 

Nouakchott-Sud Arafat 252 425,673 

Tagant Tidjikja 98,340 80,962 

Tiris Zemmour Zouérat 252,900 53,261 

Trarza Rosso 67,800 272,773 

 
Table 2. Principal regions or provinces in Mauritania with its capital, area and population. 

Source: http://www.africanbib.biz 

http://www.africanbib.biz/
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Figure 5. Map of Mauritania with its regions. Source: http://www.mapsopensource.com 

1.3.2. Topography and drainage 

Mauritania is a merely flat landscape with vast plains which are interrupted by 
a few rocky outcrops. The center of the country is formed by a series of 
sandstone plateaus giving with a few spring-fed oases. The most relevant 
feature of this area is the Guelb er Richat, or “the Eye of the Saraha”. It is a 
greatly eroded dome consisting of a variety of intrusive and extrusive igneous 
rocks with different resistance to weathering. Due to climatic conditions and 
the low precipitation regime, there are no significant lakes or rivers. The 
highest spot of the country is Kediet Ijill with 915 m; while its lowest point is 
Te-n-Dghamcha with 5 m below the sea level (Gerteiny et al., 2018). In Fig. 6, 
the digital elevation model of the country can be seen. It has been generated 
using SRTM dataset with 30 m of spatial resolution. It should be noted that 
maximum and minimum height differs from the reported data in the 
bibliography. This fact can be accounted for the spatial resolution of the SRTM 
sensor, whose image pixels cover an area of 30 m x 30 m = 900 m2. The relief 
and drainage of Mauritania are influenced by its arid conditions. The coastal 
plains are below 45 m, while the higher plains of the centre range from 180 to 
230 m. In the interior plains, there are many tablelands with differences in 
height that are joined by long and smooth slopes of around 2 %. The slope map 
(Fig. 7) shows that most of the country has between 2 and 5 percentage of 
slope. 

http://www.mapsopensource.com/
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Figure 6. Digital Elevation Model of Mauritania with 30 meters of spatial resolution from SRTM 

dataset. 

 
Figure 7. Slope map of Mauritania generated from DEM-SRTM at 30 m. spatial resolution. 
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The topographical conditions of Mauritania allow high infiltration rates of the 
scarce precipitation that falls in the country. The most common slope ranges 
from 0 – 2 %, with just few areas over 10 %. Rocky outcrops are outlined by 
slopes greater than 15 % in the centre of the country. 

In the south of Mauritania, there are a few seasonal flows which are tributaries 
of the Senegal River: Karakoro, Gorgol, Kolinbiné. They are subjected to have 
seasonal floods during the summer months. In the rest of the country, the 
plateaus are cut by dry river beds or also referred as “wadis”. When these rare 
floods occur, wadis lead the water and dissipate it over areas called “guelts”. 
Fig. 8 shows some visual examples of those geomorphological features in the 
Adrar province of Mauritania. In the north and eastern parts of the country, the 
precipitation is as rare and slight that hardly ever ends up in runoff (Trape, 
2009). 
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Figure 8. Gueltas and springs from the Seguellîl wadi basin. A: The former spring of Ted at Ksar 
Torchane; B: Ilîj guelta.; C: The first guelta of Molomhar; D: Pond at Agueni; E: 
Tachot guelta; F: Hamdoun guelta; G: Terjit springs; H: Toungad guelta. Source: 
Trape, 2009 

 

1.3.3. Climatic conditions 

According to (Gerteiny et al., 2018), the aridity of the Mauritanian climate is 
due to the north-eastern trade winds, which blow constantly in the north and 
throughout most of the year in the rest of the country. They have a very sheer 
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drying effect and it is enhanced by the Harmattan season. This is a western 
African season that occurs between the end of November and the middle of 
March (Minka et al., 2014). It is featured by dry and dusty trade wind from the 
north-east or east. Then, it blows from the Sahara Desert over west Africa into 
the Gulf of Guinea. Depending on local circumstances, these winds affects 
differently concerning temperature. 

Precipitation is generally scarce in Mauritania (Fig. 9). With the exception of 
few winter precipitation episodes that may occur due to mid-latitude 
atmospheric disturbances, precipitation is usually conveyed by south or south-
west winds. 

 

Figure 9. Mauritania historical average rainfall (1981 - 2010). Source: USGS/EROS 
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In average, Sélibabi (southernmost part) receives by 635 mm between June and 
October. Whereas Kiffa, which is situated more in the north, has round 355 mm 
between mid-June and mid-October. In the Tagant province, Tidjikdja has 
about 180 mm between July and September. In Adrar, Atar receives 
approximately by 177 mm between mid-July and September and Nouâdhibou, 
between 25 and 50 mm. during its rainy season: September, October and 
November, being common the stormy showers (Gerteiny et al., 2018). 

Typically, summer month temperatures are rather high. In the afternoons, they 
can reach 30ºC across the country, while the highest temperatures throughout 
the day may reach up to 40ºC. 

According to Koppen classification (Kottek et al., 2006), two climate types are 
present in Mauritania: Hot Desert Climate (“BWh”) and Hot Semi-arid Climate 
(“BSh”).  The BWh is predominant in most of the country covering round 70 % of 
the country, which spatially coincides with part of the Sahara Dessert and the 
Sahelian belt. BSh accounts for the southernmost strip, where the rainfall 
average is higher, in addition to cooler and less fluctuating “day-night” 
temperatures in comparison with BWh. The maximum average temperatures on 
a monthly basis are found from May to October, while precipitation is higher 
from June to October (Fig. 10). As already mentioned, rainfall is scarce and 
very difficult to monitor due to the lack of ground based stations, although it is 
well known that they might be intense and cause floods in some instances (see 
the link http://floodlist.com/tag/mauritania) 

 

Figure 10. Average Monthly temperature and precipitation in Mauritania from 1901 to 2015. 
Source: World Bank 
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1.3.4. Geology and geomorphology 

Based on litho-stratigraphical and structural geology, 5 formations are 
distinguished in Mauritania: Réguibat shield, Taoudeni basin, Tindouf basin, 
Mauritanide Belt and Coastal Basin (Fig.11). 

 

Figure 11. Geological units of Mauritania. Source United States Geological Survey (USGS) 

 

(1) Réguibat shield is the northern part of exposure of the west African Craton 
that extends along the north of Mauritania and west of Argelia. It consists of 
Precambrian methamorphic and intrusive rocks (gneisses, greenstones, 
granites) probably older than 3,000 Ma that lay on the western part, while in 
the eastern part younger rocks (granite, granodiorite, orthogneiss and 
pegmatites) between 2,200 and 2,000 Ma in age overlay them. Limestones, 
dolomites and sand-stones arise flanking the whole shield. It has a complex 
history of magmatism and orogenesis. 

(2) The Taoudeni basin is the largest sedimentary formation in NW Africa and 
covers greatly the west African Craton in Mauritania and Mali. Sedimentary fill 
can reach over 3000 meters thick (Wright, 1985) and their age vary from mid-
late Proterozoic (Precambrian) to Cretaceous. Sedimentary lithologies such as 
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sandstones, siltstones, mudstones, turbidite facies, conglomerates, 
stromatolitic limestones and dolomites are present in the basin (Bradley et al., 
2015) outcropping some of them mainly in the Adrar, Tagant and Assaba regions 
(Perez de Ayala, 2011). 

(3) The Tindouf basin, whose depocenter is 8 km deep, is filled with sediments 
of Cambrian to Carboniferous age (Selley, 1997). Deposits such as sandstones, 
marlstones, fine sandstones, limestones, marly limestones and evaporitic series 
are displayed in stratigraphic sequence (Guerrak, 1989) lying discordant over 
the basement. 

(4) The Mauritanide Belt is an orogen that follows a north-south axis between 
Tindouf and Taoudeni basin. This belt was formed between 320-270 Ma during 
the Hercynian orogeny and it includes Old Pan-African belt material and 
Palezoic allochthonous sediments (tectonised and metamorphosed during such 
orogeny) (Villeneuve, 2005). 

(5) The Coastal Basin extends southwards from Nuadibú cape to the estuary of 
the Senegal River. The depth of the deposits increases westwards, being its 
depocenter offshore. Quaternary sand dunes mostly cover the inland part of 
the basin. In Nouakchott, a drilled borehole proves a depth of 5000 meters of 
basin sediments, although further offshore samples turned out being thicker 
deposits. Gypsum, anhydrite, salt, green-black clay deposits or pyrite are the 
oldest sediments, corresponding to the Permian-Triassic system (250-200 Ma). 
Limestones, sandstones, dolomites, reef carbonate deposits or sands with 
abundant shells are mainly the sedimentary layers that alternate in sequence 
(Perez de Ayala, 2011). 

1.3.5. Land cover and soil type 

The Sahel belt is a transitional eco-climatic and biogeographic region in Africa 
between the Sahara to the north and the Sudanian Savanna to the south 
(Huntington et al., 1834). Due to its less arid conditions and higher 
precipitation rates regarding Sahara, land use and soil types are more diverse. 
In Mauritania, by the parallel 17.5 ºN, two main zones are separated. Land uses 
under Saharan conditions (17.5 – 27 ºN) are mainly non-consolidated and 
consolidated bare areas, being the sand dunes their predominant soil type. 
However, other varieties are also observed: Arenosols, Leptosols, rock 
outcrops, Calcisols or Regosols. Under the influence of Sahel conditions (14.5-
17.5 ºN), land uses widen (range grasslands, savannas, steppes, shrublands or 
diffuse agricultural fields), as precipitation regime increases. Soil types such as 



Identifying Desert locust breeding areas by means of Earth Observation in Mauritania 

28 

arenosols, regosols and leptosols are predominant. Lixiol, cambisols, Gleysols, 
Vertisols and Fuvisols are frequent in the southernmost part due to the 
influence of the Senegal River and its tributaries. A distribution map of the 
different land cover and soil map units can be found below (Fig. 12). 

The land cover information was extracted from the Globcover regional (Africa) 
archive (Arino et al., 2007; FAO, 2009). We selected the land cover dataset 
covering December 2004 – December 2006, with 300 m spatial resolution. The 
GlobCover is an ESA initiative which began in 2005 in partnership with JRC, 
EEA, FAO, UNEP, GOFC-GOLD and IGBP. It develops a service capable to deliver 
global composites and land cover maps, using observations from the 300m 
MERIS sensor from ENVISAT satellite (Leroy, 2006). The soil information was 
derived from the Harmonized World Soil Database v 1.2 (FAO, 2012). This 
dataset provides valuable information with 30 arc-second resolution (1 km) 
about the basic properties of the soils (texture, drainage, depth, FAO’s name, 
bulk density, available water storage capacity or organic carbon). 

 
Figure 12. Land cover (ESA - GLOBCOVER) and soil map of Mauritania (FAO – HWSD). 

 
1.3.6. Vegetation and animal life 

Vegetation depends on the level of aridity, which increases from south to 
north. In the south, where the Sahel climatic conditions are prevalent, the area 
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is characterized by a discontinuous belt of vegetation. Trees are rarely found, 
and the most prevalent individuals are acacias, euphorbia bushes, large tufts of 
morkba, fields of cram-cram, or Indian sandbur (Cenchrus biflorus, a prickly 
grass). By the center of the country, the steppe fades off and desert 
environment takes over. Vegetation is constrained to places such as wadis, in 
which the water continues flowing underneath or to oases. 

In spite of the pressure of hunting, the southernmost part of the country that 
lies in the steppe is still frequented by gazelles, ostriches, warthogs, panthers, 
hyenas, and lynx (Gerteiny et al., 2018). Crocodiles are found in the guelta 
(pocket of water that forms in drainage canals or wadis in the Sahara (Lickens, 
2010)). The only big mammal that goes into the desert northwards is the addax 
antelope. 

Birdlife is quite rich in Mauritania, with over 500 different species recorded. 
The most remarkable ones are scissor-tailed kite, Nubian bustard, Arabian 
bustard, houbara bustard Egyptian plover, golden nightjar, chestnut-bellied 
starling, Kordofan lark and Sudan golden sparrow (Wheatley, 1995). 

Despite the unfavourable climatic conditions, some insects such as desert 
locust have been able to adapt quite well to the limiting circumstances of arid 
or semi-arid environments. But what makes this insect so special is its ability to 
change its behaviour and cause plagues (Pener & Simpson, 2009). 

1.4. The biology of desert locust 

Schistocerca gregaria (Forskål, 1775) or desert locust is an insect that belongs 
to the Acrididae family, having three main stages throughout its life cycle: egg, 
hopper and adult. With breeding purposes, females lay their eggs when certain 
moist soil conditions are met from 5 to 10 cm deep (Uvarov, 1977). Depending 
on some environmental variables such as SM, temperature or wind, the egg 
development may last between 10 and 65 days (Pedgley, 1981; Symmons & 
Cressman, 2001). 

The nymphs or young locusts are wingless and they moult between 5-6 times as 
its body grows to prepare the individual for flying and reproduction purposes. 
To better characterize them, after each shedding they are referred as “Instar” 
followed by an increasing number up to VI. After the last moult, the new 
individuals (fledgling) already possess immature wings. When locust wings 
harden, the individuals obtain fully capabilities to fly and this phase is called 
immature adults. They have the capacity to migrate from their original 
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breeding area to more suitable environments. After several days, those 
immature adults become sexually mature and capable to copulate and lay eggs 
to complete their life cycle (Symmons & Cressman, 2001). During this phase, 
they are very mobile, with high capacity to migrate aiming for food (Bennet, 
1976). 

 

Figure 13. Top image shows some of the main influential variables in egg success. Below image 
expresses the rate of egg development as function of soil temperature. Egg mortality 
can be caused by several factors that vary from habitat to habitat. Source: Symmons 
& Cressman, 2001 

 

Alike other species in the animal kingdom, desert locust has a phase 
polyphenism that implies drastic changes when population density increases, 
either in adult or nymph stage (Pener & Simpson, 2009; Simpson et al., 2011; 
Song et al., 2017). Even though behavioural gregarization may occur within 
hours (Ellis, 1962), it takes several generations to fully display gregarious 
characters (Ernst et al., 2015). The phase transition induces physiological 
changes in lifespan, metabolism, immune responses and reproductive 
physiology (Pener & Yerushalmi, 1998; Verlinden et al., 2009; Wang & Kang, 
2014; Cullen et al., 2017). In their solitarious phase, locusts are generally 
bigger (Ernst et al., 2015) and they present higher fecundity and smaller eggs 
(Maeno & Tanaka, 2009). 
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Figure 14. Distribution range of African migratory locust: recession area in red, invasion area in 
blue. Source: Waloff, 1966 

Solitarious desert locust populations are usually constraint into the recession 
areas (Fig. 14), where annual rainfall is less than 200 mm (Tratalos & Cheke, 
2006). However, they are able to increase rapidly their numbers when suitable 
conditions are met (Pedgley, 1981). These insects are very well adapted to arid 
environments with erratic but sometimes high intensity precipitation episodes 
(Uvarov, 1966). Some environmental events such as green vegetation blooms or 
rainfall are closely linked to the desert locust development, having triggering 
effects and enhancing outbreaks (Tucker et al., 1985; Hielkema et al., 1986). 
Temperature variability has also been demonstrated to have effects on some 
Schistocerca species as described by (Yu et al., 2009). This work indicated that 
the frequency of locust outbreaks may be altered by changes in climatic 
patterns. Among many environmental factors that may affect locusts, SM is the 
variable that mostly influences egg-laying location, egg-survival and egg-
hatching rate (Liu et al., 2008), in addition to temperature (Nishide & Tanaka, 
2016). 

Generally, female locusts prefer open and warm sites of dry, soft and sandy 
soils in which, over 6 cm of depth have enough moist soil conditions (Popov, 
1958; Uvarov, 1977). Successful breeding conditions are usually triggered by 
rainfall which provides enough moisture to the soil enhancing egg laying, 
development and hatching (Tucker et al., 1985), as well as an adequate 
vegetation for their hoppers to feed on (Bennett, 1976; Tratalos & Cheke, 
2006). The success of preventive measures is subjected to the inaccessibility of 
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some important breeding areas (Symmons & Cressman, 2001). Within the 
recession area, there are some seasonal breeding locations in which the lack of 
rain may cause that some are not infested for a particular year. So that, 
although breeding areas are constraint to the recession area, they may vary in 
accordance to suitable ecological conditions (Symmons & Cressman, 2001). 

1.4.1. Locust Phases 

Locusts exhibit two behavioural phases, solitarious and gregarious. Solitary 
individuals occur at low densities and present individual behaviours (Pener & 
Yerushalmi, 1998). They breed under favourable habitat circumstances. When 
vegetation and soil moisture are limiting, desert locust may migrate, regroup 
themselves in smaller areas with better conditions, or even die (Ceccato et al., 
2007). Regrouping means to raise density numbers, and many publications 
relate this fact with behavioural changes and gregarization (Bouaichi et al., 
1996; Despland et al., 2000; Sword et al., 2000). On the other hand, the 
gregarious phase makes them to fuse into bands or swarms. In adult phase, 
these groups of individuals move towards favourable environments, with high 
soil moisture conditions and vegetation. These environmental factors favour 
mating and breeding activities, while they have enough food supply. However, 
when the resources become scarce, they move to more favourable areas. 

It has been documented that the gregarious behaviour in desert locust is 
evoked by touching their back legs (Simpson et al., 2001). In this study, desert 
locust in solitarious phase was subjected to physical contact in different parts 
of their body by mechanical stimulation. There was a significant change from 
solitarious to gregarious when the outer face of a hind femur had been 
stimulated (Fig. 15). Whereas 10 other body regions did not cause the same 
behavioural reaction. 

 

 

Figure 15. Body-colour image of a locust nymph in the solitarious phase that represents the 
effect after 4-h of mechanic-stimulation. The colours are based on median values for 
each treatment group. Source: Simpson et al., 2001. 
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This change raises the serotonin levels, enhancing colour changes and forming 
coherent group formation with greater activity (Anstey et al., 2009). To 
validate this assumption, studies such as (Guo et al., 2013) injected different 
doses of serotonin concentration into the head cavities of fourth-stadium 
gregarious nymphs. It was observed that lower doses of serotonin and 30 min of 
isolation from the group provoked a significant behavioural shift toward the 
solitarious phase state. The locust behavioural phase also affects the hatching 
time of the eggs (Nishide et al., 2015). 

There is a transition phase between solitarious and gregarious named 
“transiens”. There have been numerous biological experiments at the individual 
level to show how this conversion occurs, but the effects of the environment 
and other stimuli urges to be further explored (Topaz et al., 2012). 

1.4.2. Life cycle 

Desert locust life cycle has three main stages: Egg, Hopper and Adult (Fig. 16), 
and each phase length varies according to the environmental conditions of the 
habitat. 

 

Figure 16. The life cycle of the desert locust. Source: Symmons & Cressman, 2001 

 

As clearly detailed by (Symmons & Cressman, 2001), female individuals lay 
their eggs under moist soil conditions from 5 to 15 cm deep, with preference on 
bare soils. 
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Figure 17. Life cycle parameters and Duration of each stage. Source: Symmons & Cressman, 2001 

1.4.3. Environmental circumstances of the habitat 

During non-limiting food conditions, desert locust are in solitarious phase 
scattered over zones known as “recession areas” (Tucker et al., 1985). Prior 
studies have shown the importance of vegetation density to account for phase 
changes: solitarious to gregarious (Cisse et al., 2013). A decrease in vegetation 
density seems to be an important factor to enhance the gregarious phase, 
where the individuals are more voracious and form groups or swarms (Duranton 
& Lecoq, 1990; Renier et al., 2015). This phenomenon is an adaptation to the 
extreme conditions of arid environments, where precipitation is scarce but 
sometimes intense (Uvarov, 1966). Other studies aimed to analyse precipitation 
(Cressman, 2013; Lazar et al., 2015) or soil moisture (Tucker et al., 1985) to 
describe good habitat conditions for breeding. 

Laboratory studies have demonstrated the sensitivity of eggs from different 
hopper species to small changes in soil temperature (Nishide et al., 2015). 
Hence, outbreaks are led by an aggregation of variables and that usually occurs 
in areas smaller than 10,000 km2 (Van Huis et al., 2007). Outbreaks might not 



Chapter 1.- INTRODUCTION 

35 

end up being a plague and it may take at least one year to be established as so 
(Cressman, 2008). According to (Song et al., 2017), desert locust is the earliest 
diverging species among the genus Schistocerca and the unique settled in 
Africa. This study suggests that the ancestral Schistocerca species was rather 
similar with respect to the current desert locust, indicating high adaptability to 
local conditions. On the contrary, other species of Schistocerca have lost and 
regained some traits throughout evolution (e.g. ability to change their 
behaviour). 

1.4.4. Migration and seasonal distribution 

Desert locust is a migratory species (Dingle, 2009) that moves when the habitat 
conditions are not favourable. In solitarious phase, the individuals do migrate 
within the limits of the recession zone (Fig. 14) using the dominant winds. 
Thus, the Sahel region and the Indo-Pakistan desert are usual summer breeding 
areas. While northwest Africa and by the Red sea are common winter breeding 
zones. Nevertheless, changes in precipitation patterns or other environmental 
circumstances may alter the location of the breeding sites (Symmons & 
Cressman, 2001). Fig. 18 shows a map of expected zones of migration and usual 
breeding zones according to the season, corresponding to the date “June 
2013”. 

 

Figure 18. Desert locust shift from spring to summer breeding areas. Source: FAO 
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1.4.5. Important terms 

In order to understand the desert locust problematic, there are a few terms 
that require further explanation and they are well detailed in (Symmons & 
Cressman, 2001). The plagues of desert locust occur when certain events make 
locust populations to grow in number. It is usually started with a calm period 
(recession) that may experience some punctual outbreaks and upsurges. This 
situation may lead to either develop a plague, or return to a recession period. 
The duration of a plague may vary from months to years. There are five 
important terms that is convenient to explain: Recessions, Outbreaks, 
Upsurges, Plagues and Declines. 

The periods when desert locust are found at low densities and do not cause 
major damages are referred as “Recession periods”. Locust inhabits areas 
where agricultural fields are not threatened and hopper bands and swarms are 
very rare. It is estimated that the recession area that can be seen in Fig. 14 
includes more than 30 countries, whose extension goes up to 16 million km2. 

Outbreaks and Upsurges are the link periods between recession and plagues. 
Outbreak is referred to the period of time, normally some months, in which 
there is a concentration of individuals that gregarize and multiplicate rapidly. 
They often go unnoticed by local authorities since locusts groups are disperse, 
and densities are sheltered in crops and vegetation. Some outbreaks can lead 
to upsurges when they occur at the same time, and each of them is able to 
breed successfully during two or three generations at medium to high density, 
what implies to have individuals in transient to gregarious behavioural phase. It 
is possible to have several upsurges in different regions at the same time, and 
they might either merge and generate a major plague or just fade off and 
disappear without great damages. It is considered that a band or swarm of 
locusts are plague when their existence overcomes one year, and the affected 
area is reasonable large. 

One plague may mainly be established for two reasons. Firstly, favourable 
environmental conditions need to remain over long time to enhance breeding. 
Secondly, the control operations by local authorities should fail. Historical 
records show plague episodes that lasted by 13 years, and covered around 29 
million km2 (nearly twice in size the recession area) (FAO, 2009). 
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1.5. Thesis structure, specific goals and objectives 

This doctoral thesis is structured into four different sections. The first one 
introduces the problematic, hypothesis and historical background. In addition, 
it describes the study area and details the biology of desert locust. The second 
chapter aims to identify potential wadis using SWAT hydrological model, and 
relate the results with desert locust presences. The third chapter studies the 
role of remotely sensed surface soil moisture to locate breeding areas of desert 
locust. The fourth chapter includes a wide range of environmental variables to 
build a high predictive model to detect breeding sites. A general discussion will 
address the key findings and relate them with prior studies and publications 
related to the topic. Finally, we conclude with a summary of this study and 
future scopes. 
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Chapter 2. Identification of potential wadis using SWAT 
hydrological model 

2.1 Introduction 

Mauritania, as many other countries within the Sahel region in Africa, suffers 
severe water scarcity. This resource is essential in any ecosystem, and its 
quantity imposes thresholds to living organisms. In addition, it is a key resource 
for humans, our well-being and economic activities such as agriculture; grazing 
or industrial production lay upon it. 

In developing countries with arid and semi-arid environments, that is an extra 
drawback to achieve poverty mitigation and sustainable development, being 
likely to cause serious conflicts among neighbouring countries (Klemas & 
Pieterse, 2015). Furthermore, these areas are more vulnerable to Climate 
Change effects on water resources (Beuhler, 2003). Variations in the water 
cycle are expected; hence water availability and demand will vary accordingly. 
Globally, irrigation water may decrease (Haddeland et al., 2014) and 
precipitation patterns change (IPCC, 2014), affecting agriculture, ecosystems 
and fresh water supply. At this stage, it urges to reduce the vulnerability of 
these areas, and mitigate Climate Change impacts on water resources by means 
of proper assessments (Xia, 2016). 

According to (Huang et al., 2010), one-third of the Earth surface is under arid 
or semi-arid climatic conditions, and water availability conditions forms of life. 
In Mauritania, agricultural activities are only found in the south of the country, 
where precipitation regimes are higher (Fig. 19). 

http://www.pnas.org/search?author1=Ingjerd+Haddeland&sortspec=date&submit=Submit
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Figure 19. Livelihood areas within the study area (Mauritania), which are conditioned by water 
availability. Source: United States Agency International Development (USAID) formed 
by members of USGS, USDA, NASA, NOAA. 

 

Under low precipitation regimes, groundwater is the major water supply for 
agricultural and domestic uses. Wadis are ephemeral dry rivers that temporarily 
drain arid or semi-arid areas after heavy rain episodes. Owing to their erratic 
occurrence and severe energy conditions, the river bed is poorly sorted from 
clay to gravel range, with high permeability rates. Many publications agree on 
its importance to alleviate water shortage, and their implications at local and 
regional scale, such as groundwater recharge (Subyani, 2004), agriculture and 
human settlements (Ward et al., 2001), richer biodiversity (Springuel et al., 
1997; Ali et al., 2000), higher water table level (Edmunds, 2002), breeding 
areas for insects such as desert locust (Van Der Werf, 2005) or punctual flood 
hazards that may neglect crops, towns and roads. 

Wadis constitute a principal breeding site for desert locust populations 
(https://earthobservatory.nasa.gov/IOTD/view.php?id=2799). A convenient soil 
moisture content provides a perfect environment to egg development and 
hatching, in addition to provide green and fresh vegetation that offer shelter 
and food to the new-born hoppers (Fig. 19). Seasonal breeding sites are also 
associated with sandy cultivated wadis (Popov, 1958; Stower et al., 1958). 
These first signs found in bibliography highlight the role of wadis and its 
intrinsic environmental characteristics to host desert locust, at least at early 
stages. In particular, the most vulnerable areas are at the wadi outflow deltas 
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with usual presence of cultivated crops and earth dams to store the water from 
the floods (Maxwell-Darling, 1936; Kassas, 1957). Moreover, these areas present 
the finest and more fertile sediments to support lush vegetation growth 
(Woldewahid, 2004). 

 

Fig 19. Wadi image acquired by Landsat 5-TM over the Sahel region in Africa. Source: 
Image by Robert Simmon, NASA GSFC, based on Landsat Thematic Mapper 
data archived by the Global Land Cover Facility. 

Conventional remote sensing methods of wadi identification tend to fail for the 
following reasons (Liu et al., 2016): Physical shape methods are not effective 
facing numerous geomorphological land units and irregularities, weak spectral 
contrast with background, and there is a conflict between global and local 
accuracy. Wadi systems are complex, anisotropic and with numerous tiny 
tributaries. To better understand the water availability, as well as the natural 
dynamics in arid regions, (Klemas & Pieterse, 2015) suggests improving the 
water management and monitoring by means of remote sensing and 
conventional hydrologic measurements together. Remote sensing techniques on 
their own have shown to be insufficient in order to detect potential runoffs in 
arid or semi-arid environments. And ground mapping on the field would be 
effective but very costly and time consuming. 

This chapter aims to identify potential runoffs or wadis in Mauritania, based on 
the hydrological model Soil and Water Assessment Tool (SWAT). Given the 
importance of these hydrological systems in arid and semi-arid environments, 
wadi identification has been addressed to assess its relationship with desert 
locust presences. 
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2.2. Materials and Methods 

2.2.1. Input data 

2.2.1.1. SWARMs database 

Schistocerca WARning and Management System (SWARMS) is a database used by 
the Desert Locust Information Service (DLIS) at FAO for Desert Locust global 
monitoring and early warning. It compiles desert locust data since 1985 that 
has been collected by national survey and control teams of affected countries. 
It geo-locates field observations on a daily basis, although some uncertainties 
may be expected (Javaar Bacar, 2011; Renier et al., 2015). For this study, we 
selected hoppers on a solitarious phase as the target population because it has 
reduced mobility (lack of wings) so that hopper records have likely been born 
on the area, benefited from favourable environmental conditions. There were 
12627 hopper sightings for the time span 1985-2017. Even though the database 
contemplates absence records, they were not considered for two reasons. 
During recession periods, individuals are mostly solitarious (solitarious phase) 
and many times go unnoticed for survey teams (Meynard et al., 2017). And 
second, the overall of absences is very low in comparison with presence records 
so that they are very unbalance. 

2.2.1.2. Soil data (Harmonised World Soil Database) 

Soil information was derived from the Harmonized World Soil Database (HWSD) 
v 1.2 (FAO, 2012). Soil Unit Composition of each pixel provides information 
about sixteen soil properties for topsoil (0-30cm) and subsoil (30-100cm) 
according to the FAO Revised Legend (FAO, 1990). 

 These are the properties: Organic Carbon, pH(H2O), Cation Exchange Capacity 
in soil and clay, Total Exchangeable Bases (TEB), Base saturation %, Sodicity, 
Calcium carbonate, Gypsum, Sand fraction, Silt fraction, Clay fraction, Salinity, 
USDA Texture, Reference Bulk Density, Soil Drainage, and Soil Phase 
information. The resolution of this dataset is 30 arc-second (~ 1 km for our 
study area). This comprehensive harmonized soil information is of great 
importance to understand local land and water limitations, land potential 
productivity, soil erosion or biodiversity (Nachtergaele et al., 2010). For the 
purpose of this chapter, it helped us to complete the soil information input 
required by the Soil and Water Assessment Tool (SWAT) hydrological model. 
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2.2.1.3. Digital Elevation Model (SRTM) 

Topographic information was extracted from NASA's Shuttle Radar Topography 
Mission (SRTM) with a 1 arc-second, or about 30 metres resolution. 

The NASA/NGA Shuttle Radar Topography Mission (SRTM) retrieved 
interferometric radar data to generate a near-global topography data product 
for latitudes within 60 degrees’ north latitude and 54 degrees’ south latitude 
(Rodriguez et al., 2006). It was an 11 - day mission accomplished in February 
2000. In order to gather topographic elevation data of Earth's surface, SRTM 
used the technique of interferometry where two images are taken from slightly 
different viewpoints of the same area. The little difference between both 
images enables scientists to identify the surface’s elevation of the terrain. This 
data can be downloaded free of charge at 
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp. 

Most voids have been filled with elevation data from SRTM 3 arc-second or 
about 90 metres so as to obtain a continuous Digital Elevation Model (DEM). 

2.2.1.4. Global cover – Land cover 

The LULC (Land Use/Land Cover) of Mauritania is a derived product from the 
original raster based on Globcover regional (Africa) archive (Arino et al., 2007). 
Having two available products, we chose the land cover dataset covering 
December 2004 – December 2006, with 300 m spatial resolution. The GlobCover 
is an ESA initiative which began in 2005 in partnership with JRC, EEA, FAO, 
UNEP, GOFC-GOLD and IGBP. It develops a service capable to deliver global 
composites and land cover maps, using observations from the 300 m MERIS 
sensor from ENVISAT satellite (Defourny, 2006). The MERIS 300 m Full 
Resolution Full Swath (FRS) products are the unique data source of the 
GLOBCOVER project. 

MERIS was a wide field-of-view imaging spectrometer on-board ENVISAT 
satellite, which was launched in 2002. The 15 spectral bands of the sensor 
covered from about 412.5nm to 900nm (Rast et al., 1999). The field of view 
angle of the instrument was 68.5 º around nadir, covering a swath width of 
1150 km at 800 km height, what made a global coverage of the Earth in 3 days 
(Bicheron et al., 2008). The processing chain that was used to generate and 
deliver land cover maps can be seen in Fig. 20. 
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Figure 20. Algorithmic principle of the Globcover chain. Source: Bicheron et al., 2008 

 

2.2.1.5. CFSR (Rainfall, Insolation, Air Temperature, Relative Humidity, 
Wind) 

The Climate Forecast System Reanalysis (CFSR) is a third generation reanalysis 
product that covers from 1979 to 2017. It is a global, high resolution and 
coupled atmosphere-ocean-land surface-sea ice system designed to provide the 
best estimate of the state of these coupled domains over this period (National 
Center for Atmospheric Research Staff, 2017). The CFSR includes the following 
information: (1) coupling of atmosphere and ocean during the generation of the 
6 hour guess field; (2) an interactive sea-ice model; and (3) assimilation of 
satellite radiances. 

The CFSR global atmosphere data has an approximate resolution of 38 km. The 
global ocean resolution is 0.25 º at the equator, extending to a global 0.5 º 
beyond the tropics (Saha et al., 2014). This reanalysis is considered superior to 
previous National Centers for Environmental Prediction (NCEP) reanalysis for 
the following reasons (He & Zhao, 2018): improved model, finer resolution, 
advanced assimilation schemes, atmosphere-land-ocean-sea ice coupling, 
assimilates satellite radiances rather than retrievals. Nevertheless, some 
uncertainty is expected owing to differences between reanalysis data and 
observations. And this could be caused by errors in the numerical model, 
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quality of the observed data or errors in the assimilation system (Bengtsson et 
al., 2004). The CFSR product consists of periodic weather forecasts (every hour) 
provided by the National Weather Service's NCEP Global Forecast System. Every 
hour, the CFSR analysis includes: forecast data, predicted from the previous 
analysis hour, and the data from the analysis utilized to reinitialize the forecast 
models every six hours. The CFSR dataset contains a wide range of historic 
expected variables (Fig. 21) for each hour for any land location in the world 
(Saha et al., 2010). 

 

Figure 21. Summary of the available variables contained in the CFSR dataset. Source: NCEP 

 
CFSR dataset was used to overcome the lack of meteorological data provided 
by ground-based stations. Ground based meteorological stations are scarce in 
Africa what makes difficult to monitor reliably weather variables at large scale 
(Van den Berg & Feinstein, 2011). Products such as the CFSR dataset is a 
valuable option as reported in many publications (Dile & Srinivasan, 2014; Fuka 
et al., 2014; Monteiro et al., 2016; Worqlul et al., 2017). For the purpose of 
this study, we selected a daily product of the following variables: Temperature 
(ºC), Wind speed (m/s), Air Relative Humidity (%) and Solar Radiation (MJ/m2). 

 

2.2.1.6. Precipitation data from ground based stations 

The Global Historical Climatology Network (GHCN) is an integrated database of 
climate summaries from land surface stations across the globe. The data are 
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obtained from more than 20 sources. Some datasets are more than 175 years 
old, and their frequency may be down to 1 hour. GHCN is the official archived 
dataset, and it serves as a replacement product for older National Centers for 
Environmental Information (NCEI) maintained datasets that are designated for 
daily temporal resolution (https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-historical-climatology-network-
ghcn). 

There are only 13 ground based stations in Mauritania with some missing data in 
their records. Nevertheless, they can provide valuable information to calibrate 
and validate the SWAT model in smaller areas. Given the availability of other 
data sources, Kaedi station was the only one that was used to calibrate and 
validate the model in a smaller scale. Located at latitude: 16.16 º, longitude: -
13.508 º and 22.9 m. of elevation, Kaedi station provides an important 
approximation of the rainfall over the Ghorfa basin. 

 

2.2.1.7. GRDC river gauge data 

The Global Runoff Data Centre (GRDC) is a repository for the world's river 
discharge data and associated metadata that compiles records from more than 
9,300 stations in 160 countries. This international archive covers up to 200 
years of short and long term hydrological studies. The main aim of the GRDC 
organization is to facilitate data to researches, universities and other 
organizations to carry out environmental and global climate trends. Discharge 
data and data records have been recorded either on a daily or monthly basis for 
non-commercial applications. 

The GRDC operates with the support of the World Meteorological Organisation 
(WMO) and the research on climate variability and global change. The German 
Federal Institute of Hydrology (Bundesanstalt für Gewässerkunde or BfG) hosts 
the GRDC in Koblenz. Further information about this institution or its data can 
be found at the following site: 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html. 

 

Only one suitable dataset was available within the study area, the Ghorfa Aval 
station. It is located at 15.53 ºN and 12.7 ºW and has measured river gauge data 
of the Ghorfa river from 1979 to 1985, covering an approximate drainage area 
of 5050 km2. 

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
http://www.bafg.de/GRDC/EN/Home/homepage_node.html


Chapter 2. Identification of potential wadis using SWAT hydrological model 

47 

2.2.2. Methods 

 

2.2.2.1. Model description and model components 

In arid and semiarid environments, the identification of zones that are 
susceptible to water drainage is challenging. Owing to the scarcity of rainfall 
and its intensity, the water tends to runoff by channels that throughout the 
year are dried. In some instances, these wadis end up in pools with no outlet 
point. Seemingly, they create a favourable environment as breeding location 
for desert locust. In order to identify and locate wadis in Mauritania, SWAT 
(Soil and Water Assessment Tool) hydrological model was used. It has been 
developed by the US Department of Agriculture - Agricultural Research Service 
(USDA-ARS) and Texas A&M AgriLife Research. 

SWAT simulates quantity and quality of surface and ground water, as well as it 
estimates environmental impacts on land use, management, nutrient cycle or 
Climate Change within a watershed over long periods of time. This model is 
continuous, semi-distributed and physically based and aims to provide a better 
insight about runoff, transmission losses, groundwater recharge, 
evapotranspiration, erosion rate, crop growth, biomass estimation, soil 
moisture content, irrigation management, groundwater flow, reach routing, 
nutrient and pesticide loading (Neitsch et al., 2011). 

SWAT models an entire river watershed on a topographic basis and divides it 
into smaller and linked catchment areas, “sub-basins”. These sub-basins are 
dissociated in Hydrological Response Units (HRUs) that result from Land Use – 
Land Cover (LULC), soil type and slope combination so as to identify areas with 
homogeneous response, thus increasing the spatial accuracy of the model on a 
daily time step. SWAT model comprises two phases: land phase and 
channel/routing phase (Neitsch et al., 2011). The model requires certain input 
datasets such as elevation, land use, soil type and meteorological data. 

In order to analyse the prediction uncertainty of the SWAT model, SWAT-CUP 
(SWAT Calibration Uncertainty Program) was used (Abbaspour et al., 2013). 
This software integrates several uncertainty/calibration analysis approaches. In 
this study, the algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2) was 
used to carry out sensitive analysis, calibration and validation for the unique 
basin where data was available. This algorithm is very efficient in localizing 
optimum parameter ranges and in terms of number of simulations (Schuol et 
al., 2008). 



Identifying Desert locust breeding areas by means of Earth Observation in Mauritania 

48 

2.2.2.2. Hydrological Processes 

SWAT allows a number of different physical processes (Fig. 22) to be simulated 
in a watershed such as surface runoff, infiltration, evapotranspiration (ET), 
lateral flow, percolation to shallow and deep aquifers and channel routing 
(Arnold et al., 1998). The tool has also a weather simulation model that is 
capable to generate daily data for rainfall, solar radiation, relative humidity, 
wind speed or temperature from the average monthly variables of these data, 
in case there is some missing data in the observed meteorological variables. 
 
The CFSR climate dataset was used to incorporate the following meteorological 
variables: wind speed, solar radiation, maximum and minimum temperatures 
and relative humidity. Precipitation is the driving force in hydrological 
processes in arid and semi-arid environments, so that we aimed to achieve the 
most accurate available dataset over the region, the Kaedi ground based 
station. The coverage time of our model ranges from 1979 to 1985, seeking for 
a temporal overlap with the available river gauge data to calibrate and validate 
the model. 
 
The Land phase controls the amount of water, sediment, nutrient and pesticide 
loadings to the main channel in each sub-basin. The hydrological cycle 
simulated in SWAT is based on the water balance (Equation 1): 
 

𝑆𝑆𝑆 = 𝑆𝑆˳ + ∑ (𝑅𝑅𝑅𝑅 − 𝑄𝑄𝑄𝑄𝑄 − 𝐸𝐸 −𝑊𝑊𝑊𝑊𝑊 − 𝑄𝑔𝑔)𝑡
𝑖=1   (Eq. 1) 

 
Where: 
 
  - SWt and SWo are the final and initial soil water content on day i (mm) 

  - t is the time (days) 

  - Rday (mm H2O) is the overall precipitation on day i 

  - Qsurf (mm) the surface runoff on day i 

  - Ea the evapotranspiration on day i (mm) 

  - Wseep the water that enters into the soil unsaturated zone on day i (mm) 

  - Qgw is the return flow on day i (mm) (Neitsch et al., 2011). 
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Figure 22. Schematic representation of the hydrologic cycle in SWAT (Neitsch et al., 2011) 

 
Surface runoff occurs when the water provided to the ground surface is larger 
than the rate of infiltration (Fig. 23). When a soil is dry, the rate of infiltration 
is very high, and then the rate decreases as the soil moisture increases. If more 
water is provided than it is possible to infiltrate, the runoff would start off 
(Neitsch et al., 2011). SWAT model has two approaches to estimate surface 
runoff: SCS curve number (SCS, 1972) and the Green & Ampt infiltration 
method (Green & Ampt, 1911). The Soil Conservation Service (SCS) curve 
number (CN) is a function of the soil’s permeability, land use and antecedent 
moisture conditions (Soil Conservation Service, 1972) whereas the Green and 
Ampt infiltration method calculates infiltration as a function of the wetting 
front metric potential and effective hydraulic conductivity (Green and Ampt, 
1911). 
 
SWAT was set to use a derived SCS-Curve Number method (Soil Conservation 
Service, 1972). It was chosen because in areas where precipitation is scarce, 
random and brief, it seems more convenient to use daily overall amounts rather 
than intensities, which would be inaccurate. In addition to that, this approach 
has been selected to have been widely used in prior works under similar arid 
conditions (Mohammad & Adamowski, 2015; Adam et al., 2017). 
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Figure 23. Components of SCS Runoff equation. Source: Patel, 2016 

 

The SCS Curve Number method is an efficient and widely used method to 
estimate the runoff that rainfall may provoke in a particular area. It was 
originally developed to measure singular storm events, although nowadays it is 
also used to infer average runoff values across time. It requires only a few 
parameters: the amount of rainfall and the Curve Number which is based on 
land use, hydrologic soil group, hydrologic condition and treatment of the area. 
The general equation for the SCS Curve Number approach is explained following 
TR-55 (USDA-NRCS, 1986): 

𝑄 = (𝑃 − 𝐼𝑎)2/ (𝑃 − 𝐼𝑎)  +  𝑆     (Eq. 2) 

Where:  

  - Q = runoff (in) 

  - P = rainfall (in) 

  - S = potential maximum retention after runoff begins 

  - Ia = initial abstractions (in) 

 
Initial abstraction (mm) consist of the losses before the runoff begins, and it 
includes water retained in surface depressions, water intercepted by 
vegetation, evaporation, and infiltration. It is highly variable but generally is 
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correlated with soil and cover parameters, and it is approximated to the 
following equation 3: 

𝐼𝑎 =  0.2 ∗  𝑆        (Eq. 3) 

If we substitute Ia in equation 2, we obtain: 

𝑄 =  (𝑃 –  0.2 ∗  𝑆)2 / (𝑃 +  0.8 ∗  𝑆)      (Eq. 4) 
  

Where S is related to the soil and cover conditions of the watershed through 
the CN. CN has a range of 0 to 100, and S is related to CN by: 

𝑆 =  1000 / 𝐶𝐶 –  10       (Eq. 5) 

The following figures (Fig. 24-25) solve equations 3-4 and 3-5 for a range of 
CN’s and rainfall. 

 

 

Figure 24. SCS runoff. Source: Profesor Pattel, 2016; (http://www.professorpatel.com/curve-
number-introduction.html) 
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Figure 25. Runoff depth for selected CN’s and rainfall amounts. Values that are not shown in the 

table may be interpolated. Source: www.njscdea.ncdea.org 

The routing phase is related to the movement of water, sediments, nutrient 
and pesticide in the channel network of the watershed to the outlet point. 
 
SWAT assumes that the main channels have a trapezoidal shape. So that water 
speed and direction were defined by Manning’s equation for this study. 
Between the two available water routing methods: Variable Storage Coefficient 
“VSC” (Williams et al., 1969) and Muskingum (Chow et al., 1988), only the first 
one “VSC” was chosen to build the model. It performs better in those cases 
when the flow is combined (floodplain flow + channel flow) for long channels 
(Williams et al., 2011). 
 
Penman-Monteith equation (Monteith, 1965) was selected to calculate the 
evapotranspiration because it is more robust in arid areas and involves more 
meteorological variables (Kingston et al., 2009). We used two years as “warm 
up” period to prepare the model and avoid initial state conditions such as 
antecedent soil moisture (Schuol et al., 2008). 

As a consequence of the vast extension of Mauritania (1.070.00 km²), and due 
to SWAT software requirements, the minimum catchment extension to generate 
runoff as default was 350,000 ha. The priority has been given to those main 
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wadis or streams that may collect and drain water country-wide, enhancing the 
connectivity among them and providing a better insight about its hydrological 
behaviour on a large scale. To run the SWAT model, it implies river gauge data 
to finally calibrate and validate the model approach. 

Within the model, the water can be stored in different reservoirs at Hydrologic 
Response Unit (HRU) level: soil, shallow aquifer, deep aquifer and snow. 
Further details about SWAT description and functions can be found in (Neitsch 
et al., 2011; Arnold et al., 2012). The software used for this study is Arc SWAT 
(Extension and graphical user input interface that embedded Swat model into 
ESRI GIS software). SWAT-CUP software (Abbaspour et al., 2013) was used to do 
sensitive analysis, calibration and validation for a small basin in the south of 
Mauritania. 

 

2.2.2.3. Model building 

The process to build up the SWAT model has been done as follows. Firstly, 
SWAT delineates a first draft of potential runoff over the study area with 
tributaries and outlet points, which urges to visually be corrected whenever 
possible. From now onwards, this model outcome is what we consider as 
“Potential Runoffs or Wadis” PRoW, being aware that may be coincident with 
real rivers such as the Senegal River. The output obtained by the model is a 
feature dataset with the likely streams, and they have been visually corrected 
based on Google earth imagery. SWAT stream delineation is a good approach 
for those areas where information is scarce and the area very remote (Luo et 
al., 2011). The second step may be more troublesome since the study area 
lacks of long and appropriate river gauge data to perform uncertainty analysis, 
calibrate and validate the SWAT model. Quantitative analysis is very often 
needed to clearly identify the water balance of a certain region, although some 
alternatives are proposed such as extrapolation of response information from 
gauged to ungauged basins, remote sensing data, the application of process‐
based hydrological models in which climate inputs are specified or measured, 
or the use of combined meteorological ‐ hydrological models that do not 
require specific precipitation inputs (Sivapalan et al., 2003). 

Other studies have examined alternative approaches including a priori 
parameter estimation from physical watershed characteristics (Atkinson et al., 
2008); regionalization of model parameters (Vandewiele & Elias, 1995) or 
hydrologic indices (Yadav et al., 2007; Zhang et al., 2008), application of 
satellite remote sensing (Lakshmi, 2006), and the use of process‐based 
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distributed hydrologic models (Moretti & Montanari, 2008). (Srinivasan et al., 
2010) highlights the possibility to use hydrological models that use physically 
based inputs both spatially and temporally, as far as there is a comprehension 
of the model interrelationships to accomplish reasonable predictions over 
ungauged river basins. SWAT model was originally developed to operate in 
large‐scale ungauged basins with little or no calibration efforts (Arnold et al., 
1998). Most of its parameters can be estimated automatically using the GIS 
interface and meteorological information combined with internal model 
databases (Srinivasan et al., 1998). 

Studies such as (Srinivasan et al., 2010) proved that given appropriate input 
data, SWAT is able to provide satisfactory simulations for the water budget of a 
basin. Obviously, optimal solutions would address uncertainty analysis, 
calibration and validation against river gauge data, but alternative methods are 
also possible and have been tested to offer approximations for basins without 
river gauge data. 

In this study, we could only use one river gauge station to carry out the 
uncertainty analysis, calibration and validation steps (Fig. 26). 

 
Figure 26. Ghorfa basin location within the study area. 
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Finally, the desert locust presences from the SWARMS database were taken into 
account to compute distances with respect to the PRoW generated by SWAT. 
Records of hoppers in solitarious phase were used from 1985 to 2017. Data 
extraction and analysis was done by ArcGis 10.3. Despite the fact that the 
calibration and validation period of the SWAT model do not overlap with the 
sighting records, it does not affect the geographical location of the wadis but 
only the quantitative analysis of the flow. 

2.3. Results and discussion 

2.3.1. Model set up 

The elevation of the watershed delineated was varying from -41 to 795 m, 
where 78 % of the delineated watershed surface is under 350 m. The land use 
map (Fig. 27) indicates that the major land cover of the area is arid 
consolidated and unconsolidated grounds (SWRN) with 70.84 %, followed by 
Range Grasses (19.09 %) and far behind are Agricultural Land Generic (8.87 %), 
Pasture (1.19 %) and Range Brush (0.01 %). Leptosols (34.78 %), Sand Dunes 
(27.23 %) and Arenosols (31.73 %) are the predominant soil types, while 
Regosols (3.36 %), Calcisols (2.76 %) and Gleysols (0.15 %) are less relevant. The 
slope of the terrain is mainly between 0 - 2 % for most of the watershed. 

The model was run from 1st January 1979 to 31st December 1985 with a 1 year 
warm up period and default parameters. The graphical result of the model 
simulation is shown in Fig. 28, where potential runoff or Wadis (PRoW) are in 
blue. The total watershed area is 505,474 km² and it has been divided into 78 
sub-basins. The area uncovered by any sub-basin would not meet the criteria to 
generate runoff owing to land use, soil type or slope conditions of the terrain, 
and the rainfall would be infiltrated. 

Due to the lack of river gauge data, the SWAT model was only calibrated for 
the Ghorfa Basin (Fig. 26). 
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Figure 27. Land Use, Soil and Slope maps of the delineated watershed within our study area. 
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Figure 28. Potential Runoff or Wadi “PRoW” delineation as a graphical result of SWAT model in 
Mauritania. Areas with no potential runoff within the study area have not been 
assigned with sub-basin feature by SWAT. 

 

To quantitatively assess the fitness of the model, the pre-calibrated model has 
been compared to observe monthly flows for the period 1980 -1985 (Fig. 29) 
with SWAT-CUP software and SUFI-2 algorithm. 

 

Figure 29. Comparison between modelled and observed total monthly discharge at Ghorfa Aval 
station for the time period 1980 – 1985. 
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A priori, there is a clear underestimation of the SWAT model in comparison 
with the observed discharge data. There is a time gap by 1984 due to river 
gauge missing data. In spite of the marked deviation, the beginning and the end 
of the peaks are well identified by the model so that there are signs of 
improvement if we calibrate the model against certain sensitive parameters. 
The final goal is to obtain satisfactory prediction accuracy for our model. The 
NSE (Nash-Sutcliffe statistic) and R2 values for the simulation were 0.05 and 
0.56 respectively. Sensitivity, calibration and validation were carried out over 
the Ghorfa basin (unique dataset available with river gauge data in the study 
area). 

2.3.2. Sensitive parameters 

Sensitive analysis was done for the river flow in order to identify which of the 
parameters have more influential effects on the model. This task permits us to 
save time during calibration and validation stages. Only the most sensitive 
parameters will be adjusted during calibration. 

Table 3 compiles the list of parameters used in the sensitivity analysis, as well 
as the rank of each parameter according to the p-value and t-stat. The t-stat 
value provides sensitivity information, so that the larger the absolute value is, 
the more influential will be the parameter in the model. Whereas the smaller 
the p-value is, the more sensitive. 

The Curve Number CN2 parameter showed to be the most influential or 
sensitive for the study conditions. Then saturated hydraulic conductivity and 
moist bulk density are ranked 2nd and 3rd respectively. Plant uptake 
compensation factor and available water capacity still have an acceptable p-
value so that they will also be included in the model calibration. 

Sensitivity 
ranking Parameter Description t-stat p-value 

1 R_CN2.mgt Curve number 27.163 0.000 

2 R_SOL_K (1).sol Saturated hydraulic 
conductivity 15.37 0.000 

3 R_SOL_BD (1).sol Moist bulk density 10.38 0.000 

4 R_EPCO.bsn Plant uptake compensation 
factor 3.450 0.000 
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Sensitivity 
ranking Parameter Description t-stat p-value 

5 R_SOL_AWC (1).sol Available water capacity -2.217 0.002 

6 R_ESCO.bsn Soil evaporation 
compensation factor -1.909 0.006 

7 R_SURLAG.bsn Surface runoff lag coefficient 1.503 0.133 

 
Table 3. Sensitive parameters and their ranking according to p-value for Ghorfa basin. 

Dot plots are the representation of parameter values or relative changes versus 
the objective function. They depict the distribution of sampling points as well 
as parameter sensitivity. Fig. 30 shows the dot plots of each parameter used 
during the sensitive analysis. These plots agree with the t-stat values obtained 
in Table 3, where CN2 is the most sensitive parameter. 
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Figure 30. Dot plots of the parameters under the sensitivity analysis. The Y-axis indicates the 

NSE values, and the X -axis indicates the value of parameters. 

 
2.3.3. Calibration and validation 

Based on river gauge availability, the hydrologic analysis goes from 1979 – 1985. 
Due to the short available data, we only use the year 1979 as a warm up 
period. Calibration was done from 1st January 1980 to 31st December 1983, 
and validation from 1984 to 1985. Based on the sensitivity analysis, the first 5 
parameters (CN2, SOL_K, SOL_BD, EPCO, SOL_AWC) were used to fit the model. 
The parameter values have been adjusted within the range suggested by the 
SWAT-CUP software after 4 iterations. The sensitive parameters and their fitted 
range values after calibration are shown in Table 4. 
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Sensitive 
parameter 

Default parameter 
range 

Parameter range derived from 
calibration 

R_CN2.mgt -0.2 to 0.2 -0.12 to 0.02 

R_SOL_K (1).sol -0.8 to 0.8 -0.29 to 0.15 

R_SOL_BD (1).sol -0.5 to 0.6 0.09 to 0.30 

R_EPCO.bsn 0 to 1 0.52 to 0.74 

R_SOL_AWC (1).sol -0.2 to 0.4 -0.32 to -0.14 

 
Table 4. Sensitive parameters with their default and fitted range of values 

 

To assess model performance against observed discharge values, the coefficient 
of determination (R2) and Nash-Sutcliffe (NSE), P-factor and R-factor statistics 
were used (Table 5). 

R2 or coefficient of determination is a statistic that indicates the proportion of 
the variance in the dependent variable that is predictable from the 
independent variable(s). It ranges from 0 to 1, being values closer to 1 the 
optimal solutions. 

NSE or Nash-Sutcliffe coefficient is an indicator of the model’s ability to predict 
about the 1:1 line between observed and simulated data. Values equal to 1 
show perfect fit, while values under 0 would indicate that the model is 
predicting no better than using the average of the observed data (MathWorks, 
2018). 

P-factor and R-factor: 

P-factor is the percent of observations enveloped by the model results, the 95% 
Prediction Uncertainty or 95PPU. The 95PPU contains the 95% of predictive 
uncertainty or measured data corresponding to the behavioural parameters, 
and the corresponding uncertainty bounds. R-factor is the thicknesses of the 
95PPU envelop (Abbaspour, 2007). 

The most optimal solution would have a P-factor equal to 1, and an R-factor 
equal to zero. It would mean that the model would perfectly represent the 
study basin, and no measurement errors or other uncertainty sources would be 
involved in the process. Nevertheless, these instances are never found in reality 
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so that efforts must aim to obtain a P-factor as high as possible (close to 1), 
while R-factor should be as narrow as possible (close to 0) (Abbaspour, 2015). 

Before calibration, the NSE and R2 were 0.05 and 0.56 respectively, which is a 
relatively low agreement between simulated and observed values. These results 
show the low ability of the model without calibration to estimate quantitatively 
the flow over the basin. Nevertheless, Fig. 31 shows the ability of the model to 
coincide temporally with runoff episodes. Given that the Ghorfa basin is dry 
throughout the year, this is a good approximation to estimate runoff arrival to 
the river gauge station. After calibration, the NSE and R2 values greatly 
improved those metrics with 0.83 and 0.84 respectively, with 69 % of the 
observed data covered by the 95PPU. 

Fitness statistic Before Calibration After Calibration Validation 

R2 0.56 0.84 0.54 

NSE 0.05 0.83 0.16 

P-factor 0.65 0.69 0.50 

R-factor 0.00 0.40 0.07 

 
Table 5. Evaluation metrics to assess the model performance before and after calibration, as 

well as for validation stage. 

 
Thus, the model was successfully calibrated for the Ghorfa basin with 
satisfactory fitness statistics for the time span 1980 to 1983. Validation 
statistics show a low predictive skill to quantitative estimate the flow discharge 
in the basin. As well as it was described in the pre-calibrated phase, the model 
is able to identify temporally when the runoffs occurred as seen in Fig. 32-33. 
However, given the low performance of the model, quantitative estimation is 
somewhat no possible with the current available data for the basin. The 
differences may be due to inaccurate or missing meteorological data, errors in 
other input data sets such as land cover and soil information where the 
resolution may be too coarse or even some errors during the pre-processing of 
the data. The missing information of river gauge data is described in Fig. 33. 
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Figure 31. Best simulated runoff with 95ppu for the calibration phase, where the x-axis 
represents the months and y-axis the runoff in m3/s. 

 

 

Figure 32. Best simulated runoff with 95ppu for the validation phase, where the x-axis 
represents the months and y-axis the runoff in m3/s. 



Identifying Desert locust breeding areas by means of Earth Observation in Mauritania 

64 

 

Figure 33. Comparison between observed river gauged data and precipitation recorded at the 
closest rain gauged station during the survey time at Ghorfa basin. X-axis 
represents the time and y-axis the amounts for both variables: precipitation (red, 
at the top) and river gauge data (blue, at the bottom). Flow values below 0 
correspond to missing data 

 
Model uncertainties can be accounted for the great variations in topography 
and rainfall, both spatially and temporally. Wadis show a high dependence on 
precipitation, where no groundwater supply is observed to maintain a 
continuous flow. On the contrary, these areas usually have high infiltration 
rates providing a good mechanism of groundwater recharge due to their 
geomorphological characteristics (Al-Adamat, 2003). The discharge at Ghorfa 
Aval station reaches its maximum slightly later than precipitation reaches its 
maximum. It occurs for the 4 peaks observed between 1980 and 1985. The 
absence of data during 1983 and 1984 impedes to analyse the effects of 
precipitation over such period. There is a good correlation between the 
observed precipitation and the discharged observed, nevertheless our model 
have not been able to be trained appropriately to capture the uncertainties. 

2.3.4. Distances between desert locust and PRoW 

The density map of absolute presences (Fig. 34) indicates the most usual areas 
to find solitarious hoppers. It gives an insight about the potential areas to 
breed without any further environmental analysis of the habitat or 
meteorological conditions. Occurrences are mainly found in the centre-west of 
the country, with lower rates in the south. The centre-east and north-east of 
Mauritania reports almost no records of sightings. The computed distance 
between the potential runoffs or wadis and hopper presences (1985 - 2017) is 
shown in Fig. 35. 
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These figures need to be taken cautiously. The lack of occurrence records does 
not mean absence data, but just not been recorded. The statistical figures of 
the computed distances are shown in Fig. 35. The minimum distance to the 
closest PRoW was 1.4 m; the mean and median were 38280 and 31160 m 
respectively; the maximum distance was 275000 m and the standard deviation 
was 3,680. 

 

Figure 34. Density map of solitarious hopper by absolute number of records within the study 
area from 1985 to 2017 

 
It is has been observed that the distance between hopper presences and PRoW 
is very variable. It means that not just wadis might influence hopper 
occurrences, as already known by the scientific community (Popov, 1958; 
Simpson et al., 1999; Despland & Simpson, 2000). Nevertheless the distances in 
some particular areas fit very well, this highlights the role of some wadis in 
locust development. As far as these insects are highly influenced by different 
environmental conditions such as wind (Culmsee, 2002), soil moisture (Popov, 
1958) or surface temperature (Haskell, 1962), the morphology of the terrain is 
also important as detailed in (Culmsee, 2002). Desert locust breeding areas are 
very dependent on rainfall and flooding (Voss & Dreiser, 1997), and the second 
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is channelled by wadis in arid environments such as in our study area. In 
absence of superficial or rainfall water, humans and vegetation lay upon wadis 
alluvium for water supply. (Ahmed et al., 2007) details that accessible water is 
mainly concentrated at the wadi beds. 

 

Figure 35. Map of the distances between the hopper occurences and the SWAT PRoW.Red colours 
are associated with the occurences found at maximum distances, while blue colours 
correspond to hoppers recorded at close sites. 

 

2.4. Conclusion 

This chapter addresses a hydrological model approach to locate wadis taking 
into account geo-physical variables such as elevation of the terrain, land type, 
slope or land cover. SWAT model has delineated potential runoff networks or 
wadis over the entire surface of Mauritania. As ground data was scarce and not 
well distributed over the entire area, different data sources were needed 
during the process. Due to the aridity of the region, it was very difficult to 
carry out calibration and validation procedures. The only available flow 
database was located at Ghorfa basin, where there was an attempt to 
calibrate/validate the model at local extent and then expand or regionalised 
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those results as detailed in (Srinivasan et al., 2010). Results present high 
uncertainty due to the short length of data records, with abundant missing 
data. In addition, most of the rivers run dry during most of the year. Moreover, 
the quantity and quality of the river gauge data was not enough to carry out 
quantitative analysis. On the other hand, and based on the morphological 
features of the terrain, SWAT identified potential drainage networks in case of 
high rainfall episodes. SWAT stream delineation may be a good approach for 
those areas where information is scarce and the area very remote (Luo et al., 
2011). These channels have been used to compute the distance of historical 
occurrence records of desert locust. Given the role that wadis may play as 
breeding locations, the aim of this chapter was to study the suitability of SWAT 
hydrological model to, a priori, locate suitable areas for breeding. 

Despite the promising results to detect wadis as favourable areas for breeding, 
the main problems of this methodology are data availability. It should be noted 
the impossibility to calibrate and validate the SWAT model in an adequate 
manner given the lack of rainfall and river gauge data for the study area. This 
methodology can be used as a first approach to locate breeding sites; but it 
requires improvements in terms of data quality. Nevertheless, remote sensing 
arises as an alternative to detect and monitor, on near real time, suitable 
breeding areas. 
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Chapter 3. Soil moisture analysis to locate breeding areas using 
machine learning techniques 

3.1. Introduction 

The aim of this chapter is to identify suitable SM conditions for desert locust 
eggs as well as to hopper desert locust in solitarious phase. It is based on SM 
estimations from ESA CCI SM product and ground based observations of hopper 
desert locust. Species Distribution Models (SDMs) were used to better 
understand the link between SM and desert locusts to predict their likely 
distribution across landscapes and breeding areas. 

Traditionally, remotely sensed precipitation and vegetation estimates have 
been the main techniques to predict desert locust events. However, 
precipitation data presents high uncertainty in arid and semi-arid areas in 
Africa (Schmidt & Karnieli, 2000), so desert locust detection is to be improved 
(Bolten et al., 2009). On the contrary, soil moisture (SM) estimates are very 
promising despite very few studies have addressed the link between SM remote 
sensing and desert locust (Liu et al., 2008). This measures can be retrieved 
either by active or passive sensors. 

SM measures have conventionally been ground based; therefore survey areas 
are usually limited for being an expensive and time consuming activity (Sun et 
al., 2005; Huang et al., 2006). As presented early in this work, SM is a limiting 
variable to the desert locust development, influencing locust egg laying site 
location and the survival of locust eggs (Liu et al., 2008). 

 Recently launched satellite platforms such as SMOS, SMAP and Sentinel 1 may 
greatly contribute to detect breeding sites for desert locust. 

To analyse the link between species occurrences and environmental factors 
such as SM. SDMs require extensive data preparation prior to model building 
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(Franklin, 2010) in order to acquire good success during the process. Data 
preparation ought to compile the following steps (Hijmans & Elith, 2016): 

3.1.1. Species occurrence data 

It is one of the most limiting and difficult tasks. Depending on the nature of the 
species under analysis, they can be immobile or mobile, what might hinder 
collection works. Data collection is usually a field work that implies high cost 
and long survey periods to generate a reliable database. These records need to 
be geo-located and then cross-checked in a GIS software to avoid any error. 
Some discussions address which is the best method to model species, 
nevertheless this is a critical step that must provide reliable records. When 
there is some uncertainty in the records, efforts should focus firstly on 
improving the quality of the data (Lobo, 2008). Model performance improves, 
independently of the used method, when occurrence data is unbiased (Graham 
et al., 2007) and the number of records is large enough (Wisz et al., 2008). 

3.1.2 Data cleaning 

This is a very important step that cannot be omitted (Hijmans & Elith, 2016). 
Any error in the measurements would mislead the model so that efforts must 
focus on removing any data that makes no sense. In order to do that, we need 
to have a deep knowledge of the data and inspect the anomalies thoroughly. 
For instance, some plant records may be duplicated when they are split in 
different herbariums, or when by error the same sample is recorded twice. 
These kinds of errors are common and must be removed from the dataset alike 
in geolocation. Data cleaning is tedious but necessary if we want to build a 
robust predicting model. 

3.1.3. Sampling bias 

Frequently, sampling bias is found in many of the occurrence datasets (Hijmans 
et al., 2012). It can be critical to the accuracy of SDMs generated from 
presence-only datasets (Phillips et al., 2009), but options to correct for 
sampling bias are not always applied (Yackulic et al., 2012). 

Sample collection often occurs over relatively accessible locations close to 
roads, urban settlements and rivers, and it is as a consequence of not doing it 
systematically or randomly. It implies that samples may not be representative 
of the true range of environmental conditions in which the species occurs 
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(Reddy & Davalos, 2003; Kadmon et al., 2004), and it usually happens with 
specimen data from open access data portals (Hortal et al., 2008). 

(Phillips et al., 2009) developed a method to mitigate the geographical bias in 
SDMs with only-presence data. This methodology consists on generating 
background data or pseudo-absences with similar geographical bias as the 
presence records, so that accessible areas would be eligible to be chosen when 
no presence data is recorded. Background or pseudo-absence points are used 
during the training phase of the model building to highlight unfavourable 
environmental conditions for the species under survey. This approach has 
demonstrated to improve prediction accuracy of the models (Syfert et al., 
2013). 

3.1.4. Absence, pseudo-absence or background points 

Some SDM algorithms use only presence data, while others in addition use 
pseudo-absence or back-ground data. Background data (Phillips et al., 2009) 
aim to characterize environments in the study area, and not aiming to find 
absence locations of the species under research. Thus, background points 
depict the area where the species has been found. Background data indicates 
the environmental domain of the species, whereas presence data establish 
under which conditions a species is more likely to be present than on average. 
Pseudo-absences are used to generate non-presence locations to feed logistic 
models. This method requires few assumptions that lay upon randomness of 
absence or presence records. 

Nevertheless, these methods should not prevail unless there is a lack of survey-
absence data. True absence data provides valuable information concerning 
prevalence of the species as well as geo-locations where the survey was carried 
out. Nevertheless, it can also be biased or incomplete (Kéry et al., 2010). 

3.1.5. Extraction and preparation of environmental data 

Environmental or predictor variables can be found in different formats such as 
geo-located data points or raster images. Previous literature and researcher 
experience may help to find predicting variable to include in the model. A 
careful selection of predictor variables may improve model performance, and it 
is particularly important when the objective is merely explanatory (Mellert et 
al., 2011). Finally, the environmental variables are used to fit a model to infer 
similarities to the occurrence locations as well as other measures such as 
species abundance. 
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When there is already a robust database, a wide range of machine learning 
algorithms are available to predict the occurrence of the species, or the 
variable of interest within the region under analysis. Some of these SDMs have 
also been designed to infer past or future distributions as far as environmental 
variables are provided to the model. 

3.2. Materials and Methods 

3.2.1 Survey data 

In this chapter, we have selected 12027 solitarious hopper sightings from the 
SWARMs database for the time span 1985-2015, and they were spatially 
distributed as seen in Fig. 36. The generated pseudo absence distribution is 
presented in Fig. 37. 
 

 
 
Figure 36. Density plot of solitarious hoppers between 1985 and 2015. Data presences comes 

from SWARMS database. 
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Figure 37. Computed pseudo absences in Mauritania with random dates from 1985 to 2015 within 
the “ever recorded locust sighting”. 

 

3.2.2. Satellite data 

The SM dataset, generated via the Climate Change Initiative (CCI) of the 
European Space Agency (ESA) (ESA CCI SM v03.2), is a merged product from 
radar and radiometer sensors of the volumetric surface SM (up to 5 cm depth) 
expressed in m3/m3 units. Its spatial resolution is 0.25 º and offers daily 
coverage worldwide from 1978 up to 2015 (Liu et al., 2012; Gruber et al., 2017; 
Dorigo et al., 2017). Aiming to provide the most complete and long-term 
consistent SM dataset, it comprises active data retrieved from C-band 
scatterometers on board of ERS-1, ERS-2, MetOp-A and MetOp-B (generated by 
the “TU Wien”) and passive data obtained from microwave observations by the 
following sensors: Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSR-E, 
Coriolis WindSat, GCOM-W1 AMSR2, and SMOS (generated by VU University 
Amsterdam in collaboration with NASA). This product has been validated 
against ground based reference measures or alternate estimates from other 
projects and sensors (Liu et al., 2012; Wagner et al., 2012). 
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There are three available harmonized products: merged passive, merged active 
and a combined active and passive SM product. For the purpose of this study, 
we have used the combined product for being the most complete one. It uses 
the pixel from either the active or passive source, or the average value of both 
depending on the performance of the vegetation optical depth (VOD) from the 
Advanced Microwave Scanning Radiometer for EOS (AMSR-E) C-band 
observations (Liu et al., 2012). 

3.2.3. Methods 

The applied methodology is based on SM analysis to estimate favourable 
patterns to desert locust breeding areas. 

The ESA CCI SM v03.2 product was used to geographically compare the seasonal 
presence of solitarious hoppers of desert locust by months, with SM values from 
1985 to 2015. Breeding areas in Mauritania vary widely throughout the year 
according to the National Centre for Prevention and Control of Desert Locust in 
Mauritania (CNLA). During summer months, desert locust usually breeds in 
southern parts of the country. From September to December, breeding occurs 
in the centre and the north-western part; and from December to May in the 
northern areas of Mauritania (Babah Ebbe, 2012). It is widely accepted that 
these insects have regional migrations following suitable environmental 
conditions (Van Huis et al., 2007). 

The coordinates of each hopper in solitarious phase were extracted and its 
corresponding date from SWARMS database. In addition to that, those records 
can be also considered as “pseudo-absences” owing to hoppers in solitarious 
phase may go unnoticed at low densities (Meynard et al., 2017). Thus, we found 
convenient to randomly generate a grid of “pseudo-absences” as reported in 
other studies using SDMs (Zaniewski et al., 2002; Engler et al., 2004). 

Pseudo-absence samples were computed based on two principles. Firstly, they 
were located within a maximum of 50 km radius mask created of ever recorded 
locust sighting (1985-2015), aiming to select areas with environmental and 
geophysical potentialities and to reduce geographical bias. This distance was 
selected to visually coincide with desert locust presences in the density map 
(Fig. 37), where most of the areas with no presences are masked out. 
Otherwise, it could misguide SDM predictions (Barnes et al., 2014). 

Secondly, date allocation was done using a uniform random arrangement with 
R-software. Each pseudo-absence location was assigned a date within the first 
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and the last hopper presence date of the SWARMS database (1985-2015). These 
pseudo-absence points were generated randomly and equally weighted to the 
presences (pseudo-absence and presence weighted sums are equal) for 
predicting species occurrences or distribution (Barbet‐Massin et al., 2012). It 
may occur that some presences and pseudo-absences coincide geographically 
within the same pixel; however it is very unlikely that they have the same 
assigned date. Each pseudo-absence date has been randomly allocated from 
1985 to 2015, what implies that they will likely not have the same SM values. 

The duration of locust life cycles are variable, depending on the environmental 
conditions of the habitat (Showler, 2018), nevertheless we rely on the following 
premises to create the variables in our study. Eggs are laid at 5-10 cm depth, 
and the egg incubation period may ranges from 10 to 65 days (Pedgley, 1981). 
After hatching, nymph phase may last between 24 and 95 days since the egg 
was laid. Thus, under the most severe environmental circumstances, the 
maximum expected egg-hopper development time would be 95 days (Symmons 
& Cressman, 2001). SWARMS database registers the sighting date and phase, 
but not the age of each individual, so that we have established up to 95 days 
prior the sighting record as the time analysis. Fig. 38 shows the sequence of the 
proposed method as a flow chart.  

 

 
Figure. 38. Flow chart of the proposed methodology to study the link of ESA CCI SM with desert 

locust, using machine learning approach. 
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Given the coordinates of each presence and pseudo-absence record, the 
corresponding daily SM value was extracted based upon the sighting or assigned 
date, up to 95 days backwards. Based on these antecedent SM conditions, we 
generated variables dividing the analysis time into different time intervals (16, 
12, 8 and 6 days) and assess the performance of the model with each of them. 
By this method, we aim to cover and differentiate critical events in the locust 
lifecycle such as egg-laying, egg-hatching and early stages of the nymph phase 
individuals as well as to deal with punctual missing data (Fig. 39). 

Some areas of SM imagery had missing data due to the satellite revisit times 
used to generate ESA CCI SM v03.2. It was computed the minimum, mean, and 
maximum SM values within each time interval to be a representative value of 
such period. Then, we assess which descriptive statistic provides better 
information to the model in terms of performance. If no value was found for a 
particular time interval, the presence or absence record is not included in the 
model. In this way, we mitigate the effect that the missing information could 
provoke on the model results. Even though SM may vary greatly on a daily basis 
(Wang et al., 2014b), the biological evolution for egg and hopper development 
need some days to be altered (Symmons & Cressman, 2001), so that we found 
convenient this approach to generate the model variables. 

Therefore, four different scenarios were studied: A, B, C and D. As previously 
mentioned, SM values were obtained, on a daily basis, up to 95 days before the 
presence or pseudo-absence date record. Each of the proposed scenarios 
contemplates a different division in terms of days: A = 16 days, B = 12 days, C = 
8 days and D = 6 days. Hence, we aimed to obtain one representative SM value 
per each subdivision of time, within each scenario. In order to acquire this 
representative SM value, we have computed the minimum, mean and maximum 
out of the daily SM values contained in every time interval. 

Fig. 39 shows variable creation for each scenario (A, B, C, and D) based on SM 
and presence and pseudo-absence dates. For instance, scenario (A) 
contemplates equal time intervals of 16 days so that (SM1) indicates the SM 
value on the local pixel between -95 to -80 days (both included) prior the 
presence or pseudo-absence date. (SM2) SM value on the local pixel between -
79 to -64 days prior the presence or pseudo-absence date and the rest 
accordingly as detailed below. 
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Figure 39. Variable names and their distribution back in time for four different scenarios: A, B, 
C and D. Time interval for scenario (A) is 16 days generating 6 variables, 12 days for 
(B) with 8 variables, 8 days for (C) with 12 variables and 6 days for (D) with 16 
variables. Time equals to 0 (t = 0) corresponds to the presence or pseudo-absence 
sighting date. Within each scenario, 3 different alternatives are independently tested 
(minimum, mean and maximum SM value within the given time interval). 

 

Some publications suggest the suitability of machine-learning (ML) approaches 
to model species distributions, since they may perform better than the 
traditional regression-based algorithms (Elith et al., 2006). BIOMOD2 tool 
(Thuiller et al., 2009) implemented for R software (R Development Core Team, 
2012) was again used to build the models. Two different ML modelling 
techniques were tested to describe and model the link between desert locust 
and SM: Generalized Linear Model “GLM” (McCullagh & Nelder, 1989) and 
Random Forest “RF” (Breiman, 2001). 

Generalized Linear Model 

GLMs are flexible generalization of ordinary linear regression approaches that 
can be used also in classification problems. Owing to they do not constrain the 
data into unnatural scales, they allow non-linearity and non-constant variance 
structures in the data (Hastie and Tibshirani, 1990). These models assume the 
relationship between the mean of the response variable and the linear 
combination of the predictor variables through a link function. In linear 
regression models, it is assumed that residuals are normally distributed with 
constant variance; however, GLMs generalize this assumption permitting other 
types of error distributions. Data can be from several probability distributions 
such as normal, binomial, Poisson, negative binomial, or gamma distribution, 
many of which better fit the non-normal error structures of most ecological 
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data (Guisan et al., 2002). Therefore, GLMs are more eligible to analyse 
ecological relationships than others which are poorly represented by classical 
Gaussian distributions (Austin, 1987). 

The GLM function embedded in BIOMOD permits to use linear, quadratic or 
polynomial functions, and it can be selected either by the Akaike information 
criterion (AIC) developed by Hirotugu Akaike in 1971 (Akaike, 1973) or by 
Bayesian information criterion (BIC) developed by Gideon E. Schwarz in 1978 
(Schwarz, 1978). Both are criterion for model selection among a certain 
number of models. During the model building phase, it is possible to raise the 
likelihood by including more parameters, though it may cause overfitting. Both 
BIC and AIC aim to fix this issue by adding a penalty term for the number of 
parameters included in the model. 

This method provides a less restrictive form than classic multiple regressions by 
providing error distributions for the dependent variable other than normal and 
non-constant variance functions. When there is no linear relationship with the 
predicting variable, the algorithm can include more complex function such as 
polynomial in order to simulate skewed and bimodal responses. Some of the 
shortcomings of the GLM approach are the necessity to know prior hand which 
is the relationship between predicting variables and species occurrence, in 
addition to lack of flexibility in some instances to approximate to the true 
regression surface (McCullagh, 1989; Team Biomod, 2012). 

GLM Simple: Used only linear terms: 

𝑌 1 =  𝑋 1 + 𝑋2  + 𝑋3  + (𝑋 1 ∗  𝑋2)  + (𝑋2  ∗  𝑋3)       (Eq. 6) 

 

GLM Quad: Used linear, 2nd and 3rd order: 

𝑌 1 =  𝑋 1 + 𝑋12  +  𝑋13  + 𝑋22  + 𝑋33     (Eq. 7) 

 

GLM Poly: Use ordinary polynomial terms: 

𝑌 1 = 𝑓(𝑋 1 + 𝑋12 + 𝑋13) + 𝑓( 𝑋 2 + 𝑋22 + 𝑋23) +  𝑓( 𝑋 3 + 𝑋32 + 𝑋33) (Eq. 8) 
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GLM is a very popular modelling approach that has been widely used to model 
and predict habitats and species distribution (Guisan & Zimmermann, 2000; 
Sanchez-Zapata et al., 2007). The formula object was set to be “quadratic” 
(default) and the information criteria for the stepwise selection procedure was 
the Akaike Information Criteria (AIC). GLM approach implemented in BIOMOD2 
only runs on presence-absence data, so binomial distribution family was used. 

Random Forest “RF” 

 The Random Forest algorithm was developed by (Breiman, 2001) as an 
extension of bagging classification Trees (Archer & Kimes, 2008). This method 
has been implemented in the ”randomForest” library programmed by Andy Liaw 
and Matthew Wiener, and has the additional capability to apply random feature 
selection at each node and no stopping rule. This procedure diminish the 
correlation among trees so that the predicting error of the forest. 

Random Forests grows plenty of classification trees, and each tree uses a 
bootstrapped sample from the original learning sample. For every forest tree, 
the model provides a predicted class for each observation. Thus, each tree 
gives a classification in which is counted the number of votes among all the 
trees in the forest. 

Each tree grows as much as possible and there is no pruning. It is important to 
mention that the correlation between trees in the forest has consequences in 
the prediction error. When there is a high tree correlation, the forest error rate 
would be high too. Whereas having strong individual trees provide lower error 
rates, and makes them strong classifier. When the number of predicting 
variables is reduced, the correlation and the strength tend to decrease 
accordingly. Hence, there is an optimal range to the number of variables to 
find optimal solutions to the problems. Fig. 40 represents the architecture of 
random forest algorithm for 2 trees. Each internal node is a “test” on an 
attribute, every branch indicates the outcome of the test, and the leaf node 
represents a class label. 

Random forest trees grow as follows (Breiman, 2001) 
(https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#pape
rs): 

1. If the number of cases in the training set is N, sample N cases at random 
- but with replacement, from the original data. This sample will be the 
training set for growing the tree. 

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#papers
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#papers
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2. If there are M input variables, a number m<<M is specified such that at 
each node, m variables are selected at random out of the M and the 
best split on these m is used to split the node. The value of m is held 
constant during the forest growing. 

3. Each tree is grown to the largest extent possible. There is no pruning. 

 

Random Forest is widely used in the scientific community to regression or 
classification problems and it has demonstrated its efficiency working with 
large databases. It can deal with thousands of independent variables and 
analyse which of those are more relevant in the classification problem. In 
addition to that, it also offers an experimental technique to identify variable 
interactions. 

 

Figure 40. Architecture of Random Forest algorithm with 2 trees. Source: Niklas Donges: 
https://towardsdatascience.com 

A RF classifier will have most of the hyper-parameters that decision tree 
classifiers have, in addition to the hyper-parameters of bagging classifiers. Most 
of the time, RF is very robust against overfitting since it creates random 
subsets that will use to build smaller trees. And then it combines the subtrees. 
The main disadvantage of RF is the processing time, which is closely linked with 
the number of generated trees. It turns out that accurate predictions require 
higher number of trees, so that slower processing times for the model. Biomod 
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uses for RF a default value of 500 trees, although can be tuned through the 
“Biomod.Models” function, and it retrieves the variable importance within the 
model. 

Random Forest algorithm is a flexible and easy to use ML approach that has 
been demonstrated to have good predictive performances in ecology and 
species distribution (Mi et al. 2017). It can be used both for classification and 
regression problems. The most important tuning parameters are the “mtry” 
(number of variables randomly selected at each split of the tree as it grows) 
and “ntree” (number of trees). We have set these two parameters with their 
default values: “ntree” = 500 (Elith & Graham, 2009; Benito et al., 2011) and 
“mtry” (in classification) = the squared of the number of variables (Genuer et 
al., 2010). The minimum size of terminal nodes “NodeSize” and the maximum 
number of terminal nodes “MaxNodes” were also left with their defaults values, 
which are 5 and null respectively (Thuiller et al., 2016). 

Different predictive methods result in different accuracy measures, so that 
they need to be carefully evaluated. This procedure is referred as Model 
Evaluation. 

Different measures can be used to evaluate the accuracy of the model, and 
each case would require different techniques according to the nature of the 
study (Fielding & Bell, 1997; Liu et al., 2011). Many of these statistical metrics 
to evaluate models are based on threshold values. Predicted values above that 
specific threshold would indicate a prediction of ‘presence’, whereas values 
below the threshold would indicate ‘absences’. Depending on the intrinsic 
characteristics of the study, it may be convenient to emphasize the weight of 
false absences; others give more weight to false presences, according to their 
prevalence in the dataset. Nevertheless, there are some statistic metrics to 
evaluate model performances that do not rely on thresholds such as the Area 
Under the Receiver Operating characteristic Curve (ROC-AUC) and the 
correlation coefficient (r). 

Before starting to describe the model metrics, it is convenient to introduce a 
few basic terms in the subject. Sensitivity and specificity are products derived 
from a confusion matrix, which is widely used to evaluate binomial distribution 
models (Fig. 41). In the ecological field, a confusion matrix compares the 
capability of an ecological-habitat model to accurately predict observed 
presences and absences by tabulating true positives (TP), false positives (FP), 
false negatives (FN), and true negatives (TN) predictions. Sensitivity is a 
measure of commission error (TP/(TP+FN)) and specificity is a measure of 
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omission error (TN/(TN+FP)). Sensitivity and specificity are derived 
independently of each other and also independent of prevalence, the 
proportion of presence locations. Sensitivity and specificity values range from 
0, indicating a high error, to 1 which indicates very high agreement between 
observed and predicted values (Torres et al., 2008). 

 
Figure 41. A confusion matrix that describes the predictive capacity of SDMs. TP = presence 

observed and predicted by model; FP = absence observed but predicted as a presence 
location; FN = presence observed but location predicted as absence; TN = absence 
observed and predicted by model. 

 

There are many other model performance metrics that have been generated 
from Sensitivity and specificity (Fielding & Bell, 1997; Pearce & Ferrier, 2000) 
such as ROC-AUC, Cohen’s kappa statistic or TSS. 

In spite of the generalized use of some statistics to assess model performances 
in ecology, there is still an ongoing debate about their use (Allouche et al., 
2006; Ruete & Leynaud, 2015). We decided to select 4 broadly used evaluation 
methods for cross-comparisons that are included in Biomod2: Relative 
Operating Characteristics “ROC” (Hanley & McNeil, 1982), Cohen’s Kappa 
“KAPPA” (Monserud & Leemans, 1992), True Skill Statistic “TSS” (Allouche et 
al., 2006) and Accuracy. 

1. The ROC evaluation method uses the area under the curve (AUC) to 
discriminate between events and non-events. It is a very common 
measure of model accuracy in order to evaluate classification machine 
learning models. The area under the receiver operating characteristic 
curve has several interpretations: 
 

a. The expectation that a uniformly drawn random positive is 
ranked before a uniformly drawn random negative. 

b. The expected proportion of positives ranked before a uniformly 
drawn random negative. 
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c. The expected true positive rate if the ranking is split just before 
a uniformly drawn random negative. 

d. The expected proportion of negatives ranked after a uniformly 
drawn random positive. 

e. The expected false positive rate if the ranking is split just after a 
uniformly drawn random positive. 
 

In a ROC curve, the Y-axis represents the True Positives while the True 
Negatives are on the X-axis (Fig. 42). All models with points below the 
diagonal have worse performance than a model which makes predictions 
randomly. Its score ranges from 0 (worst score) to 1 (perfect score), and 
values under 0.5 are considered to indicate random chance (Fawcett, 
2006). High ROC-AUC values indicate that the sites are suitable to 
species presences, while in contrast lower values indicate presence 
uncertainty. 

 

Figure 42. Roc curve comparison. Source: Thomas G. Tape, http://gim.unmc.edu 

 
2. KAPPA statistic is one of the most used methods to measure model 

performance on presence-absence predictions and it indicates the 
relative accuracy of the forecast comparing with the random chance. In 
other words, it calculates the difference between how much agreement 
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is actually present (“observed” agreement) compared to how much 
agreement would be expected to be present by chance alone 
(“expected” agreement) (Viera & Garret, 2005). It ranges between -1 
(the worst score) to 1 (perfect score), where values under 0 indicates no 
predictive skill. It corrects the overall accuracy in the prediction of a 
model by the accuracy expected to happen by random chance. Other 
advantages are its tolerance concerning zero values in the confusion 
matrix or the simplicity of the procedure (Manel et al., 2001). 
 
Despite the wide use of Kappa among the scientific community, some 
authors have highlighted the limitations of this measurement to 
correctly assess model accuracies. Kappa is inherently dependent on 
prevalence, and this introduces bias and errors in the estimation of 
performance (Lantz & Nebenzahl, 1996; Allouche et al., 2006) 
 

3. Accuracy expresses the fraction of the predictions that are correct, and 
ranges between 0 (the poorest) to 1 (the best). Typically, this metric 
does not provide enough information to ensure that a machine learning 
model is robust to make predictions on unseen data (Brownlee, 2014). 
 
Classification accuracy is essentially the number of correct predictions 
divided by the total number of predictions, multiplied by 100 to show it 
in percentage. But this measure can sometimes be misleading. In some 
instances, it is more recommended to choose a model with lower 
accuracy performance because it predicts better to that specific 
problem. It usually occurs in those machine learning problems where 
there is a great class imbalance. The model will predict with very high 
accuracy all those cases that tend to be majority in the dataset, 
whereas small occurrences will go unnoticed. This phenomenon is called 
Accuracy Paradox. To get further information about these metrics, 
access to the Collaboration for Australian Weather and Climate Research 
site “CAWCR” (CAWCR, 2015). 
 

4. TSS statistic. It a metric developed by (Allouche et al., 2006) that keeps 
all the advantages of the Kappa statistic, but corrects its dependency to 
prevalence. It is widely used in ecology to be a simple and intuitive 
metric to evaluate species distribution models for presences and 
absences of species (Liu et al., 2009; Barbet-Massin et al., 2012). 
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Although these evaluation procedures could be used independently, it is 
recommended to use several of them to assess the accuracy of statistical 
models. Table 6 shows an index for classifying model prediction accuracy: 

ACCURACY AUC KAPPA/TSS 

Excellent or high 0.9 – 1 0.8 – 1 

Good 0.8 – 0.9 0.6 – 0.8 

Fair 0.7 – 0.8 0.4 – 0.6 

Poor 0.6 - 0.7 0.2 – 0.4 

Fail or null 0.5 – 0.6 0 – 0.2 

 
Table 6. Index for classifying model prediction accuracy (Thuiller et al. 2009). 

 

The Biomod2 package allows the user to randomly subset the original dataset 
into 2 subsets, calibration and validation. The dataset was divided into 70% of 
the data to calibrate the models and 30 % to validate the predictions. When 
found the best scenario and variables to choose, we repeated the process 5 
times to the best performing algorithm to obtain a robust test of the model, 
where each replicate uses a unique random split 70% - 30% of the data (Thuiller 
et al., 2009). Presence and pseudo-absences were set to have the same 
importance in the calibration process, with a prevalence value of 0.5. 

Based on model results, the best performing algorithm with the best scenario 
and representative statistic of SM values is selected. Then, an optimization 
process was applied to ensure that the settled algorithm is presenting the best 
possible performance (Brownlee, 2014). We tuned the algorithm hyper-
parameters to find their best combination in terms of predictive performance, 
and finally an objective comparison of the results. The best tuning parameters 
were chosen to run the final model. 

We used the response curves to assess the prediction of the model, which are 
independent of the used SDM algorithm. The response curves allow comparing 
the probability of presence based on ROC, TSS and Kappa metrics with the 
variables used in the model. It facilitates the interpretation of relationships 
between environmental variables and predicted responses of species, even 
though they may not be apparent from the outputs of the model (Elith et al., 
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2005). The contribution of each variable to the final model is analysed. So the 
higher the value is, the more influential the variable will be in the model; 
where a 0 value means no influence at all. 

The aim is to evaluate desert locust presence probabilities to locate potential 
breeding areas, based on remotely sensed SM conditions. 

3.3. Results 

SM monthly averages (Fig. 43-44) suggest a spatial correlation with usual 
breeding areas, indicating high SM values in the south for the months: July, 
August, September and October; whereas higher values are found in the north 
and north-eastern part of Mauritania during December, January and February. 
In general, autumn breeding sites (blue dots in Fig. 44) do not show visual 
correlation with the monthly mean SM values. 

GLM and RF algorithms were used with SM variables that relied upon various 
time intervals (16, 12, 8 and 6 days) and their maximum, minimum or mean 
(Table 7 and Table 8) SM values. Based on ROC, TSS and KAPPA statistics, we 
obtained performance scores with 1 iteration from an independent test 
dataset. The results showed that Random Forest “RF” obtained the best 
performance for our study, whereas GLM performed far behind. 

 The highest scores were obtained when the time interval was 6 days (scenario 
D) and the representative SM value was the minimum acquired within the time 
interval. According to Table 7, the RF algorithm obtained a high o very good 
performance with respect to ROC-AUC with 0.95 and good performance for 
Kappa and TSS statistics with 0.75. The sensitivity and specificity was over 87%. 
Slightly lower values are found when using the maximum or mean SM values 
across the scenario D, demonstrating the suitability of 6 days coverage time to 
build the SM variables of the model. Scenario A (16 days) obtained the worst 
model performance when using mean SM values as representative of the given 
interval. Nevertheless, this scenario still obtained a fair performance of 0.6 for 
TSS and kappa statistics, and ROC-AUC = 0.90 when using the minimum SM 
value across their time length. 

Model performance increases when the time interval of the variables gets 
smaller and the representative SM value is the minimum for such period. 
Therefore, we suggest regarding at minimum SM values over 6 days period to 
link solitarious hopper presences and SM values of the ground. 
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Figure 43. SM average per month for the time span 1985 – 2015, units is in m3/m3. 

 

 

Figure 44. Location map of solitarious hopper presences reported from 1985 to 2015, grouped 
per months (on the left). Frequency histograms of presences based on months, 
latitude and longitude are found on the right. 
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RF was the best performing algorithm, using scenario D and the minimum SM 
values obtained in each time interval. RF algorithm was tuned for the two most 
important hyper-parameters: the number of trees “ntree” (50, 500, 1000, 2000 
and 4000) and the number of variables randomly sampled as candidates at each 
split “mtry” (2, 4, 6, 8 and 10). Firstly, we optimized the number of trees and 
secondly the mtry. As observed in Fig. 45, the default parameters established 
by Biomod2 for Random Forest (ntree = 500 and mtry = 4) obtained the best 
model performance, whose evaluator metrics did not greatly differed from 
other tuning options. The poorest performance was obtained with ntrees = 50 
and mtry = 2 (lower value parameters than the default proposed by BIOMOD2). 
The increase of ntrees or mtry has not improved model results, with relatively 
very small changes in model performance. It is also noticeable how the ROC-
AUC evaluator remains more or less constant across the different attempts, 
while the changes of TSS and KAPPA are slightly larger. 

 

Figure 45. Comparison of different RF results using different tuning parameters, with scenario D 
and the minimum SM value per interval (best performances in the previous step). X-
axis represents the parameter changes and Y-axis the model performance of each 
tuning combination according to ROC, KAPPA and TSS statistics. 

 

Therefore, the best algorithm (RF) was optimized after the tuning phase with 
ntree = 500 and mtry = 4. And the best model results were obtained using the 
variables created with scenario D and the minimum SM reached at each time 
interval. Finally, we ran RF for 5 iterations to aim for robust results. Model 
performance scores are compiled in (Table 9). 
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RF 
5 iterations 

Test Sensitivity Specificity 

ROC-AUC 0.946 84.911 89.105 

TSS 0.740 85.468 88.461 

KAPPA 0.738 87.325 86.508 

 

Table 9. RF results after 5 iterations using the best scenario (6 days) with the minimum SM 
values obtained in each interval. Sensitivity and specificity are expressed in %. 

The metric scores are in accordance with the ones obtained in Table 7 for the 
same scenario (D) and chosen variables (minimum SM). In general, testing 
values and sensitivity are slightly lower, while ROC-AUC and TSS specificity are 
somewhat higher. In essence, score values do not differ considerably when 
running more iterations and averaging their metrics. The impact of SM variables 
in the final model results (RF, scenario D, minimum SM) are summarized in Fig. 
46. 

 

Figure 46. Variable importance in % of each variable from Scenario D (6 days), using the 
minimum SM value obtained in each time interval for RF. 

 

The most relevant variables for the outcome model were SM1, SM2, SM3 and 
SM4 which stand for the minimum SM values obtained between 95 and 90, 89 
and 84, 83 and 78, 77 and 72 days before the sighting record respectively. Fig. 
46 indicates the greater impact of these mentioned variables (mostly over 10 %) 
in comparison with the rest, which do not overcome the 5 % per each. Fig. 47 
shows the response curves of these four more relevant variables that are over 5 
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% of importance. The plots suggest some potential thresholds of SM content to 
increase the probability of presence. The minimum SM values acquired during 
SM1, SM2, SM3 and SM4 denote a positive influence in hopper occurrences. It is 
observed that the range of SM values in which the probability of presence is 
over 0.5 varies. Presence probabilities tend to keep steady by 0.5 when SM 
values reaches 0.15 for SM1, SM2 and SM4. SM3 keeps a high probability over 
that value. Nevertheless there is a common trend by the 0.07 (m3/m3) to 
increase the probability of presence within 72 and 95 days afterwards. 

 
Figure 47. Response curves for hopper’s desert locust for SM1, SM2, SM3 and SM4 variables for 

RF. The Y-axis represents the presence probability of the prediction, while X-axis 
stands for SM values. 

 

3.4. Discussion 

It is widely assumed that rainfall over 25 mm in two consecutive months is 
generally enough to locust breeding and development (FAO & WMO, 2016). 
Nevertheless, remotely sensed precipitation in arid environments has some 
limitations such as high rainfall overestimation due to sub-cloud evaporation 
(Dinku et al., 2011). Aiming to solve the problems associated with remote 
sensing precipitation, we have analysed the link from ESA CCI SM remote 
sensing product with field surveys of hopper desert locust from SWARMS – FAO. 
In addition, we assess the suitability of this SM product to derive desert locust 
breeding sites. 
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It has been long known the importance of SM in egg laying and development, as 
well as the role of fresh vegetation which is greatly determined by water 
availability in the soil (Pedgley, 1981). SM monthly averages suggest a spatial 
correlation with summer and winter breeding areas. It coincides with the 
regional climatic conditions of Mauritania as reported in other works (Van Huis 
et al., 2007; Babah Ebbe, 2012). 

 Winter rainfall is usual in the north while summer rain in the south of the 
country. Nevertheless, typical autumn breeding areas do not seem to be 
accounted for the monthly SM patterns. In arid environments, there is a direct 
relationship between rainfall and SM (Nicholson & Farrar, 1994; Brocca et al., 
2013), so that problems such as sub-cloud evaporation (Dinku et al., 2011) may 
be avoided with the applied methodology. Despite ESA CCI SM only senses the 
first 5 cm of the top soil, and desert locust lay eggs usually at depth down to 10 
cm; this system seems appropriate due to the strong relationship of the top SM 
with deeper layers (Albergel et al., 2008). 

Our analysis reveals the importance of variable creation as a previous step to 
modelling. We have tested different time intervals for the variable creation. In 
addition, we have chosen different representative SM values for the given time-
span (maximum, mean and minimum) and presence and pseudo-absence sites. 
Perhaps, the use of pseudo-absences may be controversial in certain fields 
because bring some sort of uncertainty into the results (Hastie & Fithian, 2013). 
However, their use is generally justified for providing a set of conditions 
available in the region that need to be included in the SDM (Phillips et al., 
2009). 

The highest performance was acquired by the RF algorithm when dividing the 
whole survey time into ranges of 6 days, and selecting the minimum SM as the 
variable value. Even though previous literature (Sanchez-Zapata et al., 2007) 
have used the GLM model with a binomial distribution to identify potential 
factors that determine species presences or absences, GLM approach did not 
perform well in our study. According to (Thuiller et al., 2009), our RF model 
has had an excellent performance based on ROC-AUC metric with 0.946, and a 
good performance for TSS and Kappa statistics with 0.740 and 0.738 
respectively. The probability of hopper detection (sensitivity) is over 85 %, 
being able to correctly identify (specificity) over 86 % of the pseudo-absence 
records. The variables with more weight in the model results were SM1, SM2, 
SM3 and SM4, whose cover time range from 95 to 72 days before the sighting 
record. Locust eggs develop and hatch successfully when there is enough 
moisture in the soil (Shulov & Pener, 1963), whereas insufficient moisture may 
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stop egg development or dry them out (Pedgley, 1981). Our results indicate 
that the minimum SM conditions over at least 6 days should remain higher than 
0.07 m3/m3. This value is in accordance, although slightly lower, with the SM 
range proposed by (Escorihuela et al., 2018) which are between 0.10 and 0.20 
m3/m3. Hopper mortality is closely linked to food shortage (Pedgley 1981), 
which in arid environments is closely linked with inadequate precipitation 
(Bennett, 1976; Teklu, 2003). Thus, remotely sensed SM may also be a good 
indicator of suitable conditions to infer hopper presences and locate breeding 
areas. A good understanding of the geographical relationship between desert 
locust populations and their potential breeding habitats can improve desert 
locust survey and control operations (Teklu, 2003). 

The applied methodology offers very promising results to correctly identify 
breeding areas based on 30 years of SM values. The ESA CCI SM dataset is the 
most complete and consistent global SM data record available (Wagner et al., 
2012). To the best knowledge of the authors, there has not been any previous 
desert locust analysis using this SM dataset. Given the acknowledged 
importance of SM for desert locust and the length of ESA CCI SM dataset, our 
results may signify a breakthrough to complement the ongoing locust 
monitoring techniques used until today. 

3.5. Conclusions 

This chapter has evaluated the importance of satellite SM products to locate 
breeding areas for desert locust in solitarious phase. The survey has used the 
most complete and consistent available SM dataset, the ESA CCI SM product. 

A machine learning approach was used to assess the relationship between 
Desert locust presences and antecedent SM conditions and estimate the 
accuracy of our model. This chapter confirms the robustness of the applied 
methodology, where 30 years of locust records and SM values were used to feed 
the model. Some uncertainty is expected due to the use of pseudo-absence 
data, nevertheless the creation of pseudo-absences is an accepted method in 
ecology when there is a lack of true-absence data. 

The monthly SM values suggest a spatial correlation with usual breeding areas 
in Mauritania. So far, desert locust suitable sites have been mainly delimited 
based on rainfall estimates from satellite remote sensing. However, some 
literature marks the high overestimation of these products over dry regions. 
Therefore, we suggest the use of ESA CCI SM product to overcome that problem 
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either to complement other rainfall products or to substitute them in certain 
instances of high uncertainty. 

Furthermore, we have modelled quantitatively the relationship between hopper 
presences and SM under different scenarios and variables. The best model 
performance was obtained by Random forest, when using the minimum SM 
value within 6 days interval, for a maximum survey time of 95 days before the 
sighting date. The validation phase acknowledged the suitability of this 
methodology to identify hopper presences with a ROC-AUC of 0.94 and TSS & 
Kappa of 0.74. The importance of SM thresholds and survey time has also been 
addressed: when the minimum SM value of a certain location overcomes 0.07 
m3/m3 during 6 days or more, the area becomes favourable as breeding zone. 
However, these values should be taken carefully. Variable importance showed 
that the most relevant variables of the model would cover between 95 and 72 
days before the sighting record. It implies, as highlighted in other works, that 
certain SM levels need to be maintained over time not just for egg laying, but 
egg development and hatching. So that, monitoring periods should be longer 
than 6 days to those favourable areas for a successful egg development and 
hatching. 

According to these results, the observed SM during certain periods stands as a 
very reliable contributor to accurately predict hopper presences in Mauritania; 
and consequently its monitoring may reduce the locust impact on local 
communities. The next chapter aims to ensemble other environmental variables 
along with SM datasets to improve model performance. This innovative 
approach may correct some shortcomings of current desert locust early warning 
systems. 
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Chapter 4. Multivariate ensemble model to detect desert locust 

4.1. Introduction 

Previous studies have demonstrated the importance of vegetation density to 
account for desert locust phase changes from solitarious to gregarious (Cisse et 
al., 2013), what even affects the hatching time of the eggs (Nishide et al., 
2015). Meanwhile, other authors aimed to explain variables such as 
precipitation (Cressman, 2013; Lazar et al., 2015) or moist status (Tucker et 
al., 1985) to describe good habitat conditions for breeding. In addition, some 
laboratory studies have demonstrated the egg sensitivity of different hopper 
species to small changes in soil temperature (Nishide et al., 2017). So then, 
favourable breeding conditions are to be a combination of many environmental 
circumstances. 

The main concern of local authorities is to control desert locust populations 
before a plague is established. Outbreaks are led by an aggregation of variables 
that usually occurs in areas smaller than 10,000 km2 (Van Huis et al., 2007). The 
outbreaks might not end up being a plague due to human intervention or 
natural limits, and it needs one year at least to be established as plague 
(Cressman, 2008). 

This rising concern to control the population number before they become 
plague, led FAO to develop the Desert Locust Information Service (DLIS). This 
project aims to assess and warn about potential outbreaks, and provide the 
necessary information to operate an early warning system based on Earth 
Observation Systems and field work. Remote sensing satellite data is nowadays 
a great asset to study inaccessible or complicated regions, as well as a cost 
effective method to monitor a wide range of environmental parameters, with a 
good temporal and spatial resolution (Melesse et al., 2007). As previously 
described in prior chapters, a wide range of satellite platforms have been using 
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to monitor habitat conditions in an individual basis: Aqua, Terra, NOAA, SPOT, 
Meteosat, etc.  

In order to derive which are the most favourable conditions for desert locust to 
breed, a wide range of variables need to be explored. It was used a 
combination of the best performing species distribution models (SDM) to 
analyse the link between species occurrences and the habitat conditions. 

Artificial intelligence algorithms have been introduced in ecological studies for 
modelling complex systems (Recknagel, 2003), hence to obtain reliable 
environmental assessments and deeper insight of ecology. Accordingly, reliable 
assessments will permit local authorities and decision makers to achieve 
adaptive management with appropriate vision and efficiency (Fukuda & 
Hiramatsu, 2008). Increasing its popularity, the process of running two or more 
related but different predictive models and then summarize the results into a 
single score (termed as “ensemble modelling”) arises as a solution to 
intermodel variations, with clear advantages over single model forecasts 
(Araujo & New, 2007). 

This chapter aims to explore the combination of different environmental 
variables retrieved by remote sensing techniques to derive optimal breeding 
conditions for solitarious desert locust. In order to obtain the best predictive 
results, it was used an ensemble model approach. 

4.2. Materials and methods 

4.2.1. Field data and pseudo-absences 

Schistocerca WARning and Management System (SWARMS) is again the dataset 
of locust presence records used as “ground truth”. As described in previous 
chapters, it has been used to analyse the link between environmental data and 
desert locust sightings. We chose solitarious hopper stage as our population 
target for two reasons: the solitarious phase accounts for non-restricting 
conditions (Simpson et al., 1999) and hoppers (wingless nymphs) have less 
mobility than adults due to their lack of wings (Showler, 2008). In order to 
prevent plagues, it is very important to locate suitable breeding areas, with egg 
lying being the first stage of their life cycle. Optimal egg development 
conditions will lead to new hatched hoppers, which cannot travel far distances 
owing to their lack of wings. 
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Figure 48. Keith Cressman (FAO-Senior Locust Forecasting Officer) , reviews with the desert 
locust survey team the use of maps in combination with GPS and compass to 
accurately determine the locations of survey stops and routes in the field (6 Mar 
2000). Source: Locust Watch- FAO 

 

We selected 750 solitarious hopper presences from 01/07/2015 to 01/07/2017. 
The reason to choose this time interval was to obtain remote sensing data from 
the new NASA sensor SMAP. A random grid of pseudo-absence points (Zaniewski 
et al., 2002) was generated using R software (R Development Core Team, 
2016). Following the same procedure as detailed in chapter 3, we first selected 
the most suitable areas for hoppers (pink area on the right hand side map on 
Fig. 49), aiming to avoid geographical bias that might misguide model 
predictions (Barnes et al., 2014). Hopper records from 1985 to 2017 were used 
to generate a density map (Fig. 49). It was found that using a 50 km radius 
buffering mask from each recorded sighting enabled us to mask out those zones 
with no reported occurrences. 

Each random point was then assigned with a random date from mid-2015 to 
mid-2017. Locust habitats are ephemeral and limited, thus making impossible 
long-term population studies at a single site (Greathead, 1966). A total of 750 
points were created so as to be equal with presence records as observed in 
other approaches such as (Mateo et al., 2010). Using this approach, we sought 
to reduce geographical bias, selecting areas with high environmental or 
geophysical potentialities to observe hoppers. 
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Figure 49. Density map of solitarious hoppers, between 1985 and 2017 (left). Hopper presence is 
depicted by months (right). The pink area corresponds with the buffering zone taken 
to create pseudo-absence points. Survey data: SWARMS database. 

 

4.2.2. Environmental variables 

4.2.2.1. SMAP L4 9 km EASE-Grid Surface and Root Zone Soil Moisture 
v3 

Soil Moisture Active Passive (SMAP) L4 9 km EASE-Grid Surface and Root Zone 
Soil Moisture v3 Geophysical Data (SPL4SMGP) is a NASA product that provides 
global information about surface soil moisture (0-5 cm vertical average) and 
root zone soil moisture (0-100 cm vertical average), with 9 km spatial 
resolution, three hour temporal resolution and about 2.5 day latency. Both 
surface and root zone soil moisture are under 0.04 m³/m³ of uncertainty, 
measured by unbiased root-mean-square-error (Reichle et al., 2017). The 
SPL4SMGP product was validated against ground observations and is a cloud 
free product. It covers from 31 March 2015 up to today. SMAP estimates surface 
soil moisture (0-5 cm) by assimilating the brightness temperature into the NASA 
catchment land-surface model (Reichle et al., 2014). This model describes the 
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vertical transfer of SM between surface and root zone, assuming unsaturated 
conditions (Pablos et al., 2018). It was decided to use both variables to cover 
different soil depths, and thus assess their importance within the model. In 
addition, we used other research products (not validated) from SMAP satellite 
(Fig. 50) such as Leaf Area Index (LAI) and surface temperature product, to test 
their influence on locust presence. LAI accounts for the proportion of the upper 
leaf area compared to the ground area, and is dimensionless. The LAI 
associated to each pixel may range from 0 (bare ground) to values greater than 
1 (indicating a canopy with multiple layers of leaves per unit of soil surface) 
(Carlson & Ripley, 1997). Some studies relate LAI products with biomass 
(Fensholt et al., 2004), such that it was included in the model as a biophysical 
parameter that can indicate the presence of vegetation (Zheng & Moskal, 
2009). 

 In Mauritania, vegetation is usually sparse and is not always well identified by 
NDVI at coarse resolutions (Piou et al., 2013). Surface temperature represents 
the mean soil temperature of the first 5 cm retrieved at 6:00 a.m. and 6:00 
p.m. local solar time. We sought to include surface temperature, given the 
influence that soil temperature has on egg development as reported in (Nishide 
et al., 2017). Temperatures were converted toºC. To the best of our 
knowledge, no previous studies have used remotely sensed surface temperature 
for desert locust purposes. Further information about these products may be 
found at (https://smap.jpl.nasa.gov/mission/description). 

 

 

Figure 50. SMAP satellite from NASA during testing phase Source: NASA/Robert Rasmison. 

https://smap.jpl.nasa.gov/mission/description
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4.2.2.2. Land Surface Temperature and Emissivity 8-Day L3 Global 1km 
(MOD11A2) 

Terra-MODIS Version 7, 8 days composite (MOD11A2) Land Surface Temperature 
(LST) was employed to analyse the temperature of the surface 
(https://modis.gsfc.nasa.gov/). The original dataset covers from 5th of March 
2000 to ongoing, and the data is stored on a 1 kilometre Sinusoidal grid as the 
calculated average values of 8 days to obtain cloud free LST images. Terra 
satellite is a sun synchronous, near polar circular orbit that crosses the equator 
in descending mode by 10:30 a.m. local time (Fig. 51). This product is retrieved 
by the generalized split-window method (Wan & Li, 1997), using emissivity of 
the Thermal Infrared Channels (TIR) 31 and 32. It has been validated against 
ground based observations (Wan et al., 2002). Temperatures have been 
converted from Kelvin to Celsius degrees. 

 

Figure 51. Terra spacecraft with on-board sensors. Source: NASA 

 

4.2.2.3. Vegetation Indices 16-Day L3 Global 250m (MOD13Q1) 

In order to characterize the presence of vegetation in our study area, Terra-
MODIS Version 6, 16 days composite (MOD13Q1) Normalize Difference 
Vegetation Index (NDVI) was used for such purposes (Huete et al., 1999). 
Aiming to obtain a cloud free product, MOD13Q1 provides coherent temporal 
and spatial comparisons of the vegetation on ground. MODIS sensor retrieve 
data in 36 spectral bands which cover the wavelength range from 0.4 μm to 
14.4 μm (https://modis.gsfc.nasa.gov/). 

https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
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Even though some authors have exposed the problems to use NDVI in arid areas 
(Ceccato, 2005), others have shown the goodness of NDVI to reflect sensitively 
vegetation growth and vegetation cover, in addition to reduce negative impacts 
caused by clouds/shadows, atmospheric conditions or changes in solar angles 
(Gao et al., 2000; Vermote et al., 1997). Then, it was decided to include this 
product in our model to assess vegetation importance to shelter and feed 
desert locust (Popov, 1985; Uvarov, 1957), hence condition its presence. 

4.2.3. Methods 

BIOMOD2 platform (Thuiller et al., 2009) implemented for R software was the 
selected tool to build the models. This computer platform for species 
distribution modelling (SDM) contains 10 machine learning algorithms to model 
the relationship between given species and its environment. Two of these 
algorithms Generalized Linear Model “GLM” and Random Forest “RF” have 
already been explained in Chapter 3. The others are Generalized Additive 
Model “GAM”, Generalized Boosting Model “GBM”, Classification Tree Analysis 
“CTA”, Artificial Neural Network “ANN”, Surface Range Envelop or Bioclim 
“SRE”, Flexible Discriminant Analysis “FDA”, Multiple Adaptive Regression 
Splines “MARS” and Low Memory Multinomial Logistic Regresion 
“Maxent.Tsuroka”. These algorithms are described hereunder: 

a) Generalized Additive Model 

Generalized additive models (GAMs) (Hastie & Tibshirani, 1990) were developed 
to blend the benefits of GLMs with additive models. In essence, they are GLMs 
in which the functions are additive and the components smooth. Likewise, a 
link function is used in the GAM approach to set a relationship between the 
mean of the response variable and a ‘smoothed’ function of the explanatory 
variables. One of the main advantages is the GAM ability to tackle highly non-
linear and non-monotonic relations between the response variable and the 
predictor variables. 

 This approach is also very used to model non-linear relations in ecology, as 
well as to acquire a better insight of the natural systems (Guisan et al., 2002). 
GAM algorithms are especially useful when the relations between the predicting 
variables and the response variable is expected to be rather complex or there is 
no sign to use a specific model for the data. They tend to generalise quite well 
the data using a class of equations named “smooothers”. These algorithms fit a 
smooth curve to each variable and then add the results. 

http://www.sciencedirect.com/science/article/pii/S030324340700075X#bib4
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The BIOMOD tool uses a cubic spline smoother, which is a set of polynomials up 
to degree 3. Identically to GLM, BIOMOD has an automated stepwise procedure 
to set the most significant variables for each species (Team Biomod, 2012). 

𝑌 =  𝑠 (𝑋1, 4)  +  𝑠 (𝑋2, 4)  +  𝑠 (𝑋3, 4)     (Eq. 9) 

The user needs to select the number of degree of freedom. The value is 4 by 
default, what is similar to a polynomial of degree 3. 

b) Generalized Boosting Model 

This model is a combination of two methods: decision tree algorithms and 
boosting methods. It fits many decision trees to improve the accuracy of the 
model. A random subset of the data is done by means of the boosting approach 
per each new tree. In this new generated tree, the input data shall be 
weighted to enhance that poorly modelled data by previous trees has more 
chances to be selected in the new tree. When the first tree is fitted, the model 
will consider the prediction error of that tree to fit the next tree, and this 
process repeatedly. Considering previous fitted trees, the model tends to raise 
the accuracy obtained. This stepwise approach is unique to boosting (Elith et 
al., 2008). 

Generalized Boosting Models have two important parameters that the user 
needs to specify: Interaction depth and Shrinkage. The interaction depth 
handles the number of splits in each tree. When such value is equal to 1, the 
model will not consider any iteration between the variable response and the 
environmental variables. The shrinkage parameter indicates the contribution of 
each tree to enlarge the model in a way that small values will permit the 
generation of many trees. 

In order to obtain an optimal prediction, these two parameters need to be 
adjusted correctly to determine the most suitable number of trees. And the 
size of the dataset also plays an important role. Datasets with less than 500 
presences usually require simple tree models (interaction depth = 2 or 3) with 
small shrinkage rates to permit the model to grow at least to 1000 trees 
(Ridgeway, 1999). Some of the most relevant advantages of these models are 
their capacity to work with large datasets with quite well performances, when 
the number of environmental variables is rather large in comparison to the 
number of observations, or their ability to solve problems related to missing 
values and outliers. In addition to that, they can be used with different type of 
response variables such as binomial, Gaussian or following Poisson distributions. 
Due to its stochastic nature, in general it has a good predictive performance 
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that automatically finds the best fit of the model, although it needs at least of 
2 predicting variables and the input of absence, pseudo-absence or background 
points to be run (Team Biomod, 2012). R-BIOMOD uses the gbm library 
programmed by Greg Ridgeway. This package implements the generalized 
boosted modelling framework following Friedman’s Gradient Boosting Machine 
(Friedman, 2001). For more details: http://www.salford-
systems.com/friedmankdd.php ; www.i-pensieri.com/gregr/ ModernPrediction/ 
L9boosting.pdf 

c) Classification Tree Analysis 

This is a good alternative to regression approaches. These types of algorithms 
do not have any prior assumption about the link between response and 
predicting variables. Classification Tree Analysis use recursive partitions of the 
dimensional space defined by the predictors into groups with relatively similar 
response. Tree building is done by splitting the data repeatedly, and it is 
defined by a simple rule based on a single independent variable. The data are 
separated into two exclusive and homogeneous groups at each split. 

The algorithm aims to reduce the variance within the subset as much as it is 
possible. The heterogeneity of a node can be interpreted as a deviance of a 
Gaussian model (regression tree) or of a multinomial model (classification 
tree). As a result, there is a graph representing the deviance function of the 
cost-complexity parameter. The best tree is a trade-off between a high 
decrease of deviance and the smallest number of leaves. In the tree structures, 
leaves indicate class labels and branches represent conjunctions of features 
that lead to those class labels (Team Biomod, 2012). 

Classification tree analysis is included in BIOMOD to be a good alternative to 
regression approaches. The tree length is controlled by a nested sequence of 
sub-trees by recursively cutting the less important splits in terms of explained 
deviance. BIOMOD selects the best trade-off between the number of leaves and 
the explained deviance through X-fold cross-validations (where X is the number 
of cross-validation that can be set by the user. Seemingly, there is no optimal 
number of cross-validation but trying and testing until find the best solution for 
the problem (Team Biomod, 2012). 

d) Artificial Neural Network 

Inspired by human nervous system, the artificial neural network (ANN) 
technique has demonstrated to be a very powerful tool to deal with 
multivariate time series analysis and huge amount of information (Zhang, 

http://www.salford-systems.com/friedmankdd.php
http://www.salford-systems.com/friedmankdd.php
http://www.i-pensieri.com/gregr/
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2018). The human brain holds hundreds of billions of interconnected neurons 
that perform parallel processing of information (Wang, 2003), so that ANN was 
originally thought to solve problems alike human brain would do. Nowadays, it 
has evolved greatly towards many other fields and applications such as 
computer vision, biology or medical diagnosis. One of the greatest contributors 
to this technique was the British statistician Brian Ripley (Ripley, 1996). An 
artificial neural network (ANN) is a flexible mathematical structure that is able 
to identify complex nonlinear relationships between input and output datasets 
(Hsu et al., 2005). It consists of one layer of neurons, nodes or units that stand 
as input, and one, two or three hidden layers of neurons. The output is a final 
layer of neurons (Fig. 52). The connexion between neurons of different layers 
are called weight. 

It has been proved to be an efficient and useful technique to solve problems 
where the characteristics of the interactions are very unclear and difficult to 
describe. Results may vary with different runs, and the most optimal weight 
decay and the number of units in the hidden layer (with 3 as default) is chosen 
by means of N-fold cross-validation. The number of cross-validations can be 
selected by the user. Feed forward neural networks offer a flexible method to 
generalize linear regression functions. Even though they are non-linear 
regression models, the fact to have so many parameters makes them flexible 
enough to approximate any smooth function. ANN accuracy is merely handled 
by two parameters: the amount of weight decay and the number of hidden 
unit. NNET is the library used by BIOMOD to work with these types of algorithms 
(Team Biomod, 2012). As stated before, each run may give different results, so 
that N-fold cross-validation finds the best weight decay and the number of 
units in the hidden layer. In order to set this last parameter, there are 
different approaches such as (Wierenga & Kluytmans, 1994) where the number 
of units should be equal to the number of variables, or 75% of the number of 
variables (Venugopal & Baets, 1994). This is a time-consuming approach if the 
number of cross-validations is high. The output, hi, of neuron i in the hidden 
layer can be seen in equation 10: 

ℎ𝑖 = 𝜎�∑ 𝑉𝑖𝑖 𝑥𝑗 +  𝑇𝑖ℎ𝑖𝑖𝑁
𝑗=1 �             (Eq. 10) 

where σ () is called activation function, N corresponds to the number of input 
neurons, Vij the weights, x j inputs to the input neurons, and Ti

hid the threshold 
terms of the hidden neurons. The main purposes of the activation function are 
to introduce nonlinearity into the neural network, as well as to link the value of 
the neuron in the way that the neural network is not stopped by divergent 
neurons. 
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Figure 52. Architecture of a neural network. Source: Wang, 2003 

The data provided to the input neurons are independent variables while the 
returned data from the output neurons are the response variables to the 
function being approximated by the neural network (Wang, 2003). Either inputs 
or outputs can be numeric, binary or even symbols if appropriately encoded, 
what enables neural networks to have a wide range of uses. 

e) Surface Range Envelop or Bioclim “SRE” 

This is a simple surface range envelop, similar to BioClim. It is an approach that 
only uses presence data to identify environmental conditions that best suits to 
the species under research (Busby, 1991). The “envelop” is defined between 
the maximum and minimum values of the environmental variables of every 
presence recorded in the data. Every location with all variables ranging within 
these maximum and minimum thresholds is included within the range. In order 
to avoid over-prediction due to outliers, the envelope can be shrunk at 
specified standard deviations or percentiles. This is one of the simplest 
methods to model the distribution of species and widely used in many works 
(Carpenter et al., 1993; Booth et al., 2014) that removes those presences which 
are close to be outside the envelop for being considered as outliers.This 
method does not provide probability of occurrence but directly the presence or 
absence of the species (Team Biomod, 2012). It is very simple and intuitive, 
with no need to provide absence data to the model that offers a ranking of the 
most important environmental variables; nevertheless it has some limitations 
too. SRE cannot use categorical variables, it is susceptible to over-predict, and 
it does not explain interaction between predictors or does not provide 
confidence levels (Araujo & Peterson, 2012). 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2008.05742.x/full#b10
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f) Flexible Discriminant Analysis “FDA” 

Flexible Discriminant Analysis (FDA) is a supervised classification model based 
on a mixture of linear regression models (Hastie, 1994). It uses optimal scoring 
to transform the dependent variable so that the data are in a better form for 
linear separation, and multiple adaptive regression splines to generate the 
discriminant surface. This method is an extension of the linear discriminant 
analysis. Biomod uses the library mda to implement this algorithm, and Multiple 
Adaptive Regression Splines MARS (see below) to improve model prediction 
(Team Biomod, 2012). 

Multiple Adaptive Regression Splines “MARS” 

Multiple Adaptive Regression Splines (MARS) is an implementation of methods 
to solve regression-type problems aiming to predict response variables from a 
set of independent variables (Friedman, 1991). It is non-parametric procedure 
that avoids any assumption about the nature of the relationships between 
independent and dependent variables. On the contrary, it builds the 
relationship from a set of coefficients that are driven by the regression data. 
MARS is especially proper to problems with high number of independent 
variables, performing better than other methods under similar circumstances of 
high dimensionality on the dataset or low order interaction effects between 
variables. 

The major assumption in any linear process is that the coefficients are stable 
across all levels of the predictor variables and/or time. MARS is a very 
appropriate method to analyse data when the coefficients of the model have 
different optimal values across different levels of the explanatory variables. 
Essentially, it identifies and estimates a model whose coefficients differ based 
on the levels of the explanatory variables. A spline knot is a threshold value 
that pinpoints a change in the model coefficients, and it can be done 
automatically by the algorithm itself. Furthermore, complex nonlinear 
relationships can be set too. Biomod uses the mars function from the mda 
library programmed by Trevor Hastie and Robert Tibshirani.  The MARS method 
automatically selects the necessary amount of smoothing for each independent 
variable and their order of relationship. However, it urges to determine the 
maximum level of interaction (Team Biomod, 2012). There are only two level of 
interactions implemented in Biomod to tune, with no further parameterisation 
to modify. If required, parameters may be changed at the private function but 
only recommended to experience users. 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2008.05742.x/full#b10
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2008.05742.x/full#b13
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g) Maximum Entropy “Maxent.Phillips” 

Maximum Entropy is a technique to study the problem of modelling species 
geographic distributions (Phillips et al., 2004). It is based on sequential-update 
algorithms that can deal with a very large number of predicting variables. 
Maxent is a general-purpose machine learning method with a simple and 
precise mathematical formulation, and it has a number of aspects that make it 
well-suited for species distribution modelling. 

The core idea of the Maxent approach is to estimate a target probability 
distribution by finding the probability distribution of maximum entropy with a 
set of constraints. These constraints would indicate that the information about 
the target distribution is not complete. The available information is regarded as 
independent variables or features in the model 

Some of the advantages of these algorithms are (Phillips et al., 2006): (1) it 
needs only presence data, in addition to environmental information. (2) It can 
use both continuous and categorical data, as well as the possibility to add 
interactions between different variables. (3) Efficient deterministic algorithms 
were developed to converge with the optimal (maximum entropy) probability 
distribution. (4) The Maxent probability distribution has a concise mathematical 
definition. More information about this approach can be found at (Phillips, 
2017). 

h) Low Memory Multinomial Logistic Regresion “Maxent.Tsuroka” 

The Maxent.Tsuroka approach is data classification approach developed by Dr. 
Yoshimasa Tsuruoka that uses multinomial logistic regression, also known as 
maximum entropy (Jurka, 2012). The main aim of this classifier is to minimize 
memory consumption on very large datasets. Biomod uses the maxent package 
(Jurka & Tsuruoka, 2013) which provides a fast, low-memory maximum entropy 
classifier for a variety of classification tasks including ecology. Furthermore, 
there are some available hyper-parameters to prevent model overfitting and 
provide more accurate results. 

The Biomod2 package allows the user to randomly subset the original dataset 
into 2 subsets with calibration-validation purposes. The 80% of the data was 
selected to calibrate the models and 20 % to validate the predictions. Then, we 
repeated the process 5 times to obtain a robust test of the models, where each 
replicate uses a unique random split 80% - 20% of the data (Thuiller et al., 
2009). Presence and pseudo-absences were set to have the same importance in 
the calibration process, with a prevalence value of 0.5. Each parameter 
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specification can be found at 
(https://www.rdocumentation.org/packages/biomod2/versions/3.3-7/topics/ 
BIOMOD_Modeling). 

 BIOMOD2 package also offers the possibility to incorporate the best performing 
algorithms into ensemble models, which in many instances improve model 
prediction. These models combine the probabilities of some individual model 
predictions using their mean, coefficient of variation, median, confidence 
intervals, committee averaging or probability mean weight decay (Thuiller et 
al., 2016). In this chapter, this last technique (ensemble models) was selected 
to identify the potential distributions of hopper desert locust using ensemble 
species distribution models. To evaluate the performance of the model, 4 
different metrics were taken into account: the Receiver Operating Curve “ROC” 
(Hanley & McNeil, 1982), Cohen’S Kappa “KAPPA” (Monserud & Leemans, 
1992), True Skill Statistic “TSS” (Allouche et al., 2006) and Accuracy. 

We chose six environmental variables from two different sensors to include in 
our model: MODIS (NDVI and LST) and SMAP (Soil Moisture Root Zone, Surface 
Soil Moisture, LAI and Surface Temperature). Soil temperature information was 
retrieved for both sensors in order to add complementary information since the 
time pass is different. In order to overcome the difficulties involved in locating 
desert locust breeding zones in arid environments, desert locust biology must 
be understood and the environmental predictors adapted accordingly. 

We extracted the environmental variables from satellite imagery that 
correspond to presence and pseudo-absence sites. Each point is associated with 
95 values that correspond to the evolution of each environmental variable back 
in time on a daily basis. As time resolution differs from satellite products, we 
created sub-variables based on a 16-day period to obtain continuous time 
series. The variable description is detailed in Table 10. 

Variable Explanation Units 

LST_1 Average value of Land Surface Temperature from Terra-MODIS 
between 95 and 81 days before survey date 

ºC 

LST_2 Idem as LST_1 between 80 and 65 days before the survey date ºC 

LST_3 Idem as LST_1 between 64 and 49 days before the survey date ºC 

LST_4 Idem as LST_1 between 48 and 33 days before the survey date ºC 

LST_5 Idem as LST_1 between 32 and 16 days before the survey date ºC 
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Variable Explanation Units 

LST_6 Idem as LST_1 between 15 days before the survey date and the 
survey date itself 

ºC 

NDVI_1 Average value of NDVI from Terra-MODIS between 95 and 81 days 
before survey date 

- 

NDVI_2 Idem as NDVI_1 between 80 and 65 days before the survey date - 

NDVI_3 Idem as NDVI_1 between 64 and 49 days before the survey date - 

NDVI_4 Idem as NDVI_1 between 48 and 33 days before the survey date - 

NDVI_5 Idem as NDVI_1 between 32 and 16 days before the survey date - 

NDVI_6 Idem as NDVI_1 between 15 days before the survey date and the 
survey date itself 

- 

LAI_1 Average value of Leaf Area Index from SMAP between 95 and 81 
days before survey date 

- 

LAI_2 Idem as LAI_1 between 80 and 65 days before the survey date - 

LAI_3 Idem as LAI_1 between 64 and 49 days before the survey date - 

LAI_4 Idem as LAI_1 between 48 and 33 days before the survey date - 

LAI_5 Idem as LAI_1 between 32 and 16 days before the survey date - 

LAI_6 Idem as LAI_1 between 15 days before the survey date and the 
survey date itself 

- 

SMRZ_1 Average value of Soil Moisture Root Zone from SMAP between 95 
and 81 days before survey date 

m3/m3 

SMRZ_2 Idem as SMRZ_1 between 80 and 65 days before the survey date m3/m3 

SMRZ_3 Idem as SMRZ_1 between 64 and 49 days before the survey date m3/m3 

SMRZ_4 Idem as SMRZ_1 between 48 and 33 days before the survey date m3/m3 

SMRZ_5 Idem as SMRZ_1 between 32 and 16 days before the survey date m3/m3 

SMRZ_6 Idem as SMRZ_1 between 15 days before the survey date and the 
survey date itself 

m3/m3 

SSM_1 Average value of Surface Soil Moisture from SMAP between 95 and 
81 days before survey date 

m3/m3 

SSM_2 Idem as SSM_1 between 80 and 65 days before the survey date m3/m3 

SSM_3 Idem as SSM_1 between 64 and 49 days before the survey date m3/m3 

SSM_4 Idem as SSM_1 between 48 and 33 days before the survey date m3/m3 

SSM_5 Idem as SSM_1 between 32 and 16 days before the survey date m3/m3 
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Variable Explanation Units 

SSM_6 Idem as SSM_1 between 15 days before the survey date and the 
survey date itself 

m3/m3 

ST_1 Average value of Surface Temperature from SMAP between 95 and 
81 days before survey date 

ºC 

ST_2 Idem as ST_1 between 80 and 65 days before the survey date ºC 

ST_3  Idem as ST_1 between 64 and 49 days before the survey date ºC 

ST_4 Idem as ST_1 between 48 and 33 days before the survey date ºC 

ST_5 Idem as ST_1 between 32 and 16 days before the survey date ºC 

ST_6 Idem as ST_1 between 15 days before the survey date and the 
survey date itself 

ºC 

 
Table 10. Environmental data used to derive hopper presence in our model. It contains the 

explanation of the variables, measurement units, mean values and their standard 
deviation. 

For each point of presence or pseudo-absence, we extracted each of the 
variables explained in Table 10, aiming to obtain representative values for each 
time span before the sighting, so that we may observe some trends or patterns. 
NDVI stands for the longest temporal resolution, 16 days and then we 
established such length for the rest of the variables too. As mentioned by 
(Symmons & Cressman, 2001), hoppers may stay up to 95 days after the egg was 
laid before changing phase, under the longest case scenario. 

Model fitting and prediction 

Data split for calibration and testing was set to be random, with 80% of the 
original dataset to calibrate the model and 20% to evaluate it by ROC, TSS, 
Kappa and Accuracy metrics. This process to subset the original dataset into 
calibration and validation subsets was repeated randomly 5 times in order to 
obtain a robust test of the model (Thuiller et al., 2016). Presences and pseudo-
absences were set to have the same weight in the model. 

In this chapter, it was applied an ensemble technique excluding those 
individual models with TSS and kappa < 0.8 and ROC < 0.9. According to 
(Thuiller et al., 2009) in Table 11, those metric values would range from “fail” 
to “fair” model accuracies. 
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ACCURACY ROC KAPPA/TSS 

Excellent or high 0.9 – 1 0.8 – 1 

Good 0.8 – 0.9 0.6 – 0.8 

Fair 0.7 – 0.8 0.4 – 0.6 

Poor 0.6 - 0.7 0.2 – 0.4 

Fail or null 0.5 – 0.6 0 – 0.2 

 
Table 11. Index for classifying model prediction accuracy (Thuiller et al., 2009). 

 
Model evaluation 

The ensemble model algorithms in BIOMOD2 generate combined predictions 
based on different techniques: mean of probabilities (EMmean), confidence 
interval upper and lower (EMciSup and EMciInf respectively), being set 0.05 as 
the significance level for estimating it, committee averaging (EMca) or the 
weighted sum of probabilities (EMwmean). Those model predictions were 
evaluated against ROC, TSS, accuracy and Kappa metrics and then, we average 
the scores of the 5 runs to obtain a representative value of each model and 
metric. These results were compared against individual model performances. 
Biomod2 also provides information about the relative variable importance of 
each predictor to build the ensemble model, ranging from 0 to 1 (the higher 
the value, the higher the importance of the predictor). In addition, response 
curves offer the possibility to observe the sensitivity of the model for each 
predictor variable. 
 

4.3. Results 

4.3.1. Model evaluation 

In overall, the best results have been obtained by the ensemble models in 
comparison with the individual algorithms of BIOMOD2 (Fig. 53-54).The 
Committee Averaging Ensemble Model (EMca) was the best approach to predict 
hopper desert locust with the highest metric scores (Kappa and TSS = 0.901, 
ROC =0.986). The proportion of presences that were correctly identified 
(sensitivity) was 95.18 %, while the true negative rate (specificity) was 94.96 %. 
The rest of the models have rather similar performance, although showed 
slightly lower scores (Table 12). 
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Figure 53. Comparison between individual algorithms and ensemble models in terms of 
sensitivity and specificity. 

 

 

Figure 54. Comparison between individual algorithms and ensemble models in terms of 
Accuracy, TSS and ROC metrics. 
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 ACCURACY TSS ROC KAPPA Sensitivity 
% 

Specificity 
% 

GLM 0.928 0.856 0.969 0.855 93.525 91.748 

GBM 0.939 0.878 0.978 0.878 93.669 94.126 

GAM 0.908 0.816 0.911 0.816 92.986 67.657 

CTA 0.901 0.802 0.932 0.801 91.654 88.532 

ANN 0.922 0.845 0.948 0.844 93.669 90.769 

SRE 0.665 0.325 0.662 0.327 46.187 86.294 

FDA 0.937 0.874 0.977 0.874 93.813 93.566 

MARS 0.908 0.817 0.961 0.817 90.216 91.469 

RF 0.955 0.909 0.991 0.909 96.978 93.846 

MAXENT.Tsuruoka 0.858 0.715 0.906 0.715 87.626 83.916 

EMmean 0.895 0.895 0.986 0.947 94.240 95.198 

EMciInf 0.895 0.895 0.978 0.948 93.695 95.723 

EMciSup 0.892 0.892 0.982 0.946 93.810 95.323 

EMca 0.951 0.901 0.986 0.901 95.180 94.965 

Emwmean 0.895 0.895 0.986 0.947 94.188 95.260 

 
Table 12. Predictive performance scores for the individual and ensemble models of hopper 

desert locust in Mauritania (2015-2017). 

4.3.2. Variable importance 

Results of the most influential environmental predictors for the EMca model are 
shown in Table 13 and Fig. 55. The soil temperature (from SMAP) between the 
previous 95 to 80 days and the previous 16 days of the hopper records, along 
with the NDVI values (from MODIS) obtained from the previous 16 days of the 
records are the most relevant environmental predictors in our model. Their 
normalized importance scores emphasize the association of each environmental 
variable with the probability of hopper presence. 
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Normalized Importance Variable 

0.154 ST_6 

0.133 ST_1 

0.106 NDVI_6 

0.071 ST_4 

0.054 NDVI_1 

0.041 LST_6 

0.038 SMRZ_3 

0.035 SMRZ_6 

Between 0.035 - 0.030 SMRZ_5, SMRZ_2, ST_5 

Between 0.029 - 0.020 ST_3, SMRZ_4, SSM_2, SMRZ_1, LAI_4, SSM_1 

Between 0.019 - 0.010 ST_2, NDVI_3, LST_5, SSM_5 

Between 0.009 - 0.002 LAI_3, SSM_4, LST_3, NDVI_5, LST_1, SSM_6, 
LST_2, LAI_5, SSM_3, LST_4, LAI_2, LAI_6, 
LAI_1, NDVI_4, NDVI_2 

 
Table 13. Ranking of the normalized variable importance for the 36 environmental predictors of 

the model. Variables sorted within the same range have been ordered by importance 
from left to right. 

 

Figure 55. Normalized variable importance displayed graphically. 
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4.3.3. Response curves and living thresholds 

Fig. 56 depicts the response curves for the eight most important variables in 
the model (Table 13). These response curves were calculated using the statistic 
“mean” to fix as constant the rest of variables when the predicted response is 
calculated for one of them (Thuiller et al., 2016). They show changes in the 
probability of solitarious hoppers across variable values. In other words, all the 
predictor variables are set to their mean value whereas the interested variable 
varies across its whole range of values, thus we assess the sensibility of the 
model to this variable not taking into account the relationship with other 
predictor variables (Elith et al., 2005). 

Surface temperature curves indicate a great influence on hopper presence. The 
average value of surface temperature from SMAP between 95 and 81 days 
before the survey date (ST_1) and the average value of surface temperature 
from SMAP between 15 days before the survey date and the survey date itself 
(ST_6) differed greatly in SMAP acquisitions, and in general showed less 
probability of occurrence for lower temperatures compared to MODIS. 
Nevertheless, SMAP seemed to cover more critical temperatures during the day 
(minimum and close to the maximum throughout the day). ST_1 curve 
presented a probability increase from 25ºC to 40ºC, with a temperature 
optimum between 32.5 – 37.5ºC. The NDVI_6 response showed that hopper 
desert locust were more likely to be found when NDVI ranges between 0.12 – 
0.60 for the time covered up to 16 prior the sighting. LST_6 from MODIS showed 
an increase of probability when temperature was over 30ºC. MODIS and SMAP 
surface temperature products vary their values due to their time pass, 
representing MODIS acquisitions the highest in general, and SMAP would 
indicate the average between close to the lowest at 6:00 am and still rather 
high temperature at 6:00 pm. SMRZ_3 and SMRZ_6 response curves increased in 
probability when SM values reached 0.21 m3/ m3. 

The surface temperature retrieved by SMAP for the period (ST_6, ST_1, ST_4) 
and by MODIS (LST_6) proved to be highly influential with regard to increasing 
the probability of hoppers in our model. SM at root zone (SMRZ_3 and SMRZ_6) 
had less influence on the probability of presence, with a decrease in probability 
when values reach 0.125 m3/ m3 from 15 days before up to the date of 
occurrence. 
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Figure 56. Response curves of the Ensemble Model committee averaging for the 8th most 
influential variables: (a) ST_6, (b) ST_1, (c) NDVI_6, (d) ST_4, (e) NDVI_1, (f) LST_6, 
(g) SMRZ_3, (h) SMRZ_6. X-axis represents variable values and Y-axis the probability 
of occurrence according to our committee average ensemble model. Variable units 
for Surface Temperature is degrees Celsius (ºC), Soil Moisture Root Zone is m3/ m3, 
NDVI and LAI are dimensionless. 
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Figure 57 depicts the comparison of surface temperature derived variables from 
SMAP. Some differences can be seen in terms of data distribution and 
interquartile ranges. For instance, ST_5 and ST_6 have lower median values in 
comparison with ST_1, ST_2 and ST_3, which present higher median 
temperatures and their interquartile range are narrower with higher 
temperature values. Furthermore, NDVI derived variables tend to increase their 
median values on presences from NDVI_1 to NDVI_6 as their interquartile range 
increases in terms of NDVI. This figure would explain how low NDVI values 
benefit desert locust at very early stages (egg phase) as seen in Fig. 56e for 
NDVI_1, whereas NDVI values need to increase so as to ensure the survival of 
new born hoppers as seen in NDVI_5 and NDVI_6 Fig. 56c. In both figures (Fig. 
57-58), pseudo absence interquartile ranges remain equal across the time 
derived variables as it should be expected, demonstrating the role of pseudo 
absences to retrieve background values of the studied area. 

 

Figure 57. Distribution values of surface temperature for presence and pseudo absence records 
across the different time-based variables of temperature (see table 10). 

 

 

Figure 58. Distribution values of NDVI for presence and pseudo absence records across the 
different time-based variables of NDVI (see table 10). 
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4.4 Discussion 

The aim of this chapter was to identify favourable environmental conditions for 
hoppers in the solitarious phase. Our approach is based on satellite remote 
sensing imagery and ground observations of hopper presence from 2015 to 
2017, in Mauritania. We use Species Distribution Models (SDMs) based on 
machine learning techniques to predict presence/absence based on survey data 
to calibrate and validate our model. 

In this chapter, it was studied the relationship between some environmental 
variables and hopper desert locust. NDVI, surface temperature, leaf area index, 
SM root zone and surface SM have been analysed for different time spans 
before the hopper sighting date. The target was to assess which are the most 
critical variables and time span to predict desert locust presences based on 
Artificial Intelligence (AI). Our results have proved the suitability of this 
methodology to apply and develop an early warning system to prevent and 
mitigate locust effects. In addition to the traditional environmental predictors 
such as precipitation or NDVI, it has been demonstrated the influence of land 
surface temperature on desert locust presence by means of two different 
products from the satellite sensors MODIS and SMAP. 

The Committee Averaging Ensemble Model obtained a very good performance 
for KAPPA & TSS = 0.901, and ROC = 0.986 (Table 12). Although some studies 
accurately predict habitat suitability for desert locust based on individual 
variable analysis: rainfall (Dinku et al., 2010), vegetation (Ceccato, 2005, Lazar 
et al., 2015; Renier et al., 2015) or SM (Liu et al., 2008; Escorihuela et al., 
2018), the present model improves the accuracy of previous approaches 
obtained through the goodness of SDM and machine learning algorithms (Elith & 
Leathwick, 2009). 

 We incorporate a new group of variables based on surface temperature from 
the SMAP satellite, and combine them with other factors to include complex 
interaction among the explanatory variables. To the best of our knowledge, no 
similar approaches currently exist for locating areas favourable to desert 
locust. Our ensemble approach obtained high model accuracy (Thuiller et al., 
2009), being able to identify correctly 95.18 % of hopper presences. As 
variables were split by days, we distinguished different influences according to 
the survey time (Table 10). Variables with sub index 1 or 6 merely would 
account for strict egg and hopper stages respectively, whereas the rest of sub-
indexes could not clearly be interpreted for any of those stages due to the time 
flexibility in locust development. 
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The most influential environmental variables were the surface temperature 
ST_6 and ST_1 retrieved by SMAP. This finding is consistent with previous 
studies that highlighted the importance of soil temperature conditions for egg 
viability and hatching phase (Hunter-Jones, 1970; Nishide et al., 2017), 
although this has not yet been applied to monitor suitable areas by remote 
sensing. Due to SMAP acquisition time, this sensor retrieves representative daily 
soil temperatures for our study zone. In spite of being the same physical 
variable, LST from Modis did not prove to be as relevant, with LST_6 standing 
as the 6th in importance (see Table 13). Then, time retrieval is a very important 
factor in arid or semi-arid areas owing to the high contrast day/night 
temperatures (Gunnigle et al., 2017) that may affect greatly the viability of 
eggs and new hatched hoppers (Hunter-Jones, 1970; Parker, 1930). 

Field and laboratory experiments showed that heat controls the daily activities 
of some grasshopper species, with effects on food consumption, population 
density and egg production (Parker, 1930). In addition, (Nishide et al., 2017a) 
considered soil temperature as the leading factor for egg hatching activity 
because it occurs during low temperature hours, with minimum temperatures 
ranging from 20 and 24ºC (Hunter-Jones, 1964). 

The findings of this study suggested that the optimal soil temperature range for 
egg development was between 32.5 and 37.4ºC for average temperatures of 16 
days (Fig. 56). In accordance to that, (Hunter-Jones, 1964) laboratory 
experiments demonstrated a minimum temperature for embryonic development 
of 15.1ºC, nevertheless upper lethal limits showed to be dependent on time 
exposure, with constant temperatures over 38ºC (rare on the field). In the 
range 15.1 - 35ºC, the higher soil temperature, the faster egg development 
would be, whereas the egg development speed did not show to be only 
dependent on temperature over 35ºC. These statements coincide with our 
findings for ST_1, since prediction probability responds to temperature 
influence over 25ºC (which is the average of 16 days as explained in Table 10), 
proving egg viability under such circumstances. ST_6 showed an optimum in 
predicting hoppers between 23ºC and 29ºC, observing a drastic drop in 
occurrence probability over 34ºC. Then, hoppers would show more tolerance to 
values under 35ºC, whereas eggs seem to have a more constraint optimum 
range of soil temperatures. ST_4 response curve obtained its optimum for 
temperatures over 26ºC for the days covered (between 48 and 33 days before 
the survey date). In this variable, it is difficult to infer whether locust phase 
corresponds with egg or hopper stage because it varies according to 
environmental conditions of each record. 
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NDVI has been traditionally used to study habitat suitability for desert locust 
(Renier et al., 2015), since vegetation may provide food and shelter to hopper 
and adult individuals. In arid areas, vegetation conditions greatly the loss of 
soil water by evapotranspiration causing rapid SM depletion and, NDVI can be a 
good indicator along with other factors (Glenn et al., 2011). The most sensitive 
periods in which NDVI have any influence on our model are NDVI_1 (95 to 80 
days before sighting) and NDVI_6 (16 up to the sighting day). As stated before, 
NDVI_1 would account for vegetation on the local pixel where the egg was laid. 
We could observe a drop in its response curve between 0.12 and 0.19 of NDVI, 
and this would explain unsuitable circumstances for egg stages. Whereas 
NDVI_6 response curve suggests favourable NDVI values from 0.12 to 0.60 during 
hopper stages. Our findings agree with previous studies that have stated similar 
minimum NDVI thresholds to discriminate breeding areas 0.13 (Despland et al., 
2004) and 0.14 (Cherlet et al., 2017). 

The SM in the root zone stood as the last of the 8th most important variables 
within our model. Previous works have related low SM content and large size 
grasshopper individuals with longer wings, while higher SM values would 
enhance mortality due to bacterial and fungous diseases (Parker et al., 1930). 

Other studies pointed out the impact of SM on soil temperature to stop egg 
hatching when precipitation occurs (Nishide et al., 2017), the effects of 
prolonged flooding (>14 days) along with the increase of egg mortality 
(Woodman, 2015) or direct significance in egg lying, development and hatching 
(Liu et al., 2008). The SMRZ_3 response curve indicated a slight drop in 
probability from 0.12 to 0.19 m3/m3 of SM while to SMRZ_6, hopper’s 
probability decreased from 0.13 to 0.19 m3/m3. So that, SM values over 0.19 
m3/m3 indicate the lowest probability of occurrence for the time covered by 
SMRZ_3 and SMRZ_6 (see Fig. 56). These results are in accordance with prior 
publications to confirm SM influence, although they were less influent than the 
surface temperature. This fact can be explained by the effect that moisture 
has on surface temperature, enhancing the influence of this last one in the 
model. LAI or surface SM environmental variables do not seem to exert direct 
effect on desert locust distribution, although further improvements in spatial or 
temporal resolution of the remote sensing datasets might enhance their 
influence in the model. 

These results concur with previous studies (Cherlet et al., 2000; Cherlet et al., 
2017; Despland et al., 2004; Escorihuela et al., 2018; Lazar et al., 2016; Liu et 
al., 2008; Noy-Meir, 1973; Piou et al., 2017; Tratalos & Cheke, 2006) that 
individually survey certain environmental variables such as NDVI, SM or rainfall 
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to identify habitat suitability for desert locust. Nevertheless, the use of 
pseudo-absences may bring some uncertainties into our model (Wisz & Guisan, 
2009). They are often used in training data when there is a lack of information 
about the absence of species (Lobo et al., 2010). We therefore decided to 
incorporate them, given the lack of reliable and representative true absences 
in our study area. In order to build an effective SDM, pseudo-absences or 
background data need to be included together with presence data (Barbet-
Massin et al., 2012), although there is still no consensus on how and where to 
sample these pseudo‐absences nor how many are required. 

Increased desert locust population is the result of an accumulation of several 
variables (Van Huis et al., 2007). By including new ecological variables such as 
root zone SM, LAI or surface temperature from more developed sensors (SMAP), 
our model obtains a very high predictive performance. As described in 
(Anderson et al., 2006), the machine learning algorithms embedded in SDMs are 
able to incorporate complex interactions among variables that traditional 
methods cannot, and they may outperform traditional methods. We obtain 
threshold values that feature the typical ecological niches for Mauritania. 

In this study, we provide distribution constraints of the chosen environmental 
predictors using a machine learning species distribution model. These findings 
are the first step towards developing or improving operational early warning 
systems that may reduce survey and management operations. These tasks are 
essential vis-à-vis diminishing crop losses in areas already sensitive to food 
security issues (Ceccato et al., 2007) and where problems of social instability 
may emerge (Lecoq, 2003). Owing to the key role played by desert locust in 
agricultural production (Magor et al., 2008), it is essential to understand the 
environmental circumstances linked to locust damage. The methodology 
proposed in this chapter aims to improve or consolidate ongoing monitoring 
systems in order to keep major agricultural areas free of locusts. Early 
intervention has reduced the size of upsurges and plagues since the 1960s, 
helping to protect recent agricultural developments, crops and grazing of poor 
subsistence farmers in recession areas (Magor et al., 2008). 

4.5 Conclusion 

It has been verified the potentiality of Earth observation methods to identify 
potential habitats for solitarious desert locust in Mauritania. The methodology 
was based on machine learning algorithms for species distribution modelling 
with satellite remote sensing datasets. We obtained very high model accuracy 
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with 0.901 Kappa and TSS metrics, 0.986 ROC and 0.951 accuracy for the 
Committee Averaging Ensemble Model. This chapter confirms the importance of 
previously exposed environmental variables such as NDVI or SM to detect desert 
locust presence, but note the greatly contribution of new variables such as 
Surface Temperature or Root Zone Soil Moisture from SMAP. We observed that 
for the purpose of this study, SMAP retrieves a more representative soil 
temperature than MODIS, and it may be as a consequence of the time 
acquisition. The most sensitive variables were the Surface Temperature and 
NDVI. 

In addition, it was especially important to structure the environmental 
variables by time back from the sighting record, observing differences on model 
influence and curve responses within the same environmental variable. These 
results confirmed the hypothesis that several environmental conditions 
interfere in desert locust presence, and their combination may constrain its 
ecological niche. Even though data availability is limited, and temporal and 
spatial resolution of satellite images are still coarse, Sentinel 1 and Sentinel 2 
satellites (ESA) may raise the robustness of the model. To further improve 
these results, true absence information as well as more complex algorithms 
may refine the results of this study. Future works will be oriented to develop 
and operational early warning system based on this methodology and results to 
prevent desert locust impacts. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 5. General discussion and conclusions 

In this PhD research, various methodologies were explored to address the 
problematic to locate desert locust presences. The existing literature highlights 
the necessity to early identify locust breeding areas to avoid high population 
density (Gianessi, 2013), hence phase change from solitarious to gregarious and 
the formation of plagues (Skaf et al., 1990). This is a difficult task due to the 
dimensions and remoteness of the monitoring areas, in addition to the political 
instability and insecurity of those territories (FAO, 1994). An appropriate 
detection methodology facilitates control strategies, which aim to reduce 
populations to prevent plagues that damage crops and grazing (Van Huis et al., 
2007). 

Firstly, the role that wadis may play as breeding sites for desert locust was 
asessed. Secondly, we analyzed the link from ESA CCI SM remote sensing 
product with field surveys of hopper presences. And thirdly, we have narrowed 
the time span from 2015 to 2017 to use the latest satellite technology SMAP 
from NASA in order to monitor surface and root zone soil moisture. 

It has been observed that potential drainage streams or wadis do not show 
special relationship with respect to solitarious hoppers in the time covered. 
The observed distance between records and potential wadis is very variable, 
suggesting the existence of more influential variables as pointed out by many 
other authors (Popov, 1958; Simpson et al., 1999; Despland & Simpson, 2000) to 
facilitate desert locust breeding. SWAT hydrological model was used to identify 
the runoff and wadis network in Mauritania. 

Although the low precipitation regime in arid or semiarid environments, wadis 
may store great amount of groundwater due to its geo-stratigraphic features 
over long periods of time (Subyani, 2004). Some of the precipitation water 
percolates into the wadi soil to form local groundwater reservoirs, explaining 
the potential richness of vegetation and the relative higher SM content in 
comparison with no-wadi areas (Kassas & Imam, 1954). In general terms, this 
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first approach could not offer significant results to link hopper records and 
wadi areas. The lack of river gauge data has been one the SWAT model 
limitations, which did not permit us to derive quantitative hydrological values 
of the study area. It should also be noted that locust records of SWARMS 
database are recorded from direct observation by locust survey teams, what 
implies that some areas cannot be monitored as frequently, or locusts may go 
unnoticed at low densities. Nevertheless, some results suggest a visual spatial 
correlation between hopper presences and wadi sites, what goes in accordance 
with studies such as (Tucker et al., 1985; Hielkema et al., 1986). Longer and 
more precise data records need to be taken to properly assess the validity of 
this approach. Visual analysis of desert locust presences suggests a geographical 
bias of the SWARMS database, which may be accounted for road networks and 
harsh conditions of the Sahara desert. 

Despite ongoing desert locust monitoring techniques use rainfall to determine 
potential breeding sites (FAO & WMO, 2016), this variable presents some 
limitations in arid and semi-arid environments (Dinku et al., 2011). To improve 
management as well as forecasting techniques, the ESA CCI SM product and its 
suitability to locate breeding sites in Mauritania were analyzed. These results 
indicate a spatial correlation with traditional breeding areas according to the 
season of the year (Van Huis et al., 2007; Babah Ebbe, 2012). Despite ESA CCI 
SM only senses the first 5 cm. of the top soil, and desert locust lay eggs usually 
at depth down to 10 cm; this system seems appropriate due to the strong 
relationship of the top SM with deeper layers (Albergel et al. 2008). Our results 
provide a methodology using BIOMOD2 tool with highly predicting capacity 
(ROC-AUC = 0.95, TSS = 0.75 and Kappa = 0.75). 

 It was observed that the model performance improved when using narrower 
time intervals (6 days) and selecting the minimum SM value for that given time 
span. These findings suggest that an area becomes suitable for breeding when 
the minimum SM value remains higher than 0.07 m3/m3 over at least 6 days. 
Nevertheless, the area should be monitored for longer, since the success of 
egg-development is closely linked with the temporal evolution of SM as well as 
temperature (Shulov and Pener, 1963; Pedgley 1981). The applied methodology 
offers very promising results to correctly identify breeding areas based on 30 
years of SM values. The ESA CCI SM dataset is the most complete and consistent 
global SM data record available (Wagner et al. 2012). To the best of our 
knowledge, there has not been any previous desert locust analysis using this SM 
dataset. Given the acknowledged importance of SM for desert locust and the 
length of ESA CCI SM dataset, our results may signify a breakthrough to 
complement the ongoing locust monitoring techniques used until today. 
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In the third chapter, we explore other variables derived from satellite remote 
sensing that seem to have influence on desert locust presence. Earth Science 
models tend to be stochastic (Christakos, 2012), with multiple iterations among 
variables that may enhance or diminish their impact over desert locust 
development in solitarious phase. For this reason, other environmental 
variables were included and assessed in the third chapter. Unfortunately, at 
the time this chapter was developed, the ESA CCI SM product was available only 
until 31/12/2015. Therefore, we could not use such SM product, but SMAP’s soil 
moisture mission is expected to complement in the near future the ESA CCI SM 
initiative (Entekhabi et al., 2010, Dorigo et al., 2015). 

We have evaluated the relationship between Surface and Root Zone Soil 
Mositure, LAI, NDVI and Land Surface Temperature variables with hopper desert 
locust. The target was to assess which are the most critical variables and time 
span to predict desert locust presences based on Artificial Intelligence. Our 
results indicate the suitability of this methodology to apply or develop an early 
warning system to prevent and mitigate locust effects. In addition to the 
traditional environmental predictors such as precipitation or NDVI, it was 
demonstrated the influence of land surface temperature on desert locust 
presence by means of MODIS and SMAP sensors. Note that the time interval was 
16 days given the temporal resolution of the NDVI-MODIS product. 

The Committee Averaging Ensemble Model obtained a very good performance 
for Kappa and TSS = 0.901, and ROC = 0.986 (Table 12). Even though there have 
been some studies predicting habitat suitability for desert locust based on 
individual variable analysis: rainfall (Dinku et al., 2010), vegetation (Ceccato, 
2005, Lazar et al., 2015; Renier et al., 2015) or SM (Escorihuela et al. 2018), we 
aimed to develop a model combining different variables. Our ensemble 
approach obtained high model accuracy (Thuiller et al., 2009), being able to 
identify correctly 95.18 % of hopper presences. Variables were split by days, 
and we distinguished different influences according to the time interval (Table 
10). Variables with sub index 1 or 6 merely would account for strict egg and 
hopper stages respectively, whereas the rest of sub-indexes could not clearly 
be interpreted for either stage due to time variation in locust development. 

The most influential environmental variables were the surface temperature 
ST_6 and ST_1 retrieved by SMAP. This finding is consistent with previous 
studies that highlighted the importance of soil temperature conditions for egg 
viability and hatching phase (Hunter-Jones, 1970; Nishide et al., 2017), 
although have not yet been applied to monitor suitable areas by remote 
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sensing. These findings suggest egg optimal range (soil temperature) between 
32.5 and 37.4ºC for average temperatures of 16 days. 

Traditionally, NDVI has been used to study habitat suitability for desert locust 
(Renier et al., 2015), since vegetation may provide food and shelter to hopper 
and adult individuals. In arid or semi-arid environments, vegetation influences 
the loss of soil water by evapotranspiration causing rapid SM depletion; thus 
NDVI can be a good proxy in combination with other factors (Glenn et al., 
2011). NDVI_6 response curve suggests favourable NDVI values from 0.12 to 0.60 
during hopper stages. Our findings agree with previous studies that have stated 
similar minimum NDVI thresholds to discriminate breeding areas 0.13 (Despland 
et al., 2004) and 0.14 (Cherlet et al., 2017). 

Some studies have pointed out the impact of SM on soil temperature to stop 
egg hatching when precipitation occurs (Nishide et al., 2017), the effects of 
prolonged flooding (>14 days) along with the increase of egg mortality 
(Woodman, 2015) or direct significance in egg lying, development and hatching 
(Liu et al., 2008). In this model, SM variables seem to have less influence than 
others variables, although sensitive between 64 and 49 days, and 16 days prior 
the sighting record. Many publications relate brightness temperature and SM 
content (Rao et al., 1987), so that soil temperature and SM may be offering 
similar information to the model as observed in (Jin et al., 2014). Hence, 
temperature may have more predicting capabilities than SM in terms of 
predicting, but this statement needs further and future efforts to be 
confirmed. 

This model provides an approach to incorporate new environmental variables 
such as Soil Moisture Root Zone, LAI or surface temperature from more 
developed satellite platforms to improve desert locust monitoring and 
prediction. The results obtained in this third chapter indicate a good 
performance to identify breeding sites for desert locust in solitarious phase. 

In this PhD thesis, 3 different approaches were presented to locate breeding 
sites of desert locust. The results suggest that this study may help to improve 
ongoing operational early warning systems to detect desert locust breeding 
sites, or assist to create new predictive systems based on some of the 
presented methodologies. Future studies can expand these methods to other 
affected countries in order to implement a large-scale surveillance tool, using 
more data to improve the robustness of the presented models so that they may 
enhance their accuracy to locate potential breeding areas for desert locust. 
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